物理学15-波的能量与强度

合集下载

波的强度概念

波的强度概念

波的强度概念波的强度是描述波传输能量的量度,表示波的能量传递速率。

在物理学中,波可以是机械波(如声波、水波等)或电磁波(如光波、无线电波等)。

波的强度与波的振幅和频率有关,我将在以下几个方面详细探讨波的强度的概念。

首先,波的强度与波的振幅有关。

振幅是波的最大位移,即波峰与波谷之间的距离。

在机械波中,振幅表示介质的最大变形程度;在电磁波中,振幅则表示电场或磁场的最大变化幅度。

波的强度正比于振幅的平方,也就是说,如果振幅增加,波的强度也会增加。

其次,波的强度还与波的频率有关。

频率是指在单位时间内波的周期数,即波的振动次数。

波的强度与频率呈正比关系,即频率越高,波的强度也越大。

这是因为频率的增加意味着波峰和波谷之间的距离减小,波的振动更加频繁,能量传递速率也增加。

此外,波的强度还与波的波长有关。

波长是指在一个周期内波传播的距离,即波峰到波峰之间的距离或波谷到波谷之间的距离。

波的强度与波长呈反比关系,也就是说,波长越短,波的强度越大。

这是因为波长的减小意味着波的周期减小,波的振动更加频繁,能量传递速率增加。

此外,波的强度还与波的传播介质有关。

不同的介质对波的传播具有不同的特性,如空气中的声波传播速度比水中的声波传播速度更快。

波的介质对波的传播速度和能量传递速率都有影响,不同的介质中波的强度可能会有所不同。

最后,波的强度还与波的幅度的平方成正比。

波的振幅是描述波的能量大小的物理量,波的强度正比于振幅的平方。

这是因为波的传输能量与振幅的平方成正比,即波的强度与振幅的平方成正比。

总结起来,波的强度是描述波传输能量的量度,与波的振幅、频率、波长和传播介质有关。

波的强度与振幅的平方成正比,与频率和波长呈正反比关系,受到介质对波传播的影响。

波的强度是理解波的能量传递和行为的重要概念,对于研究波动现象和应用于实际生活中的波动现象具有重要意义。

波的能流密度强度公式

波的能流密度强度公式

波的能流密度强度公式全文共四篇示例,供读者参考第一篇示例:波的能流密度强度公式是描述波动能量传播和传递速率的重要公式。

能流密度强度是指单位面积上通过的波动能量流量,可以用来衡量波在介质中传播的强度和速率。

在物理学和工程学中,波动现象是非常常见的,因此研究波的能流密度强度公式对于理解和控制波动现象非常重要。

波的能流密度强度公式可以根据不同类型的波以及波动现象的特性而有所不同,但一般情况下,波的能流密度强度与波的振幅和频率有关。

在传统的经典力学中,波的能流密度强度可以通过以下公式来表示:\[ P = \frac{1}{2} \sqrt{\frac{u}{\rho}} v^2 \]P表示能流密度强度,u表示波的线密度或者表面密度,ρ表示介质的密度,ν表示波的速度。

