一轮复习专题数列中的存在性问题
数列中的存在性问题 经典
专题:数列中的存在性问题一、单存在性变量解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。
例1、已知数列{na }的前n 项和为n S =235n n +,在数列{n b }中,1b =8,164n nb b +-=0,问是否存在常数c 使得对任意n ,log n c na b +恒为常数M ,若存在求出常数c 和M ,若不存在说明理由.解析:假设存在常数c 使得对任意n ,log n c na b +恒为常数M ,∵n S =235n n+,∴当n =1时,则1a =1S =8,当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +,当n =1适合, ∴n a =62n +,又∵164n n b b +-=0, ∴1n n b b +=164,∴数列{n b}是首项为8,公比为164的等比数列, ∴nb =118()64n -=962n -,则log n c n a b +=9662log 2n c n -++=62(96)log 2a n n ++-=6(1log 2)29log 2a a n -++,又∵对任意n ,log n c na b +恒为常数M ,∴6(1log 2)a -=0,解得c =2,∴M =29log 2a +=11,∴存在常数c =2使得对任意n ,log n c na b +恒为常数M =11.二、双存在型变量解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。
如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进行检验。
高考数学一轮总复习函数的极限存在性与无穷小量
高考数学一轮总复习函数的极限存在性与无穷小量高考数学一轮总复习:函数的极限存在性与无穷小量在高考数学中,函数的极限是一个重要的概念。
掌握函数的极限存在性与无穷小量的性质和应用,对于解题和理解数学概念都具有关键作用。
本文将就函数的极限存在性与无穷小量展开论述,帮助大家更好地理解与掌握这一部分内容。
一、函数的极限存在性1. 定义函数f(x)在x趋近于某个实数a时的极限存在,意味着当x无限靠近a时,f(x)的取值相对于一个特定的数L趋近于稳定。
数学上表达为:lim(x→a) f(x) = L其中lim表示极限,x→a表示x趋近于a,f(x)表示函数f在x点处的取值,L为极限值。
2. 判断极限存在性的方法(1)函数的极限存在的一个重要方法是利用函数图像观察图像在a点附近的趋势。
如果图像趋于稳定,那么极限存在。
(2)使用数列的方法,构造一个以a为极限的数列,然后利用数列极限的性质对函数进行推导。
(3)利用基本的极限定理,如迫敛准则、极限的四则运算,对函数极限进行求解。
二、无穷小量1. 定义无穷小量是一个非常小的数,它在数学上被表示为小于任意正数ε的数。
一般用Δx表示。
2. 无穷小量的性质(1)无穷小量可以相加、相减。
(2)无穷小量与有界函数的乘积是无穷小量。
(3)无穷小量与有限非零数的乘积是无穷小量。
(4)无穷小量的高阶无穷小量更小。
三、极限存在性与无穷小量的关系1. 极限存在性的定义函数f(x)在x趋近于某个实数a时的极限存在,意味着当x无限靠近a时,f(x)的取值相对于一个数L趋近于稳定。
2. 极限存在性与无穷小量的关系(1)若函数f(x)在x趋近于a时的极限存在,那么函数f(x)−L是以a为自变量的无穷小量。
(2)若以a为自变量的无穷小量Δx对应函数f(x)的极限存在,那么极限值L就是函数f(x)在x趋近于a时的极限。
四、利用极限存在性与无穷小量解题1. 求函数极限根据极限存在性的定义,我们可以通过找到一个以a为自变量的无穷小量,从而得到函数f(x)在x趋近于a时的极限。
聚焦数列存在性问题
青 睐.本文将 结合具体实例 谈一谈数列 存在性问题
在 高考中的几 种主要类型及 其求解策略 ,供大家参 考.
1.参数的存在性问题
例 1 ﹙2006 年山东高考题﹚已知数列 {a n} 中,
a1
=
1 2
,点 ( n,2a n+1
a n ) 在直线 y = x 上,其中 n = 1 ,
2 , 3 , .(1)令 bn = a n+1 a n 1 ,求证:数列 {bn}
(3)假设 存在实数 λ,使数列
S n
+ λTn
n
是 等差
数列.
数列 Sn + λTn 是等差数列的充要条件是 n
Sn
+ λTn n
=
xn +
y( x, y ∈R)
,即
S n
+
λTn
=
xn 2
+
yn
.
n
( ) ∑ 又 Sn = a1 + a2 + + an = 3×2 i + i 2 = i =1
( ) 3×2 1 1 2 n
bn =
3
1
n1
=
3×2 n 1 ,
42
n
n
∑ ∑ Tn = bi = ( ai+1 ai 1) = an+1 a1 n
i =1
i =1
n
( ) 3×2 2 1 2 1 n
( ) ∑ =
3×2 i 1 =
i =1
1 21
( ) = 3 2 n 1 2 1 ,
故 a n+1 = 3×2 n 1 + n 1 , 从而 a n = 3×2 n + n 2 .
高考数学《数列中的存在性问题》
高考数学 数列中的存在性问题
解析:(1) 令 n=1,则 a1=S1=1a12-a1=0. (2) 由 Sn=nan2-a1,即 Sn=n2an, ① 得 Sn+1=n+12an+1. ② ②-①,得(n-1)an+1=nan. ③ 于是 nan+2=(n+1)an+1. ④
高考数学 数列中的存在性问题
高考数学 数列中的存在性问题
例 3 已知数列{an}的奇数项是首项为 1 的等差数列,偶数项是首项为 2 的等比数 列,数列{an}的前 n 项和为 Sn,且满足 S3=a4,a5=a2+a3. (1) 求数列{an}的通项公式; (2) 若 amam+1=am+2,求正整数 m 的值; (3) 是否存在正整数 m,使得SS2m2m-1恰好为数列{an}中的一项?若存在,求出所有满 足条件的 m 的值;若不存在,请说明理由.
高考数学 数列中的存在性问题
解析:(1) 由条件知 a1=3. 当 n≥2 时,由 a1+aλ2+aλ23+…+λan-n1=n2+2n, ① 得 a1+aλ2+aλ23+…+aλnn--21=(n-1)2+2(n-1). ② ①-②得λan-n1=2n+1,所以 an=(2n+1)λn-1(n≥2). 因为 a1=3,所以 an=(2n+1)λn-1(n∈N*).
高考数学 数列中的存在性问题
不合题意. 综上可知 m=2. (3) 因为 S2m=(a1+a3+…+a2m-1)+(a2+a4+…+a2m) =m1+22m-1+211--33m=3m+m2-1. S2m-1=S2m-a2m=3m+m2-1-2·3m-1=3m-1+m2-1. 所以SS2m2m-1=33mm-+1+mm2-2-11=3-3m2-1m+2-m21- 1≤3.
