解三角形中角平分线之破题策略
专题06 三角形中的双角平分线模型--2024年中考数学核心几何模型重点突破(解析版)
专题06三角形中的双角平分线模型【模型1】双角平分线模型如图,已知在ABC ∆中,BO,CO 分别是ABC ∠,ACB ∠的平分线,根据角平分线的性质和三角形内角和定理,可得A O ∠+︒=∠2190。
【模型2】一内角一外角平分线模型如图,已知在ABC ∆中,BP,CP 分别是ABC ∠,ACD ∠的平分线,∴ABC PBC ∠=∠21,ACD PCA ∠=∠21,ACD ACB PCB ∠+∠=∠21,ABC A ACD ∠+∠=∠∴)(21ABC A ACB PCB ∠+∠+∠=∠;∴ABC A ACB PCB ∠+∠+∠=∠2121)(180PCB PBC P ∠+∠-︒=∠ )212121(180ABC A ACB ABC P ∠+∠+∠+∠-︒=∠∴;)21(180A ACB ABC P ∠+∠+∠-︒=∠∴;)21180(180A A P ∠+∠-︒-︒=∠∴;A P ∠=∠∴21【模型3】双外角平分线模型如图,已知在ABC ∆中,BP,CP 分别是CBE ∠,BCF ∠的平分线,根据外角定理,CBE PBC ∠=∠21,BCF PCB ∠=∠21,又ACB A CBE ∠+∠=∠,ABC A BCF ∠+∠=∠,∴)(180PCB PBC P ∠+∠-︒=∠;∴)(21180)2121(180BCF CBE BCF CBE P ∠+∠-︒=∠+∠-︒=∠;∴)(21180ABC A ACB A P ∠+∠+∠+∠-︒=∠;∴)2(21180ABC ACB A P ∠+∠+∠-︒=∠;∴)1802(21180A A P ∠-︒+∠-︒=∠;∴︒-∠-︒=∠9021180A P ;∴A P ∠-︒=∠2190;【例1】如图,在△ABC 中,∠ABC 和∠ACB 的角平分线交于点O ,延长BO 与∠ACB 的外角平分线交于点D ,若∠BOC =130°,则∠D =_____【答案】40°【分析】根据角平分线的定义结合三角形外角的性质即可得到结论.【解析】解:∵∠ABC和∠ACB的角平分线交于点O,∴∠ACO=12∠ACB,∵CD平分∠ACE,∴∠ACD=12∠ACE,∵∠ACB+∠ACE=180°,∴∠OCD=∠ACO+∠ACD=12(∠ACB+∠ACE)=12×180°=90°,∵∠BOC=130°,∴∠D=∠BOC-∠OCD=130°-90°=40°,故答案为:40°.【例2】如图,已知△ABC,O是△ABC内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2,则∠1、∠2、∠A、∠O四个角之间的数量关系是()A.∠1+∠0=∠A+∠2B.∠1+∠2+∠A+∠O=180°C.∠1+∠2+∠A+∠O=360°D.∠1+∠2+∠A=∠O【答案】D【分析】连接AO并延长,交BC于点D,由三角形外角的性质可知∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2,再把两式相加即可得出结论.【解析】解:连接AO并延长,交BC于点D,∵∠BOD是△AOB的外角,∠COD是△AOC的外角,∴∠BOD=∠BAD+∠1①,∠COD=∠CAD+∠2②,①+②得,∠BOC=(∠BAD+∠CAD)+∠1+∠2,即∠BOC=∠BAC+∠1+∠2.故选:D.【例3】(1)问题发现:如图1,在ABC 中,40A ∠=︒,ABC ∠和ACB ∠的平分线交于P ,则BPC ∠的度数是______(2)类比探究:如图2,在ABC 中,ABC ∠的平分线和ACB ∠的外角ACE ∠的角平分线交于P ,则BPC ∠与A ∠的关系是______,并说明理由.(3)类比延伸:如图3,在ABC 中,ABC ∠外角FBC ∠的角平分线和ACB ∠的外角BCE ∠的角平分线交于P ,请直接写出BPC ∠与A ∠的关系是______.【答案】(1)110°;(2)12BPC A ∠=∠;(3)1902BPC A ∠=︒-∠【分析】(1)根据三角形内角和定理求出∠ABC+∠ACB ,根据角平分线的定义、三角形内角和定理计算即可;(2)根据三角形外角的性质得到∠ACE=∠ABC+∠A 、∠PCE=∠PBC+∠BPC ,根据角平分线的定义解答;(3)根据(1)的结论然后用角分线的定义,计算即可.【解析】解:(1)∵40A ∠=︒,∴18040ABC ACB ∠+∠=︒-,∵ABC ∠和ACB ∠的平分线交于P ,∴12PBC ABC ∠=∠,12PCB ACB ∠=,∴()118090202BPC ABC ACB ∠=︒-∠+=︒+︒故答案为110°(2)12BPC A ∠=∠,证明:∵ACE ∠是ABC 的外角,PCE ∠是PBC 的外角,∴ACE ABC A∠=∠+∠PCE PBC BPC ∠=∠+∠,∵BP 平分ABC ∠,CP 平分ACE ∠,∴1122PBC ABC PCE ACE ∠=∠∠=∠,∴1122ACE ABC BPC ∠=∠+∠,∴()111222BPC ABC ACE ABC ACE ∠=∠-∠=∠-∠,∴12BPC A ∠=∠,故答案为:12BPC A ∠=∠;(3)由(1)得,1902BPC A ∠=︒-∠,故答案为:1902BPC A ∠=︒-∠.一、单选题1.如图,在△ABC 中,∠ABC 和∠ACB 的外角平分线交于点O ,设∠A =m ,则∠BOC =()A .B .C .D .【答案】B 【分析】根据三角形的内角和,可得∠ABC +∠ACB ,根据角的和差,可得∠DBC +∠BCE ,根据角平分线的定义,可得∠OBC +∠OCB ,根据三角形的内角和,可得答案.【解析】解:如图:,由三角形内角和定理,得∠ABC +∠ACB =180°-∠A =180°-m ,由角的和差,得∠DBC +∠BCE =360°-(∠ABC +∠ACB )=180°+m ,由∠ABC 和∠ACB 的外角平分线交于点O ,得∠OBC +∠OCB =12(∠DBC +∠BCE )=90°+12m ,由三角形的内角和,得∠O =180°-(∠OBC +∠OCB )=90°-12m .故选:B .2.如图:PC 、PB 是ACB ∠、ABC ∠的角平分线,40A ∠=︒,BPC ∠=()A .∠BPC =70ºB .∠BPC =140ºC .∠BPC =110ºD .∠BPC =40º【答案】C 【分析】首先根据三角形内角和定理求出ABC ACB ∠+∠的度数,再根据角平分线的性质可得12PCB ACB ∠=∠,12PBC ABC ∠=∠,进而可求PBC PCB ∠+∠的度数,再次在CBP ∆中利用三角形内角和即可求解.【解析】解:40A ∠=︒ ,18040140ABC ACB ∴∠+∠=︒-︒=︒,又BP 平分ABC ∠,CP 平分ACB ∠,12PCB ACB ∴∠=∠,12PBC ABC ∠=∠,11()1407022PBC PCB ABC ACB ∴∠+∠=∠+∠=⨯︒=︒,180()110BPC PBC PCB ∴∠=︒-∠+∠=︒.故选:C .3.如图,△ABC 中,∠E =18°,BE 平分∠ABC ,CE 平分∠ACD ,则∠A 等于()A .36°B .30°C .20°D .18°【答案】A 【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD =∠A +∠ABC ,∠ECD =∠E +∠EBC ;由角平分线的性质,得∠ECD =12(∠A +∠ABC ),∠EBC =12∠ABC ,利用等量代换,即可求得∠A 与∠E 的关系,即可得到结论.【解析】解:∵∠ACD =∠A +∠ABC ,∴∠ECD =12(∠A +∠ABC ).又∵∠ECD =∠E +∠EBC ,∴∠E +∠EBC =12(∠A +∠ABC ).∵BE 平分∠ABC ,∴∠EBC =12∠ABC ,∴12∠ABC +∠E =12(∠A +∠ABC ),∴∠E =12∠A =18°,∴∠A =36°.故选A .4.如图,ABC 中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF 和CEF △都是等腰三角形②DE BD CE =+;③BF CF >;④若80A ∠=︒,则130BFC ∠=︒.其中正确的有()个A .1B .2C .3D .4【答案】C【分析】根据等腰三角形的判断与性质和平行线的性质及三角形三边的关系即可求解.【解析】解:①∵BF 是∠ABC 的角平分线,CF 是∠ACB 的角平分线,∴∠ABF=∠CBF ,∠ACF=∠BCF ,∵DE ∥BC ,∴∠CBF=∠BFD ,∠BCF=∠EFC (两直线平行,内错角相等),∴∠ABF=∠BFD ,∠ACF=∠EFC ,∴DB=DF ,EF=EC ,∴△BDF 和△CEF 都是等腰三角形,∴①选项正确,符合题意;②∵DE=DF+FE ,∴DB=DF ,EF=EC ,∴DE=DB+CE ,∴②选项正确,符合题意;③根据题意不能得出BF >CF ,∴④选项不正确,不符合题意;④∵若∠A=80°,∴∠ABC+∠ACB=180°-∠A=180°-80°=100°,∵∠ABF=∠CBF ,∠ACF=∠BCF ,∴∠CBF+∠BCF=12×100°=50°,∴∠BFC=180°-∠CBF-∠BCF=180°-50°=130°,∴④选项正确,符合题意;故①②④正确.故选C5.如图,ABD ∠,ACD ∠的角平分线交于点P ,若48A ∠=︒,10D ∠=︒,则P ∠的度数()A .19︒B .20︒C .22︒D .25︒【答案】A【分析】法一:延长PC交BD于E,设AC、PB交于F,根据三角形的内角和定理得到∠A +∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根据三角形的外角性质得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD−∠D,根据PB、PC 是角平分线得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A−∠D,代入即可求出∠P.法二:延长DC,与AB交于点E.设AC与BP相交于O,则∠AOB=∠POC,可得∠P+1 2∠ACD=∠A+12∠ABD,代入计算即可.【解析】解:法一:延长PC交BD于E,设AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD−∠D,∴∠P+∠PBE=∠PCD−∠D,∴2∠P+∠PCF+∠PBE=∠A−∠D+∠ABF+∠PCD,∵PB、PC是角平分线∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A−∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD =∠A +∠AEC =48°+∠AEC .∵∠AEC 是△BDE 的外角,∴∠AEC =∠ABD +∠D =∠ABD +10°,∴∠ACD =48°+∠AEC =48°+∠ABD +10°,整理得∠ACD −∠ABD =58°.设AC 与BP 相交于O ,则∠AOB =∠POC ,∴∠P +12∠ACD =∠A +12∠ABD ,即∠P =48°−12(∠ACD −∠ABD )=19°.故选A .二、填空题6.如图,在ABC ∆中,A θ∠=,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠,1A BC ∠和1A CD ∠的平分线交于点2A ,得2A ∠;⋯;2019A BC ∠和2019A CD ∠的平分线交于点2020A ,则2020A ∠=__.(用θ表示)【答案】20202θ【分析】利用角平分线的性质、三角形外角性质,易证∠A 1=12∠A ,由于∠A 1=12∠A ,∠A 2=12∠A 1=212∠A ,…,以此类推可知∠A 2020即可求得.【解析】∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC=12∠ABC ,∠A 1CA=12∠ACD ,∵∠A 1CD=∠A 1+∠A 1BC ,即12∠ACD=∠A 1+12∠ABC ,∴∠A 1=12(∠ACD-∠ABC ),∵∠A+∠ABC=∠ACD ,∴∠A=∠ACD-∠ABC ,∴∠A 1=12∠A ,以此类推∠A 2=12∠A 1=12•12∠A=212∠A,∠A 3=12∠A 2=21122⨯∠A=312∠A ,……,所以∠A n =12n A ∠,202020202020122A A θ∴∠=∠=.故答案为:20202θ.7.如图,在△ABC 中,A 70∠=︒,如果ABC ∠与ACB ∠的平分线交于点D ,那么BDC ∠=_________度.【答案】125【分析】先利用三角形内角和定理求出ABC ACB ∠+∠的度数,进而可求DBC DCB ∠+∠的度数,最后再利用三角形内角和定理即可求出答案.【解析】70A ∠=︒ ,180110ABC ACB A ∴∠+∠=︒-∠=︒.∵BD 平分ABC ∠,CD 平分ACB ∠,1()552DBC DCB ABC ACB ∴∠+∠=∠+∠=︒,180()125BDC DBC DCB ∴∠=︒-∠+∠=︒.故答案为:125.8.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,交BO 的延长线于点E ,记1BAC ∠=∠,2BEC ∠=∠,则以下结论①122∠=∠,②32BOC ∠=∠,③901BOC ∠=︒+∠,④902BOC ∠=︒+∠,正确的是________.(把所有正确的结论的序号写在横线上)【答案】①④【分析】依据角平分线的性质以及三角形外角性质,即可得到∠1=2∠2,∠BOC =90°+12∠1,∠BOC =90°+∠2,再分析判断.【解析】∵CE 为外角∠ACD 的平分线,BE 平分∠ABC ,∴∠DCE =12∠ACD ,∠DBE =12∠ABC ,又∵∠DCE 是△BCE 的外角,∴∠2=∠DCE−∠DBE =12(∠ACD−∠ABC )=12∠1,故①正确;∵BO ,CO 分别平分∠ABC ,∠ACB ,∴∠OBC =12ABC ,∠OCB =12∠ACB ,∴∠BOC =180°−(∠OBC +∠OCB )=180°−12(∠ABC +∠ACB )=180°−12(180°−∠1)=90°+12∠1,故②、③错误;∵OC 平分∠ACB ,CE 平分∠ACD ,∴∠ACO =12∠ACB ,∠ACE =12∠ACD ,∴∠OCE =12(∠ACB +∠ACD )=12×180°=90°,∵∠BOC 是△COE 的外角,∴∠BOC =∠OCE +∠2=90°+∠2,故④正确;故答案为:①④.9.如图,ABC 的角平分线OB 、OC 相交于点O ,40A ∠︒=,则BOC ∠=______.【答案】110︒.【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB 的度数,再根据三角形的内角和定理即可求出∠BOC 的度数.【解析】解:∵OB 、OC 分别是∠ABC 和∠ACB 的角平分线,∴∠OBC+∠OCB=111()222ABC ACB ABC ACB ∠+∠=∠+∠∵∠A=40°,∴∠OBC+∠OCB=1(18040)2︒︒-=70°,∴∠BOC=180°-(∠OBC+∠OCB )=180°-70°=110°.故答案是110.10.如图,已知60BAC ∠=︒,AD 是角平分线且10AD =,作AD 的垂直平分线交AC 于点F ,作DE AC ⊥,则DEF 周长为________.【答案】5+【分析】知道60BAC ∠=︒和AD 是角平分线,就可以求出30DAE ∠=︒,AD 的垂直平分线交AC 于点F 可以得到AF =FD ,在直角三角形中30°所对的边等于斜边的一半,再求出DE ,得到DEF C DE EF AF AE DE =++=+△.【解析】解: AD 的垂直平分线交AC 于点F ,∴DF AF =(垂直平分线上的点到线段两端点距离相等)∴DEF C DE EF AF AE DE=++=+△∵60BAC ∠=︒,AD 是角平分线∴30DAE ∠=︒∵10AD =∴5DE =,AE =∴5DEF C =+△11.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.【答案】15°【分析】先由BD、CD分别平分∠ABC、∠ACB得到∠DBC=12∠ABC,∠DCB=12∠ACB,在△ABC中根据三角形内角和定理得∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=60°,则根据平角定理得到∠MBC+∠NCB=300°;再由BE、CE分别平分∠MBC、∠BCN得∠5+∠6=12∠MBC,∠1=12∠NCB,两式相加得到∠5+∠6+∠1=12(∠NCB+∠NCB)=150°,在△BCE中,根据三角形内角和定理可计算出∠E=30°;再由BF、CF分别平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根据三角形外角性质得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代换得到∠2=∠5+∠F,2∠2=2∠5+∠E,再进行等量代换可得到∠F=12∠E.【解析】解:如图:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=12∠ABC,∠DCB=12∠ACB,∴∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=12×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=12∠MBC,∠1=12∠NCB,∴∠5+∠6+∠1=12(∠NCB +∠NCB )=150°,∴∠E =180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF 、CF 分别平分∠EBC 、∠ECQ ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F ,∠2+∠3+∠4=∠5+∠6+∠E ,即∠2=∠5+∠F ,2∠2=2∠5+∠E ,∴2∠F =∠E ,∴∠F =12∠E =12×30°=15°.故答案为:15°.三、解答题12.(1)如图所示,在ABC 中,,BO CO 分别是ABC ∠和ACB ∠的平分线,证明:1902BOC A ∠=+∠︒.(2)如图所示,ABC 的外角平分线BD 和CD 相交于点D ,证明:1902BDC A -︒∠=∠.(3)如图所示,ABC 的内角平分线BD 和外角平分线CD 相交于点D ,证明:12D A ∠=∠.【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)设,ABO OBC x ACO BCO y ∠=∠=∠=∠=.由ABC 的内角和为180︒,得22180A x y ︒∠++=.①由BOC 的内角和为180︒,得180BOC x y ∠++=︒.②由②得180x y BOC +=-∠︒.③把③代入①,得()2180180A BOC ∠+-∠=︒︒,即2180BOC A ∠=︒+∠,即1902BOC A ∠=+∠︒(2)∵BD 、CD 为△ABC 两外角∠ABC 、∠ACB 的平分线,∴()()1122BCD A ABC DBC A ACB ∠=∠+∠∠=∠+∠、,由三角形内角和定理得,180BDC BCD DBC ∠=︒-∠-∠,=180°-12[∠A +(∠A +∠ABC +∠ACB )],=180°-12(∠A +180°),=90°-12∠A ;(3)如图:∵BD 为△ABC 的角平分线,交AC 与点E ,CD 为△ABC 外角∠ACE 的平分线,两角平分线交于点D∴∠1=∠2,∠5=12(∠A +2∠1),∠3=∠4,在△ABE 中,∠A =180°-∠1-∠3∴∠1+∠3=180°-∠A ①在△CDE中,∠D=180°-∠4-∠5=180°-∠3-12(∠A+2∠1),即2∠D=360°-2∠3-∠A-2∠1=360°-2(∠1+∠3)-∠A②,把①代入②得∠D=12∠A.13.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O①若∠ABC=40°,∠ACB=50°,则∠BOC的度数为;②若∠A=76°,则∠BOC的度数为;③你能找出∠A与∠BOC之间的数量关系吗?说明理由【答案】①135°;②128°;③∠BOC=90°+12∠A,理由见解析【分析】①利用三角形的内角和定理和角平分线的定义进行求解;②利用三角形的内角和定理求出(∠ABC+∠ACB)的度数,再根据角平分线的定义和三角形的内角和定理进行求解;③利用三角形的内角和定理求出(∠ABC+∠ACB)的度数,再根据角平分线的定义和三角形的内角和定理进行求解.