在这个公式中,波的振幅对于能流密度强度的影响体现在速度的平方项上。

速度越大,波的振幅对应的能流密度强度就越大。

介质的密度和波的线密度或者表面密度也对能流密度强度起到重要作用。

需要特别说明的是,对于不同类型的波,能流密度强度公式可能需要做适当的修正。

比如对于声波,由于声波是在气体、液体或固体介质中传播的,因此介质密度对于声波的传播会产生不同的影响。

而对于电磁波,介质的电磁性质对于能流密度强度也可能会有所影响。

因此在具体应用中,需要根据波的特性和介质性质做出相应的修正和调整。

在工程学和实际应用中,波的能流密度强度公式可以用来优化波动传输系统的设计,提高能量传播效率,加速数据传输速率,改善声音等波动现象的传播质量。

比如在声学领域中,通过调节声波的振幅和频率,可以控制声音的传播距离和声音质量,进而提高音响设备的性能。

在无线通信领域中,通过优化电磁波的能流密度强度,可以提高无线通信网络的覆盖范围和传输速率。

波的能流密度强度公式是描述波动能量传播和传递速率的重要工具,对于理解和应用波动现象具有重要意义。

在实际应用中,根据波的特性和介质性质,可以对能流密度强度公式进行适当的调整和修正,从而实现对波动现象的优化和控制。

大学物理15 量子物理基础1

大学物理15 量子物理基础1

m
o
0.1A
(2) 若使其质量为m=0.1g的小球以与粒子相同的 速率运动,求其波长
若 m=0.1g 的小球速率 vm v
vm
v
q BR m
则 :m
h m vm
h m
1 v
h m
m q BR
h q BR
m m
6.64 10 27 0.1 10 3
6.641034
m
px x h
考虑到在两个一级极小值之外还有电子出现,
运动,则其波长为多少? (粒子质量为ma =6.64ⅹ10-27kg)(05.08…)
解:
(1)
求粒子德布罗意波长 h h
p m v
先求:m v ?
而:q vB
m
v2 R
m v q BR
h m v
h q BR
6.63 10 34 1.601019 0.025 0.083102
1.001011
( x,t ) 0 区别于经典波动
(
x,
t)
e i 2
0
(t x
)
自由粒子沿x方向运动时对应的单色平面波波函数
设运动的实物粒子的能量为E、动量为 p,与之相 关联的频率为 、波长为,将德布罗意关系式代入:
考虑到自由粒子沿三维方向的传播
式中的 、E 和 p 体现了微观粒子的波粒二象性
2、概率密度——波函数的统计解释 根据玻恩对德布罗意波的统计解释,物质波波
p mv h
德布罗意公式(或假设)
与实物粒子相联系的波称为德布罗意波(或物质波)
h h h
p mv m0v
1
v2 c2
如果v c,则 h
m0v

大学物理第15章机械波

大学物理第15章机械波
2222???????????????????22cosyxatxuu???????222cosyxa?ttu?????????????????????222221yyxut?????这就是一维谐波满足的微分关系
第四篇
波动与光学
§15.1
波动
机械波的产生与传播
振动状态(相位)的传播称为波动,简称波。
y ( m)
0.01
y ( m)
0.01
u
x ( m)
0 .2
t (s)
0 .1
a
b
第四篇
波动与光学
直接读出振动特征量:

y ( m)
0.01
t (s)
0 .1
A 0.01m T 0.1 s 20 (rad / s)


2 ya (t ) 0.01 cos( 20t
第四篇
波动与光学
二、波动微分方程
1.一维波动方程的导出 对于一维波动方程:
可分别对自变量x、t求偏导得:
x y x, t A cos t u
2 y 2 x A 2 cos t 2 x u u 2 y x 2 A cos t 2 t u
频率 波速

u
uT
u

讨论
①波的周期、频率与介质无关,由波源确定。 ②不同频率的波在同一介质中波速相同。
③波在不同介质中频率不变(由波源决定)。
第四篇
波动与光学
六、弹性介质与波的传播
在一种弹性介质中能够传播的是横波还是纵波,波速能够有多大, 都与介质的弹性有关。 1.长变变形 应力 单位截面上的受力称为应力。

大学物理 波的能量 惠更斯原理

大学物理 波的能量 惠更斯原理
u = Y
由于: 由于: 势能
1 dEP = ( ρdV ) A 2ω 2 sin 2 ω (t − x / u ) 2
ρ
1 2 2 2 与动能相同 dEk = ( ρdV ) A ω sin ω (t − x / u ) 2 k=0、±1、±2、…最大, 最大, 当:ω(t-x/u)=(2k+1) ̟/2 最大
ω(t-x/u)=k̟ k=0、±1、±2……最小。 最小。
Ek、EP
同时达到最大 平衡位置处 同时达到最小 最大位移处
6
3.波动的能量
dE = dEk + dEP
= ( ρdV ) A ω sin ω (t别 • 振动能量中 k、EP相互转换,系统机械 振动能量中E 相互转换, 能守恒。 能守恒。 •波动能量中 k、EP同时达到最大,同时 波动能量中E 同时达到最大, 波动能量中 为零,总能量随时间周期变化。 为零,总能量随时间周期变化。
7.3 7.4
波的能量 惠更斯原理
1
一、波的动能、势能和能量 波的动能、
在波传播的过程中, 在波传播的过程中,振源的能量通过弹性介质传 播出去,介质中各质点在平衡位置附近振动, 播出去,介质中各质点在平衡位置附近振动,介质中 各部分具有动能,同时介质因形变而具有势能。 各部分具有动能,同时介质因形变而具有势能。 波动传播的过程也是能量传递的过程。 波动传播的过程也是能量传递的过程。
1.波动的动能
纵波为例: 以均匀细棒中传播的 纵波为例: 取一体积元 dV, , 质量为ρdV, 质量为 质元振动速度为v。 质元振动速度为
2
ρdV
dm = ρdV
波函数
y = A cos ω (t − x / u) 质元振动速度 v = ∂y = − Aω sin ω (t − x / u ) ∂t 动能 1 2 dEk = dm v 2 1 2 2 2 = ( ρdV ) A ω sin ω (t − x / u ) 2