高考数学 数列中的存在性问题
数列存在性问题的分析与解答教案
数列存在性问题的分析与解答教案1.问题呈现题目:已知正项数列的前项和为,且 . (1)求的值及数列的通项公式;(2)是否存在非零整数,使不等式对一切都成立?若存在,求出的值;若不存在,说明理由. 2.分析与解答分析:第(1)问根据数列通项()12n n n a S S n -=-≥很容易求出;关键是第(2)问中根据第(1)问的结论2n a n =,可得11cos cos(1)(1)2n n a n ππ++=+=-,则可考虑分离参数λ,令(1)n nb a =⋅⋅-n b 的单调性以确定n b 的最值.最后,需要考虑n 为奇数和偶数进行分类讨论. 解(1)由(2)4n n n a a S +=. 当1n =时,1111(2)4a a a S +==,解得12a =或10a =(舍去). 当2n ≥时,由111(2)(2)44n n n n n n n a a a a a S S ---++=-=-22112()n n n n a a a a --⇒-=+, ∵0n a >,∴10n n a a -+≠,则12n n a a --=,∴{}n a 是首项为2,公差为2的等差数列,故2n a n =.(2)由2n a n =,得11cos cos(1)(1)2n n a n ππ++=+=-,设(1)n nb a =⋅⋅-1(1)n n b λ+-<. 1n n b b +===1=>,∵0n b >,∴1n n b b +>,数列{}n b 单调递增.假设存在这样的实数λ,使得不等式1(1)n n b λ+-<对一切*n ∈N 都成立,则① 当n 为奇数时,得min 1()n b b λ<==;② 当n 为偶数时,得min 2()n b b λ-<==λ>.综上,(λ∈,由λ是非零整数,知存在1λ=±满足条件. 3.题后反思 针对这类数列的存在性问题,往往需要进行分类参数并构造数列,判断数列的单调性可用比商法或作差法,题目中出现三角函数往往要考虑其周期性,涉及()1n-往往需要对n 为奇数和偶数进行分类讨论.。
专题04 数列中的存在性与恒成立问题(解析版)
专题4 数列中的存在性与恒成立问题1.(2021·湖北·襄阳四中模拟预测)已知正项数列{}n a 的前n 项和n S 满足()2*41,nna S n N +=∈.数列{}nb 满足2*1221,n n b b n n n N ++=++∈(1)求数列{}n a 的通项公式;(2)试问:数列{}n n b S -是否构成等比数列(注:n S 是数列{}n a 的前n 项和)?请说明理由;(3)若11,b =是否存在正整数n,使得211155(1)1111nnk k k k k kkk b b b ==+-≤≤++∑成立?若存在求所有的正整数n ;否则,请说明理由.【答案】(1)21n a n =-;(2)不构成,理由见解析;(3)存在,10n =. 【解析】 【分析】(1)由11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,得到{}n a 是等差数列,即可得解;(2)首先求出n S ,则2n n n b S b n -=-,即可得到11n n b S ++-,再由1n n b b ++,即可得到11()n n n n b S b S ++-=--,即可得证;(3)由(2)可得2k b k =,所求不等式即2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑.设21()1f k k k =-+,利用裂项相消法可得到4211((1)(1))12nk k f f n k k ==-+++∑,同理,有24211((1)(1)),21,*12(1)11((1)(1)),2,*2nk k f f n n m m N k k k f f n n m m N =⎧++=-∈⎪+⎪-=⎨++⎪-+=∈⎪⎩∑,再由题意求出n 的值; 【详解】解:(1)由于2(1),4n n a S n N *+=∈,故2111(1)14a S a +=⇒=;2n ≥时22114(1),4(1)n n n n S a S a --=+=+;作差得,221114(1)(1)()(2)0n n n n n n n a a a a a a a ---=+-+⇔+--=.由于{}n a 是正项数列,故12n n a a --=,{}n a 是等差数列,21n a n =-;所以222(1)(211)44n n a n S n +-+=== (2)由于22111,(1)n n n n n n b S b n b S b n +++-=--=-+,2221221(1)n n b b n n n n ++=++=++,故11()n n n n b S b S ++-=--.由于1111b S b -=-,所以 当11b ≠时,111n n n nb S b S ++-=--,数列{}n n b S -构成等比数列;当11b =时,数列{}n n b S -不构成等比数列.(3)若11b =,由(2)知2k b k =,于是,所求不等式即2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑.设21()1f k k k =-+,则21(1).1f k k k +=++ 故224222222111121(1)(1)12(1)2(1)(1)nn n k k k k k k k k k k k k k k k k k ===++--+==+++-++-+∑∑∑()11()(1)2nk f k f k ==-+∑ 1((1)(1))2f f n =-+ 同理,有22242221111(1)(1)(1)(1)12(1)(1)nnkkk k k k k k k k k k k k k ==++++-+-=-++++-+∑∑ ()11((1)(1)),21,*12(1)()(1)12((1)(1)),2,*2k k nf f n n m m N f k f k f f n n m m N =⎧++=-∈⎪⎪=∑-++=⎨⎪-+=∈⎪⎩由于11155((1)(1))(1)222111f f n f ++>=>,故而只能有2,*n m m N =∈.于是,2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑ 1551((1)(1))((1)(1)),(2,*)21112f f n f f n n m m N ⇔-+≤≤-+=∈ 155((1)(1)),(2,*)2111f f n n m m N ⇔-+==∈ 21111,(2,*)10n n n m m N n ⇔++==∈⇔=综上所述,所有符合条件的正整数n 只有10n = 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.2.(2021·全国·模拟预测)从①()()126n n n a a S ++=,且12a <;①11a =,()1122n n n a a a n -++=≥,且存在2m ≥,*m ∈N 使得5m S =,()()11111311m m m S m S m -+++-=-;①若1n n a a d --=(常数),且()*162+⋅=+∈N n n n n a S a ,12a <,这三个条件中任选一个,补充在下面题目的横线中,并解答.已知各项均为正数的数列{}n a 的前n 项和为n S ,______. (1)求数列{}n a 的通项公式; (2)设12nn n a b -=,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)条件选择见解析,32n a n =-;(2)118(34)2n n T n -⎛⎫=-+⋅ ⎪⎝⎭. 【解析】 【分析】(1)选①:根据n S 与n a 的关系式可求出数列{}n a 的通项公式;选①:根据题意可得出数列{}n a 是等差数列,数列n S n ⎧⎫⎨⎬⎩⎭是首项为1a ,公差为2d 的等差数列,从而可求出数列{}n a 的通项公式;选①:令1n =,可求出1a ;然后根据n S 与n a 的关系式可求出数列{}n a 的公差,从而可求出数列{}n a 的通项公式;(2)根据(1)中求出的数列{}n a 的通项公式,然后利用错位相减法可求出数列{}n b 的前n 项和n T . (1)选①:当n =1时,()()111126a a a ++=,因为12a <,所以解得11a =; 当2n ≥时,因为()()126n n n a a S ++=,所以()()111126n n n a a S ---++=,两式相减,得2211336n n n n n a a a a a ---+-=,即()()1130n n n n a a a a --+--=,因为0n a >,所以13n n a a --=,所以数列{}n a 是首项为1,公差为3的等差数列, 故()13132n a n n =+-=-.选①:由()1122n n n a a a n -++=≥,知数列{}n a 是等差数列, 因为()111122nn n na dS n a dnn -+-==+, 所以数列n S n ⎧⎫⎨⎬⎩⎭是首项为1a ,公差为2d 的等差数列,所以11211m m m S S S m m m -++=-+,即111011m m S S m m m-++=-+, 所以21311110m m m-=-,又因为2m ≥,*m ∈N ,所以解得m =2; 设等差数列{}n a 的公差为d ,则2125S a d =+=,因为11a =,所以解得d =3,所以()13132n a n n =+-=-. 选①:因为1n n a a d --=,所以数列{}n a 是等差数列, 因为162+⋅=+n n n a a S ,所以()11622n n n S a n a --⋅=+≥,两式相减,得()116n n n n a a a a +-=-,即()622n n a a n d ⋅≥=,又0n a >,所以d =3.当n =1时,11262⋅=+S a a ,即()111623a a a ⋅+=+,因为12a <,所以解得11a =, 故()13132n a n n =+-=-,即32n a n =-. (2)由(1)得()1113222n n n n a b n --⎛⎫==-⋅ ⎪⎝⎭,所以()01211111147322222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()123111111473222222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减,得()2111111133222222n nn T n -⎡⎤⎛⎫⎛⎫⎛⎫=+⨯+++--⋅⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦11112213112n -⎛⎫- ⎪⎝⎭=+⋅--()()113243422n n n n ⎛⎫⎛⎫-⋅=-+⋅ ⎪ ⎪⎝⎭⎝⎭,则118(34)2n n T n -⎛⎫=-+⋅ ⎪⎝⎭.3.