【解析】解:①∵∠ABC=40°,∠ACB=50°,∠ABC,∠ACB的平分线相交于点O,∴∠OBC=12∠ABC=20°,∠OCB=12∠ACB=25°,又∵∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°-12(∠ABC+∠ACB)=135°,故答案为:135°;②∵在△ABC中,∠A=76°,∴∠ABC+∠ACB=104°,∴由①知,∠BOC=180°-12(∠ABC+∠ACB)=128°,故答案为:128°③∠BOC=90°+12∠A,理由如下:∠BOC=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A.14.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点P.(1)若∠ABC +∠ACB =130°,求∠BPC 的度数.(2)当∠A 为多少度时,∠BPC =3∠A ?【答案】(1)115︒;(2)36A ∠=︒【分析】(1)根据角平分线的定义,求得PBC ∠,PCB ∠,再根据三角形内角和定理即可求得BPC ∠;(2)根据(1)的方法求得BPC ∠,再结合条件∠BPC =3∠A ,解方程即可求得∠A .【解析】(1)PB 平分ABC ∠,PC 平分ACB ∠,11,22PBC ABC PCB ACB ∴∠=∠∠=∠, ∠ABC +∠ACB =130°,1()652PBC PCB ABC ACB ∴∠+∠=∠+∠=︒,180()18065115BPC PBC PCB ∴∠=︒-∠+∠=︒-︒=︒,(2)PB 平分ABC ∠,PC 平分ACB ∠,11,22PBC ABC PCB ACB ∴∠=∠∠=∠,1()2PBC PCB ABC ACB ∴∠+∠=∠+∠,180ABC ACB A ∠+∠=︒-∠ ,1902PBC PCB A ∴∠+∠=︒-∠,180()BPC PBC PCB Ð=°-Ð+Ð1180(90)2A =︒-︒-∠1902A =+∠︒ ∠BPC =3∠A13902A A ∴∠=︒+∠,36A ∴∠=︒.15.数学思想运用:(1)如图①所示,△ABC 的外角平分线交于G ,若∠A =80°,则∠BGC =______°,请你猜测∠BGC 和∠A 的数量关系:_______________.(2)如图②所示,若△ABC 的内角平分线交于点I ,若∠A =50°,则∠BIC =______°,请你猜测∠BIC 和∠A 的数量关系:__________________.(3)已知,如图③,△ABC 中,ACE ∠的平分线与的平分线交于点,请你猜测∠D和∠A 的数量关系:____________________.若,求的度数(写出求解过程).【答案】(1)501902BGC A ∠=︒-∠(2)1151902BIC A ∠=︒+∠(3)12D ACE ∠=∠,35°【分析】(1)根据三角形内角和等于180°,可知180100ABC ACB A ∠+∠=︒-∠=︒,继而求出260CBE BCF ∠+∠=︒由角平分线的定义得出112,322CBE BCF ∠=∠∠=∠,再由三角形内角和定理即可求解;(2)根据三角形内角和等于180°,可得180130ABC ACB A ∠+∠=︒-∠=︒,根据角平分线的意义可得116,822ABC ACB ∠=∠∠=∠,再由三角形内角和定理即可求解;(3)先由角平分线的定义可得1,122DBC ABC DCE ACE ∠=∠∠=∠,再根据三角形外角的性质得,ACE ABC A DCE DBC D ∠=∠+∠∠=∠+∠,利用角的和差即可求解;将70A ︒∠=代入数量关系即可求解.【解析】(1)180,80A ABC ACB A ∠+∠+∠=︒∠=︒180100ABC ACB A ∴∠+∠=︒-∠=︒180,180ABC CBE ACB BCF ∠+∠=︒∠+∠=︒180180(180)180260CBE BCF A A ∴∠+∠=︒+︒-︒-∠=︒+∠=︒,BG CG 分别平分,CBE BCF∠∠112,322CBE BCF ∴∠=∠∠=∠1123()(180)13022CBE BCF A ∴∠+∠=∠+∠=︒+∠=︒23180BGC ∠+∠+∠=︒ 11180(23)180(180)905022BGC A A ⎡⎤∴∠=︒-∠+∠=︒-︒+∠=︒-∠=︒⎢⎥⎣⎦故答案为:50,1902BGC A ∠=︒-∠(2)180,50A ABC ACB A ∠+∠+∠=︒∠=︒180130ABC ACB A ∴∠+∠=︒-∠=︒,BI CI Q 分别平分,ABC ACB∠∠116,822ABC ACB ∴∠=∠∠=∠11168()(180)90222ABC ACB A A ∴∠+∠=∠+∠=︒-∠=︒-∠68180BIC ∠+∠+∠=︒ 11180(68)180(180)9011522BIC A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠=︒故答案为:115,1902BIC A ∠=︒+∠(3),BD CD 分别平分,ABC ACE∠∠11,22DBC ABC DCE ACE ∴∠=∠∠=∠,ACE ABC A DCE DBC D∠=∠+∠∠=∠+∠ 111222ACE ABC A ∴∠=∠+∠12D A ∴∠=∠70A ︒∠= 35D ∴∠=︒故答案为:12D A ∠=∠16.ABC 中,50A ∠=︒.(1)如图①,若点P 是ABC ∠与ACB ∠平分线的交点,求P ∠的度数;(2)如图②,若点P 是CBD ∠与BCE ∠平分线的交点,求P ∠的度数;(3)如图③,若点P 是ABC ∠与ACF ∠平分线的交点,求P ∠的度数;(4)若A β∠=.请直接写出图①,②,③中P ∠的度数,(用含β的代数式表示)【答案】(1)115°;(2)65°;(3)25°;(4)分别为:①11180(180)9022P ββ∠=︒-︒-=︒+;②1902P β∠=︒-;③1122P A β∠=∠=【分析】(1)根据三角形内角和定理和角平分线定义得出∠PBC+∠PCB=12(∠ABC+∠ACB )=65°,根据三角形的内角和定理得出∠P 的度数;(2)由三角形内角和定理和邻补角关系得出∠CBD+∠BCE=360°-130°=230°,由角平分线得出∠PBC+∠PCB=12(∠CBD+∠BCE )=115°,再由三角形内角和定理即可求出结果;(3)由三角形的外角性质和角平分线的定义证出∠P=12∠A ,即可得出结果;(4)由(1)(2)(3),容易得出结果.【解析】解:(1)50A ∠=︒ ,18050130ABC ACB ∴∠+∠=︒-︒=︒,点P 是ABC ∠与ACB ∠平分线的交点,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠,11()1306522PBC PCB ABC ACB ∴∠+∠=⨯∠+∠=⨯︒=︒,180()115P PBC PCB ∴∠=︒-∠+∠=︒;(2)18050130ABC ACB ∠+∠=︒-︒=︒ ,360130230CBD BCE ∴∠+∠=︒-︒=︒,点P 是CBD ∠与BCE ∠平分线的交点,1()1152PBC PCB CBD BCE ∴∠+∠=∠+∠=︒,18011565P ∴∠=︒-︒=︒;(3) 点P 是ABC ∠与ACF ∠平分线的交点,12PBC ABC ∴∠=∠,12PCF ACF ∠=∠,PCF P PBC ∠=∠+∠ ,ACF A ABC ∠=∠+∠,2()P PBC A ABC ∴∠+∠=∠+∠,1252P A ∴∠=∠=︒;(4)若A β∠=,在(1)中,11180(180)9022P ββ∠=︒-︒-=︒+;在(2)中,同理得:1902P β∠=︒-;在(3)中,同理得:1122P A β∠=∠=.17.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D ;【简单应用】(2)如图2,AP 、CP 分别平分∠BAD .∠BCD ,若∠ABC=46°,∠ADC=26°,求∠P 的度数;【问题探究】(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,若∠ABC=36°,∠ADC=16°,请猜想∠P 的度数,并说明理由.【拓展延伸】(4)①在图4中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为:(用α、β表示∠P );②在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、∠D 的关系,直接写出结论.【答案】(1)见解析;(2)36°;(3)26°,理由见解析;(4)①∠P=23αβ+②∠P=1802B D︒+∠+∠【分析】(1)根据三角形内角和定理即可证明;(2)直接利用(1)中的结论两次,两式相加,然后根据角平分线的性质求解即可;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°﹣∠2,∠PCD=180°﹣∠3,由∠P+(180°﹣∠1)=∠D+(180°﹣∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题.(4)①同法利用(1)种的结论列出方程即可解决问题.②同法利用(1)种的结论列出方程即可解决问题.【解析】(1)在△AEB中,∠A+∠B+∠AEB=180°.在△CED中,∠C+∠D+∠CED=180°.∵∠AEB=∠CED,∴∠A+∠B=∠C+∠D;(2)由(1)得:∠1+∠B=∠3+∠P,∠4+∠D=∠2+∠P,∴∠1+∠B+∠4+∠D=∠3+∠P+∠2+∠P.∵∠1=∠2,∠3=∠4,∴2∠P=∠B+∠D=46°+26°=72°,∴∠P=36°.(3)∠P=26°,理由是:如图3:∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°﹣∠2,∠PCD=180°﹣∠3.∵∠PAB=∠1,∠P+∠PAB=∠B+∠4,∴∠P+∠1=∠B+∠4.∵∠P+(180°﹣∠2)=∠D+(180°﹣∠3),∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°.(4)①设∠CAP=m,∠CDP=n,则∠CAB=3m,,∠CDB=3n,∴∠PAB=2m,∠PDB=2n.∵∠C+∠CAP=∠P+∠PDC,∠P+∠PAB=∠B+∠PDB,∵∠C=α,∠B=β,∴α+m=∠P+n,∠P+2m=β+2n,∴α-∠P=n-m,∠P-β=2n-2m=2(n-m),∴2α+β=3∠P∴∠P=23αβ+.故答案为:∠P=23αβ+.②设∠BAP=x,∠PCE=y,则∠PAO=x,∠PCB=y.∵∠PAO+∠P=∠PCD+∠D,∠B+∠BAO=∠OCD+∠D,∴x+∠P=180°-y+∠D,∠B+2x=180°-2y+∠D,∴∠P=1802B D︒+∠+∠.故答案为:∠P=1802B D︒+∠+∠.18.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC、∠NCB的平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的3倍,请直接写出∠A的度数.【答案】(1)130°;(2)1902Q A∠=︒-∠;(3)60°或120°或45°或135°【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠ABC+∠ACB,进而求出∠BPC即可解决问题;(2)根据三角形的外角性质分别表示出∠MBC与∠BCN,再根据角平分线的性质可求得∠CBQ+∠BCQ,最后根据三角形内角和定理即可求解;(3)在△BQE中,由于∠Q=90°﹣12∠A,求出∠E=12∠A,∠EBQ=90°,所以如果△BQE中,存在一个内角等于另一个内角的3倍,那么分四种情况进行讨论:①∠EBQ=3∠E=90°;②∠EBQ=3∠Q=90°;③∠Q=3∠E;④∠E=3∠Q;分别列出方程,求解即可.【解析】(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣12(∠ABC+∠ACB)=180°﹣12×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=12(∠MBC+∠NCB)=12(360°﹣∠ABC﹣∠ACB)=12(180°+∠A)=90°+12∠A∴∠Q=180°﹣(90°+12∠A)=90°﹣12∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=12∠A;∵∠EBQ=∠EBC+∠CBQ=12∠ABC+12∠MBC=12(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的3倍,那么分四种情况:①∠EBQ=3∠E=90°,则∠E=30°,∠A=2∠E=60°;②∠EBQ=3∠Q=90°,则∠Q=30°,∠E=60°,∠A=2∠E=120°;③∠Q=3∠E,则∠E=22.5°,解得∠A=45°;④∠E=3∠Q,则∠E=67.5°,解得∠A=135°.综上所述,∠A的度数是60°或120°或45°或135°.19.如图,∠CBF,∠ACG是△ABC的外角,∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD,BE交于点D,E.(1)若∠A=70°,求∠D的度数;(2)若∠A=a,求∠E;(3)连接AD,若∠ACB= ,则∠ADB=.【答案】(1)35°;(2)90°-12α;(3)12β【分析】(1)由角平分线的定义得到∠DCG=12∠ACG,∠DBC=12∠ABC,然后根据三角形外角的性质即可得到结论;(2))根据角平分线的定义得到∠DBC=12∠ABC,∠CBE=12∠CBF,于是得到∠DBE=90°,由(1)知∠D=12∠A,根据三角形的内角和得到∠E=90°-12α;(3)根据角平分线的定义可得,∠ABD=12∠ABC,∠DAM=12∠MAC,再利用三角形外角的性质可求解.【解析】解:(1)∵CD平分∠ACG,BD平分∠ABC,∴∠DCG=12∠ACG,∠DBC=12∠ABC,∵∠ACG=∠A+∠ABC,∴2∠DCG=∠ACG=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC,∴∠D=12∠A=35°;(2)∵BD平分∠ABC,BE平分∠CBF,∴∠DBC=12∠ABC,∠CBE=12∠CBF,∴∠DBC+∠CBE=12(∠ABC+∠CBF)=90°,∴∠DBE=90°,∵∠D=12∠A,∠A=α,∴∠D=12α,∵∠DBE=90°,∴∠E=90°-12α;(3)如图,∵BD平分∠ABC,CD平分∠ACG,∴AD平分∠MAC,∠ABD=12∠ABC,∴∠DAM=12∠MAC,∵∠DAM=∠ABD+∠ADB,∠MAC=∠ABC+∠ACB,∠ACB=β,∴∠ADB=12∠ACB=12β.故答案为:12β.。
全等三角形中角平分线问题的处理方法
全等三角形中角平分线问题的处理方法【全等三角形中角平分线问题的处理方法】1. 引言全等三角形中角平分线问题是几何学中的一个经典问题,旨在探讨如何将一个三角形的角平分线构造出来并求解相关问题。
这个问题在几何学中具有重要的应用价值和理论意义。
本文将从简单到复杂、由浅入深地介绍全等三角形中角平分线的处理方法,以帮助读者更全面、深刻和灵活地理解这一问题。
2. 基本定义与性质我们来回顾一下全等三角形的基本定义与性质。
全等三角形是指具有完全相同的大小和形状的三角形。
根据全等三角形的定义,对于两个全等三角形来说,它们的对应边长相等,对应角度相等。
这一性质是我们处理全等三角形中角平分线问题的基础。
3. 三角形角平分线的构造下面,我们开始介绍全等三角形中角平分线的构造方法。
考虑一个任意三角形ABC,我们的目标是构造出三角形ABC的角B的平分线。
(1)方法一:直接角平分线法我们可以借助直尺和圆规,以及平行线的性质来构造角平分线。
具体的步骤如下:a. 以顶点B为圆心,做一个与边AC相交于点D的圆;b. 以点D为圆心,与圆交于点E,连接BE;c. 连接线段BC和BA;根据圆周角的性质,角EBD是角ABC的一条平分线。
(2)方法二:割取角平分线法除了直接角平分线法之外,我们还可以使用割取角平分线的方法构造角平分线。
具体步骤如下:a. 过顶点B做一条与边AC相交于点F的直线;b. 以BF为半径,顶点B为圆心画一个圆;c. 连接圆与边BC、BA的交点分别为点D和点E,连接线段ED;根据圆内接四边形对角相等的性质,角BED是角ABC的一条平分线。
4. 角平分线的性质与应用了解了全等三角形中角平分线的构造方法之后,我们来探讨一些与角平分线相关的性质与应用。
(1)性质一:角平分线相交于三角形内心不仅在全等三角形中,对于任意三角形来说,角平分线的三条线段的交点恰好是三角形的内心。
这个性质是由角平分线与三角形内接圆的性质相关联的。
(2)性质二:角平分线的长度关系若一个角的平分线将另外两个角的平分线相交于点P,那么点P到三角形各边的距离满足以下关系:AP:BP:CP=AB:BC:CA。
解三角形之三角形的角平分线和中线问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学
【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题05解三角形之三角形中线和角平分线问题目录一览一、梳理必备知识二、基础知识过关三、典型例题讲解四、解题技巧实战五、跟踪训练达标1.正弦定理R CcB b A a 2sin sin sin ===.(其中R 为ABC ∆外接圆的半径)2sin ,2sin ,sin ;a R A b R B c R C ⇔===(边化角)sin ,sin ,sin ;222a b c A B C R R R⇔===(角化边)2.余弦定理:222222222cos 2cos 2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩⇒2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩3.三角形面积公式:B ac A bcC ab S ABC sin 21sin 21sin 21===∆=12++为三角形ABC 的内切圆半径4.三角形内角和定理:一、梳理必备知识在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 5.三角形中线问题如图在ABC ∆中,D 为CB 的中点,2AD AC AB =+,然后再两边平方,转化成数量关系求解!(常用)6.角平分线如图,在ABC ∆中,AD 平分BAC ∠,角A ,B ,C 所对的边分别为a ,b ,c ①等面积法ABC ABD ADC S S S ∆∆∆=+⇒111sin sin sin 22222A AAB AC A AB AD AC AD ⨯⨯=⨯⨯+⨯⨯(常用)②内角平分线定理:AB AC BD DC =或AB BDAC DC =③边与面积的比值:ABDADCS AB AC S =【常用结论】①在ABC ∆中,sin sin ;a b A B A B >⇔>⇔>②sin 2sin 2,.2A B A B A B π==+=则或③在三角函数....中,sin sin A B A B >⇔>不成立。
三角形的高、中线、角平分线的八种常见应用(解析版)