大学物理-波的能量

大学物理-波的能量

x
y + ∆y
x y = Acosω(t − ) 1)体积元的动能 ) u ∂y x v = = − Aω sin ω(t − ) ∂t u
1 1 x 2 2 2 2 ∆Ek = ∆mi v = ρ∆VA ω sin ω(t − ) 2 2 u
2)体积元的势能 ∆E )
x
∆x
u
1 x 2 2 2 ρ∆VA ω sin ω(t − ) P = 2 u
形变最小 →0, , 振动速度最小 →0
y
r u
a
b
x
形变最大, 形变最大,振动 速度最大
r u
y
B P A Q
x
质元A 质元 质元P 质元 质元B 质元 质元Q 质元
(填吸收、释放)能量 填吸收、释放) 填吸收、释放) (填吸收、释放) 能量 填吸收、释放) (填吸收、释放) 能量 (填吸收、释放)能量 填吸收、释放)
结论:在波动过程中能量以波的形式沿 x 方向以 u 向
前传播着。 前传播着。
2、平均能量密度--- 能量密度在一个时间周期内的平均值 、平均能量密度
1 T 2 2 2 x 1 2 2 w = ∫ ρA ω sin ω(t − )dt = ρA ω T 0 u 2
为了定量描述波动过程中能量的传播, 为了定量描述波动过程中能量的传播,引入能流和 能流密度的概念 3、能流---单位时间内通过介质中某面积的能量 、能流 单位时间内通过介质中某面积的能量
形变最小形变最大形变最大振动速度最大填汲取释放能量填汲取释放填汲取释放填汲取释放能量填汲取释放填汲取释放能量填汲取释放能量能流和能流密度波强二能流和能流密ep为了精确地描述波的能量分布为了精确地描述波的能量分布引入能量密度1能量密度介质中单位体积中的波动能量能量密word版本能量密度描述了介质中各点能量即振动能量的分布能量密度描述了介质中各点能量即振动能量由上式可知波的能量密度是随介质的空间坐标能量密度是随介质的空间坐标由上式可知争论

波的能流密度强度公式

波的能流密度强度公式

波的能流密度强度公式全文共四篇示例,供读者参考第一篇示例:波是一种能够传播能量的物理现象,它可以在任何介质中传播,比如空气中的声波、水中的水波等。

波的传播是由波的能流密度决定的,而波的能流密度强度可以用一定的数学公式来描述。

在本文中,我们将介绍波的能流密度强度公式以及它的作用和应用。

波的能流密度强度公式描述了波在向前传播过程中所携带的能量的密度。

波的传播是通过波的振动传递能量的,而波的振动会导致介质中的粒子发生振动,从而传递能量。

波的振动会产生波动,而波动的能量密度就是波的能流密度强度公式要描述的内容。

波的能流密度强度公式可以表示为:\[ S = \frac{1}{2} \cdot v \cdot \rho \cdot A \cdot \omega^2 \]S表示波的能流密度强度,单位是瓦特每平方米(W/m^2);v 表示波的传播速度,单位是米每秒(m/s);ρ表示介质的密度,单位是千克每立方米(kg/m^3);A表示波动的幅度,单位是米(m);ω表示波的角频率,单位是弧度每秒(rad/s)。