(2021·上海静安·一模)对于数列{}n a :若存在正整数0n ,使得当0n n ≥时,n a 恒为常数,则称数列{}n a 是准常数数列.现已知数列{}n a 的首项1a a =,且11,n n a a n *+=-∈N .(1)若32a =,试判断数列{}n a 是否是准常数数列; (2)当a 与0n 满足什么条件时,数列{}n a 是准常数数列?写出符合条件的a 与0n 的关系;(3)若()(,1)*∈+∈N a k k k ,求{}n a 的前3k 项的和3k S (结果用k 、a 表示).【答案】(1)取02n =时,n a 恒等于12,数列{}n a 是准常数数列;(2)答案见解析; (3)2322k k a ⎛⎫-++ ⎪⎝⎭.【解析】 【分析】 (1)将32a =代入已知条件,即可求出()122n a n =≥; (2)根据已知条件,对a 进行分类讨论,分别写出答案即可;(3)由()(,1)*∈+∈N a k k k 和11n n a a +=-分别求出2a ,3a ,…,k a ,1k a +,2k a +,…,31k a -,3k a 的值,将前k 项放在一起,后2k 项中,从1k +项起,每相邻两项的和为定值,这样即可求解3k S .(1)由132a =得,231122a =-=,当2n ≥时,n a 恒等于12,数列{}n a 是准常数数列,取02n =即可;(2)①11,11=1,1n n n n nn a a a a a a +-≥⎧=-⎨-+<⎩,①1n a ≥时,1+≠n n a a ,而当1n a <时,若存在0n ,当0n n ≥时,1n n a a +=,则必有12n a =, 若01a <<时,则211a a =-,3211a a a a =-==,此时只需2111a a a =-=,112a =, 故存在12a =,12n a =,取01n =(取大于等于1的正整数也可以),数列{}n a 是准常数数列. 若11a a =≥,不妨设[),1a m m ∈+,m *∈N ,则[)10,1m a a m +=-∈, 2111m m a a a m ++=-=-+,若21m m a a ++=,则1a m a m -+=-,所以221m a =-或12a m =+,取01n m =+,当0n n ≥时,12n a =(0221a n =-,取大于等于12a +的0n 皆可)若10a a =<,不妨设(],1a l l ∈-+,l *∈N ,则(]1,a l l -∈-,所以(]21,1a a l l =-+∈+,321a a a =-=-,41a a =--,…,()(]210,1l a a l +=---∈,所以()32111l l a a a l ++=-=----⎡⎤⎣⎦,若32l l a a ++=,则221a l =-+或12a l =-+, 取02n l =+,当0n n ≥,12n a =( 0232n a -+=,取大于等于32a -+的0n 皆可以) 存在a 和0n :112a =,12n a =,01n ≥;112a m =+,01n m ≥+;112a m =-+, 02n m ≥+(其中m N *∈,n *∈N ),(a 为某个整数m 加上12时,数列{}n a 是准常数数列).(3)①()(,1)*∈+∈N a k k k ,且11n n a a +=-,①21a a =-,32a a =-,…,()1k a a k =--,()10,1k a a k +=-∈,2111k k a a k a ++=-=+-,321k k a a a k ++=-=-, 4311k k a a k a ++=-=+-,…,31k a a k -=-,31k a k a =+-.所以312312313k k k k k k S a a a a a a a a ++-=+++⋅⋅⋅++++⋅⋅⋅+()()()()1231234313k k k k k k k a a a a a a a a a a ++++-=+++⋅⋅⋅++++++⋅⋅⋅++ ()()()121a a a a k k =+-+-+⋅⋅⋅+--+()1112k ka k k +-=+--2322k k a ⎛⎫=-++ ⎪⎝⎭.4.(2021·四川自贡·一模(理))已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,________,28b =,1334b b -=.在以下三个条件中任选一个①530S =,①425S a =,①3523a a b -=,补充在上面横线上,并作答.(1)求数列{}n a ,{}n b 的通项公式;(2)是否存在正整数k .使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34k T >?若存在,求k 的最小值;若不存在,说明理由.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)条件选择见解析,2n a n =,11162n n b -⎛⎫=⨯ ⎪⎝⎭(2)存在,且k 的最小值为4 【解析】 【分析】(1)根据已知条件求得等差数列{}n a 的首项和公差,求得等比数列{}n b 的首项和公比,从而求得数列{}n a ,{}n b 的通项公式.(2)先求得,n k S T ,由34k T >求得k 的最小值. (1)设等比数列{}n b 的公比为q ,0q >,则1211834b q b b q =⎧⎨-=⎩解得11216q b ⎧=⎪⎨⎪=⎩,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭. 31411622a b ⎛⎫==⨯= ⎪⎝⎭,设等差数列{}n a 的公差为d ,若选①,则()1510101030,2,2122n a d d d a n n +=+===+-⨯=.若选①,则()()()11465,8652,2,2122n a d a d d d d a n n +=++=+==+-⨯=. 若选①,则()()()1113248,228,2,2122n a d a d a d d a n n +-+=+===+-⨯=. (2)由于12,2n a a n ==,所以()2212n nS n n n +=⋅=+, 1111n S n n =-+, 所以111111311223114k T k k k =-+-++-=->++,11,14,341k k k >+>>+,所以正整数k 的最小值为4. 5.(2022·天津·南开中学二模)已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an }前n 项和为Sn ,且满足S 3=a 4,a 3+a 5=2+a 4 (1)求数列{an }的通项公式; (2)求数列{an }前2k 项和S 2k ;(3)在数列{an }中,是否存在连续的三项am ,am +1,am +2,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m 的值;若不存在,说明理由.【答案】(1)*12,21,.23,2n n n n k a k N n k -=-⎧⎪=∈⎨⎪⋅=⎩ (2)213k k -+ (3)存在,1 【解析】 【分析】(1)设等差数列的公差为d ,等比数列的公比为q ,由已知条件列方程组求得,d q 后可得通项公式; (2)按奇数项与偶数项分组求和;(3)按m 分奇偶讨论,利用122m m m a a a ++=+,寻找k 的解. (1)设等差数列的公差为d ,等比数列的公比为q , 则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 5=1+2d . ①S 3=a 4,①1+2+(1+d )=2q ,即4+d =2q ,又a 3+a 5=2+a 4,①1+d +1+2d =2+2q ,即3d =2q ,解得d =2,q =3. ①对于k ①N *,有a 2k -1=1+(k -1)•2=2k -1,故*12,21,.23,2n n n n k a k N n k -=-⎧⎪=∈⎨⎪⋅=⎩ (2)S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=[1+3+…+(2k -1)]+2(1+3+32+…+3k -1)=()2213(121)13213kk k k k -+-+=-+-.(3)在数列{an }中,仅存在连续的三项a 1,a 2,a 3,按原来的顺序成等差数列,此时正整数m 的值为1,下面说明理由若am =a 2k ,则由am +am +2=2am +1,得2×3k -1+2×3k =2(2k +1). 化简得4•3k -1=2k +1,此式左边为偶数,右边为奇数,不可能成立. 若21m k a a -=,则由am +am +2=2am +1,得(2k -1)+(2k +1)=2×2×3k -1 化简得k =3k -1,令()*13k k k T k N -=∈,则111120333k k k k k k k kT T +-+--=-=<. 因此,1=T 1>T 2>T 3>…,故只有T 1=1,此时k =1,m =2×1-1=1.综上,在数列{an }中,仅存在连续的三项a 1,a 2,a 3,按原来的顺序成等差数列,此时正整数m 的值为1. 6.(2022·辽宁·鞍山一中模拟预测)已知n S 是等差数列{}n a 的前n 项和,0n a >,315S =,公差1d >,且___________.从①21a -为11a -与31a +等比中项,①等比数列{}n b 的公比为3q =,1124,b a b a ==这两个条件中,选择一个补充在上面问题的横线上,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16n T <.