专题01三角形的高、中线、角平分线的八种常见应用【解题策略】 三角形的高、中线和角平分线是三角形中三种重要的线段,它们提供了重要的线段或角的关系,对我们以后深入研究三角形的一些特征有很大帮助,因此,我们需要从不同的角度认识这三种线段.在三角形的两条边和这两条边上的高这四个量中,已知其中的三个量,可用等面积法求第四个量.题型01三角形的高在求线段长中的应用【典例分析】【例1-1】(23-24八年级上·云南文山·期末)如图,90,8,10,ACB AC AB CD ∠=°==是斜边的高,则CD =( )A .3B .4.2C .4.8D .5【答案】C 【分析】本题考查等积法求线段的长与勾股定理.先由勾股定理计算出BC ,再根据等面积法求解即可,掌握等积法,是解题的关键.【详解】解:∵90,8,10ACB AC AB ∠=°==,∴6BC ,∵CD 是斜边的高, ∴1122ABC S AC BC AB CD =⋅=⋅ , ∴8610CD ×=, ∴48 4.810CD ==; 故选C【例1-2】(23-24七年级下·辽宁鞍山·期中)如图,在ABC 中,90ACB ∠=°,5AB =,4AC =,3BC =,则点C 到AB 边距离为 .【答案】125/225/2.4 【分析】本题考查与三角形有关的线段,三角形的高,根据题意可得ABC 是直角三角形,设点C 到AB 边距离为h ,由三角形面积公式计算即可求解.【详解】解:在ABC 中,90ACB ∠=°, ∴ABC 是直角三角形,设点C 到AB 边距离为h ,1122ABC S AC BC AB h ∴=⋅=⋅ ,即345h ×=,125h ∴=, 故答案为:125. 【例1-3】(22-23八年级上·河南·阶段练习)如图,在ABC 中,8AC =,4BC =,高3BD =.(1)作出BC 边上的高AE ;(2)求AE 的长.【答案】(1)见解析(2)6AE =【分析】(1)过点A 作BC 边的垂线,交BC 延长线于E 即可;(2)利用等积法求得AE 的长度即可.【详解】(1)解:如图, 过点A 作BC 边的垂线,交BC 延长线于E ,∴线段AE 即为BC 边上的高,(2)解:∵11S 22ABC BC AE AC BD =⋅=⋅ ,8AC =,4BC =,3BD =, ∴1148322AE ×=××, ∴6AE =.【点睛】本题考查了作三角形的高及求高,熟记三角形的面积公式即可解题,属于基础题【变式演练】【变式1-1】(23-24八年级上·四川成都·期末)如图,在Rt ABC △中,90ACB ∠=°,6AC =,8BC =,CD 是斜边的高,则CD 的长为( )A .245B .125C .5D .10【答案】A【分析】本题主要考查了勾股定理,三角形面积的计算,解题的关键是熟练掌握勾股定理,在一个直角三角形中,两条直角边分别为a 、b ,斜边为c ,那么222+=a b c .先根据勾股定理求出10AB =,然后根据三角形面积进行计算即可.【详解】解:∵在Rt ABC △中,90ACB ∠=°,6AC =,8BC =,∴10AB =, ∵1122ABC S AC BC AB CD =⋅=⋅ , ∴6824105AC BC CD AB .故选:A【变式1-2】(23-24八年级上·四川泸州·阶段练习)如图,ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,6,5,4AB AD BC ===,则CE 的长为 .【答案】103/133【分析】本题考查了三角形的面积计算,根据1122ABC S AB CE BC AD =×=× ,即可求解. 【详解】解:∵AD BC ⊥,CE AB ⊥, ∴1122ABC S AB CE BC AD =×=× , ∵6,5,4AB AD BC ===, ∴1164522CE ××=××, ∴103CE =. 故答案为:103【变式1-3】(21-22七年级下·江苏无锡·期中)如图,在ABC 中,AD 为边BC 上的高,连接AE .(1)当AE 为边BC 上的中线时,若6AD =,ABC 的面积为24,求CE 的长;(2)当AE 为BAC ∠的平分线时,若66C ∠=°,36B ∠=°,求DAE ∠的度数.【答案】(1)4CE =(2)15DAE ∠=°【分析】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握三角形的基本知识. (1)先根据三角形面积公式计算出8BC =,然后根据AE 为边BC 上的中线得到CE 的长;(2)先根据三角形内角和定理计算出78BAC ∠=°,再利用角平分线的定义得到39CAE ∠=°,接着计算出CAD ∠,然后计算CAE CAD ∠−∠即可.【详解】(1) AD 为边BC 上的高,ABC 的面积为24,1242BC AD ∴⋅=, 22486BC ×∴==, AE 为边BC 上的中线,142CE BC ∴==; (2) 66C ∠=°,36B ∠=°,∴180180663678BAC C B °−°°°°∠=∠−∠=−−=,∴AE 为BAC ∠的平分线, ∴1392CAE BAC ∠=∠=°,90ADC ∠=°,66C ∠=°, ∴906624CAD ∠°°=°=−,∴392415DAE CAE CAD ∠=∠−∠=°−°=°题型02三角形的高在求角的度数中的应用【典例分析】【例2-1】(23-24八年级上·湖北武汉·阶段练习)如图,在ABC 中,AD 是BC 边上的高,BE 平分ABC∠交AC 边于E ,60BAC ∠=°,22ABE ∠=°,则DAC ∠的大小是( )A .10°B .12°C .14°D .16°【答案】C 【分析】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.根据角平分线的定义可得2ABC ABE ∠=∠,再根据直角三角形两锐角互余求出BAD ∠,然后根据DAC BAC BAD ∠=∠−∠计算即可得解.【详解】解:BE 平分ABC ∠,222244ABC ABE ∴∠=∠=×°=°,AD 是BC 边上的高,90904446BAD ABC ∴∠=°−∠=°−°=°,604614DAC BAC BAD ∴∠=∠−∠=°−°=°.故选:C【例2-2】(23-24八年级上·黑龙江牡丹江·期末)已知ABC 中,50A ∠=°,AB ,AC 边上的高所在的直线交于H ,则BHC ∠=度. 【答案】130°或50°【分析】本题主要考查了三角形的内角和定理,三角形的高线,解题的关键是分ABC 是锐角三角形与钝角三角形两种情况进行讨论.分两种情况考虑:①ABC 是锐角三角形时,先根据高线的定义求出90ADB ∠=°,90BEC ∠=°,然后根据直角三角形两锐角互余求出ABD ∠的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②ABC 是钝角三角形时,根据直角三角形两锐角互余求出BHC A ∠=∠即可.【详解】解:①如图1,ABC 是锐角三角形时,BD 、CE 是ABC 的高线,90ADB ∴∠=°,90BEC ∠=°, 在ABD △中,50A ∠=° ,905040ABD ∴∠=°−°=°,4090130BHC ABD BEC ∴∠=∠+∠=°+°=°;②ABC 是钝角三角形时,BD 、CE 是ABC 的高线,90A ACE ∴∠+∠=°,90BHC ∠+∠=°,ACE HCD ∠=∠ , 50BHC A ∴∠=∠=°,综上所述,BHC ∠的度数是130°或50°,故答案为:130°或50°【例2-3】(22-23七年级下·江苏常州·期中)如图,在ABC 中,50ABC ∠=°,CE 为AB 边上的高,AF 与CE 交于点G .若80∠=°AFC ,求AGC ∠的度数.【答案】120°【分析】由高的定义可得90BEC ∠=°,由三角形内角和可得BCE ∠的度数,再根据三角形内角和可得出CGF ∠的度数,由平角的定义可得出AGC ∠的度数.本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键【详解】解:CE 是AB 边上的高,90BEC ∴∠=°,在ABC 中,50ABC ∠=°, 18040BCE ABC BEC ∴∠=°−∠−∠=°,80AFC ∠=° ,18060CGF AFC BCE ∴∠=°−∠−∠=°,180120AGC CGF ∴∠=°−∠=°【变式演练】【变式2-1】(22-23八年级上·安徽安庆·期末)如图,在ABC 中,5525B C AD ∠=°∠=°,,是BC 边的高,AE 平分BAC ∠,则DAE ∠的度数为( )A .12.5°B .15°C .17.5°D .20°【答案】B 【分析】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.先根据三角形内角和定理求出BAC ∠的度数,再根据AE 平分BAC ∠求出BAE ∠的度数,根据AD BC ⊥求出BAD ∠的度数,由DAE BAE BAD ∠=∠−∠即可得出结论.【详解】在ABC 中,55B ∠=°,25C ∠=°,1805525100BAC ∴∠=°−°−°=°.AE 平分BAC ∠,1502BAE BAC ∴°∠=∠=. AD 是边BC 上的高,90ADB ∴∠=°,90905535BAD B ∴∠=°−∠=°−°=°,503515DAE BAE BAD ∴∠=∠−∠=°−°=°.故选:B【变式2-2】(22-23)八年级上·安徽马鞍山·期末)如图,AD 、AE 分别是ABC 的高和角平分线,且38B ∠=°,74C ∠=°,则DAE ∠= .【答案】18°【分析】本题主要考查了三角形内角和定理以及角平分线的性质定理,利用三角形内角和定理求出68BAC ∠=°,利用角平分线的性质得出34EAC ∠=°,再利用三角形内角和定理求出16DAC ∠=°,进一步即可求出DAE ∠.【详解】解:∵38B ∠=°,74C ∠=°∴18068BACB C ∠=°−∠−∠=°, ∵AE 是BAC ∠的平分线, ∴1342EAC BAC ∠=∠=°, ∵AD 是ABC 的高,∴90ADC ∠=°, ∴18016DAC C ADC ∠=°−∠−∠=°,∴341618DAE EAC DAC ∠=∠−∠=°−°=°,故答案为:18°【变式2-3】(23-24八年级上·海南省直辖县级单位·期中)如图所示,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC °∠=,70C ∠=°.(1)求EAD ∠的度数;(2)求BOA ∠的度数.【答案】(1)10°(2)125°【分析】本题考查了角平分线的定义、三角形的内角和性质,直角三角形的两个锐角互余,正确掌握相关性质内容是解题的关键.(1)先由角平分线的定义得30CAE BAE ∠=∠=°,结合直角三角形的两个锐角互余,得20CAD ∠=°,即可作答.(2)先由角平分线的定义得55OAB OBA +=°∠∠,再运用三角形的内角和性质进行列式计算,即可作答. 【详解】(1)解:∵AE 是BAC ∠的平分线,60BAC ∠=° ∴30CAE BAE ∠=∠=° ∵AD 是高,70C ∠=°∴在Rt ACD △中,20CAD ∠=° ∴302010EAD CAE CAD ∠=∠−∠=°−°=°(2)解:∵AE BF 、是角平分线 ∴11 110552()2OAB OBA CAB CBA ∠+∠=∠+∠=×°=° ∴180125()BOAOAB OBA ∠=°−∠+∠=° 题型03三角形的高在求相关线段的比值中的应用【典例分析】【例3-1】(23-24八年级上·四川绵阳·期末)如图,,AE CD 是ABC 的高,5,3AE CD ==,则AB BC=( )A .53B .45C .35D .25【答案】A【分析】本题考查与三角形的高有关的计算,利用等积法列出比例式,进行求解即可.【详解】解:∵,AE CD 是ABC 的高, ∴1122ABC AB B S CD C AE ⋅=⋅= ,∴53AB AE BC CD ==; 故选:A【例3-2】(23-24八年级上·山东德州·阶段练习)如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD 与CE 相交于点O ,连接BO 并延长交AC 于点F .若5AB =,4BC =,6AC =,则CE :AD :BF 的值为 .【答案】12:15:10【分析】本题主要考查三角形的高,由题意得:BF AC ⊥,再根据三角形的面积公式,可得5432ABCS AD CE BF === ,进而即可得到答案. 【详解】解: 在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为点D 和点E ,AD 与CE 交于点O , BF AC ∴⊥,5AB = ,4BC =,6AC =,∴1122ABC S BC AD AB CE BF =⋅=⋅=⋅ , ∴5432ABCS AD CE BF === , CE ∴:AD :BF =12:15:10,故答案是:12:15:10【例3-3】(23-24八年级上·广东东莞·阶段练习)如图,在ABC 中,AD 与CE 是ABC 的高.(1)若7cm,10cm,8cm AB BC CE ===,求AD ; (2)若2,3,AB BC ABC ==△的高AD 与CE 的比是多少?【答案】(1)28cm 5(2)12【分析】(1)利用三角形面积公式1122ABC S AB CE BC AD =⋅=⋅ ,即可求解; (2)利用三角形面积公式1122ABC S AB CE BC AD =⋅=⋅ 求解即可. 【详解】(1)解:∵1122ABC S AB CE BC AD =⋅=⋅ , ∴1178=1022AD ××××, ∴285AD cm =; (2)解:∵1122ABC S AB CE BC AD =⋅=⋅ , ∴112=422CE AD ××××, ∴12AD CE =. 【点睛】本题考查三角形的面积,利用同一个三角形的面积的两种表示列方程是解题的关键【变式演练】【变式3-1】(23-24八年级上·河北承德·期末)在ABC 中,高2,4AD CE ==.则边:AB BC 是( ) A .1:2 B .2:1 C .3:1 D .1:3【答案】A【分析】本题考查的是三角形的高、三角形的面积公式,熟记三角形的面积公式是解题的关键.利用三角形的面积公式可得答案. 【详解】解:∵1122ABC S AB CE BC AD =⋅=⋅ ,2,4AD CE ==, ∴42AB BC =, ∴:2:41:2AB BC==, 故选:A .【变式3-2】(23-24八年级上·福建厦门·期中)如图,在ABC 中,2AB =,4BC =,ABC 的高AD 与CE的比是 .【答案】1:2【分析】本题考查了三角形高的定义.根据三角形的面积公式可得11=22ABC S AB CE BC AD ×=×△,即可求解.【详解】解:∵11=22ABC S AB CE BC AD ×=×△ ∴2142AD AB CE BC ===, 故答案为:1:2【变式3-3】(22-23八年级上·全国·课后作业)如图,AD 是ABC 的中线,DE AC DF AB ⊥⊥,,E ,F 分别是垂足.已知2AB AC =,求DE 与DF 的长度之比.【答案】2:1【分析】根据三角形面积法进行求解即可. 【详解】解:∵AD 是ABC 的中线, ∴ABD ACD S S , ∵DE AC DF AB ⊥⊥,,∴1122ABD ACD S AB DF S AC DE =⋅=⋅△△,, ∴1122AB DF AC DE ⋅=⋅, ∵2AB AC =, ∴2:1DE ABDF AC==. 【点睛】本题主要考查了三角形中线的性质,三角形面积,熟知三角形中线平分三角形面积是解题的关键题型04三角形的高在求相关线段和的问题中的应用【典例分析】【例4-1】(2022八年级上·浙江·专题练习)如图,ABC ∆中,2ABAC ==,P 是BC 上任意一点,PE AB ⊥于点E ,PF AC ⊥于点F ,若1ABC S ∆=,则PE PF +值为( )A .1B .1.2C .1.5D .2【答案】A【分析】连接AP ,则ABC ACP ABP S S S ∆∆∆=+,依据Δ1=2ACP S AC PF ×,Δ1=2ABP S AB PE ×,代入计算即可得到1PE PF +=.【详解】解:如图所示,连接AP ,则ABCACP ABP S S S ∆∆∆=+,∵PE AB ⊥于点E ,PF AC ⊥于点F , ∴Δ1=2ACP S AC PF ×,Δ1=2ABP S AB PE ×,又∵1ABC S ∆=,2ABAC ==, ∴111=+22AC PF AB PE ××, 即111=2+222PF PE ××××,∴1PE PF +=, 故选:A .【点睛】本题主要考查了三角形的面积,解决问题的关键是作辅助线将等腰三角形分割成两个三角形,利用面积法进行计算【例4-2】(23-24八年级上·重庆北碚·期中)在等腰ABC 中,4ABAC ==,30BAC ∠=°,D 是BC 上任意一点,DE AB ⊥,DF AC ⊥,DE DF +=.【答案】2【分析】本题考查等腰三角形的性质,直角三角形30度的性质,三角形的面积等知识,解题的关键是学会利用面积法解决问题,属于中考常考题型.作BH AC ⊥于H ,利用含30度的直角三角形的性质得到122BH AB ==,根据ABCABD ACD S S S =+ ,DE AB ⊥,DF AC ⊥,列出等式,由此即可解决问题.【详解】解:过B 作BH AC ⊥于H ,30BAC ∠=° ,122BH AB ∴==, ∵DE AB ⊥,DF AC ⊥,ABCABD ACD S S S =+ , ∴111222AC BH AB DE AC DF ⋅=⋅+⋅, 则111444222BH DE DF ×⋅=×⋅+×⋅, 则2BH DE DF =+=, 故答案为:2【例4-3】(23-24八年级上·四川自贡·阶段练习)如图,在ABC 中,2ABAC ==,P 是BC 边上的任意一点,PE AB ⊥于点E ,PF AC ⊥于点F .若6ABC S = ,求PE PF +的长.【答案】6PE PF +=【分析】根据1122ABC ABP APC S S S AB PE AC PF =+=⋅+⋅ ,结合已知条件,即可求得PE PF +的值. 【详解】解:如图,连接AP ,PE AB ⊥于点E ,PF AC ⊥于点F ,1122ABC ABP APC S S S AB PE AC PF ∴=+=⋅+⋅ , 2AB AC == ,6ABC S = ,∴1122AB PE AC PF ⋅+⋅6PE PF =+=【变式演练】【变式4-1】(23-24八年级上·广东广州·期中)Rt ABC △中,90C ∠=°,D 是BC 上一点,连接AD ,过B 、C 两点分别作直线AD 的垂线,垂足为E 、F ,若8BC =,6AC =,9AD =,则BE CF +的值是( )A .6B .163C .8D .203【答案】B【分析】本题考查三角形的面积,根据两种不同三角形的面积:12ABCS AC BC =⋅ ,ABCABD ACD S S S =+ ,建立等式是解决问题的关键.【详解】解:∵90C ∠=°,8BC =,6AC =, ∴11682422ABC AC B S C ⋅=××==, 又∵BE AD ⊥,CF AD ⊥,9AD =,∴ABC ABD ACD S S S =+ 即:()111924222AD BE AD CF BE CF ⋅+⋅=××+= ∴163BE CF +=, 故选:B .【变式4-2】(23-24八年级上·黑龙江齐齐哈尔·期中)如图,在ABC 中,5ABAC ==,F 是BC 边上任意一点,过F 作FD AB ⊥于D ,FE AC ⊥于E ,若10ABC S =△,则FE FD +=.【答案】4【分析】连接AF ,根据ABC ABF ACF S S S =+ ,即可求解.熟练掌握等腰三角形的性质,正确理解题意,根据等面积法列出等式是解题的关键. 【详解】解:连接AF ,如图:则10ABF A ABC CF S S S =+= △△, 12ABFS AB FD =×△,12ACF S AC FE =×△, ∴111022AC FE AB FD ×+×=,∵5ABAC ==, ∴551022FE FD +=, ∴4FE FD += 故答案为:4题型05三角形的中线在求线段长中的应用【典例分析】【例5-1】(23-24八年级上·重庆·阶段练习)如图,ABC 中,159AB BC ==,,BD 是AC 边上的中线,若ABD △的周长为35,则BCD △的周长是( )A .20B .29C .26D .28【答案】B【分析】本题考查了中线的意义,根据BD 是AC 边上的中线,得到AD CD =,根据ABD △的周长为AB BD AD ++;BCD △的周长为BC BD CD ++,计算周长的差,得到()()1596AB BD AD BC BD CD BC ++−++=−=−=,结合ABD △的周长为35,计算35629−=即可. 【详解】∵BD 是AC 边上的中线, ∴AD CD =,∵ABD △的周长为AB BD AD ++;BCD △的周长为BC BD CD ++,∴()()1596AB BD AD BC BD CD AB BC ++−++=−=−=, ∵ABD △的周长为35, ∴BCD △的周长为35629−=, 故选B【例5-2】(23-24八年级上·全国·课后作业)如图,AD ,AE 分别是ABC 的高和中线,已知5cm AD =,6cm CE =,则ABC 的面积为 .【答案】230cm【分析】本题主要考查了求三角形面积,熟知三角形高和中线的定义是解题的关键. 先根据中线的定义求出212BC CE cm ==,再根据三角形面积公式求解即可. 【详解】解:AE 是ABC 的中线,6cm CE =,212cm BC CE ∴,AD 是ABC 的高,∴2130cm 2ABC S AD BC, 故答案为:230cm【例5-3】(23-24八年级上·陕西渭南·期中)已知ABC ,AD 是BC 边上的中线,且4AC =,若ABD △的周长比ACD 的周长大5,求AB 的长. 【答案】9AB =【分析】本题考查的是三角形的中线,掌握三角形的中线的概念是解题的关键.根据中线的性质得到BD CD =,根据三角形的周长公式计算得到答案.【详解】解:如图,∵AD 是BC 边上的中线, ∴BD CD =,∵ABD △的周长比ACD 的周长大5,∴()()5AB BD AD AC AD CD ++−++=, ∴5AB AC −=, ∵4AC =, ∴9AB =【变式演练】【变式5-1】(23-24八年级上·福建福州·期末)如图,在ABC 中,AD 是高,AE 是中线,若3AD =,6ABC S = ,则BE 的长为( )A .1B .2C .3D .4【答案】B【分析】本题考查了三角形的高线和中线的意义,根据高线求出4BC =,根据AE 是中线即可求解. 【详解】解:∵162ABC S BC AD =××=,3AD =, ∴4BC = ∵AE 是中线, ∴122BE BC == 故选:B【变式5-2】(23-24八年级上·重庆垫江·阶段练习)在ABC 中,AD 为BC 边的中线.若ABD △与ADC △的周长差为3,8AB =,则AC = . 【答案】5或11AD 为BC 边上的中线,得BD CD =,根据题意,分类讨论进而即可求解,掌握中线的性质是解题的关键. 