以上就是波的能流密度强度的公式,它描述了波在传播过程中所携带的能量的密度。

根据这个公式,我们可以计算出波在传播过程中的能量密度,从而了解波的能量传输情况。

波的能流密度强度公式是描述波在传播过程中所携带的能量密度的重要工具,它可以帮助我们深入理解波动的物理本质和传播规律。

通过研究波的能流密度强度,我们可以更好地掌握波的传播特性,进一步推动物理学和工程学等领域的发展和进步。

希望本文的介绍对您有所帮助,谢谢阅读!第二篇示例:波的能流密度强度公式是描述波的能量传播强度的一种数学表达式。

在物理学中,波是一种传播能量和动量的方式,而波的能流密度强度则表示单位面积或单位时间内通过的能量。

波的能流密度强度公式可以通过波的振幅、频率、波长等参数来表达,不同类型的波可以有不同的能流密度强度公式。

在本文中,我们将主要探讨波的能流密度强度公式的基本概念和应用。

大学物理课件第15章 机械波-驻波

大学物理课件第15章 机械波-驻波

x
三 波 疏 介 质
相位跃变(半波损失)
波 密 介 质 较 大
u
较 小
u
当波从波疏介质垂直入射到波密介质, 被反射 到波疏介质时形成波节. 入射波与反射波在此处的相 位时时相反, 即反射波在分界处产生 的相位跃变, 相当于出现了半个波长的波程差,称半波损失.
π
u
较 大 当波从波密介质垂直入射到波疏介质, 被反射 到波密介质时形成波腹. 入射波与反射波在此处的相 位时时相同,即反射波在分界处不产生相位跃变.
15.5 波的衍射
15.5.2 波的衍射
当波长与障碍物 可比拟的时候,波就 可以绕过障碍物而传 播,并且子波的包迹 组成新的波振面
15.5 波的衍射
15.5.3 波的反射和折射
A2 A2 A1 E1 A1 E1 E2
E2
反射:因为在同一介质中波速相同, 所以有
折射:在两种介质中 相等时间内有
t
15.5.1 惠更斯—菲涅耳原理 惠更斯原理:介质中波动传播到的
各点,都可以看成是发射子波的波源, 其后的任一时刻,这些子波的包络面就 是新的波阵面。
水面波的衍射
惠更斯—菲涅耳原理:介质中波 动传播到的各点,都可以看成是发 射子波的波源,其后的任一时刻, 这些子波的包络面就是新的波阵面, 波阵面上的每一点不仅可以看成是 发射子波的波源,而且这些子波波 源是相干波源,它们发出的子波是 相干波,相干波的干涉决定波的强 度。
BC u1
ADC ABC BAC DCA
BAC i
BC t u1
AD u1t BC
AD u2 t
BAC i, ACD
BC u1 t AC sin i AD u 2 t AC sin sin i u1 n2 n21 sin u 2 n1

15- 机械波的描述 波函数 大学物理 教学课件

15- 机械波的描述 波函数 大学物理 教学课件

两 类 机械波的传播需有传 波 播振动的弹性介质; 的 不 电磁波的传播可 同 不需介质. 之 处
第六章 机械波
6 – 1 机械波的形成 波长 周期和波速
物理学教程 (第二版)
波的应用 音响技术:音乐的空间感、环绕感,音乐厅设计. 声纳技术: 水中目标的探测、跟踪、通讯、导航等.
超声技术: 超声诊断、无创治疗.
波前 波面

*
球面波
第六章 机械波
波线
平面波
6 – 1 机械波的形成 波长 周期和波速
物理学教程 (第二版)
例 在室温下,已知空气中的声速 u1 为340 m/s , 水中的声速 u2 为1450 m/s,求频率为200 Hz和2000 Hz 的声波在空气中和水中的波长各为多少? 解 由
u ,频率为200 Hz和2000 Hz 的声波在
通信技术: 卫星通信、光纤通信、网络世界. 一 机械波的形成 机械波 :机械振动在弹性介质中的传播.(相位的 传播)

产生条件:1)波源;2)弹性介质.
注意 波是振动运动状态的传播,介质 的质点并不随波传播.
第六章 机械波
6 – 1 机械波的形成 波长 周期和波速 二 横波与纵波
物理学教程 (第二版)
空气,常温
如声音的传播速度
第六章 机械波
4000 m s 左右,混凝土
6 – 1 机械波的形成 波长 周期和波速
物理学教程 (第二版)
四 波线 波阵面 波前 1 波线 指示波传播方向的射线 2 波阵面 波传播的各方向上振动相位相同的点组成 的面叫做波阵面,简称波面. 任一时刻波源最初的振动状态(初相) 沿各方向达到的点组成的面叫做波前, 波前 是最前面的波阵面.