【答案】(1)选择条件见解析,21n a n =+ (2)证明见解析 【解析】 【分析】(1)根据选择条件求解(2)数列求和后证明,使用裂项相消法 (1)若选①,21a -为11a -与31a +的等比中项,则()()()2132111a a a -+=-,由{}n a 为等差数列,315S =,得2315a =,①25a =,把25a =代入上式,可得()()4616d d -+=,解得2d =或4d =-(舍) ①13a =,21n a n =+;若选①,3q =为等比数列{}n b 的公比,且1124,b a b a ==, 可得213b b =,即413a a =,即有113)3a d a +=(,即123a d =; 又315S =,可得11332152a d +⨯⨯=,即15a d +=,解得12,3d a ==, 此时21n a n =+; (2) ①()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, ①11111111112355721232323n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪+++⎝⎭⎝⎭; ①16n T <,得证 7.(2022·浙江绍兴·模拟预测)已知数列{}n a 是公差不为0的等差数列,11a =,且1a ,2a ,4a 成等比数列;数列{}n b 的前n 项和是n S ,且21n n S b =-,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式; (2)设1n n n c +m ,使得()22221232313n m n n a c c c c x b +-++++>对任意*n ∈N 恒成立?若存在,求m 的最小值;若不存在,请说明理由.【答案】(1)n a n =,12n n b -=;(2)存在,5﹒ 【解析】 【分析】(1)设等差数列{}n a 的公差为()0d d ≠,根据1a ,2a ,4a 成等比数列求出d 即可求其通项公式;根据n S 与n b 关系即可求{}n b 的通项公式通项公式; (2)利用裂项相消法求{2nc }前m 项和,设()2313n n n a d b +-=,根据1n n d d +-正负判断{n d }单调性,求出其最大项,{2nc }前m 项和大于该最大值即可求出m 的范围和最小值. (1)设等差数列{}n a 的公差为()0d d ≠,①1a ,2a ,4a 成等比数列,①2214a a a =. ①()2113d d +=+,解得1d =,①()11n a a n d n =+-=.当1n =时,11121b S b ==-,①11b =.当2n ≥时,1122n n n n n b S S b b --=-=-,①12n n b b -=.①{}n b 是以1为首项,以2为公比的等比数判,①12n n b -=.(2)由题意得n c =()()22222211111n n c n n n n +==-++. ①22212m c c c +++()()2222222211111111122311m m m m =-+-++-+--+()2111m =-+.设()()123133132n n n n a n d b ++--==,则()()()1212312313314222n n n n n n n n d d ++++----=-=,①当1n =,2,3时,1n n d d +>;当4n =时,45d d =;当5n ≥时,1n n d d +<, ①数列{}n d 的最大项为453132d d ==, ①()21311321m ->+,整理得()2132m +>,①存在正整数m ,且m 的最小值是5.8.(2022·辽宁辽阳·二模)①{}2nn a 为等差数列,且358a =;①21n a n ⎧⎫⎨⎬-⎩⎭为等比数列,且234a =.从①①两个条件中任选一个,补充在下面的问题中,并解答. 在数列{}n a 中,112a =,________. (1)求{}n a 的通项公式;(2)已知{}n a 的前n 项和为n S ,试问是否存在正整数p ,q ,r ,使得n n r S p qa +=-?若存在,求p ,q ,r 的值;若不存在,说明理由. 【答案】(1)212n nn a -=; (2)存在,3p =,4q =,2r =﹒ 【解析】 【分析】(1)若选①,则可根据等差数列性质求出{}2nn a 的公差d ,根据等差数列通项公式可求2n n a ,从而求得n a ;若选①,则可证明等比数列概念求出21n a n ⎧⎫⎨⎬-⎩⎭的公比,根据等比数列通项公式可求21n a n -,从而求得n a ; (2)根据n a 通项公式的特征,采用错位相减法即可求其前n 项和,将其化为n n r S p qa +=-形式即可得p 、q 、r 的值. (1) 若选①:设等差数列{}2nn a 的公差为d ,则33122512312a a d --===-,①()1222121nn a a n n =+-=-,即212n nn a -=. 若选①:设等比数列21n a n ⎧⎫⎨⎬-⎩⎭的公比为q ,则2112212211a q a⨯-==⨯-, ①11112121122n nn a a n -⎛⎫⎛⎫=⨯= ⎪ ⎪-⨯-⎝⎭⎝⎭, 即212n nn a -=; (2) 21321222n nn S -=+++,231113212222n n n S +-=+++, 则两式相减得,23111111212222222n nn n S +-⎛⎫=+⨯+++- ⎪⎝⎭ 12n S =111121214212212n n n ++⎛⎫- ⎪-⎝⎭=+--12n S =132322n n ++=-,①2332n nn S +=-. ①()22221233343422n n n n n n S a +++-+=-=-⨯=-, ①存在正整数p ,q ,r ,使得n n r S p qa +=-,且3p =,4q =,2r =.9.(2021·河北衡水中学三模)已知数列{}n a 的前n 项和为n S ,且满足13a =,()122n n a xa n n -=+-≥,其中x ∈R .(1)若1x =,求出n a ;(2)是否存在实数x ,y 使{}n a yn +为等比数列?若存在,求出n S ,若不存在,说明理由.【答案】(1)2382n n n a -+=;(2)存在,()21242n n n n S ++=--.【解析】 【分析】(1)将1x =代入,由递推关系求出通项公式,并检验当1n =时是否满足,即可得到结果;(2)先假设存在实数x ,y 满足题意,结合已知条件求出满足数列{}n a yn +是等比数列的实数x ,y 的值,运用分组求和法求出n S 的值. 【详解】(1)由题可知:当1x =时有:12n n a a n --=-,当2n ≥时,()()()()()()121321213012232n n n n n a a a a a a a a n ---=+-+-+⋅⋅⋅+-=++++⋅⋅⋅+-=+,又13a =满足上式,故()()22138322nn n n n a ---+=+=. (2)假设存在实数x ,y 满足题意,则当2n ≥时,由题可得:()()111n n n n a yn x a y n a xa xy y n xy --+=+-⇔=+--⎡⎤⎣⎦, 和题设12n n a xa n -=+-对比系数可得:1xy y -=,22xy x -=-⇔=,1y =.此时121n n a na n -+=+-,114a +=, 故存在2x =,1y =使得{}n a yn +是首项为4,公比为2的等比数列. 从而()()1112121224122nn n n n n n n n a n a n S a a a ++-++=⇒=-⇒=++⋅⋅⋅+=--. 所以()21242n n n n S ++=--. 【点睛】方法点睛:数列求和方法:(1)等差等比公式法(2)错位相减法(3)分组求和法(4)倒序相加法(5)裂项相消法.10.(2022·浙江·模拟预测)已知递增的等差数列{}n a 满足:11a =,且5813,,a a a 成等比数列.数列{}n b 满足:()32n n S b n *=+∈N ,其中n S 为{}n b 的前n 项和.(1)求数列{}{},n n a b 的通项公式; (2)设n n c T =为数列{}n c 的前n 项和,是否存在实数λ,使得不等式n n T S λ≤≤对一切n *∈N 恒成立?若存在,求出λ的值;若不存在,说明理由.【答案】(1)21n a n =-,()112n n b n -*⎛⎫=-∈ ⎪⎝⎭N(2)存在,12λ= 【解析】 【分析】(1)设{}n a 的公差为(0)d d >,根据5813,,a a a 成等比数列,由2(17)(14)(112)d d d +=++求解,由()32n n S b n *=+∈N ,利用数列的通项与前n 项和的关系求解;得()1132*--=+∈n n S b n N ,(2)由(1)23n n b S +=,得到()min 12n S =,nc 12=,利用裂项相消法求得n T ,再由不等式n n T S λ≤≤对一切n *∈N 恒成立求解. (1)解:设{}n a 的公差为(0)d d >, 则2(17)(14)(112)d d d +=++, 所以2,21n d a n ==-. 当1n =时,11b =;当2n ≥时,由()32n n S b n *=+∈N ,得()1132*--=+∈n n S b n N ,两式相减得:12n n b b -=-, 所以{}n b 是以1为首项,以12-为公比的等比数列,所以()112n n b n -*⎛⎫=-∈ ⎪⎝⎭N(2)23n n b S +=,显然()2min 12n b b ==-, 所以()min 12n S =, 由21n a n =-得==n c1122==,故1112222n T ⎛=+++ ⎝, 112⎛= ⎝. 显然12n T <恒成立,且当n →∞时,12n T →,所以存在唯一实数12λ=.11.(2022·江西·二模(理))已知等差数列{}n a 中,12a =,公差0d >,其前四项中去掉某一项后(按原来的顺序)恰好构成一个等比数列. (1)求d 的值. (2)令11n n n b a a +=,数列{}n b 的前n 项和为n S ,若212n S λλ<--对n +∀∈N 恒成立,求λ取值范围. 【答案】(1)2; (2)12λ≤-或32λ≥.【解析】 【分析】(1)根据给定条件,写出等差数列{}n a 前4项,按去掉的项讨论求解作答.(2)由(1)求出等差数列{}n a 的通项,再利用裂项相消法求出n S 并讨论其单调性,列式计算作答. (1)等差数列{}n a 的前四项为2,2,22,23d d d +++,若去掉第一项,则有2(22)(2)(23)d d d +=++,解得0d =,不符合题意, 若去掉第二项,则有2(22)2(23)d d +=+,解得0d =,或12d =-,不符合题意,若去掉第三项,则有2(2)2(23)d d +=+,解得0d =(舍去),或2d =, 若去掉第四项,则有2(2)2(22)d d +=+,解得0d =,不符合题意, 所以2d =. (2)由(1)知22(1)2na n n =+-=,11(2(22411))1n n b n n n ==+-+,于是得1111111111[(1)()()()](1)422334141n S n n n =-+-+-++-=-++,显然数列{}n S 是递增数列,恒有14n S <,因212n S λλ<--对n +∀∈N 恒成立,于是有21124λλ--≥,解得12λ≤-或32λ≥,所以λ取值范围是12λ≤-或32λ≥.12.