【详解】解:①当AB AC >时,∵ABD △与ADC △的周长差为3,∴()3AB BD AD AC CD AD ++−++=, ∵AD 为BC 边上的中线,∴BD CD =,∴()3AB BD AD AC CD AD AB AC ++−++=−=,∵8AB =,∴835AC =−=,②当AC AB >时,同理可得3AC AB −=,则8311AC =+= 故答案为:5或11【变式5-3】(21-22八年级上·湖北十堰·阶段练习)如图,在ABC 中()AB BC >,2AC BC =,BC 边上的中线AD 把ABC 的周长分成50和35两部分,求AC 和AB 的长.【答案】40AC =,25AB =【分析】本题主要考查了三角形中线的性质和三边的关系,先根据2AC BC =和三角形的中线列出方程求解,分类讨论①50AC CD +=,②35AC CD +=,注意答案是否满足条件,即是否满足题目给出的条件、是否满足三角形三边的关系.解题的关键是找到等量关系,列出方程.【详解】解:设BDCD x ==,则24AC BC x ==, BC 边上的中线AD 把ABC 的周长分成50和35两部分,AB BC >,①当50AC CD +=,35AB BD +=时, 450x x +=,解得:10x =,441040AC x ∴==×=,10BD CD ==,35351025AB BD ∴=−=−=,2520AB BC ∴=>=,满足条件;20254540BC AB AC +=+=>= ,满足三边关系,40AC ∴=,25AB =;②当35AC CD +=,50AB BD +=时, 435x x +=,解得:7x =,44728AC x ∴==×=,7BD CD ∴==,5050743AB BD =−=−=,28144243AC BC AB +=+=<= ,∴不满足三角形的三边关系,∴不合题意,舍去,综上:40AC =,25AB =题型06三角形的中线与高在证明线段相等中的应用【典例分析】【例6】如图,ABC ∆中,AD 为中线,D ,E 分别为BC ,AD 的中点,且40ABC S ∆=,CM AD ⊥于M .(1)ABD S ∆= ;(2)若5AE =,求CM 的长;(3)若BN AD ⊥交AD 的延长线于N ,求证:CM BN =.【分析】(1)根据三角形中线的性质得出面积即可;(2)根据三角形面积公式得出CM 即可;(3)根据三角形面积公式进行证明解答.【解答】(1)解:AD 为中线,且40ABC S ∆=,11402022ABD ABC S S ∆∆∴==×=, 故答案为:20;(2)解:AD 为中线,D ,E 分别为BC ,AD 的中点,40ABC S ∆=, ∴111024AEC ACD ABC S S S ∆∆===,12AECS AE CM ∆=⋅, ∴15102CM ×⋅=, 4CM ∴=;(3)证明:AD 为中线,D ,E 分别为BC ,AD 的中点, ∴12ABD ACD ABC S S S ∆∆∆==, 12ABDS AD BN ∆=⋅,12ACD S AD CM ∆=⋅, ∴1122AD BN AD CM ⋅=⋅, CM BN ∴=.【点评】此题是三角形综合题,考查三角形中线的性质和三角形面积公式,关键是根据三角形中线的性质解答.题型07三角形的角平分线在解与平行线相关问题中的应用【典例分析】【例7-1】(22-23八年级上·湖北随州·期中)如图,在ABC 中,DE BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若36FG DE ==,,则EB DC +的值为( )A .6B .7C .9D .10【答案】C 【分析】本题考查了角平分线,平行线的性质,等角对等边等知识.熟练掌握角平分线,平行线的性质,等角对等边是解题的关键.由角平分线,平行线的性质可得EGB CBG ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,,则BE EG DC DF ==,,根据EB DC EG DF EF FG DE EF +=+=++−,计算求解即可.【详解】解:∵BG CF 、是ABC ∠和ACB ∠的平分线,∴ABG CBG ACF BCF ∠=∠∠=∠,, ∵DE BC ∥,∴EGB CBG ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,, ∴BE EGDC DF ==,, ∴9EB DC EG DF EF FG DE EF +=+=++−=,故选:C【例7-2】(23-24八年级上·重庆渝北·期中)如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的角平分线分别交ED 于点G ,F ,若4BE =,6CD =,3FG =.则ED 的长为 .【答案】7【分析】本题考查了等腰三角形的判定与性质,平行线的性质,根据角平分线的定义和平行线的性质可证EBG 和DFC 是等腰三角形,从而可得4EB EG ==,6DC DF ==,然后利用线段的和差关系进行计算,即可解答.【详解】解:BG 平分ABC ∠,CF 平分ACB ∠,ABG CBG ∴∠=∠,ACF BCF ∠=∠,ED BC ∥,EGB CBG ∴∠=∠,DFC BCF ∠=∠,ABG EGB ∴∠=∠,ACF DFC ∠=∠,4EB EG ∴==,6DC DF ==,3FG = ,4637DE EG DF FG ∴=+−=+−=,故答案为:7【例7-3】(23-24八年级上·江苏徐州·期中)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证:DE BC ∥;(2)若65A ∠=°,45AED ∠=°,求EBC ∠的度数. 【答案】(1)见解析(2)35°【分析】本题考查了角平分线的定义、平行线的判定与性质、等边对等角、三角形内角和定理,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由角平分线的定义可得ABE CBE ∠=∠,由等边对等角可得DBE DEB ∠=∠,从而得出CBE DEB ∠=∠,即可得证;(2)由平行线的性质可得45ACB AED ∠=∠=°,由三角形内角和定理得出70ABC ∠=°,最后由角平分线的定义计算即可得出答案.【详解】(1)证明:BE 平分ABC ∠,ABE CBE ∴∠=∠,DB DE = ,DBE DEB ∴∠=∠,CBE DEB ∴∠=∠,DE BC ∴∥;(2)解:DE BC ∥,45ACB AED ∴∠=∠=°,18070ABC ACB A ∴∠=°−∠−∠=°,BE 平分ABC ∠,11703522EBC ABC ∴∠=∠=×°=°.【变式演练】【变式7-1】(23-24八年级上·内蒙古呼和浩特·期中)如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若37FG ED ==,,则EB DC +的值为( )A .9B .10C .11D .12【答案】B 【分析】本题考查了角平分线,平行线的性质,等角对等边等知识.熟练掌握角平分线,平行线的性质,等角对等边是解题的关键.由角平分线、平行线的性质可得EGB GBC ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,,则EB EG DF DC ==,,根据EB CD ED FG +=+,计算求解即可.【详解】解:∵BG 平分ABC ∠,CF 平分ACB ∠,∴ABG GBC ACF BCF ∠=∠∠=∠,, ∵ED BC ∥,∴EGB GBC ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,, ∴EB EGDF DC ==,, ∴10EB CD EG DF EG FG DG ED FG +=+=++=+=.故选:B【变式7-2】(23-24八年级上·河北沧州·期中)如图,在ABC 中,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥交AB 于M ,交AC 于N ,若9BM CN +=,则线段MN 的长为 .【答案】9【分析】本题考查了角平分线的定义、平行线的性质、等角对等边,由角平分线的定义结合平行线的性质可得MBE MEB NEC ECN ∠=∠∠=∠,,由等角对等边得出BM ME EN CN ==,,再由MN BM CN =+,即可得解,熟练掌握角平分线的定义、平行线的性质、等角对等边,是解此题的关键.【详解】解:ABC ACB ∠∠ 、的平分线相交于点E ,MBE EBC ECN ECB ∴∠=∠∠=∠,,MN BC ,EBC MEB NEC ECB ∴∠=∠∠=∠,,MBE MEB NEC ECN ∴∠=∠∠=∠,,BM ME EN CN ∴==,,MN ME EN ∴=+,即MNBM CN =+, 9BM CN += ,9MN ∴=,故答案为:9【变式7-3】(23-24八年级上·河北保定·期末)如图,在ABC 中,46B ∠=°,54C ∠=°,AD 平分BAC ∠交BC 于点D ,点E 是边AC 上一点,若40ADE ∠=°,求证:DE AB ∥.【答案】见解析【分析】本题考查了三角形内角和定理、角平分线的定义、平行线的判定,由三角形内角和定理得出80BAC ∠=°,由角平分线的定义得出1402BAD BAC ∠=∠=°,从而得出40ADE BAD ∠=∠=°,即可得证. 【详解】证明:∵在ABC 中,46B ∠=°,54C ∠=°,∴180465480BAC ∠=°−°−°=°. ∵AD 平分BAC ∠, ∴1402BAD BAC ∠=∠=°. ∵40ADE BAD ∠=∠=°. ∴DE AB ∥题型08三角形的角平分线与高再求角的度数中的应用【典例分析】【例8-1】(22-23八年级上·新疆乌鲁木齐·期中)如图,ABC 中,AD BC ⊥,AE 平分BAC ∠,70B ∠=°,34C ∠=°,则DAE ∠=( )A .18°B .34°C .20°D .38°【答案】A 【分析】本题主要考查了与角平分线有关的三角形内角和问题.利用垂直求得9056DACC ∠=°−∠=°是正确解答本题的关键.在ABC 中,根据三角形内角和定理得到BAC ∠的度数,进而求出DAC ∠的度数,在直角ACD 中根据三角形内角和定理得到DAC ∠的度数,则DAE ∠的度数就可以求出.【详解】解:在ABC 中,70B ∠=°,34C ∠=°,∴18076BACB C ∠=°−∠−∠=°, 又∵AE 平分BAC ∠, ∴1382EAC BAC ∠=∠=°, 在直角ACD 中,9056DACC ∠=°−∠=°, ∴18DAE DAC EAC ∠=∠−∠=°.故选:A【例8-2】(23-24八年级上·浙江绍兴·阶段练习)如图,在ABC 中,AD 是高,AE 是角平分线,若60,16B DAE ∠=°∠=°,则C ∠= .【答案】28?/28度【分析】本题考查了三角形的高、角平分线、三角形内角和等知识,解题的关键从已知条件入手,逐步推得待求的结论.先由AD 是高与=60B ∠°求得BAD ∠,再求得BAE ∠,再由角平分线AE 推得BAC ∠,最后由三角形的内角和求得C ∠的度数.【详解】∵AD 是高,∴90ADB ∠=°, ∵=60B ∠°,∴9030BADB °∠=−∠=°. ∵16DAE ∠=°, ∴46BAE BAD DAE =+=°∠∠∠. ∵AE 是角平分线,∴46CAEBAE ==°∠∠, ∴92BAC BAE CAE =+=°∠∠∠, 在ABC 中,180180609228CB BAC =°−−=°−°−°=°∠∠∠. 故答案为:28°【例8-3】(23-24八年级上·云南怒江·阶段练习)如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,70C ∠=°,60ABC ∠=°,求DAE ∠的度数.【答案】5°【分析】本题考查了三角形的内角和定理、直角三角形的两个锐角互余、三角形的角平分线等知识,熟练掌握三角形的内角和定理是解题关键.先根据三角形的内角和定理求出50BAC ∠=°,再根据直角三角形的性质可得30BAD ∠=°,然后根据角平分线的定义可得1252BAE BAC ∠=∠=°,最后根据DAE BAD BAE ∠=∠−∠求解即可得.【详解】解:∵在ABC 中,70C ∠=°,60ABC ∠=°, ∴18050BACC ABC ∠=°−∠−∠=°, ∵在ABC 中,AD 是高,即AD BC ⊥,∴9030BADABC ∠=°−∠=°, ∵在ABC 中,AE 是角平分线,即AE 是BAC ∠的角平分线,∴1252BAE BAC ∠=∠=°, ∴5DAE BAD BAE ∠=∠−∠=°【变式演练】【变式8-1】(23-24八年级上·山东滨州·期末)如图,在ABC 中,AD 是高,AE 是角平分线.若60BAC ∠=°,70C ∠=°,则EAD ∠的大小为( )A .5°B .10°C .15°D .20°【答案】B 【分析】本题主要考查了三角形的内角和定理,角平分线,解答的关键是结合图形分析清楚角与角之间的数量关系.由AD 是高,70C ∠=°,可得20CAD ∠=°,再由AE 是BAC ∠的角平分线,60BAC ∠=°,从而得30CAE ∠=°,进而可求EAD ∠的度数. 【详解】解:AD 是ABC 的高,70C ∠=°,90ADC ∴∠=°,18020CAD ADC C ∴∠=°−∠−∠=°,AE 是BAC ∠的角平分线,60BAC ∠=°, 1302CAE BAC ∴∠=∠=°, 10EAD CAE CAD ∴∠=∠−∠=°.故选:B【变式8-2】(23-24八年级上·四川自贡·期末)如图,在ABC 中,AD 是高,角平分线AE ,BF 相交于点O ,30BAE ∠=°,20DAC ∠=°,则AOB ∠ 的度数是 .【答案】125°【分析】本题考查的是三角形的高的含义,角平分线的含义,先计算70C ∠=°,60BAC ∠=°,50ABC ∠=°,25ABO ∠=°,再利用三角形的内角和定理可得答案.【详解】解:AD 是ABC 的高,90ADC ∴∠= ,180ADC C CAD ∠+∠+∠=° ,20DAC ∠=°,180902070C ∴∠=°−°−°=°,∵AE 平分BAC ∠,30BAE ∠=°, ∴60BAC ∠=°, 180ABC C CAB ∠+∠+∠°= ,180706050ABC ∴∠=°−°−°=°,BF 分别平分ABC ∠, ∴1252ABO ABC ∠=∠=°, 180ABO BAO AOB ∠+∠+∠= ,1802530125AOB °°°°∴∠=−−=.故答案为:125°【变式8-3】(23-24八年级上·北京·期中)如图,AD 是ABC 的高,AE 是ABC 的角平分线,若38B ∠=°,70C ∠=°.求AEC ∠和DAE ∠的度数.【答案】74AEC ∠=°,16DAE ∠=° 【分析】本题考查三角形的内角和定理及角平分线的性质,高线的性质,由三角形内角和定理可求得BAC ∠的度数,根据角平分线定义求出EAC ∠的度数,在Rt ADC 中,可求得DAC ∠的度数,最后根据角的和差关系求解即可.【详解】∵38B ∠=°,70C ∠=°,∴18072BACB C ∠=°−∠−∠=°, ∵AE 是角平分线,∴1362EAC BAC ∠=∠=°. ∵AD 是高,70C ∠=°, ∴9020DAC C ∠=°−∠=°, ∴362016EAD EAC DAC ∠=∠−∠=°−°=°, 901674AEC ∠=°−°=°。
(完整word版)巧借三角形的两条内外角平分线夹角的模型解决问题
B巧借三角形的两条内(外)角平分线夹角的模型解决问题新北实验中学 严云霞【基本模型】三角形的两个内(外)角平分线所夹的角与第三个角之间的数量关系 模型一:当这两个角为内角时:这个夹角等于90°与第三个角一半的和(如图1); 模型二:当这两个角为外角时:这个夹角等于90°与第三个角一半的差(如图2); 模型三:当这两个角为一内角、一外角时:这个夹角等于第三个角一半(如图3);【分析】三个结论的证明例1、 如图1,△ABC 中,BD 、CD 为两个内角平分线,试说明:∠D=90°+21∠A 。
(方法一)解:∵BD 、CD 为角平分线∴∠CBD =21∠ABC , ∠BCD =21∠ACB 。
在△BCD 中:∠D =180°-(∠CBD +∠BCD)=180°-21(∠ABC +∠ACB )=180°-21(180°-∠A )=180°-21×180°+21∠A=90°+21∠A(方法二)解:连接AD 并延长交BC 于点EE DCBA解:∵BD 、CD 为角平分线∴∠CBD =21∠ABC, ∠BCD =21∠ACB 。
∵∠BDE 是△ABD 的外角 ∴∠BDE =∠BAD+∠ABD=∠BAD+21∠ABC同理可得∠CDE =∠CAD+21∠ACB 又∵∠BDC =∠BDE+∠CDE∴∠BDC =∠BAD+21∠ABC+∠CAD+21∠ACB=∠BAC+21(∠ABC+∠ACB )=∠BAC+21(180°-∠BAC )=90°+21∠BAC例2、如图,BD、CD为△ABC的两条外角平分线, 试说明:∠D=90°-21∠A 。
解:∵BD 、CD 为角平分线∴∠CBD=21∠CBE ∠BCD =21∠BCF又∵∠CBE 、∠BCD 为△ABC 的外角 ∴∠CBE =∠A +∠ACB ∠BCF =∠A +∠ABC∴∠CBE +∠BCF =∠A +∠ACB +∠A +∠ABC =∠A +180° 在△BCD 中:∠D =180°-(∠CBD +∠BCD ) =180°-(21∠CBE +21∠BCF)=180°-21(∠CBE +∠BCF )=180°-21(∠A +180°)DCBA=90°-21∠A【小结】通过对模型1、2的分析和证明,我们还能发现三角形两内角平分线的夹角和两外角平分线的夹角互补,即和为180°。
角平分线定理解三角形问题
角平分线定理解三角形问题
角平分线定理是初中数学中的重要定理之一,它是解决三角形
内角平分线相关问题的重要工具。
在本文中,我们将探讨角平分线
定理的概念和应用。
首先,让我们来了解一下角平分线定理的定义。
在一个三角形中,如果一条线段从一个角的顶点到对边上某一点,且使得这条线
段把这个角分成两个相等的角,那么这条线段就是这个角的平分线。
角平分线定理指出,如果在一个三角形中,一条角的内角平分线与
对边相交,那么这条角的内角平分线将这个对边分成两个部分,且
这两个部分的比等于另外两条边的比。
接下来,让我们看一些角平分线定理的应用。
角平分线定理可
以用来解决一些与三角形内角平分线相关的问题,比如求解三角形
内角平分线的长度、判断三角形内角平分线的位置关系等。
通过角
平分线定理,我们可以推导出一些有趣的几何性质,例如角平分线
的交点是三角形内切圆的圆心,或者角平分线和三角形的外接圆有
一些特殊的位置关系等。
除了在数学中的应用,角平分线定理也有一些实际的应用。
在
建筑、工程和设计领域,我们经常需要利用角平分线定理来进行测量和设计,比如在绘制建筑图纸时,需要准确地确定角的平分线位置,以确保建筑结构的稳定性和美观性。
总之,角平分线定理是一个十分重要的数学定理,它不仅在数学理论中有着重要的地位,而且在实际应用中也具有重要的意义。
通过深入理解和应用角平分线定理,我们可以更好地理解和解决与三角形内角平分线相关的问题,同时也可以将其运用到实际生活和工作中。
三角形角平分线专题讲解
二 由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。
对于有角平分线的辅助线的作法,一般有两种。
①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。
通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。
至于选取哪种方法,要结合题目图形和已知条件。
与角有关的辅助线(一)、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。
下面就几何中常见的定理所涉及到的辅助线作以介绍。
如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。
例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。
图1-1BDBC分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。
但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。
简证:在此题中可在长线段BC 上截取BF=AB ,再证明CF=CD ,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE 与CD 的延长线交于一点来证明。
自已试一试。
解三角形的角平分线问题(最新版)