第47讲机械波——波的能量、波的衍射与干涉第47讲机械波——波的

第47讲机械波——波的能量、波的衍射与干涉第47讲机械波——波的

第47讲:机械波——波的衍射与干涉
内容:§15-3,§15-4,§15-5
1.波的能量(30分钟)
2.惠更斯原理
3.惠更斯原理的应用(30分钟)
4.波的叠加原理
5.波的干涉(40分钟)
要求:
1.掌握波动的能量公式;
2.理解惠更斯原理,要求会用惠更斯原理说明波的衍射现象、反射现象、折射现象;
3.解波的叠加原理;
4.掌握波的干涉原理和干涉公式。

重点与难点:
4.波的能量公式。

1.惠更斯原理及其应用;
2.波的叠加原理及干涉现象。

作业:
问题:P83:7,8,9,10
习题:P86:13,14,16,17
预习:§15-6,§15-7,§15-8
复习:
●波动的基本概念
●横波和纵波
●波长、波的周期和频率、波速
●平面简谐波的波函数
●波函数的物理意义
)平面波通过宽度略大于波长的缝时,在缝的中部,波的传播仍保持原来的
.没有说明波为什么只能向前传播而不向后传播的问题。

点时,相位。

波的能量与强度

波的能量与强度

波的能量与强度波是一种在空间中传播的物理现象,具有一定的能量和强度。

波的能量与强度是我们研究波动现象的重要指标,它们在多个学科领域中具有广泛的应用。

本文将探讨波的能量与强度的概念、计算方法以及相关的实际应用。

一、波的能量波的能量是指波传播过程中所携带的能量。

根据波的性质和媒介不同,波的能量可以有不同的形式,例如:机械波的能量主要由波动介质的运动能量组成,电磁波的能量则是由电场和磁场的能量共同构成。

波的能量与波的振幅密切相关。

以机械波为例,机械波的传播需要介质的参与,介质中的微观粒子以一定频率和振幅进行振动,从而传递能量。

波的振幅越大,介质微观粒子的振动范围越大,所携带的能量也越大。

波的能量与波速和波长有关。

波的速度指的是波的传播速度,而波长则是波的周期性重复的最短距离。

波的能量与波速和波长正相关,即波速越大、波长越小,波的能量也越大。

二、波的强度波的强度是指波通过单位面积传播或到达某一点的能量。

强度反映了波的能流密度,即单位时间内通过单位面积的能量。

波的强度与波的能量和传播面积有关。

对于机械波,强度与波的能量和波的传播面积呈正比。

以电磁波为例,波的强度与波的能量和电磁波的传播面积呈正比,而与传播距离无关。

三、波的能量和强度的计算波的能量和强度的计算可以根据波动方程和相关参数进行推导。

对于机械波,能量密度(单位体积的能量)可以表示为能量与体积的比值。

波的强度可以表示为能量密度与波速的乘积。

具体计算公式如下:能量密度= (1/2) * ρ * v^2 * A^2其中,ρ是介质的密度,v是波速,A是波的振幅。

波的强度 I = 能量密度 * v对于电磁波,能量密度可以表示为能量与电磁波的传播体积的比值。

波的强度可以表示为能量密度与光速的乘积。

具体计算公式如下:能量密度= (1/2) * ε₀ * E^2波的强度 I = 能量密度 * c其中,ε₀是真空中的电介质常数,E是电场的振幅,c是光速。

四、波的能量与强度的应用1. 医学领域中的超声波技术利用声波的能量和强度,可以检测和治疗疾病。

波强度公式

波强度公式

波强度公式波强度公式是描述波的能量大小的公式,也称为波的强度公式。

这个公式在物理学和工程领域非常重要,因为它可以帮助我们测量波的强度,了解波的能量如何传输和转换。

本文将详细介绍波强度公式的定义、计算方法、实际应用和相关领域的研究。

一、波强度公式的定义在物理学中,波强度是一个量化波传播的能量的物理量。

它是描述波能量的流动方向的矢量场,可以用来衡量波的传播能力。

如果一个波的能量密度在一个单位时间内从波源传输到一个特定区域,波强度就表示该区域单位面积的能量流量。

也就是说,波强度公式是波的能量流速的量化计算。

二、波强度公式的计算在物理学和工程领域中,波强度通常用以下公式来计算:I = P / A其中,I表示波的强度,P表示波的功率,A是波的面积。

这个公式表示了波能传递的强度与波源的功率和传播面积之间的关系。

功率是指单位时间内传递的能量,因此波强度是波能量在单位时间内传递的速度以及传递地区的大小的比率。