(2022·浙江·效实中学模拟预测)已知等差数列{}n a 中,公差0d ≠,35a =,2a 是1a 与5a 的等比中项,设数列{}n b 的前n 项和为n S ,满足()*41n n S b n =-∈N .(1)求数列{}n a 与{}n b 的通项公式;(2)设n n n c a b =,数列{}n c 的前n 项和为n T ,若118n T λ⎛⎫+≤ ⎪⎝⎭对任意的*n ∈N 恒成立,求实数λ的取值范围.【答案】(1)21n a n =-,13nn b ⎛⎫=- ⎪⎝⎭(2)2485λ-≤≤ 【解析】 【分析】(1)对于等差数列{}n a 直接列方程322155a a a a =⎧⎨=⋅⎩求解,数列{}n b 根据11,1,2n n n S n b S S n -=⎧=⎨-≥⎩求解;(2)利用错位相减法可得1411883nn n T +⎛⎫=-+- ⎪⎝⎭,根据题意讨论得:当n 是奇数时,min8341n n λ⎛⎫⋅-≤ ⎪+⎝⎭;当n 是偶数时,min 8341n n λ⎛⎫⋅≤ ⎪+⎝⎭,再通过定义证明数列8341n n ⎧⎫⋅⎨⎬+⎩⎭的单调性,进入确定相应情况的最值. (1)①322155a a a a =⎧⎨=⋅⎩ 则()()12111254a d a d a a d +=⎧⎪⎨+=⋅+⎪⎩,解得112a d =⎧⎨=⎩或150a d =⎧⎨=⎩(舍去)①()12121n a n n =+-=-. 又①41n n S b =-,当1n =时,1141b b =-,则113b =-,当2n ≥时,1141n n S b --=-,则14n n n b b b -=-,即113n n b b -=-, 则数列{}n b 是以首项113b =-,公比为13-的等比数列,①1111333n nn b -⎛⎫⎛⎫⎛⎫=-⋅-=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. (2)()1213nn c n ⎛⎫=-- ⎪⎝⎭,()()123111111135232133333n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⋅⋅⋅+--+-- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()()23411111111352321333333nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+⨯-+⨯-+⋅⋅⋅+--+-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相减得:()231411111221333333n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+---- ⎪ ⎪⎡⎤⎢⎥⎢ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎣⎦()111111111112123633623n n n n n -++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-----=--+-⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=①1411883nn n T +⎛⎫=-+- ⎪⎝⎭①118n T λ⎛⎫+≤ ⎪⎝⎭对任意的*n ∈N 恒成立,即411183n n λ+⎛⎫-≤ ⎪⎝⎭对任意的*n ∈N 恒成立 ①当n 是奇数时,411183n n λ+-⋅≤任意的*n ∈N '恒成立 ①8341nn λ⋅-≤+对任意的*n ∈N 恒成立①当n 是偶数时,411183n n λ+⋅≤对任意的*n ∈N 恒成立 ①8341nn λ⋅≤+对任意的*n ∈N 恒成立令8341nn c n ⋅=+,()()()11164138383045414541n n n n n n c c n n n n ++-⋅⋅-=-=>++++对任意的*n ∈N 恒成立 ①{}n c 为递增数列 ①当n 是奇数时,则245λ-≤,即245λ≥-①当n 是偶数时,则8λ≤ ①2485λ-≤≤. 13.(2022·浙江省临安中学模拟预测)各项均为正数的数列{}n a 的前n 项和为n S ,21122n n n S a a =+,数列{}n b 为等比数列,且1224,==b a b a . (1)求数列{}n a 、{}n b 的通项公式;(2)记()232,3,nn n n n n b n a a c n b +⎧-⋅⎪⋅⎪=⎨⎪⎪⎩为奇数为偶数,n T 为数列{}n c 的前n 项和,对任意的n *∈N .2λ≥n T 恒成立,求2n T 及实数的λ取值范围.【答案】(1)n a n =,2nn b =(2)212211214n n n T n +=--+,1712λ≤【解析】 【分析】(1)先求出1a ,再当2n ≥时,由21122n n n S a a =+,得21111122n n n S a a ---=+,两式相减化简可得11n n a a --=,从而可得数列{}n a 是公差为1,首项为1的等差数列,则可求出n a ,从而可求出12,b b ,进而可求出n b , (2)当n 为奇数时,利用裂项相消求和法可求出1321n c c c -++⋯+,当n 为偶数时,利用等比数列的求和公式求出242n c c c ++⋯+,从而可求出2n T ,进而可求出实数的λ取值范围 (1)①21122n nn S a a =+①, ①21111122a a a =+,①10a ≠,①11a = 当2n ≥时,21111122n n n S a a ---=+①, 由①-①得221111112222n n n n n a a a a a --+-=- ①2211n n n n a a a a --+=-,又0n a >,①11n n a a --=,①数列{}n a 是公差为1,首项为1的等差数列. ①n a n =①122b a ==,244==b a ,数列{}n b 为等比数列, ①2,2n n q b ==(2)n 为奇数时,212121(65)222(21)(21)2121-+--⋅==-+-+-+k k k k k c k k k k①131321272(65)21335(21)(21)-⨯-⋅++⋯+=++⋯+⨯⨯-+nn n c c c n n 133521211212122222222221335212112121-+++⎛⎫⎛⎫⎛⎫=-++-++⋯+-+=-+=- ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭n n n n n n n n n 为偶数时,223324==k k kc ①2421231133314411444414⎛⎫⨯- ⎪⎝⎭++⋯+=++⋯+==--n n n n c c c①()()2121213212422121211214214++-=++⋯++++⋯+=-+-=--++n n n n n n n T c c c c c c n n①0n c >,①{}2n T 单调递增, ①221712≥=n T T ,①1712λ≤ 14.(2022·江苏·阜宁县东沟中学模拟预测)已知正项等差数列{}n a 满足:()33n n a a n *=∈N ,且1382,1,a a a +成等比数列.(1)求{}n a 的通项公式;(2)设()()1121212n n n a n a a c ++=++,n R 是数列{}n c 的前n 项和,若对任意n *∈N 均有n R λ<恒成立,求λ的最小值. 【答案】(1)n a n = (2)最小值为23【解析】 【分析】(1)设等差数列的公差为d ,由33n n a a =及等差数列的通项公式得到1a d =,则n a nd =,再根据等比中项的性质得到方程,求出d ,即可得解;(2)由(1)可得11121212n n n c +⎛⎫=- ⎪++⎝⎭,利用裂项相消法求和得到n R ,即可得到23n R <,从而求出λ的取值范围,即可得解; (1)解:设等差数列的公差为d ,由33n n a a =得[]11(31)3(1)a n d a n d +-=+-,则1a d =, 所以1(1)n a a n d nd =+-=.因为12a 、31a +、8a 成等比数列,所以()231812a a a +=⋅,即2(31)28d d d +=⋅,所以27610d d --=,解得1d =或17d =-,因为{}n a 为正项数列,所以0d >,所以1d =,所以n a n =.(2)由(1)可得()()()()1111122112121212121212n n n a n n n n a a n n c +++++⎛⎫===- ⎪++++++⎝⎭,所以1223111111111122121212121212312n n n n R ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥+++++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为对任意n *∈N 均有23n R <,所以23λ≥,所以实数λ的最小值为2315.(2022·山东潍坊·模拟预测)已知{}n a 和{}n b 均为等差数列,111a b ==,312a a a =+,542b b a =+,记{11max n c b na =-,22b na -,…,}n n b na -(n=1,2,3,…),其中{1max x , 2x ,⋯,}s x 表示1x ,2x ,⋯,sx 这s 个数中最大的数.(1)计算1c ,2c ,3c ,猜想数列{}n c 的通项公式并证明;(2)设数列()()132n n c c ⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n S ,若24n S m m <-+对任意n *∈N 恒成立,求偶数m 的值.【答案】(1)10c =,21c =-,32c =-,1n c n =-,证明见解析 (2)2m = 【解析】 【分析】(1)设等差数列{}n a ,{}n b 的公差分别为1d ,2d ,利用111a b ==,312a a a =+,542b b a =+,利用通项公式可得11122d d +=+,211d d =+,可得n a ,n b .