解三角形专题------角平分线与三角形4心秒杀秘籍一:张角定理在△ABC 中,D 为BC 边上的一点,连接AD ,设βα=∠=∠CAD BAD ,,则一定有ABAC AD βαβαsin sin )sin(+=+,(证明:等积法) 【例1】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,△ABC=120°,BD△BC 交AC 于点D ,且BD=1,则2a +c 的最小值为 .【例2】在在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知点D 在BC 边上,AD△AC ,sin△BAC=322,AB=23,AD=3,则CD 的长为【例3】(2015年全国课标卷II )在△ABC 中,D 是BC 上的点,AD 平分△BAC ,△ABD 的面积是△ACD 面积的2倍.(1)求CBsin sin 的值;(2)若22,1==DC AD ,求BD 和AC 的长.秒杀秘籍二:角平分线张角定理,当βα=时, ①)(21cos c AD b AD +=α(角平分线张角定理) ②ααtan sin )(212AD c b AD S ABC ≥+=∆(角平分线面积) 证明:αααααααtan sin 2sin 2sin sin )(21sin )11(212sin 21∆∆==≥+=+⋅==S AD S AD bc AD c b AD AD c b bc bc S 【例4】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,b cosC=a ,点M 在线段AB 上,且△ACM=△BCM ,若b=6CM=6,则cos△BCM=( )46.47.43.410.D C B A 【例5】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,32π=∠ABC ,△ABC 的平分线交AC 于点D ,BD=1,则a +c 的最小值为 .【例6】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,32π=∠ABC ,BD 平分△ABC 交AC 于点D ,BD=2,则△ABC 的面积的最小值为( )36.35.34.33.D C B A秒杀秘籍3:角平分线之斯库顿定理如图,AD 是△ABC 的角平分线,则DC BD AC AB AD ⋅-⋅=2.就其位置关系而言:中方=上积-下积 求证:AC AB DC BD AD ⋅=⋅+2,,~ACAEAD AB ADC ABE =∴∆∆ 即,)(,AC AB DE AD AD AC AB AE AD ⋅=+⋅∴⋅=⋅证毕注意:角平分线张角定理强调的是角度,斯库顿定理强调的是长度,斯库顿定理可以绕过求张角而直接求出三角形的各边长,通常和内角平分线定理合在一起出考题.【例7】在△ABC 中,AB=5,AC=7,BC=6,△A 的平分线AD 交BC 于点D ,则AD= . 【例8】在△ABC 中,△C=2△B ,AC=3,BC=5,求AB 之长. 秒杀秘籍4:角平分线之倍角定理)(2);(2);(2222b c c a C A a b b c B C c a a b A B +=⇔=+=⇔=+=⇔=,这样的三角形称为“倍角三角形”【例9】在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知8b=5c ,C=2B ,则cosC=( )2524.257.257.257.D C B A ±-【例10】设锐角△ABC 的内角A 、B 、C 所对的边分别是a 、b 、c ,且c=1,A=2C ,则△ABC 周长的取值范围为( )]33,22.()33,22.()33,0.()22,0.(++++++D C B A【例11】在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,若bc b a +=22且)2,3(ππ∈A ,则ba的取值范围是 .【12】如图,四边形ABCD 中,CE 平分△ACD ,AE=CE=32,DE=3,若△ABC=△ACD ,则四边形ABCD 周长的最大值为( )3315.318.3312.24.++D C B A例1、设G 是ABC ∆的重心,且0)sin 35()sin 40()sin 56(=++GC C GB B GA A ,则角B 的大小为_______例2、若点O 在ABC ∆的内部,且053=++OB OC OA ,则ABC ∆的面积与AOC ∆的面积之比是________. 例3、若点O 在ABC ∆的内部,且02 =++OC m OB OA ,74=∆∆ABC AOB S S ,则实数m =_________. 例4、(2016清华大学自主招生)若点O 在ABC ∆的内部,2:3:4::=∆∆∆AOC BOC AOB S S S ,设AC AB AO μλ+=,则实数λ=_____,μ=_____.例5、已知ABC Δ的外接圆的圆心为O ,且60∠=A ,若)∈β,α(βαR AC AB AO +=,则βα+的最大值是 能力提升1、已知ABC ∆中,I 为内心,,4,3,2===AB BC AC 且AC y AB x AI +=,则,则y x +的值为______ .2、设P 是ABC ∆所在平面上一点,且满足)0(,43>=+m AB m PC PA ,若ABP ∆的面积为8,则ABC ∆的面积是_______.3、在ABC ∆中,H BC AC AB ,2,3,4===为ABC ∆的垂心,AC y AB x AH +=,则xy=______. 4、已知G 是ABC ∆的重心,点N M ,分别在边AC AB ,上,满足AN y AM x AG +=,1=+y x ,若,43AB AM =则ABC ∆和AMN ∆的面积之比是____________.5、正三角形ABC 内一点M ,满足CB n CA m CM +=,45=∠MCA ,则nm=______________. 6、已知ABC ∆的外接圆O 的半径为1,且BC BA BO μλ+=,若60=∠ABC ,则μλ+的最大值是________. 7、已知点O 是锐角ABC ∆的外心,3π=∠A ,且OC y OB x OA +=,则y x -2的取值范围是_______________.三角形的四“心”,四“线”① 已知G 是ABC △所在平面上的一点,若0GA GB GC ++=,则G 是ABC △的重心.已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心.② P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的垂心.已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的垂心.③ 已知I 为ABC △所在平面上的一点,且AB c =,AC b =,BC a = .若0aIA bIB cIC ++=,则I 是ABC △的内心.已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC λ⎛⎫⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的内心.④ 已知O 是ABC △所在平面上一点,若222OA OB OC ==,则O 是ABC △的外心.已知O 是平面上的一定点,AB C ,,是平面上不共线的三个点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的外心。
决战中考之三角形专项突破专题02 三角形中线段的问题(老师版)
专题02 三角形中线段的问题知识对接考点一、三角形中的线段三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:三角形三条高线的交点.5.三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点补充:(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.专项训练一、单选题1.(2021·湖南长沙·)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A .两点确定一条直线B .两点之间线段最短C .三角形的稳定性D .垂线段最短【答案】C【分析】 A ,O ,B 三点构成了三角形,窗钩AB 可将其固定,则是利用了三角形的稳定性.【详解】解:∵A ,O ,B 三点构成了三角形,且窗钩AB 可将其固定∵其原理是利用了三角形的稳定性. 本号资料皆来源于微信公众号:数学*第六感故选项为:C .【点睛】本题考查了三角形的稳定性,掌握三角形稳定性的意义是解本题的关键.2.(2021·浙江)如图,在矩形ABCD 中,点F 为边AD 上一点,过F 作//EF AB 交边BC 于点E ,P 为边AB 上一点,PH DE ⊥交线段DE 于H ,交线段EF 于Q ,连接DQ .当AF AB =时,要求阴影部分的面积,只需要知道下列某条线段的长,该线段是( )A .EFB .DEC .PHD .PE【答案】B【分析】过Q 作QG ∵AB 于G ,由//EF AB ,可得QG ∵FE ,∵AGQ =∵FQG =90°,由四边形ABCD 为矩形,可得∵A =90°,可证四边形AGQF 为矩形,可得GQ =EF ,∵DFE =∵PGQ =90°,可证∵PGQ ∵∵DFE (ASA ),可得PQ =DE ,S 阴影=S ∵PED -S ∵QED =212DE 即可. 【详解】解:过Q 作QG ∵AB 于G ,∵//EF AB ,∵QG ∵FE ,∵∵AGQ =∵FQG =90°,∵四边形ABCD 为矩形,∵∵A =90°,∵∵AGQ =∵FQG =∵A =90°∵四边形AGQF 为矩形,∵GQ =AF =AB =EF ,∵DFE =∵PGQ =90°,∵∵PQG +∵EQH =90°,PH DE ⊥∵∵HEQ +∵EQH =90°,∵∵PQG =∵HEQ =∵DEF ,在∵PGQ 和∵DFE 中PGQ DFE GQ FEPQG DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵∵PGQ ∵∵DFE (ASA ),∵PQ =DE ,∵S 阴影=S ∵PED -S ∵QED =()211111=22222PH DE QH DE PH QH DE PQ DE DE ⋅-⋅-⋅=⋅=. 故选择:B .【点睛】本题考查矩形性质与判定,三角形全等判定与性质,三角形面积,掌握矩形性质与判定,三角形全等判定与性质,阴影面积的求法是解题关键.3.(2021·上海金山·九年级二模)已知三条线段长分别为2cm 、4cm 、acm,若这三条线段首尾顺次联结能围成一个三角形,那么a的取值可以是()A.1cm B.2cm C.4cm D.7cm【答案】C【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,求出第三边的取值范围,再一一比较即可.【详解】解:依题意有4﹣2<a<4+2,解得:2<a<6.只有选项C在范围内.故选:C【点睛】本题主要考查了三角形的三边关系,熟悉掌握三角形的定义是解题的关键.4.(2021·青海西宁·九年级一模)下列事件中,属于必然事件的是()A.某个数的绝对值大于0B.a-一定是负数C.五边形的外角和等于540︒D.长分别为3,4,6的三条线段能围成一个三角形【答案】D【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故A错误;a-=,即a-一定是负数是随机事件,故B错误;B、当0a=时,0C、任意一个五边形的外角和等于540°,是不可能事件,任意一个五边形的外角和等于360°,故C错误;D、根据三角形两边之和大于第三边,可知长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故D正确,故选:D.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.5.(2021·江苏九年级专题练习)下列说法正确的是().A.方差越大,数据波动越小B.两直线平行,同旁内角相等C.长为3cm,3cm,5cm的三条线段可以构成一个三角形D.学校在初三3100名同学中随机抽取300名同学进行体考成绩调查,300名同学为样本【答案】C【分析】根据方差的意义、平行线的性质、三角形三边关系及样本的概念逐一判断,即可得到答案.【详解】方差越小,数据波动越小,A选项错误;两直线平行,同旁内角互补,B选项错误;长为3cm,3cm,5cm的三条线段可以构成一个三角形,C选项正确;学校在初三3100名同学中随机抽取300名同学进行体考成绩调查,300名同学的体考成绩为样本,D选项错误;故选:C.【点睛】本题考查了方差、平行线、三角形、统计调查的知识;解题的关键是熟练掌握方差、平行线、三角形三边关系、样本的性质,从而完成求解.6.(2021·江苏九年级一模)下列长度的三条线段,不能组成三角形的是()A.3,7,5B.4,8,5C.5,12,7D.7,13,8【答案】C【分析】根据两边之和等于第三边的原则去判断即可【详解】∵3+5>7,∵能构成三角形,不符合题意;∵4+5>8,∵能构成三角形,不符合题意;∵7+5=12,∵不能构成三角形,符合题意;∵8+7>13,∵能构成三角形,不符合题意;故选C .【点睛】本题考查了三角形的存在性,熟练掌握两边之和大于第三边是判断的根本标准.7.(2021·全国)如图,已知在Rt ABC 中,90C ∠=︒,点G 是ABC 的重心,GE AC ⊥,垂足为E ,如果8CB =,则线段GE 的长为( )A .53B .73C .83D .103【答案】C【分析】因为点G 是ABC 的重心,根据三角形的重心是三角形三条中线的交点以及重心的性质:重心到顶点的距离与重心到对边中点的距离之比是2:1,可知点D 为BC 的中点,21AG GD =,根据GE AC ⊥,可得90AEG ∠=︒,进而证得AEG △∵ACD △,从而得到EG AG CD AD=,代入数值即可求解. 【详解】如图,连接AG 并延长交BC 于点D .点G 是ABC 的重心,∴点D 为BC 的中点,21AG GD =, 8CB =,∴142CD BD BC ===, GE AC ⊥,∴90AEG ∠=︒,90C ∠=︒,∴90AEG C ∠=∠=︒,EAG CAD ∠=∠(公共角),∴AEG △∵ACD △, ∴EG AG CD AD=, 21AG GD =, ∴23AG AD =, ∴243EG AG AD ==, ∴83EG =. 故选:C .【点睛】本题考查了相似三角形的判定和性质,三角形的重心的定义及其性质,熟练运用三角形重心的性质是解题的关键.8.(2021·山东)现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是( )A .14B .12 C .35 D .34【答案】B【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7; 其中能构成三角形的有2、6、7;4、6、7这两种情况, 所以能构成三角形的概率是2142=, 故选:B .【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.构成三角形的基本要求为两小边之和大于最大边. 9.(2021·全国)若平行四边形的两条对角线长为6 cm 和16 cm ,则下列长度的线段可作为平行四边形边长的是( )A .5cmB .8cmC .12cmD .16cm【答案】B【分析】平行四边形的两条对角线互相平分,根据三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,进行判断.【详解】由题意可知,平行四边形边长的取值范围是:8-3<边长<8+3,即5<边长<11.只有选项B 在此范围内,故选B .【点睛】本题主要考查了平行四边形对角线互相平分这一性质,此类求三角形第三边的范围的题目,解题的关键是根据三角形三边关系定理列出不等式,再求解.10.(2021·福建)如图,AD 经过ABC 的重心,点E 是AC 的中点,过点E 作//EG BC 交AD 于点G ,若12BC ,则线段GE 的长为( )A .6B .4C .5D .3【答案】D【分析】根据重心的概念得到点D为BC中点,即CD的长,再根据平行证明∵AGE∵∵ADC,结合点E是AC中点,得到12AE GEAC CD==,从而求出GE.【详解】解:∵AD经过ABC的重心,∵点D是BC中点,∵BC=12,∵CD=BD=6,∵GE∵BC,∵∵AGE∵∵ADC,∵点E是AC中点,∵12AE GEAC CD==,即162GE=,解得:GE=3,故选D.【点睛】本题考查的是重心的概念和性质、相似三角形的判定和性质,掌握三角形的重心是三角形三条中线的交点是解题的关键.二、填空题11.(2021·靖江市靖城中学九年级一模)过∵ABC的重心G作GE∵BC交AC于点E,线段BC=12,线段GE长为________.【答案】4【分析】根据三角形的重心的性质得到AD是∵ABC的中线,2 , 3AGAD=根据相似三角形的性质列出比例式,计算即可.【详解】解:如图,∵点G是∵ABC的重心,∵AD是∵ABC的中线,2,3 AGAD=12,BC=∵CD=12BC=6,∵GE∵BC,∵∵AGE∵∵ADC,∵2,3 GE AGCD AD==即2,63GE=解得,GE=4.故答案为:4.【点睛】本题考查的是三角形的重心的性质,相似三角形的判定与性质,掌握三角形的重心的性质是解题的关键. 12.(2021·沙坪坝·重庆一中九年级三模)从长度分别为1,3,5,6的四条线段中,随机抽取两条线段,与长度为8的线段恰好能围成三角形的概率是______.【答案】1 3【分析】利用列举法求出所有等可能的结果数,然后根据三角形三边关系求得三条线段能围成三角形的结果数,再根据概率公式求解即可.【详解】解:从长度分别为1,3,5,6的四条线段中,随机抽取两条线段,它们为1、3;1、5;1、6;3、5;3、6;5、6共6种等可能的结果数,其中与长度为8的线段恰好能围成三角形的结果数有2种,∵与长度为8的线段恰好能围成三角形的概率为21 63 =,故答案为:13.【点睛】本题考查列举法求概率、三角形的三边关系,熟记求概率公式,掌握三角形的三边关系是解答的关键.13.(2021·扬州中学教育集团树人学校)如图,在Rt∵ABC中,AC=BC=2,∵ACB=90°,正方形BDEF,将正方形BDEF绕点B旋转一周,连接AE,点M为AE的中点,连接FM,则线段FM的最大值是___.1.【分析】延长EF到G,使FG=EF,连接AG,根据三角形的三边关系确定AG的取值范围,再根据FM是∵AEG的中位线得出FM=12AG,得出FM的取值范围即可.【详解】解:延长EF到G,使FG=EF,连接AG,BG,∵在Rt∵ABC中,AC=BC=2,∵AB,∵正方形BDEF∵∵BFG为等腰直角三角形,∵BG=2,∵AB-BG≤AG≤AB+BG(共线时相等),即2≤AG,∵F为EG的中点,M为AE的中点,故FM是∵AEG的中位线,∵FM=12 AG,1≤FM1,1.【点睛】本题主要考查旋转的性质,等腰直角三角形的性质,三角形三边关系,三角形中位线定理等知识点,根据三角形三边关系得出AG的取值范围是解题的关键.14.(2021·浙江杭州市·九年级模拟预测)如果从长度分别为2、4、6、7的四条线段中随机抽取三条线段,那么抽取的三条线段能构成三角形的概率是_______.【答案】12【分析】根据构成三角形的条件:两边之和大于第三边,两边之差小于第三边进行判断即可.【详解】∵从长度分别为2、4、6、7的四条线段中随机抽取三条线段∵可能有:2、4、6;2、6、7;4、6、7;2、4、7四种可能性又∵构成三角形的条件:两边之和大于第三边,两边之差小于第三边∵符合条件的有:2、6、7;4、6、7两种故概率为:21 = 42故答案为:12【点睛】本题考查构成三角形的条件以及概率的计算,掌握构成三角形的三边之间的关系是解题关键.15.(2021·湖北襄阳市·)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为_______________.【答案】1 4【详解】解:画树状图为:共有24种等可能的结果数,其中能构成三角形的结果数为6,所以能构成三角形的概率=624=14.故答案为14. 三、解答题16.(2021·江苏泰州中学附属初中九年级三模)如图,已知抛物线2y x mx n =-++和直线y x =,抛物线顶点为A ,与y 轴交点为B ,直线y x =与抛物线对称轴交于点C .(1)抛物线顶点坐标为 (用m ,n 表示),(2)当抛物线的顶点落在直线21y x =+上时,求n 的最大值.(3)若四边形ABOC 为平行四边形∵求m 的值.∵若直线y x =与抛物线在对称轴右侧部分的交点为D ,当BOD 为直角三角形时,求n 的值.∵过C 点作线段CE AC ⊥,设CE=a ,是否存在实数a 值使ACE 的重心恰好落在抛物线上,若存在直接写出a 和n 的关系式,若不存在,请说明理由.【答案】(1)A 2(,)24m m n +;(2)2;(3)∵2;∵2或6;∵存在,26a n = 【分析】(1)根据抛物线的顶点坐标公式求解即可;(2)将(1)的结果代入直线21y x =+得到n 关于m 的函数,根据求二次函数的最值方法求解即可; (3)∵根据题意若四边形ABOC 为平行四边形,根据已知条件写出,,A B C 的坐标,由BO AC =即可求得m 的值;∵当BOD 为直角三角形时,分为90DBO ∠=︒,90BDO ∠=︒两种情况,由题意可知BOD 是等腰直角三角形,根据直角三角形的性质即可求得n 的值;∵过C 点作线段CE AC ⊥,设点E 在抛物线的左侧,根据抛物线的对称性可知,E 点在抛物线的右侧情况和左侧一致,设AE 的中点为P ,CE 的中点为Q ,,AQ CP 的交点G 即为AEC 的重心,分别求得,AQ CP 的解析式,再求直线交点坐标,将交点G 的坐标代入抛物线解析式即可求得a 和n 的关系式.