因此,当我们知道波的功率以及传递区域的大小时,就可以用上述公式计算波的强度。

这样的计算可以帮助了解波能量如何转移和分布,进而更好地决定如何使用波的能量。

三、波强度公式的应用波强度公式在物理学和工程领域中具有广泛的应用。

它可以帮助我们测量和分析不同类型的波的能量,比如声波,电磁波等。

以下是其具体应用:1.声波系统在声学领域中,波强度公式可以计算声波传输的方向和波源的实际功率。

这可以帮助设计和调整声学系统,如扬声器、放大器等。

2.电磁波系统在电磁学中,波强度公式可以计算电磁波的能量传输速度和波源的实际功率。

这可以帮助设计和优化电磁波的传输系统,如卫星通信、无线电通信等。

3.光学系统在光学领域中,波强度公式可用于计算电磁波的光强度和波源的实际功率,这对于设计光学仪器和系统,如光学仪器、光纤等,具有重要的意义。

4.机械波系统在物理学中,波强度公式可用于测量机械波的能量传递方向和波源的实际功率。

这对于机械波仿真、与机电设备的交互,就有重要的意义。

课件:波的能量(大学物理)

课件:波的能量(大学物理)
波的能量波的能量波的强度波的强度波动过程质元由静止开始振动介质也发生形变波动过程是能量的传播过程上页下页返回退出上页下页返回退出一波能量的推导一波能量的推导yoxx?x?sx?y??上页下页返回退出上页下页返回退出yox平面简谐波函数x?质元长质量其动能xsx???222121tyvtyxsek???????????cos?????uxtay?sin21222?k???????uxtvae上页下页返回退出上页下页返回退出yoxx?x??sx?y??22y1ykep????gsf?xy???xgsf???ykf??xgsk??221yxgsep????上页下页返回退出上页下页返回退出22?1yxgsep??y??222121xyvgxxgsep?????????gu?2ug??2221xyvuep??????2221xyvuep??????上页下页返回退出上页下页返回退出2221xyvuep??????cos?????uxtay?sin21222?p???????uxtvae?sin21222?k???????uxtvae0yxtcosxatu?????????????????平面简谐波2?2201sin2xeeavtu??????????????????????kp有如下关系pe?和弹性势能ke?当波动传播到该质元时将具有动能?m?m??v的质元考虑介质中的体积?v其质量为介质质元的振动动能和弹性势能同步变化
介质质元从最大位移位置向平衡位置运动时,从后方 吸纳能量,动能和势能都逐渐增大,到达平衡位置时,动 能和势能均最大,所具有的能量也最大。
介质质元从平衡位置向最大位移处运动时,动能和势 能都逐渐减小,向前方输送能量,达到最大位移处时,动 能和势能都等于零,介质质元所具有的能量也最小。
如此不断循环,能量将随着波的传播而向前流动。

物理波的能量

物理波的能量

=
3
cos
4πt
(2)以距a点5m处的b点为坐标原 点写出波动方程。
b.
u .a 5m
x
解:(1)以a点为原点在x轴上任取一点P,坐标为x
ya = 3 cos 4πt y =3 cos 4πt +
x
20
(2)以b点为坐标原点
wk
wp
2 A2
sin
2 [ (t
x )] u
平均能量密度(对时间平均)
w 1 T A2 2 sin 2[(t x)]dt
T0
u
w
=
1 2
ρAω2
2
三、波的强度
能流P :单位时间内垂直通过某一截面的 P = w S u 能量称为波通过该截面的能流,或叫能通量。
显然能流是随时间周期性变化的。但它总为正值
(t+
d u
)
π
2
]
y
=
A cos[ω
(
t
+
d u
x u
)
π
2
]
例6、波速 u =400m/s, t = 0 s时刻的波形如图所示。
{ 写出波动方程。
t= 0 (o点)
得:
y 0
=
2
=
A
2
v0
>0 0=
π
3
2
o
y(m)
4 5
p
u
x (m)
{ t =0
(p点)

=
y 0
=
0
v0< 0
p
0
d
λ
得:
平均能流P : 能流在一个周期内的平均值。 P = S w u 波的强度 I(能流密度):