根据10c =,21c =-,32c =-.猜想数列{}n c 的通项公式1n c n =-,证明数列{}k k b na -为单调递减数列,即可得出结论.(2)1111(3)(2)(1)(2)12n nc c n n n n ==---++++,利用裂项求和方法即可得出n S ,根据24n S m m <-+对任意*n N ∈恒成立即可得出m 的取值范围.(1)解:设等差数列{}n a 和{}n b 的公差为1d 、2d , 那么()()()11221121114131d d d d d ⎧+=++⎪⎨+=+++⎪⎩,解得1212d d =⎧⎨=⎩,①n a n =,21n b n =-,那么,111110c b a =-=-=,{}{}21122max 2,2max 121,3221c b a b a =--=-⨯-⨯=-,{}{}3112233max 3,3,3max 131,332,5332c b a b a b a =---=-⨯-⨯-⨯=-,猜想{}n c 的通项公式为1n c n =-,当3n ≥时,()()()()111120k k k k k k k k b na b na b b n a a n ++++---=---=-<,所以数列{}k k b na -关于*N k ∈单调递减, 所以{}112211max ,,,1n n n c b na b na b na b na n =---=-=-;(2) 解:()()()()()()111113221123121n n c c n n n n n n ===---++++----⎡⎤⎡⎤⎣⎦⎣⎦,所以1111111123341222⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭n S nn n , 因为24n S m m <-+对任意n *∈N 恒成立,所有2142m m -+≥,解得4422m +≤≤,所以2m =. 16.(2022·天津·耀华中学一模)设数列{}()*n a n ∈N 是公差不为零的等差数列,满足369a a a +=,25796a a a +=.数列{}()*n b n ∈N 的前n 项和为n S ,且满足423n n S b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)在1b 和2b 之间插入1个数11x ,使1b ,11x ,2b 成等差数列;在2b 和3b 之间插入2个数21x ,22x ,使2b ,21x ,22x ,3b 成等差数列;……;在n b 和1n b +之间插入n 个数1n x ,2n x ,…,nn x ,使n b ,1n x ,2n x ,…,nn x ,1n b +成等差数列.(i )求()()()11212231323312n n n nn T x x x x x x x x x =++++++++++;(ii )是否存在正整数m ,n ,使12m n ma T a +=成立?若存在,求出所有的正整数对(),m n ;若不存在,请说明理由.【答案】(1)n a n =;11123n n b -⎛⎫=⨯ ⎪⎝⎭.(2)(i )n T 123343n n +⎛⎫=- ⎪⎝⎭;(ii )存在;(9,2)和(3,3).【解析】 【分析】(1)设}n a {的公差为d ,根据题意列式求出1a 和d 即可求出n a ;根据11n n n b S S ++=-可求出n b ; (2)(i )根据等差中项的性质得到()123411357(21)2n n n T b b b b n b nb +=+++++-+,再根据错位相减法可求出n T ;(ii )根据n T 和{}n a 的通项公式得到23213n n m +=-,推出211,13m ⎡⎫-∈⎪⎢⎣⎭,令233n nn c +=,推出{}n c 的单调性,根据单调性可知,只有2c 和31,13c ⎡⎫∈⎪⎢⎣⎭,由此可求出结果.(1)设}n a {的公差为d ,0d ≠,则()111211125846648a d a d a d a d a d a d +++=+⎧⎪⎨+++=+⎪⎩,解得11a d ==, 所以1(1)11n a a n d n n =+-=+-=. 由423n n S b +=得11423b b +=,得112b =, 11423n n S b +++=,所以114()2()330n n n n S S b b ++-+-=-=,所以11422n n n b b b +++=,即113n n b b +=,所以11123n n b -⎛⎫=⨯ ⎪⎝⎭.综上所述:n a n =;11123n n b -⎛⎫=⨯ ⎪⎝⎭.(2)(i )依题意得12112b b x +=,2321222()2b b x x ++=,343132333()2b b x x x +++=, 45414243444()2b b x x x x ++++=,,123n n n nn x x x x ++++1()2n n n b b ++=, 所以()()()11212231323312n n n nn T x x x x x x x x x =++++++++++2334451122()3()4()()22222n n b b b b b b n b b b b ++++++=+++++()123411357(21)2n n b b b b n b nb +=+++++-+012311111111111111()3()5()7()(21)()()2232323232323n n n n -⎛⎫=⨯+⨯⨯+⨯⨯+⨯⨯++-⋅⨯+⋅⨯ ⎪⎝⎭012311111111()3()5()7()(21)()()4333333n n n n -⎛⎫=+⨯+⨯+⨯++-⋅+⋅ ⎪⎝⎭令0123111111()3()5()7()(21)()33333n n R n -=+⨯+⨯+⨯++-⋅,则1234111111()3()5()7()(21)()333333n n R n =+⨯+⨯+⨯++-⋅,所以13n n R R -=12311111112()()()()(21)()33333n n n -⎛⎫+++++--⋅ ⎪⎝⎭, 所以1111()213312(21)()13313n n n R n -⎛⎫- ⎪⎝⎭=+⨯--⋅-, 所以113(1)()3n n R n -=-+⋅,所以11()43n n n T R n ⎛⎫=+⋅ ⎪⎝⎭1113433n n n n -+⎛⎫=-+ ⎪⎝⎭123343n n +⎛⎫=- ⎪⎝⎭,(ii )假设存在正整数m ,n ,使12m n m a T a +=,即12313432n n m m ++⎛⎫-= ⎪⎝⎭,即23213n n m+=-成立, 因为210m->,所以2m >,所以3m ≥,所以211,13m ⎡⎫-∈⎪⎢⎣⎭,令233n nn c +=,则1125253233(23)3n n n nn c n n c n ++++==++2512544n n n +=<+++, 所以数列{}n c 单调递减,1513c =>,279c =,313c =,当4n ≥时,4111813n c c ≤=<,所以由27219c m ==-,得9m =;由31213c m==-,得3m =, 所以存在正整数m ,n ,使12m n ma T a +=,且所有的正整数对(,)m n 为:(9,2)和(3,3). 17.(2022·天津河北·一模)设数列{}n a 的前n 项和14n n S -=, (1)求数列{}n a 的通项公式; (2)令19(3)(3)nn n n a b a a +=++,记数列{}n b 前n 项和为n T ,求n T ;(3)利用第二问结果,设λ是整数,问是否存在正整数n ,使等式13758n n T a λ++=成立?若存在,求出λ和相应的n 值;若不存在,说明理由.【答案】(1)21,134,2n n n a n -=⎧=⎨⨯≥⎩;(2)171841n --+(3)当4λ=时,存在正整数2n =,使等式13758n n T a λ++=成立,当4,λ≠时,不存在正整数n 使等式13758n n T a λ++=成立. 【解析】 【分析】(1)直接由n a 与n S 的关系求解;(2)将(1)中求得的结果代入n b ,化简后利用裂项相消法求和; (3)将λ表示为含n 的等式,利用λ是整数,找出符合条件的n 即可. 【详解】(1)令n =1得,111a S ==;当n 2≥时,2134n n n n a S S --=-=⨯,所以21,134,2n n n a n -=⎧=⎨⨯≥⎩ (2)当2n ≥时,234n n a -=⨯,此时22119934(3)(3)(343)(343)n n n n n n n a b a a ---+⨯⨯==++⨯+⨯+ 21114141n n --=-++,又111293(3)(3)8a b a a ==++①213,1811,24141n n n n b n --⎧=⎪⎪=⎨⎪-≥⎪++⎩.故1138T b ==,当2n ≥时,2221323131111()()841414141n T ----=+-+-+++++ 32211111()()41414141n n n n ----+-+-++++171841n -=-+.(3)若1n =, 则等式13758n n T a λ++=为37858λ+=,52λ=不是整数,不符合题意; 若2n ≥,则等式13758n n T a λ++=为11717841548n n λ---+=+⨯,11154554141n n n λ---⨯==-++ ①λ是整数, ①141n -+必是5的因数, ①2n ≥时1415n -+≥ ①当且仅当2n =时,1541n -+是整数,从而4λ=是整数符合题意.综上可知,当4λ=时,存在正整数2n =,使等式13758n n T a λ++=成立, 当4,λ≠时,不存在正整数n 使等式13758n n T a λ++=成立 【点睛】本题考查了数列的通项与前n 项和的关系,考查了裂项求和法,考查了分析问题解决问题的能力及逻辑思维能力,属于难题.18.(2022·四川达州·二模(理))已知数列{}n a 满足11a =,12n n a a +=+,n S 为{}n a 的前n 项和. (1)求{}n a 的通项公式;(2)设()1nn n b S =-,数列{}n b 的前n 项和n T 满足20n T mn ->对一切正奇数n 恒成立,求实数m 的取值范围.【答案】(1)21n a n =-; (2)1m <-. 