【详解】(1)抛物线2y x mx n =-++,1,,a b m c n =-==,22A b m x a =-=,22244444A ac b n m m y n a ---===+-, 2(,)24m m A n ∴+, 故答案为:A 2(,)24m m n +; (2)当抛物线的顶点落在直线21y x =+上时,22142m m n +=⨯+, 2221111(44)2(2)2444n m m m m m ∴=-++=--++=--+, 当2m =时,n 取得最大值,最大值为2,(3)∵A 2(,)24m m n +,点C 在y x =上, (,)22m m C ∴, 2y x mx n =-++与y 轴交点为B ,令0x =,则(0,)B n ,若四边形ABOC 为平行四边形,则BO AC =, 即242m m n n =+-, 解得120,2m m ==,0m =时,对称轴0x =,此时,A B 重合,故舍去,2m ∴=,∴22y x x n =-++,∵当BOD 为直角三角形时,分为90DBO ∠=︒,90BDO ∠=︒两种情况,设AC 于x 轴交于点F , (,)22m mC ,,22mmCF OF ∴==,45COF OCF ∴∠=∠=︒,45BOD ∴∠=︒,当90DBO ∠=︒时,则BD y ⊥轴,BD OB ∴=,OB n =,BD n ∴=,(,)D n n ∴,代入22y x x n =-++,解得120,2n n ==,D 在对称轴右侧部分,2n ∴=,当90BDO ∠=︒时,如图,过点D 作DM y ⊥轴,垂足为M ,45BOD ∠=︒,45OBD ∴∠=°,BD OD ∴=,122n DM OB ∴==, 122n OM OB ∴==, (,)22n n D ∴, 代入22y x x n =-++,解得120,6n n ==,D 在对称轴右侧部分,6n ∴=,综上所述,2n =或者6n =;∵存在,理由如下:过C 点作线段CE AC ⊥,设点E 在抛物线的左侧,根据抛物线的对称性可知,E 点在抛物线的右侧情况和左侧一致,设AE 的中点为P ,CE 的中点为Q ,,AQ CP 的交点G 即为AEC 的重心,CE a=,(1,1)C,∴(1,1)E a-,22y x x n=-++,(1,1)A n∴+,1111(,)22a nP+-++∴,即(1,1)22a nP-+,(1,1)2aQ-,设直线AQ的解析式为y cx d=+,则11(1)2n c dac d+=+⎧⎪⎨=-+⎪⎩,解得221ncand na⎧=⎪⎪⎨⎪=+-⎪⎩,∴直线AQ的解析式为221n nnayax++-=,设直线CP的解析式为1y kx b=+,则1(1)221n ak bk b⎧+=-+⎪⎨⎪=+⎩,解得1nkanba⎧=-⎪⎪⎨⎪=+⎪⎩,∴直线CP的解析式为11n ny xa a=-++,12211n ny x na an ny xa a⎧=++-⎪⎪∴⎨⎪=-++⎪⎩,解得1313axny⎧=-⎪⎪⎨⎪=+⎪⎩,即(1,1)33a nG-+,ACE的重心恰好落在抛物线22y x x n=-++上,∴21(1)2(1)333n a an+=----+,解得26a n =.∴a 和n 的关系式为26a n =.【点睛】本题考查了二次函数与一次函数的综合应用,直角三角形的性质,三角形的重心,二次函数的性质,待定系数法一次函数求解析式,求两直线交点坐标,综合运用以上知识是解题的关键.17.(2021·广西南宁十四中九年级)如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是()2,2A 、()4,0B 、()4,4C -.(1)请画出ABC 绕点A 顺时针旋转90︒得到的11AB C △;(2)若点D 在线段11B C 上,且直线AD 将11AB C △分成面积相等的两部分,请画出线段AD ,并写出D 的坐标.【答案】(1)见解析;(2)画图见解析,(2,0)D -【分析】(1)根据题意将ABC 绕点A 顺时针旋转90︒,即将,AB AC 绕点A 顺时针旋转90︒,得到11,AB AC ,连接11B C 即可,则11AB C △即为所求;(2)根据三角形中线的性质,找到11AB C △,11B C 的中点,连接AD 即可,根据坐标系写出D 点的坐标即可.【详解】(1)如图,将ABC 绕点A 顺时针旋转90︒,即将,AB AC 绕点A 顺时针旋转90︒,得到11,AB AC ,连接11B C即可,则11AB C △即为所求;(2)如图,根据三角形中线的性质,找到11AB C △,11B C 的中点,连接AD ,则(2,0)D【点睛】本题考查了坐标与图形,旋转的性质,三角形中线的性质,掌握三角形中线的性质是解题的关键. 18.(2021·陕西西安·)问题提出(1)如图∵,在Rt ∵ABC 中,∵A =90°,AB =3,AC =4,在BC 上找一点D ,使得AD 将∵ABC 分成面积相等的两部分,作出线段AD ,并求出AD 的长度;问题探究(2)如图∵,点A 、B 在直线a 上,点M 、N 在直线b 上,且a ∵b ,连接AN 、BM 交于点O ,连接AM 、BN ,试判断∵AOM 与∵BON 的面积关系,并说明你的理由;解决问题(3)如图∵,刘老伯有一个形状为筝形OACB 的养鸡场,在平面直角坐标系中,O (0,0)、A (4,0)、B (0,4)、C (6,6),是否在边AC 上存在一点P ,使得过B 、P 两点修一道笔直的墙(墙的宽度不计),将这个养鸡场分成面积相等的两部分?若存在,请求出直线BP 的表达式;若不存在,请说明理由.【答案】(1)图见解析,52;(2)S∵AOM=S∵BON,理由见解析;(3)存在,549y x=-+【分析】(1)当点D是BC的中点时,AD将∵ABC分成面积相等的两部分,根据直角三角形斜边中线等于斜边的一般,可求出AD的长度;(2)根据同底等高的三角形面积相等,再减去相等的部分,就可以得出∵AOM与∵BON的面积相等;(3)连接AB,过点O作AB的平行线,交CA的延长线于点F,连接BF,交OA于点G,则∵OBG的面积等于∵AFG的面积,则四边形OACB的面积转化为∵BCF的面积,取CF的中点P,求出点P的坐标,即可求出直线BP的表达式.【详解】(1)如图∵,取BC边的中点D,连接AD,则线段AD即为所求.在Rt∵ABC中,∵BAC=90°,AB=3,AC=4,∵BC25AC+=,∵点D为BC的中点,∵AD=12BC=52.(2)S∵AOM=S∵BON,理由如下:由图可知,S∵AOM=S∵ABM﹣S∵AOB,S∵BON=S∵ABN﹣S∵AOB,如图∵,过点M作MD∵AB于点D,过点N作NE∵AB于点E,∵MD∵NE,∵MDE=90°,又∵MN∵DE,∵四边形MDEN 是矩形, ∵MD =NE ,∵S ∵ABM =12AB MD ⋅⋅,S ∵ABN =12AB NE ⋅⋅,∵S ∵ABM =S ∵ABN , ∵S ∵AOM =S ∵BON .(3)存在,直线BP 的表达式为:y =59-x +4.如图∵,连接AB ,过点O 作OF ∵AB ,交CA 的延长线于点F ,连接BF ,交OA 于点G ,由(2)的结论可知,S ∵OBG =S ∵AFG , ∵S 四边形OACB =S ∵BCF ,取CF 的中点P ,作直线BP ,直线BP 即为所求. ∵A (4,0),B (0,4),C (6,6),∵线段AB 所在直线表达式为:y =﹣x +4, 线段AC 所在直线的表达式为:y =3x ﹣12, ∵OF ∵AB ,且直线OF 过原点, ∵直线OF 的表达式为:y =﹣x ,联立312y x y x =-⎧⎨=-⎩,解得33x y =⎧⎨=-⎩,∵F (3,﹣3), ∵点P 是CF 的中点, ∵P 93(,)22,∵直线BP 的表达式为:y =59-x +4.【点睛】本题主要考查了勾股定理、三角形一边上的中线的性质以及待定系数法求一次函数解析式等内容,作出辅助线并进行面积转化是解决本题第三问的关键.19.(2021·陕西九年级一模)问题提出:(1)如图1,在∵ABC中,已知AB=AC=5,BC=4,在BC上找一点D,使得线段AD将∵ABC分成面积相等的两部分,画出线段AD,并写出AD的长为.问题探究:(2)如图2,点D是∵ABC边AC上一定点,在BC上找一点E,使得线段DE将∵ABC分成面积相等的两部分,并说明理由.问题解决:(3)如图3,四边形ABCD是西安市高新区新近改造过程中的一块不规则空地,为了美化环境,市规划办决定在这块地里种植两种花卉,打算过点C修一条笔直的通道,以便市民出行观赏花卉,要求通道两侧种植花卉的面积相等,经测量AB=20米,AD=100米,∵A=60°,∵ABC=150°,∵BCD=120°,若将通道记为CF,请你画出通道CF,并求出通道CF的长.【答案】(1)画图见解析;(2)画图见解析;理由见解析(3)画图见解析;CF=35【分析】(1)如图1中,取BC的中点D,连接AD,线段AD即为所求.再根据等腰三角形的“三线合一”及利用勾股定理求解即可.(2)如图2中,取BC的中点F,连接AF,DF,过点A作AE∵DF交BC于E,则直线DE平分∵ABC的面积.(3)如图3中,延长AB交DC的延长线于T,过点C作CE∵AD于E.求出四边形ABCD的面积,利用三角形的面积公式求出DF,再利用勾股定理即可解决问题.【详解】解:(1)如图1中,取BC的中点D,连接AD,线段AD即为所求.∵AB=AC,BD=DC,∵AD∵BC,在Rt∵ABD中,∵∵ADB=90°,AB=5,BD=2,∵AD(2)如图2中,取BC的中点F,连接AF,DF,过点A作AE∵DF交BC于E,则直线DE平分∵ABC 的面积.理由如下:∵BF=FC,∵S∵ABF=S∵ACF,∵DF∵AE,∵S∵AEF=S∵AED,S∵ABC,∵S四边形ABED=S∵ABE+S∵ADE=S∵ABE+S∵AEF=S∵ABF=12∵直线DE平分∵ABC的面积.(3)如图3中,延长AB交DC的延长线于T,过点C作CE∵AD于E.∵∵A=60︒,∵ABC=150︒,∵BCD=120︒,∵∵D =3606015012030︒︒︒︒︒﹣﹣﹣= ,18015030TBC ∠︒︒︒=﹣= , ∵180603090T ∠︒︒︒︒=﹣﹣= , ∵AD =100m ,AB =20m ,∵AT =12 AD =50(m ),DT AT =(m ),BT =AT ﹣AB =30(m ),∵CT ==,CD =DT ﹣CT =, ∵CE∵AD , ∵∵CED =90°,∵CE =12 CD =(m ),DE EC =60(m ),∵S 四边形ABCD =S ∵ADT ﹣S ∵BCT =12×50×-12×30×m 2), ∵直线CF 平分四边形ABCD 的面积,∵S ∵CDF =(m 2),∵12 •DF•EC ,∵DF =55(m ), ∵EF =DE ﹣DF =5(m ),∵CF =35.【点睛】本题主要以三角形中线把三角形的面积平均分成相等的两部分为出发点来考查学生对几何综合的运用,同时也考查了等腰三角形、平行、勾股定理等知识的运用,本题的关键是通过找到面积平分来解决问题. 20.(2021·泗水县教育和体育局教学研究中心)(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.(经验发展)面积比和线段比的联系:(1)如图1,M 为∵ABC 的AB 上一点,且BM =2AM .若∵ABC 的面积为a ,若∵CBM 的面积为S ,则S =_______(用含a 的代数式表示).(结论应用)(2)如图2,已知∵CDE 的面积为1,14CD AC =,13CE CB =,求∵ABC 的面积. (迁移应用)(3)如图3.在∵ABC 中,M 是AB 的三等分点(13AM AB =),N 是BC 的中点,若∵ABC 的面积是1,请直接写出四边形BMDN 的面积为________.【答案】(1)23a(2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出∵ACE的面积,再得到∵ABC的面积即可;(3)连接BD,设∵ADM的面积为a,则∵BDM的面积为2a,设∵CDN的面积为b,则∵BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设∵ABC中BC边长的高为h,∵BM=2AM.∵BM=23 AB∵S=12BM×h=12×23AB×h=23S∵ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∵CD=14 AC∵S∵DCE=14S∵ACE =1∵S∵ACE =4,∵13 CE CB=∵CE=13 CB∵S∵ACE=13S∵ABC =4∵S∵ABC=12;(3)如图3,连接BD ,设∵ADM 的面积为a , ∵13AM AB =∵BM=2AM,BM=23AB ,∵S ∵BDM =2S ∵ABM =2a, S ∵BCM =23S ∵ABC =23设∵CDN 的面积为b , ∵N 是BC 的中点, ∵S ∵CDN =S ∵BDN =b ,S ∵ABN =12S ∵ABC =12∵122223a a b b b a ⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214a b ⎧=⎪⎪⎨⎪=⎪⎩ ∵四边形BMDN 的面积为2a+b=512故答案为512.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.21.(2021·江苏南京·)已知线段AB 与点O ,利用直尺和圆规按下列要求作∵ABC (不写作法,保留作图痕迹).(1)在图∵中,点O 是∵ABC 的内心; (2)在图∵中,点O 是∵ABC 的重心.【答案】(1)见解析,(2)见解析 【分析】(1)分别作∵OAC=∵OAB,∵OBA=∵OBC,两边交点为C,∵ABC即为所求;(2)作AB的垂直平分线,根据重心的性质可确定出C点,则∵ABC即为所求.【详解】解:(1)如图∵,∵ABC即为所求;(2)如图∵,∵ABC即为所求.【点睛】本题考查了尺规作图以及三角形内心和重心的性质,熟练掌握三角形内心是三角形内角角平分线交点,三角形重心是三边中线交点是解题关键.22.(2021·陕西九年级二模)(1)如图1,AB是∵○的弦,点P在∵○上,当∵P AB是直角三角形时,请在图1中画出点P的位置;(2)如图2,∵○的半径为4,A、B为∵○外固定两点(O、A、B三点不在同一直线上),且8OA=,P为∵○上的一个动点(点P不在直线AB上),以PA和AB为邻边作平行四边形P ABC,求BC最小值;(3)如图3,A、B是∵○上的两个点,过A点作射线AM AB⊥,AM交∵○于点C,若3AB=,4AC=,点D是平面内的一个动点,且2CD=,E为BD的中点,在点D的运动过程中,求线段AE长度的最大值与最小值.【答案】(1)见解析;(2)4;(3)最大值为72;最小值为32【分析】(1)根据圆周角定理作图;(2)根据平行四边形的性质得到BC AP =,根据线段的性质计算;(3)连接BC ,根据勾股定理求出BC ,根据直角三角形的性质求出OA ,根据三角形中位线定理求出OE ,根据三角形的三边关系解答即可. 【详解】解:(1)如图1,APB ∆、∵AP B '是直角三角形;(2)四边形PABC 是平行四边形,BC AP ∴=,BC ∴的最小值即AP 的最小值, 当P 为OA 与O 的交点时,AP 最小,AP ∴的最小值为8-4=4,即BC 的最小值为4;(3)连接BC ,∵AM AB ⊥, ∵90CAB ∠=︒, ∵BC 是∵○的直径.∵点D 是平面内的一个动点,且2CD =,∵点D 的运动路径为以C 为圆心,以2为半径的圆, ∵BC 是∵○的直径,∵O是BC的中点.在Rt ABC中,5BC==.∵O是Rt ABC斜边BC上的中点,∵1522 AO BC==.∵E是BD的中点,O是BC的中点,∵112OE CD==.∵AE的最小值是32 AO-OE=,最大值是72 AO+OE=.【点睛】本题考查的是圆的知识,掌握平行四边形的性质、圆周角定理、三角形的三边关系是解题的关键.23.(2021·黑龙江九年级一模)如图,网格中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中确定点C,点C在小正方形的顶点上,请你连接CA,CB,BC=;(2)在(1)确定点C后,在网格内确定点D,点D在小正方形的顶点上,请你连接CD,BD,CD∵AB,∵CDB的面积为6,直接写出∵CBD的正切值.【答案】(1)见解析;(2)35.【分析】(1)BC==BC应是44⨯方格的对角线;(2)由三角形面积公式可求CD的长度,结合//CD AB,可确定D点的位置,作DH∵BC于点H,再由三角形面积公式可求DH,由勾股定理可求BH,从而可求∵CBD的正切值.【详解】解:(1)BC = BC 应是44⨯方格的对角线,作图如下;(2)∵1462CDB S CD ∆=•⨯=, ∵CD =3, ∵//CD AB ,∵可确定D 点位置如图所示,∵BD ∵作DH ∵BC 于点H ,又∵162CDB S BC DH ∆=••=,BC =∵DH =∵BH == ∵3tan 5DH CBD BH ∠== 【点睛】本题主要考查作图、三角形的面积、勾股定理、锐角三角函数及数形结合思想的运用,解题的关键是熟练掌握各。
专题05 三角形中的角平分线模型--2024年中考数学核心几何模型重点突破(解析版)
专题05三角形中的角平分线模型【模型1】如图,已知OP 平分AOB ∠,过点P 作OA PD ⊥,OB PE ⊥;可根据角平分线性质证得ODP ∆≌OEP ∆,从而可得OPE OPD ∠=∠,PE PD OE OD ==;。
【模型拓展】与角平分线有关的辅助线作法【辅助线作法一】如图,已知OP 平分AOB ∠,点C 是OA 上的一点,通常情况下,在OB 上取一点D,使得OC OD =,连接PD,结合OP OP =,POD POC ∠=∠,可证得OPC ∆≌OPD ∆。
从而可得PD PC =,PDO PCO ∠=∠,DPO CPO ∠=∠。
【辅助线作法二】如图,已知OP 平分AOB ∠,OP CP ⊥,通常情况下,延长CP 交OB 于点D,结合OP OP =,POD POC ∠=∠,︒=∠=∠90OPD OPC ,可证得OPC ∆≌OPD ∆。
从而可得PD PC =,PDO PCO ∠=∠,OD OC =。
【辅助线作法三】如图,已知OP 平分AOB ∠,通常情况下,过点P 作PC//OB,根据平行线性质:两直线平行内错角相等;结合POD POC ∠=∠,从而可得PC OC =,CPO COP ∠=∠。