大学物理下波的能量能流密度

大学物理下波的能量能流密度

04
能流密度与波的强度
波的强度概念
波的强度
描述波在单位时间内通过某一单位面积的能 量或动量,是衡量波传播能力的物理量。
波的强度计算公式
I=1/2ρv^2C^2,其中ρ为介质密度,v为 波速,C为波长。
能流密度与波的强度的关系
能流密度
描述单位时间内通过单位面积的能量,是衡量能量传播能力的物理量。
波的能量能流密度是指单位时间内通过单位面积的能量流量,用于描述波动现象中能量的传播和分布 特性。
它是一个矢量,具有方向和大小,与波的传播方向和波速方向一致,大小与波的振幅平方和频率成正 比。
02
波动与能量
波动的基本概念
波动是物质运动的一种形式, 它描述的是物理量在空间和时 间上的变化规律。
波动具有周期性,即物理量在 空间和时间上呈现周期性的变 化。
波动具有传播性,即波动会随 着时间和空间的变化而传播。
波动能量的传播
01
波动能量是指波动所携带的能量,它随着波动的传播而传播 。
02
波动能量的传播速度等于波速,即波动能量的传播不受其他 因素的影响。
03
波动能量的传播方向与波的传播方向相同,即波动能量的传 播方向与波速方向相同。
波动能量的分布
波动能量的分布是指在一个确定的时刻,波动能量在空间中的分布情况。
波动能量的分布取决于波源的性质和波动的性质,例如振幅、频率、波长 等。
在均匀介质中,波动能量的分布是均匀的,而在非均匀介质中,波动能量 的分布则可能不均匀。
03
能流密度与波的传播
能流密度的计算方法
01
能流密度是单位时间内通过单位 面积的能量,计算公式为能流密 度 = 波的能量密度 × 波的传播 速度。

大学物理学(下册)习题答案详解

大学物理学(下册)习题答案详解

第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。

(完整版)物理学15-波的能量与强度

(完整版)物理学15-波的能量与强度

)0]
体积元内媒质质点动能为
dEk

1 v 2dm 2
1 A2 2 sin2[ ( t
2
x u
) 0 ]dV
体积元内媒质质点的弹性势能等于其动能(证明见后):
dE p

1 2
A2
2
sin2[ (
t

x u
) 0 ]dV
体积元内媒质质点的总能量为:
dE

dEk

dE
平衡位置处,速度最大,形变最大,动能、势能 和总机械能均为最大。
能量密度:单位体积介质中的波动能量.
w W A22 sin2 (t x )
V
u
平均能量密度:能量密度在一个周期内的平均值.
w 1 T wdt 1 2 A2
T0
2
机械波的能量与振幅的平方、频率的平方成正比, 与介质的密度成正比。
A、A0分别是x 0和x x处的波振幅
是介质的吸收系数
波强的衰减规律:
I I0e 2x
I、I
分别是
0
x

0和x

x处波的强度
*四、声压、声强和声强级 声压:介质中有声波传播时的压力与无声波时的 静压力之间的压差。
平面简谐波,声压振幅为
pm uA
声强:声波的能流密度。
I 1 pm 2 1 uA2 2 2 u 2
物理学 15 波的能量与强度
张宏浩
1
5-3 波的能量 *声强
波不仅是振动状态的传播,而且也是伴随着振 动能量的传播。
一、波的能量和能量密度
有一平面简谐波
y

Acos[ (
t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动动能
1 x 2 2 2 Wk (V ) A sin (t ) 2 u
体积元的总机械能
在波传播过程中,任一媒质元在任意时刻或任意振动状 态下,动能和势能不仅相等,而且是同步变化。总机械能 随时间作周期性变化,与简谐振动系统不同。
结论 1)在波动传播的媒质中,任一体积元的动能、 势能、总机械能均随 化是同相位的.
P I wu S
1 2 2 I A u 2
单位:瓦 米
2
分析平面波和球面波的振幅 例 试证明在均匀不吸收能量的媒质中传播的平面波 在行进方向上振幅不变,球面波的振幅与离波源的距 离成反比。 证明: 对平面波:
在一个周期T内通过S1和S2面的能量应该相等
I1 S1T I 2 S2T ,
振动动能
1 x 2 2 2 Wk (V ) A sin (t ) 2 u
可见,波的平均能量密度与振幅平方、频率平方都成正比。
弹性势能
1 2 dWP k y 2
由弹性力关系式
O O
x
x
y y y
x x
纵波杨氏模量
则形变势能可写成
y x A sin (t ) x u u 1 x 2 2 2 振动势能 W p VA sin (t ) 2 u
T