【解析】 【分析】(1)利用等差数列的定义可得数列{}n a 是首项为1,公差为2的等差数列,即求; (2)由题可得当 n 为奇数时,()12n n n T +=-,进而可得21122n n n T m <=--对一切正奇数n 恒成立,即得. (1)①11a =,12n n a a +=+, ①12n n a a +-=,①数列{}n a 是首项为1,公差为2的等差数列, ①()12121n a n n =+-=-; (2)由题可得()21212n n n S n +-==,①()()211nnn n b S n =-=-,①()221121n n b b n n n ++=-++=+,n 为奇数, ①当 n 为奇数,且3n ≥时,()22222123451nn T n =-+-+-++-()()()221212372322n n n n n n n -⋅+=+++--=-=-, 当1n =时,11T =-也适合, 故当 n 为奇数时,()12n n n T +=-, 又20n T mn ->对一切正奇数n 恒成立,①2111222n T m n n n n+<=-=--对一切正奇数n 恒成立, 又11122n--≥-, ①1m <-.19.(2022·天津市宁河区芦台第一中学模拟预测)设数列{}n a 的前n 项和为n S ,且满足()*N n n a S n -=∈321.(1)求数列{}n a 的通项公式;(2)记()()n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩12123,为奇数,为偶数,数列{}n b 的前2n 项和为2n T ,若不等式()nnn n nT n λ⎛⎫-<+⋅- ⎪+⎝⎭2241132941对一切*N n ∈恒成立,求λ的取值范围. 【答案】(1)13-=n n a (2)⎛⎫- ⎪⎝⎭3546,. 【解析】【分析】(1)利用n a 与n S 的关系即可求解;(2)根据裂项相消法和错位相减法求出数列{}n b 的前2n 项和为2n T ,再将不等式的恒成立问题转化为求最值问题即可求解.(1)由题意,当1n = 时,1113211a a a -=⇒=, 当2n ≥ 时, 11321n n a S ---=,所以()n n n n a a S S -----=113320, 即 13n n a a -=, ∴ 数列{}n a 是首项为1,公比为3的等比数列,11133n n n a --∴=⨯=故数列{}n a 的通项公式为13-=n n a . (2)()()12123n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩,为奇数,为偶数,由 (1),得当n 为偶数时,13n n n n nb a -==, 当n 为奇数时, 11142123n b n n ⎛⎫=- ⎪-+⎝⎭,设数列{}n b 的前2n 项中奇数项的和为n A ,所以n nA n n n ⎛⎫=-+-+⋯+-=⎪-++⎝⎭11111114559434141, 设数列{}n b 的前2n 项中偶数项的和为n B , n n B n -⎛⎫⎛⎫⎛⎫∴=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1321111242333①n n B n +⎛⎫⎛⎫⎛⎫=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭352111112429333②,由-①②两,得()n n n n n n B n ++-⎛⨯⎫⎛⎫=⨯+⋯-⎛⎫=-⨯ ⎪++-⎪⎝⎭⨯ ⎪ ⎝⎭⎝⎭-21211321111139281111229332331319, 整理得()nn n B +⎛⎫=-⋅ ⎪⎝⎭38927132329,故,()nn n n n n T A B n +⎛⎫=+=+-⋅ ⎪+⎝⎭23892714132329,n nn n n T n ⎛⎫⎛⎫∴+⋅-=-⋅ ⎪ ⎪+⎝⎭⎝⎭2241272713294132329.∴ 不等式()nnn n n T n λ⎛⎫-<+⋅-⎪+⎝⎭2241132941对一切*N n ∈恒成立, 即不等式()nnλ⎛⎫-<-⋅ ⎪⎝⎭27271132329对一切*N n ∈恒成立,()xf x ⎛⎫=-⋅ ⎪⎝⎭2727132329在R 上是单调增。
2020年高三数学大串讲第19讲(数列单调性、奇偶项、存在性问题)(解析版)
第19讲(数列单调性、奇偶项、存在性问题)【目标导航】中学研究的特殊数列只有等差数列与等比数列,一个是线性数列,一个是类指数数列,但数列性质却远远不止这些,因此新数列的考查方向是多样的、不定的,不仅可考查函数性质,而且常对整数的性质进行考查.明确考查方向是解决以新数列为背景的解答题的前提,恰当运用对应性质是解决问题思想方法. 【例题导读】例1、设数列{}n a ()*n N ∈是公差不为零等差数列,满足2369579,6a a a a a a +=+=;数列{}n b ()*n N ∈的前n 项和为n S ,且满足423n n S b +=. (1)求数列{}n a 、{}n b 的通项公式;(2)在1b 和2b 之间插入1个数11x ,使1112,,b x b 成等差数列;在2b 和3b 之间插入2个数2122,x x ,使221223,,,b x x b 成等差数列;……;在n b 和1n b +之间插入n 个数12,,...,n n nm x x x ,使121,,,...,n n n nm n b x x x b +成等差数列,(i )求11212212......n n n nm T x x x x x x =+++++++; (ii )是否存在正整数,m n ,使12m n ma T a +=成立?若存在,求出所有的正整数对(),m n ;若不存在,请说明理由.【答案】(1)()1*11,23n n n a n b n N -⎛⎫==∈ ⎪⎝⎭(2)13144323n n n n T -=--⋅⋅(i )(ii )(9,2)及(3,3). 【解析】(1)设数列{}n a 的公差为()d d ≠0,则由条件369a a a +=, 可得()()111258a d a d a d +++=+,1a d ∴=,又由25796a a a +=,可得()()()21114668a d a d a d +++=+,将1a d =代入上式得254954d d d +=,24949d d ∴=01n d d a n ≠∴=∴=Q ,由423n n S b += ①当2n ≥时,11423n n S b --+= ②①-②得:14220n n n b b b -+-=,11(2)3n n b b n -∴=≥, 又111142302b b b +=∴=≠,{}n b ∴是首项为12,公比为13的等比数列,故()1*1123n n b n N -⎛⎫=∈ ⎪⎝⎭,()1*11,23n n n a n b n N -⎛⎫∴==∈ ⎪⎝⎭.(2)①在n b 和1n b +之间插入n 个数12,,,n n nn x x x K , 因为121,,,,,n n n nn n b x x x b +K 成等差数列,设公差为n d ,则11111112323(2)113(1)n n n n n n b b d n n n -+⎛⎫⎛⎫⎛⎫⎛⎫- ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭===-+-++, 则111233(1)n nk n n nk x b kd n -⎛⎫=+=- ⎪+⎝⎭,11111(1)233(1)23n nnk nn k n n nx n n -=+⎛⎫∴=⋅-⋅= ⎪+⎝⎭∑, 11212212211333n n n nn n nT x x x x x x ∴=+++++++=+++L L L ①则231111133333n n n n nT +-=++⋯++ ② ①-②得:2111111332111111133333323313nnn n n nn n n n T +++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+++-=-=--⎪⎝⎭-L , 13144323n n n n T -∴=--⋅⋅, ②若12m n m a T a +=,因为n a n =,所以m a m =,则13111144323222n nn m m m-+--==+⋅⋅, 1111443232n n n m ---=⋅⋅,从而3321432n n n m--=⋅, 故()23234623462323323323n n n n n n n n m n n n --++⋅+===+------, 当1n =时,*10232m N =+=-∉-, 当2n =时,*14292m N =+=∈,当3n =时,*213m N =+=∈,下证4(*)n n N ≥∈时,有32346n n n -->+,即证3690n n -->,设()369(4)x f x x x =--≥,则4()3ln 3636360x x f x '=->-≥->,()f x ∴在[4,)+∞上单调递增,故4n ≥时,43693649480n n -->-⨯-=>,即4601323nn n +<<--, 从而4n ≥时,m 不是整数,故所求的所有整数对为(9,2)及(3,3).例2、有限个元素组成的集合为{}12,,,n A a a a =L ,*n N ∈,集合A 中的元素个数记为()d A ,定义{},A A x y x A y A +=+∈∈,集合A A +的个数记为()d A A +,当()()()()12d A d A d A A ⋅++=,称集合A 具有性质Γ.(1)设集合{}1,,M x y =具有性质Γ,判断集合M 中的三个元素是否能组成等差数列,请说明理由; (2)设正数列{}n d 的前n 项和为n S ,满足1123n n S S +=+,其中113d =,数列{}n d 中的前2020项:1232020,,,,d d d d L 组成的集合{}1232020,,,,d d d d L 记作D ,将集合D D +中的所有元素()*123,,,,k t t t t k N ∈L 从小到大排序,即123,,,,k t t t t L 满足123k t t t t <<<<L ,求2020t ;(3)已知集合{}12,,,n C c c c =L ,其中数列{}n c 是等比数列,0n c >,且公比是有理数,判断集合C 是否具有性质Γ,说明理由. 【解析】(1)集合M 中的三个元素不能组成等差数列,理由如下: 因为集合{}1,,M x y =具有性质Γ,所以()()()()162d M d M d M M ⋅++==,由题中所给的定义可知:M M +中的元素应是:2,1,1,2,2,x y x y x y +++这6个元素应该互不相等,假设M 中的三个元素能构成等差数列,不妨设1,,x y 成等差数列,这时有21x y =+这与集合元素集合中的6个元素互不相等矛盾,其它二种情况也是一样,故M 中的三个元素不能能构成等差数列;(2)11112(*)2(**)(2,)33n n n n S S S S n n N *+-=+⇒=+≥∈,(**)(*)-得:12n n d d +=,说明数列从第二项起,数列{}n d 是等差数列,因为1123n n S S +=+,113d =,所以有121212233d d d d +=+⇒=,所以22()23n n d -=⋅,显然113d =也成立,因此1222()2()33n n n d n N --*=⋅=∈.