【例1】如图,OC 为∠AOB 的角平分线,点P 是OC 上的一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 为OC 上另一点,连接DF ,EF ,则下列结论:①OD =OE ;②DF =FE ;③∠DFO =∠EFO ;④S △DFP =S △EFP ,正确的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】证明△ODP ≌△OEP (AAS ),由全等三角形的性质可推出OD =OE ,证明△DPF ≌△EPF (SAS ),由全等三角形的性质可推出DF =EF .∠DFP =∠EFP ,S △DFP =S △EFP ,则可得出答案.【解析】解:①∵OC 平分∠AOB ,∴∠DOP =∠EOP ,∵PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠ODP =∠OEP =90°,∵OP =OP ,∴△ODP ≌△OEP (AAS ),∴OD =OE .故①正确;②∵△ODP ≌△OEP ,∴PD =PE ,∠OPD =∠OPE ,∴∠DPF =∠EPF ,∵PF =PF ,∴△DPF ≌△EPF (SAS ),∴DF =EF .故②正确;③∵△DPF ≌△EPF ,∴∠DFO =∠EFO ,故③正确;④∵△DPF ≌△EPF ,∴S △DFP =S △EFP ,故④正确.故选:D .【例2】如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =OB .求证:△AOC ≌△BOC.【答案】见解析【分析】根据角平分线的性质和全等三角形的判定方法可以证明结论成立.【解析】证明:∵OC 平分∠MON ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOC (SAS ).【例3】请阅读以下材料,并完成相应的问题:角平分线分线段成比例定理:如图1,在△ABC 中,AD 平分∠BAC ,则AB BD AC CD=,下面是这个定理的部分证明过程:证明:如图2,过C 作CE ∥DA ,交BA 的延长线于E .…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)如图3,已知Rt △ABC 中,AB =3,BC =4,∠ABC =90°,AD 平分∠BAC ,求BD 的长.(请按照本题题干的定理进行解决)【答案】(1)见解析;(2).【分析】(1)如图2:过C 作CE ∥DA .交BA 的延长线于E ,利用平行线分线段成比例定理得到BD CD =BA EA,利用平行线的性质得∠2=∠ACE ,∠1=∠E ,由∠1=∠2得∠ACE =∠E ,所以AE =AC 即可证明结论;(2)先利用勾股定理计算出AC =5,再利用(1)中的结论得到AC AB =CD BD ,即53=CD BD ,则可计算出BD =32,然后利用勾股定理计算出AD =2,从而可得到△ABD 的周长.【解析】(1)解:如图2:过C 作CE ∥DA .交BA 的延长线于E ,∵CE //AD ,∴BD CD =BA EA,∠2=∠ACE ,∠1=∠E ,∵AD 平分∠BAC∴∠1=∠2,∴∠ACE =∠E ,∴AE =AC ,∴AB AC =BD CD;(2)∵AB =3,BC =4,∠ABC =90°,∴AC =5,∵AD 平分∠BAC ,∴AC AB =CD BD ,即53=4BD BD -,∴BD =32,∴AD∴△ABD 的周长=32+3+2=92+.一、单选题1.如图,ABC 中,5AB =,6BC =,10CA =,点D ,E 分别在BC ,CA 上,DE AB ∥,F 为DE 中点,AF 平分BAC ∠,则BD 的长为()A .32B .65C .85D .2【答案】B【分析】根据角平分线和平行可得EA EF =,从而可得2DE AE =,然后证明EDC ABC △△∽,利用相似三角形的性质即可求出AE ,DE ,进而求出CD ,最后进行计算求出BD 即可解答.【解析】解:∵F 为DE 中点,∴2ED EF =,∵AF 平分BAC ∠,∴EAF FAB ∠=∠,∵DE AB ∥,∴FAB AFE ∠=∠,∴EAF AFE ∠=∠,∴EA EF =,∴2DE AE =,设AE x =,则2DE x =,∵DE AB ∥,∴EDC B ∠=∠,∵C C ∠=∠,∴EDC ABC △△∽,∴ED EC DC AB AC BC==,∵5AB =,6BC =,10CA =,∴210510x x -=,∴2x =,∴24DE x ==,∴456CD =,∴245CD =,∴246655BD BC CD =-=-=.故选:B .2.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,若AB =5,BC =3,则EC 的长为()A .1B .2C .2.5D .4【答案】B 【分析】根据平行四边形的性质可得AB =CD =5,AD =BC =3,AB ∥CD ,然后根据平行线的性质可得∠EAB =∠AED ,然后根据角平分线的定义可得∠EAB =∠EAD ,从而得出∠EAD =∠AED ,根据等角对等边可得DA =DE =3,即可求出EC 的长.【解析】解:∵四边形ABCD 是平行四边形,AB =5,BC =3,∴AB =CD =5,AD =BC =3,AB ∥CD∴∠EAB =∠AED∵AE 平分∠DAB∴∠EAB =∠EAD∴∠EAD =∠AED∴DA =DE =3∴EC =CD -DE =2故选B .3.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上的一个动点,则下列结论正确的是()A .PA PQ=B .PA PQ <C .PA PQ >D .PA PQ≤【答案】D 【分析】连接PQ ,当PQ ⊥OM 时,根据角平分线的性质得出PQ =PA ,利用直线外一点到直线的垂线段最短即可得出结论.【解析】解:连接PQ ,当PQ ⊥OM 时,∵OP 平分∠MON ,PQ ⊥OM ,PA ⊥ON ,∴PQ =PA ,此时点P 到OM 的距离PQ 最小,∴PA ≤PQ ,故选:D .4.如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是()A.2AB BF=B.12ACE ACB∠=∠C.AE BE=D.CD BE⊥【答案】C【分析】从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.【解析】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥AB,∠ACE=12∠ACB,AB=2BF,无法确定AE=BE.故选:C.5.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有()A.1个B.2个C.3个D.4个【答案】C【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【解析】解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE,∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE =60°,∴③DE 平分∠ADB 错误;∵BE +AE =AB ,AE =AC ,∴BE +AC =AB ,∴④BE +AC =AB 正确;∵∠BDE =90°-∠B ,∠BAC =90°-∠B ,∴∠BDE =∠BAC ,∴②∠BAC =∠BDE 正确.综上,正确的个数的3个,故选:C .6.如图,∠BAC =30°,AD 平分∠BAC ,DF ⊥AB 交AB 于F ,DE ⊥DF 交AC 于E ,若AE =8,则DF 等于()A .5B .4C .3D .2【答案】B 【分析】过点D 作DG AC ⊥,根据角平分线的性质可得DF DG =,根据角平分线的定义,平行线的性质以及等腰三角形的判定,可得AE ED =,进而根据含30度角的直角三角形的性质即可求解.【解析】如图,过点D 作DG AC ⊥ AD 平分∠BAC ,DF ⊥AB ,DG AC⊥∴DF DG =,CAD BAD∠=∠DE DF ⊥ ,DF ⊥AB ,AB DE∴∥BAD EDA∴∠=∠EAD EDA∴∠=∠EA ED∴=8AE = 8DE AE ∴== ∠BAC =30°,30DEG ∴∠=︒142DG DE ∴==4DF ∴=故选B二、填空题7.如图,已知AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,请你添加一个条件________,使四边形AEDF 是菱形.【答案】DF ∥AB【分析】添加DF ∥AB ,根据DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,可以判断四边形AEDF 是平行四边形,再根据角平分线的性质和平行线的性质即可证明结论成立.【解析】解:DF ∥AB ,理由如下:∵DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,∴四边形AEDF 是平行四边形,∠EAD =∠ADF ,∵AD 是△ABC 的角平分线,∴∠EAD =∠FAD ,∴∠ADF =∠FAD ,∴FA =FD ,∴平行四边形AEDF 是菱形(有一组邻边相等的平行四边形是菱形).8.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD =8,BE =3,则AB 的长为________.【答案】5【分析】首先由在平行四边形ABCD 中,AD =8,BE =3,求得CE 的长,然后由DE 平分∠ADC ,可证CD =CE =5,即可求解.【解析】∵在平行四边ABCD 中,AD =8,∴BC =AD =8,AD //BC ,∴CE =BC -BE =8-3=5,∠ADE =∠CED ,∴DE 平分∠ADC ,∴∠ADE =∠CDE ,∴∠CDE =∠CED ,∴CD =CE =5=AB ,故答案为:5.9.如图,在ABC 中,ACB ∠的平分线交AB 于点D ,DE AC ⊥于点E .F 为BC 上一点,若DF AD =,6ACD CDF S S -=△△,则AED 的面积为______.【答案】3【分析】在CA 上截取CG =CF ,连接DG .根据题意易证()CDG CDF SAS ≅ ,得出DG DF =,CDG CDF S S = .即可求出AD DG =,6ADG S = .最后根据等腰三角形“三线合一”的性质即可求出ADE S .【解析】如图,在CA 上截取CG =CF ,连接DG,∵CD 平分ACB ∠,∴ACD BCD ∠=∠.在CDG 和CDF 中,CG CF GCD FCD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴()CDG CDF SAS ≅ ,∴DG DF =,CDG CDF S S = .∵6ACD CDF S S -=△△,∴6ACD CDG S S -= ,即6ADG S = .∵AD DF =,∴AD DG=.∴AE=EG,∴132ADE GDE ADGS S S===.故答案为:3.10.如图,AB=BE,∠DBC=12∠ABE,BD⊥AC,则下列结论正确的是:_____.(填序号)①BC平分∠DCE;②∠ABE+∠ECD=180°;③AC=2BE+CE;④AC=2CD﹣CE.【答案】①②④【分析】根据已知∠DBC=12∠ABE,BD⊥AC,想到构造一个等腰三角形,所以延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,就得到∠FBC=2∠DBC,然后再证明△FAB≌△CBE,就可以判断出BC平分∠DCE,再由角平分线的性质想到过点B作BG⊥CE,交CE的延长线于点G,从而证明△ABD≌△EBG,即可判断.【解析】解:延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,过点B作BG⊥CE,交CE的延长线于点G,∵FB=BC,BD⊥AC,∴DF=DC,∠DBC=∠DBF=12∠FBC,∵∠DBC=12∠ABE,∴∠FBC=∠ABE,∴∠FBA=∠CBE,∵AB=AE,∴△FAB≌△CBE(SAS),∴∠F=∠BCE,∵BF=BC,∴∠F=∠BCD,∴∠BCD=∠BCE,∴BC平分∠DCE,故①正确;∵∠FBC+∠F+∠BCD=180°,∴∠ABE+∠BCE+∠BCD=180°,∴∠ABE+∠DCE=180°,故②正确;∵∠BDC=∠BGC=90°,BC=BC,∴△BDC≌△BGC(AAS),∴AD=GE,CD=CG,∵AC=AD+DC,∴AC=AD+CG=AD+GE+CE=2GE+CE,∵GE≠BE,∴AC≠2BE+CE,故③错误;∵AC=CF﹣AF,∴AC=2CD﹣CE,故④正确;故答案为:①②④.11.如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,BE=2,则DE的长是___.【答案】2【分析】根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ABD=∠BDE,等量代换得到∠DBE=∠BDE,得到DE=BE,于是得到结论.【解析】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴DE=BE,∵BE=2,∴DE=2.故答案为:2.12.如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠CAE、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有____________.(填序号)【答案】①②④【分析】根据角平分线的定义得到∠EAD=∠CAD,根据平行线的性质得到∠EAD=∠ABC,∠CAD=∠ACB,求得∠ABC=∠ACB,故①正确;根据角平分线的定义得到∠ADC=90°12-∠ABC,求得∠ADC+∠ABD=90°故②正确;根据全等三角形的性质得到AB=CB,与题目条件矛盾,故③错误,根据角平分线的定义和三角形外角的性质即可得到2∠BDC=∠BAC,故④正确.【解析】解:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠ABC,∠CAD=∠ACB,∴∠ABC=∠ACB,故①正确;∵AD,CD分别平分∠EAC,∠ACF,∴可得∠ADC=90°12-∠ABC,∴∠ADC+12∠ABC=90°,∴∠ADC+∠ABD=90°,故②正确;∵∠ABD =∠DBC ,BD =BD ,∠ADB =∠BDC ,∴△ABD ≌△BCD (ASA ),∴AB =CB ,与题目条件矛盾,故③错误,∵∠DCF =∠DBC +∠BDC ,∠ACF =∠ABC +∠BAC ,∴2∠DCF =2∠DBC +2∠BDC ,2∠DCF =2∠DBC +∠BAC ,∴2∠BDC =∠BAC ,故④正确,故答案为:①②④.三、解答题13.如图,AC =BC ,∠1=∠2,求证:OD 平分∠AOB .【答案】见详解【分析】证明△ACO ≌△BCO 即可求证.【解析】证明:∵∠1=∠2,∠1+∠ACO =180°,∠2+∠BCO =180°,∴∠ACO =∠BCO ,∵AC =BC ,CO =CO ,∴△ACO ≌△BCO ,∴∠AOC =∠BOC ,∴OD 平分∠AOB .14.如图,在ABC 中,AE 平分BAC BE AE ∠⊥,于点E ,延长BE 交AC 于点D ,点F 是BC 的中点.若35AB AC ==,,求EF 的长.【答案】1【分析】根据角平分线的定义结合题意,即可利用“ASA”证明BAE DAE ≅ ,即得出3AD AB ==,BE DE =,从而可得出2CD =,点E 为BD 中点,从而可判定EF 为BCD △的中位线,进而可求出EF 的长.【解析】∵AE 平分BAC BE AE∠⊥,∴BAE DAE ∠=∠,90AEB AED ∠=∠=︒.又∵AE =AE ,∴BAE DAE ≅ (ASA),∴3AD AB ==,BE DE =,∴2CD AC AD =-=,点E 为BD 中点.∵F 是BC 的中点,∴EF 为BCD △的中位线,∴112EF CD ==.15.已知:如图,在△ABC 中,AB =AC ,∠A =100°,BD 是∠ABC 的平分线,BD =BE .求证:(1)△CED 是等腰三角形;(2)BD +AD =BC .【答案】(1)见解析;(2)见解析【分析】(1)由AB =AC ,∠A =100°求出∠ABC =∠C =40°,再由BD 是∠ABC 的平分线求出∠DBC =12∠ABC =20°,根据BD =BE 求出∠BED =∠BDE =80°,再根据三角形的外角等于与它不相邻的两个内角的和求得∠EDC =40°,则∠EDC =∠C ,从而证明ED =EC ,即△CED 是等腰三角形;(2)在BE 上截取BF =BA ,连结DF ,先证明△FBD ≌△ABD ,则FD =AD ,∠BFD =∠A =100°,可证明∠EFD =∠FED =80°,则AD =FD =ED =EC ,即可证明BD +AD =BE +EC =BC .【解析】(1)∵AB =AC ,∠A =100°,∴∠ABC =∠C =12×(180°-100°)=40°,∵BD 是∠ABC 的平分线,∴∠DBC =12∠ABC =20°,∵BD =BE ,∴∠BED =∠BDE =12×(180°-20°)=80°,∴∠EDC =∠BED -∠C =80°-40°=40°,∴∠EDC =∠C ,∴ED =EC ,∴△CED 是等腰三角形.(2)如图,在边BC 上取点F ,使BF BA =,在ABD △和FBD 中∵AB FB ABD FBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴ABD FBD≌△△∴AD DF =,100BFD A ∠=∠=︒,∴18010080DFE ∠=︒-︒=︒,∴DFE DEF∠=∠∴DF DE=∴AD EC=∴BD AD BE EC BC +=+=.16.如图,AD 为△ABC的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =_______.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.【答案】(1)3;(2)CD =a -b ;(3)ABC S =14【分析】(1)利用ASA 证明△AEF ≌△ACF ,得AE =AC =5,得出答案;(2)利用ASA 证明△ADE ≌△ADC ,得∠C =∠AED ,DC =DE ,再证明∠B =∠BDE ,得出BE =DE ,即可得到结论;(3)利用ASA 证明△AGB ≌△AGH ,得出BG =HG ,即可得出△ABC 的面积.【解析】(1)∵AD 是△ABC 的平分线,∴∠BAD =∠CAD ,∵CE ⊥AD ,∴∠CFA =∠EFA ,∵在△AEF 和△ACF 中EAF CAF AF AF AFE AFC ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AEF ≌△ACF (ASA ),∴AE =AC =5,∵AB =8,∴BE =AB −AC =8−5=3,故答案为:3;(2)∵AD 平分∠BAC ,∴∠BAD =∠CAD ,在△ADE 和△ADC 中AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ADC∴∠C =∠AED ,DC =DE又∵∠C =2∠B ,∠AED =∠B +∠BDE∴∠B =∠BDE∴DE =BE ,∴DC =DE =BE =AB -AE =AB -AC=a -b ;(3)如图,分别延长AC ,BG 交于点H ,∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∵AG ⊥BH ,∴∠AGB =∠AGH =90°,∵在△AGB 和△AGH 中BAD CAD AG AG AGB AGH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGB ≌△AGH ,∴BG =HG ,∴22BCH BCG HCG S S S == ,又∵2ABC BCH ACG CGH S S S S +=+ ()∴ABC S =14.17.已知:如图1,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,AD ,CE 是角平分线,AD 与CE 相交于点F ,FM AB ⊥,FN BC ⊥,垂足分别为M ,N .【思考说理】(1)求证:FE FD =.【反思提升】(2)爱思考的小强尝试将【问题背景】中的条件“90ACB ∠=︒”去掉,其他条件不变,观察发现(1)中结论(即FE FD =)仍成立.你认为小强的发现正确吗?如果不正确请举例说明,如果正确请仅就图2给出证明.【答案】(1)证明见详解;(2)正确,证明见详解;【分析】(1)由角平分线的性质、三角形内角和定理证()Rt FDN Rt FEM AAS ∆≅∆∠即可求解;(2)在AB 上截取CP =CD ,分别证()CDF CPF SAS ∆≅∆、()AFE AFP ASA ∆≅∆即可求证;【解析】证明:(1)∵AD 平分∠BAC ,CE 平分∠ACB ,∴点F 是ABC ∆的内心,∵FM AB ⊥,FN BC ⊥,∴FM FN =,∵90ACB ∠=︒,60ABC ∠=︒,∴30CAB ∠=︒∴15CAD ∠=︒∴75ADC ∠=︒∵45ACE ∠=︒∴75CEB ∠=︒∴ADC CEB∠=∠∴()Rt FDN Rt FEM AAS ∆≅∆∠∴FE FD=(2)如图,在AB 上截取CP =CD ,在CDF ∆和CPF ∆中,∵CD CP DCF PCF CF CF =⎧⎪∠=∠⎨⎪=⎩∴()CDF CPF SAS ∆≅∆∴FD FP =,∠CFD =∠CFP ,∵AD 平分∠BAC ,CE 平分∠ACB ,∴∠CAD =∠BAD ,∠ACE =∠BCE ,∵∠B =60°,∴∠ACB +∠BAC =120°,∴∠CAD +∠ACE =60°,∴∠AFC =120°,∵∠CFD =∠AFE =180°-∠AFC =60°,∵∠CFD =∠CFP ,∴∠AFP =∠CFP =∠CFD =∠AFE =60°,在AFE ∆和AFP ∆中,∵AFE AFP AF AF PAF EAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AFE AFP ASA ∆≅∆∴FP =EF∴FD =EF .18.如图,∠MAN 是一个钝角,AB 平分∠MAN ,点C 在射线AN 上,且AB =BC ,BD ⊥AC ,垂足为D.(1)求证:BAM BCA ∠=∠;(2)动点P ,Q 同时从A 点出发,其中点Q 以每秒3个单位长度的速度沿射线AN 方向匀速运动;动点P 以每秒1个单位长度的速度匀速运动.已知AC =5,设动点P ,Q 的运动时间为t 秒.①如图②,当点P 在射线AM 上运动时,若点Q 在线段AC 上,且52ABP BQC S S =△△,求此时t 的值;②如图③,当点P 在直线AM 上运动时,点Q 在射线AN 上运动的过程中,是否存在某个时刻,使得 APB 与 BQC 全等?若存在,请求出t 的值;若不存在,请说出理由.【答案】(1)见解析(2)①2517t =;②存在,54t =或52t =【分析】(1)①先证Rt △BDA ≌Rt △BDC (HL ),推出∠BAC =∠BCA .再由角平分线的定义得∠BAM =∠BAC ,等量代换即可证明BAM BCA ∠=∠;(2)①作BH ⊥AM ,垂足为M .先证△AHB ≌△ADB (AAS ),推出BH =BD ,再由S △ABP =52S △BQC ,推出52AP CQ =,结合P ,Q 运动方向及速度即可求解;②分“点P 沿射线AM 方向运动,点Q 在线段AC 上”,以及“点P 沿射线AM 反向延长线方向运动,点Q 在线段AC 延长线上”两种情况讨论,利用三角形全等得出AP 与CQ 的关系即可求解.【解析】(1)证明:∵BD ⊥AC ,∴90BDA BDC ∠=∠=︒,在Rt △BDA 和Rt △BDC 中,BD BD AB CB=⎧⎨=⎩,∴Rt △BDA ≌Rt △BDC (HL ),∴∠BAC =∠BCA .∵AB 平分∠MAN ,∴∠BAM =∠BAC ,∴∠BAM =∠BCA .(2)解:①如下图所示,作BH ⊥AM ,垂足为M .∵BH ⊥AM ,BD ⊥AC ,∴∠AHB =∠ADB =90°,在△AHB 和△ADB 中,AHB ADB BAH BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AHB ≌△ADB (AAS ),∴BH =BD ,∵S △ABP =52S △BQC ,∴151222AP BH CQ BD =⨯ ,∴52AP CQ =,∴5(53)2t t =-,∴2517t =.②存在,理由如下:当点P 沿射线AM 方向运动,点Q 在线段AC上时,如下图所示,∵AB =BC ,又由(1)得∠BAM =∠BCA ,∴当AP =CQ 时,△APB ≌△CQB ,∴53t t =-,∴54t =;当点P 沿射线AM 反向延长线方向运动,点Q 在线段AC 延长线上时,如下图所示,由(1)得∠BAM=∠BCA,∴∠BAP=∠BCQ,又∵AB=BC,∴当AP=CQ时,△APB≌△CQB,∴35t t=-,∴52 t=.综上所述,当54t=或52t=时,△APB和△CQB全等.。