0
sin 2 d 2
1 w A2 2 2
举例说明论证:波的能量公式
以固体棒中传播的纵波为例分析波动能量的传播.
O O
x
x
y
y y
x x
1 1 2 2 Wk m v V v 2 2 y x v A sin (t ) t u
物理学 15 波的能量与强度
张宏浩
1
5-3 波的能量
*声强
波不仅是振动状态的传播,而且也是伴随着振 动能量的传播。
一、波的能量和能量密度
x 有一平面简谐波 y A cos[ ( t ) 0 ] u
质量为 dm dV y x A sin[ ( t ) 0 ] 质点的振动速度 v t u 体积元内媒质质点动能为 在x处取一体积元dV
波通过厚度为dx的介质,其振幅衰减量为-dA dLeabharlann Adx是介质的吸收系数
波强的衰减规律:
A A0 e
x
A、A0分别是x 0和x x处的波振幅
I I 0e
2x
I、I 0分别是x 0和x x处波的强度
*四、声压、声强和声强级 声压:介质中有声波传播时的压力与无声波时的 静压力之间的压差。 平面简谐波,声压振幅为
2 2 2
能量密度
单位体积介质中所具有的波的能量。
dE x 2 2 2 w A sin [ ( t ) 0 ] dV u
平均能量密度
1 w T
一个周期内能量密度的平均值。

T
0
1 wdt T

T
0
x A sin [ ( t ) 0 ]dt u
2 2 2
所以振幅与离波源的距离成反比。如果距波源单位 距离的振幅为A则距波源r 处的振幅为A/r
由于振动的相位随距离的增加而落后的关系, 与平面波类似,球面简谐波的波函数:
A r y cos[ ( t ) 0 ] r u
三、波的吸收
波在实际介质中,由于波动能量总有一部分会被介 质吸收,波的机械能不断减少,波强亦逐渐减弱。
1 x 1 2 2 2 2 dE k v dm A sin [ ( t ) 0 ]dV 2 u 2
体积元内媒质质点的弹性势能等于其动能(证明见后):
1 2 2 x 2 dE p A sin [ ( t ) 0 ]dV 2 u
体积元内媒质质点的总能量为:
机械波的能量与振幅的平方、频率的平方成正比, 与介质的密度成正比。
二、波的能流和能流密度
能流:单位时间内通过介质中某一 截面的能量。
u
S
P wuS 平均能流:在一个周期内能流的平均值。
u
P wuS wuS
平均能流密度(波的强度)指单位时间单位横截面积 通过的能量: 通过垂直于波动传播方向的单位面积的平均能流。
I I0
单位:分贝 ( dB )
I L 10 log10
人耳对响度的主观感觉由声强级和频率共同决定
pm uA
声强:声波的能流密度。
2
1 pm 1 I uA2 2 2 u 2
频率越高越容易获得较大的声压和声强
引起人听觉的声波有频率范围和声强范围
20 ~ 20000Hz
10W m
2
~ 10
12
W m
2
I 0 1012W m 2
声强级
测定声强的标准 I I L log10 单位:贝尔 ( Bel ) I0
x dE dE k dE p A sin [ ( t ) 0 ]dV u 说明
2 2 2
1)在波动的传播过程中,任意时刻的动能和势能 不仅大小相等而且相位相同,同时达到最大,同 时等于零。
2)在波传动过程中,任意体积元的能量不守恒。
x dE A sin [ ( t ) 0 ]dV u
3)正、负最大位移处,速度为零,形变为零,动 能、势能和总机械能均为零。
平衡位置处,速度最大,形变最大,动能、势能 和总机械能均为最大。
能量密度:单位体积介质中的波动能量.
W x 2 2 2 w A sin (t ) V u
平均能量密度:能量密度在一个周期内的平均值.
1 T 1 2 2 w wdt A T 0 2
S1 S2 S
1 1 2 2 2 u A1 S1T u 2 A2 S 2T 2 2
所以,平面波振幅相等。 A1 A2
对球面波:
1 1 2 2 2 u A1 S1T u 2 A2 S2T 2 2
S1 4r ; S2 4r
2 1
2 2
A1r1 A2r2
x, t
作周期性变化,且变
1 x 2 2 2 WP WK A (V )sin (t ) 2 u x 2 2 2 W (V ) A sin (t ) u
2)任一体积元都在不断地接收和放出能量, 即不断地传播能量.任一体积元的机械能不守 恒. 波动是能量传递的一种方式.
相关文档
最新文档