三角形在数学竞赛中的题型与解题策略
三角形在数学竞赛中的题型与解题策略三角形是数学竞赛中一个重要的题目类型,涉及了几何学和三角函数等相关概念。
对于这类题目,理解三角形的性质和掌握解题策略是至关重要的。
首先,我们来看一些与三角形相关的常见题型。
1. 三角形的性质:1.1 三边关系:根据三条边的长度关系,可以判断三角形的形状,如等边三角形、等腰三角形和一般三角形。
1.2 角关系:根据三个角的大小关系,可以判断三角形的形状,如锐角三角形、直角三角形和钝角三角形。
1.3 高度、中线和角平分线:这些线段可以把三角形分成几个等腰三角形,从而利用等边、等腰三角形的性质推导出结果。
2. 三角形的面积:2.1 海伦公式:对于已知三边长度的三角形,可以使用海伦公式计算其面积。
2.2 边长和高度:已知底边和高度,可以计算三角形的面积。
2.3 角度和边长:已知两条边和夹角,可以计算三角形的面积。
3. 三角形的相似和全等:3.1 相似三角形:利用三角形的相似性质,可以求解未知边长和角度。
3.2 全等三角形:利用三角形的全等性质,可以求解未知边长和角度。
在解题过程中,可以采用以下策略:1. 分析和利用已知条件:仔细阅读题目,了解已知条件和寻找解题线索。
根据已知条件,可以找到合适的定理和公式来解题。
2. 利用几何图形:画出准确且清晰的几何图形,有助于观察和推导出一些结论。
使用图形的性质和构造,可以解决一些几何问题。
3. 运用数学公式和定理:熟练掌握三角函数、海伦公式、相似三角形和全等三角形等的公式和定理。
根据需要,将问题转化为可以利用这些公式和定理求解的形式。
4. 利用等边、等腰三角形等性质:假设三角形具有一些特殊性质,如等边三角形、等腰三角形等,并根据这些性质进行推导和计算。
这些特殊性质往往可以简化问题,加快解题进程。
5. 运用三角形的内角和外角性质:根据三角形内角和外角的关系,可以推导出一些重要的结论。
利用这些结论,可以解决一些需要求角度的问题。
6. 利用垂线、中线和角平分线:根据垂线、中线和角平分线的性质,可以将三角形分成几个相等的小三角形,从而简化问题的解决过程。
高中解三角形角平分线定理
高中解三角形角平分线定理高中解三角形角平分线定理是几何学中的一个重要定理,它可以帮助我们解决一些三角形的相关问题。
下面,我将按照步骤来详细介绍这个定理。
第一步:了解角平分线的定义角平分线是指从一个角的顶点出发,将这个角划分成两个相等的角的直线。
在三角形中,我们可以通过角平分线来进一步研究三角形的性质和关系。
第二步:了解角平分线定理的表述角平分线定理表述如下:在一个三角形中,如果一条线段从某个顶点出发,将与这个顶点相邻的两条边的对应角分成相等的两部分,那么这条线段就是这个角的角平分线。
第三步:理解角平分线定理的证明过程证明角平分线定理的关键是利用三角形的几何性质。
具体的证明过程如下:1.假设在三角形ABC中,BD是角B的角平分线。
我们需要证明∠ABD=∠CBD。
2.首先,通过辅助线的方法,我们可以将三角形ABC分割成两个小三角形ABD和CBD。
3.然后,我们可以通过角的对应角相等性质得出∠ABD=∠CBD。
4.因此,根据角平分线的定义,BD是角B的角平分线。
第四步:应用角平分线定理解决问题角平分线定理可以应用于解决一些相关的三角形问题。
比如,当我们已知一个三角形中的一个角的平分线和两边的长度时,我们可以利用角平分线定理来求解其他角的大小或者其他边的长度。
总结:高中解三角形角平分线定理是一个重要的几何定理,它可以帮助我们解决一些三角形的相关问题。
通过理解角平分线的定义,掌握角平分线定理的表述和证明过程,我们可以灵活运用这个定理来解决一些具体的问题。
在学习过程中,我们需要通过大量的练习来巩固和深化对这个定理的理解和应用。
初中数学经典几何模型04-角平分线模型在三角形中的应用(含答案)
初中数学经典几何模型专题04 角平分线模型在三角形中的应用在初中几何证明中,常会遇到与角平分线有关的问题。
不少同学遇到这类问题时,不清楚应该怎样去作辅助线。
实际上这类问题是有章可循的,其策略是:明确辅助线作用,记清相应模型辅助线作法,理解作辅助线以后的目的。
能做到这三点,就能在解题时得心应手。
【知识总结】【模型】一、角平分线垂两边 角平分线+外垂直当已知条件中出现OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题.【模型】二、角平分线垂中间 角平分线+内垂直当已知条件中出现OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可.即有OMN ∆是等腰三角形、OP 是三线等,利用相关结论解决问题.【模型】三、角平分线构造轴对称 角平分线+截线段等当已知条件中出现OP 为AOB ∠的角平分线、PM 不具备特殊位置时,辅助线的作法大都为在OB 上截取ON OM =,连结PN 即可.即有OMP ∆≌ONP ∆,利用相关结论解决问题.【模型】四、角平分线加平行线等腰现 角平分线+平行线当已知条件中出现OP 为AOB ∠的角平分线,点P 角平分线上任一点时,辅助线的作法大都为过点P 作PM //OB 或PM //OA 即可.即有OMP ∆是等腰三角形,利用相关结论解决问题.1、如图, ABN CBN ∠=∠, P 为BN 上的一点,并且PD BC ⊥于点D ,2AB BC BD +=,求证:180BAP BCP ∠+∠=︒.2、如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.3、已知:如图7,2,,AB AC BAD CAD DA DB =∠=∠=,求证:DC AC ⊥.4、如图,AB //CD ,AE 、DE 分别平分BAD ∠和ADC ∠.探究:在线段AD 上是否存在点M ,使得2AD EM =.【基础训练】1、如图所示,在四边形ABCD中,DC//AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线交AD,AC于点E、F,则BFEF的值是___________.2、如图,D是△ABC的BC边的中点,AE平分∠BAC,AE⊥CE于点E,且AB =10,AC =16,则DE的长度为______3、如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ =13CE时,EP+BP =________.【巩固提升】1、如图,F,G是OA上两点,M,N是OB上两点,且FG =MN,S△PFG=S△PMN,试问点P是否在∠AOB 的平分线上?2、已知:在△ABC中,∠B的平分线和外角∠ACE的平分线相交于D,DG//BC,交AC于F,交AB于G,求证:GF =BG CF.3、在四边形ABCD中,∠ABC是钝角,∠ABC+∠ADC =180°,对角线AC平分∠BAD.(1)求证:BC =CD;(2)若AB +AD =AC,求∠BCD的度数;4、如图,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC =a、AC =b、AB =c.(1)求线段BG的长(2)求证:DG平分∠EDF.5、如图,BA⊥MN,垂足为A,BA=4,点P是射线AN上的一个动点(点P与点A不重合),∠B PC=∠BP A,BC⊥BP,过点C作CD⊥MN,垂足为D,设AP=x.CD的长度是否随着x的变化而变化?若变化,请用含x的代数式表示CD的长度;若不变化,请求出线段CD的长度.6、已知:平面直角坐标系中,四边形OABC的顶点分别为0(0,0)、A(5,0)、B(m,2)、C(m-5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OP A=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.7、我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”。
三角形的中线、高和角平分线的处理策略课件-高一数学人教A版(2019)必修第二册
C 的对边分别为 a,b,c,BD 为 AC 边上的高,若 = 2 3,______,求 BD 的最大值.
解:若选①:
因为 3(
− )=
,由正弦定理可得 3(
− )=
,
又 sinA=sin(B+C)=sinBcosC+cosBsinC,
所以− 3
=
,
因为 0<C<π,所以 sinC≠0,故− 3 = ,又 cosB≠0,
6 2
7
ABC为锐角三角形, a2 b2 c2 a 3.
SABC
1 2
ac sin
B
3 3。 2
典型例题讲解:三、三角形的角平分线问题
例题 3.△ABC 中,D 是 BC 上的点,AD 平分∠BAC,△ABD 面积 是△ADC 面积的 2 倍. (1)求 ; (2)若 AD=1,DC= ,求 BD 和 AC 的长.
根据正弦定理:b2﹣a2+c2=bc,所以 cosA=
,
由于 0<A<π,所以 A= .
选条件③时, 利用正弦定理
,
=
,
整理得 tanA= ,由于 0<A<π,所以 A= .
(2)a=4,A= ,D 为 BC 的中点,△ABC 的面积为 ,
所以
,整理得 bc=6.
由于
,整理得 16=b2+c2﹣6,故 b2+c2=22,
若选③:
因为
=3
+ 2
,
由正弦定理可得,sinBsinA= 3
− 2
,
因为 0<A<π,所以 sinA≠0,所以 sinB= 3 2,
由二倍角公式可得 2 2 2 = 3 2,
因为 0< 2 < 2,所以
角平分线定理解三角形问题
角平分线定理解三角形问题
角平分线定理是解决三角形问题中非常重要的定理之一。
它指出,如果在一个三角形中,一条角的平分线与对边相交,那么它将
对这个角进行平分。
这个定理在解决三角形中的许多问题时都非常
有用,包括计算角度大小、证明三角形相似等等。
首先,让我们来看一个简单的例子来说明角平分线定理的应用。
假设我们有一个三角形ABC,其中角BAD被线段DE平分,DE与BC
相交于点E。
根据角平分线定理,我们知道∠BAE ≅ ∠DAE。
这意
味着DE将角BAD平分成两个相等的角。
除了这个简单的例子,角平分线定理还可以帮助我们解决更复
杂的问题。
例如,我们可以利用这个定理证明两个三角形相似。
如
果在一个三角形中,一条角的平分线与对边相交,那么根据角平分
线定理,我们可以得出这个角被平分的结论,从而推导出两个三角
形的相似性。
此外,在三角形中,角平分线定理也可以用来计算角度大小。
通过利用角平分线定理,我们可以得到一些角度的相等关系,从而
帮助我们计算三角形中各个角的大小。
总之,角平分线定理在解决三角形问题中起着至关重要的作用。
它不仅可以帮助我们证明三角形的相似性,还可以帮助我们计算角
度大小,解决各种三角形问题。
因此,熟练掌握角平分线定理对于
学习和理解三角形的性质和关系非常重要。
三角形角平分线问题两大方法
第四单元三角形
微专题角平分线问题两大方法
1. 如图,在平行四边形ABCD中,AB=12,AD=18,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG∠AE,垂足为G,BG=82,则∠CEF的周长是________.
第1题图
2. 如图,∠ABC中,∠BAC=120°,AD平分∠BAC,AB=5,AC=3,则AD的长为________.
第2题图
3. 如图,AD是∠ABC的角平分线,DE∠AC,垂足是E,BF∠AC交ED的延长线于点F.若BC恰好平分∠ABF,且AB=13,S∠ABD=39,则EF=________.
第3题图
4. (2019重庆A卷)如图,在∠ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∠BC交AB于点F.
(1)若∠C=36°,求∠BAD的度数;
(2)求证:FB=FE.
第4题图
5. 已知:如图,在∠ABC中,∠ACB=90°,BD平分∠ABC,交AC于点D,CE∠AB于点E,交BD于点O,过点O作FG∠AB,分别交BC、AC于点F、G.
求证:(1)∠COD是等腰三角形;
第1页共5页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB
AC
BD DC
5 7
BD
5 ,CD 2
7 2
,根据斯库顿定理:
AD2
AB·AC
BD·CD. 代
入数据得: AD 105 .故答案为 105 .
2
2
【例 8】如图,在 △ABC 中, C 2B , AC 3 , BC 5 ,求 AB 之长.
【解析】作 ACB 的平分线 CD 交 CD 于 D , ACB 2B,DCB B, BD CD ,由斯库顿定理得:
DAC
, △ABD
中,
BD sin BAD
AD sin B
,sin B
AD sin BAD BD
, △ADC
中,
DC sin DAC
AD sin C
, sin
C
AD sin DAC DC
; sin B sin C
DC BD
1 2
.
(2)由(1)知,BD 2DC 2 2 2 .过 D 作 DM AB 于 M ,作 DN AC 于 N , AD 平分 BAC , 2
BD DC
5 7
,解得: BD
5 2
,在 ABD
中,由余弦
定理可得: AD AB2 BD2 2 ABBDcos B 52 (5)2 2 5 5 1 105 .故答案为: 105 .
2
25 2
2
BD DC 6
法二:利用角平分线定理
.
【解析】如图,ABD 30 ,CBD 90 ,根据张角定理,sin120 = sin 30 sin 90 ,故 1 + 1 = 3 ,
1
a
c
2a c 2
根据柯西不等式,可得
2a
c
1 2a
1 c
1 1 2 4 ,故 2a c 8 3 ,当仅当 c = 2a 时等号成立. 3
【解析】法一:设 A ,则 0 ,C 2 , ABC 2 ,BD 平分 ABC 交 AC
3
3
3
3
于点 D , BD 2 ,ABD CBD ,在三角形 ABD 中, ADB 2 ,
.
【解析】由题意得 1 ac sin 2 1 a sin 1 c sin ,即 ac a c ,得 1 1 1,
2
3 2 32 3
ac
得 a c (a c)( 1 1) 2 c a 2 2 a c 2 2 4 ,当且仅当 a c 时,取等号,故答案为 4.
倍.
(1)求 sin B ; sin C
(2)若 AD 1 , DC 2 ,求 BD 和 AC 的长.
2
【解析】(1)如图,过 A 作 AE BC 于 E , S△ABD
S△ADC
1 BD AE 2 1 DC AE
2 , BD 2DC , AD 平分 BAC
2
BAD
2
2
bc
2
AD bc sin a
AD
2S sin2 a sin 2a
= AD S tan a , S AD2tan ,当仅当 b c 时等号成立.
【例 4】(2018•安阳二模)已知如图,在 △ABC 中, 角 A , B ,C 所对的边分别为 a ,b ,c ,b cosC a , 点 M 在线段 AB 上, 且 ACM BCM . 若 b 6CM 6 ,则 cos BCM ( )
仅当 a c 时等号成立,故 S 1 ac sin B 4 3 ,故选 B . 2
角平分线之斯库顿定理
如图, AD 是 △ABC 的角平分线,则 AD2 AB·AC BD·CD. 就其位置关系而言,可记忆:中方=上积一下积.
已知:在 △ABC 中, AD2 BD·DC AB·AC 中, AD 是 BAC 的平分线,求证: AD2 BD·DC AB·AC 【 证 明 】 作 △ABC 的 外 接 圆 , 延 长 AD 交 圆 于 E , 连 BE , 如 图 E C、1 2 △ABE∽△ADC AB AE · 即 AD·AE AB·AC AD(· AD DE) AB·AC AD2 AD·DE AB·AC
1c 2
AD
sin
1b 2
AD
sin
,Hale Waihona Puke cos 1
2
AD 2x
AD x
3 4x
, 由余弦定理可得:
(2x)2 12 ( 2 2x1
2)2
3 , x 1 , AC 1, BD 的 4x
长为 2 , AC 的长为 1.
根据张角定理:①当 a = b 时, cosa = 1 AD + AD ,(角平分线张角定理) 2b c
2
1 cl sin 2
1 bl sin 2
,
同除以 1 bcl 得: sin (a +b ) = sin a + sin b .
2
l
bc
【例 1】(2019•深圳模拟)在中 △ABC ,角 A ,B ,C 所对的边分别为 a ,b ,c ,ABC 120 ,BD BC
交 AC 于点 D ,且 BD 1,则 2a c 的最小值为
A. 10
4
B. 3 4
C. 7
4
D. 6
4
【解析】如图所示,令 ACM BCM ,则 sin 2 = sin sin 2cos = 1 1 ,由于 b cosC a ,
CM b
a
1 6a
( ) 故 B 90 ,a CM
cos
cos
, 2 cos
例1图
例2图
【例 2】(2013•福建)如图, 在 △ABC 中, 已知点 D 在 BC 边上,AD AC ,sin BAC 2 2 ,AB 3 2 , 3
AD 3 ,则 CD 的长为
.
【解析】sin BAD sin
1
22 3
2
1 3
,DAC
1 6
1 cos
,解得: cosa
=
-
2 3
舍
, cosa = 3 . 4
【例 5】(2019•江苏模拟)在 ABC 中,角 A , B ,C 所对的边分别为 a ,b , c , ABC 2 , ABC 的 3
平分线交 AC 于点 D , BD 1,则 a c 的最小值为
3 2
(2
6 2sin(2
)
) 1
, 0
3
,
6
6
2
6
5 6
,
1 2
sin(2
)1 ,当 sin(2 6
)
6
1 时,即
6
时, Smin =
3 (2 6) 4 2
3,
故选: B .
法二:根据角平分线张角定理可得: cos 1 ( BD BD ) 1 1 1 ac 2(a c) 4 ac ac 16 ,当 2a c ac 2
90
,根据张角定理,sin BAC AD
= sin BAD b
sin 90 c
,
故 1 + 1 = 2 2 , b = 3 2 ,故 CD = AD2 + AC 2 = 3 3.
3b 3 2 9
【例 3】(2015•新课标Ⅱ) △ABC 中, D 是 BC 上的点, AD 平分 BAC , △ABD 面积是 △ADC 面积的 2
ac
ac
ca
【例 6】(2019•云南一模)在 ABC 中,内角 A , B , C 对的边分别为 a , b , c , ABC 2 , BD 平分 3
ABC 交 AC 于点 D , BD 2 ,则 ABC 的面积的最小值为 ( )
A. 3 3
B. 4 3
C. 5 3
D. 6 3
3
3
3
根据正弦定理
AB sin( 2 )
BD sin
,
AB
2sin( 2 ) 3
sin
2 sin(
)
3
sin
,在三角形 CBD
中,CDB
3
,
3
由正弦定理
BC
sin(
)
BD
sin(
)
, BC
2 sin(
)
3
sin(
)
,S
1 2
ABBC sin
2 3
3 4
2
sin( 3
sin
)
2sin( )
3
sin(
)
3
3
3
3
3
1
1 2
cos
2
3 sin 2 2
2 1 cos 2 3 sin 2 1