所以21998199912222,,,,,33333D ⎧⎫=⎨⎬⎩⎭L 121121121222222221333m n n m n n m n m n n d d d m n ---------+<⇔+<⇔+<⇒<⇒<-,显然11(,)m n m n N *≤<-∈根据定义在n d 之间增加的元素个数为:(1)(1)(2)(3)212n n n n n --+-+-+++=L ,这样包括n d 在内前面一共有(1)(1)22n n n n n -++=个元素. 当63n =时,包括63d 在内前面共有2016个,显然不到第2020个数,所以只有当64n =时,能找到因此3636320204642228333t d d +=+=+=; (3)集合C 具有性质Γ,理由如下:设等比数列{}n c 的公比为q ,所以通项公式为:1110)(n n a a q a ->=,q 为有理数.设假设当1234n n n n <<…时,1423n n n n c c c c +=+成立,则有314211111111n n n n a q a q a q a q ----+=+,3141211n n n n n n q q q ---=+-因为q 为有理数,所以设mq n=(,)m n N *∈且,m n 互质,因此有 313143412141244241()()()1n x n n n x n x n n n n n n n n x n m m mm m n m n n n n n---------=+-⇒=⋅+⋅-, 式子的左边是m 的倍数,右边是n 的倍数,而,m n 互质,显然1423n n n n c c c c +=+不成立,因此C C +集合中的元素个数为:(1)(1)(2)212n n n n n ++-+-+++=L ,因此它符合已知所下的定义,因此集合C 是否具有性质Γ.例3、已知正项数列{}n a 的前n 项和为n S ,且()2*241n n n a a S n N+=-∈.(1)求数列{}n a 的通项公式;(2)若21211n n n n a b S S -++=⋅,数列{}n b 的前n 项和为n T ,求n T 的取值范围;(3)若()211,22,n n na n c n ⎧+⎪=⎨⎪⎩为奇数为偶数()*n N ∈,从数列{}n c 中抽出部分项(奇数项与偶数项均不少于两项),将抽出的项按照某一顺序排列后构成等差数列.当等差数列的项数最大时,求所有满足条件的等差数列. 【解析】(1)当1n =时,由2241n n n a a S +=-,得2111241a a a +=-,得11a =, 由2241n n n a a S +=-,得2111241n n n a a S ++++=-,两式相减,得22111224n n n n n a a a a a +++-+-=,即()221120n n n n a a a a ++--+=,即()()1120n n n n a a a a ++--+=因为数列{}n a 各项均为正数,所以10n n a a ++>,所以12n n a a +-= 所以数列{}n a 是以1为首项,2为公差的等差数列.因此,12(1)21n a n n =+-=-,即数列{}n a 的通项公式为21n a n =-. (2)由(1)知21n a n =-,所以2(121)2n n n S n +-==所以22212112(21)(21)n n n n a n b S S n n -++==⋅-+221114(21)(21)n n ⎡⎛⎤=-⎢ ⎥-+⎝⎦⎣ 所以222222246133557n T =++⨯⨯⨯222(21)(21)n n n ++-+L 2222222111111111433557(21)(21)n n ⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-++-⎨⎬ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦⎩⎭L 21114(21)n ⎡⎤=-⎢⎥+⎣⎦, 令21()1(21)f n n =-+,则(1)()f n f n +-=2222118(1)0(21)(23)(23)(21)n n n n n +-=>++++, 所以()f n 是单调递增数列,数列{}n T 递增,所以129n T T ≥=,又14n T <,所以n T 的取值范围为21,94⎡⎫⎪⎢⎣⎭.(3)2,212,2n n n n k c n k=-⎧⎪=⎨⎪=⎩,设奇数项取了s 项,偶数项取了k 项,其中s ,*k N ∈,2s ≥,2k ≥.因为数列{}n c 的奇数项均为奇数,偶数项均为偶数,因此,若抽出的项按照某种顺序构成等差数列,则该数列中相邻的项必定一个是奇数,一个是偶数.假设抽出的数列中有三个偶数,则每两个相邻偶数的等差中项为奇数. 设抽出的三个偶数从小到大依次为2i ,2j ,()21pi j p ≤<<,则1122222i j i j --+=+为奇数,而1i ≥,2j ≥,则12j -为偶数,12i -为奇数,所以1i =.又1122222j p j p --+=+为奇数,而2j ≥,3p ≥,则12j -与12p -均为偶数,矛盾.又因为2k ≥,所以2k =,即偶数只有两项, 则奇数最多有3项,即s k +的最大值为5.设此等差数列为1d ,2d ,3d ,4d ,5d ,则1d ,3d ,5d 为奇数,2d ,4d 为偶数,且22d =. 由13224d d d +==,得11d =,33d =,此数列为1,2,3,4,5. 同理,若从大到小排列,此数列为5,4,3,2,1.综上,当等差数列的项数最大时,满足条件的数列为1,2,3,4,5和5,4,3,2,1. 例4、已知n *∈N ,数列{}n a 的前n 项和为n S ,且11n n S a a +=-;数列{}n b 的前n 项和为n T ,且满足()112n n n T b n n b +=++,且12a b =.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的通项公式; (3)设nn na cb =,问:数列{}n c 中是否存在不同两项i c ,j c (1i j ≤<,i ,j *∈N ),使i j c c +仍是数列{}n c 中的项?若存在,请求出i ,j ;若不存在,请说明理由.【解析】(1)∵数列{}n b 的前n 项和为n T ,且满足()112n n n T b n n b +=++,∴11b =,22b =, 由11n n S a a +=-,得()112n n S a a n -=-≥. ∴()122n n a a n -=≥,且121a a a =-,即212a a =.∴数列{}n a 是首项为122a b ==,公比为2的等比数列,∴2nn a =.(2)∵()112n n n T b n n b +=++① 2n ≥时,()()11111112n n n T b n n b ---+=-+-+②①-②得()1111111222n n n n n b b b nb n b --+-=++--,∴()114231n n n n b b nb n b ---=+--,()()1433n n n b n b ----=-,3n ≥时,()()12543n n n b n b -----=-,∴()()()214428n n n n b n b n b ---+-=-,∴212n n n b b b --+=,∴{}n b 为等差数列,∴()111n b n n =+-⋅=.(3)2n n c n=,假设{}n c 中存在不同的两项i c ,j c (1i j ≤<),使i j k c c c +=(k *∈N )222i j k i j k ⇒+=, 注意到()()()()11121212220111n nn n n n n n n n c c n n n n n n +++⋅-+⋅-⋅-=-==≥+++. ∴{}n c 单调递增,由22k jk j k j>⇒>,则1k j ≥+,∴()()11222211jk j i j k j i j j +-≥⇒≥++,令j i m -=(m 1≥),∴j m i =+,∴()()()()()112211111j ij j m i m i m i j i m i i m i -++++⎛⎫⎛⎫≤==++ ⎪⎪-+-+-⎝⎭⎝⎭,∵2m i +≥,∴2131m i +≤+-,而11m m i +≤+,∴()231mm ≤+,231m m≤+.令21nn C n =+,则()()()()()()11121222220211212n n n n n n n n n n C C n n n n n n ++++-+⋅-=-==>++++++, ∴{}n C 为单调递增,注意到3m =时,322313=<+,42163145=>+,∴m 只能为1,2,3.①当1m =时,11j i j i -=⇒=+,∴()()222212323221i i i i i i i i ++++≤==++,故i 只能为1,2,3,当1i =时,2j =,此时242442k k k =+=⇒=;当2i =时,3j =,此时2814233k k =+=无整数解,舍;当3i =时,4j =,此时2820433k k =+=,无正整数解,舍去. ②当2m =时,2j i =+,此时()()()2222346233601i i i i i i i i i+++≤⇒≥⇒--≤++,∴1i =,此时3j =,2814233k k =+=⇒无解;③当3m =时,3j i =+,此时()()()222348712816791202i i i i i i i i i i ++≤⇒++≥+⇒+-≤+,无正整数解,舍去.综上:存在1i =,2j =满足题意.例5、已知数列{}n a 的前n 项和n S ,对任意正整数n ,总存在正数,,p q r 使得1n n a p -=,n n S q r =-恒成立:数列{}n b 的前n 项和n T ,且对任意正整数n ,2n n T nb =恒成立. (1)求常数,,p q r 的值; (2)证明数列{}n b 为等差数列; (3)若12b =,记31222224n n n n n b n b n b P a a a +++=++ 1212222n n n n n nn b n b a a ---+++⋯++,是否存在正整数k ,使得对任意正整数n ,n P k ≤恒成立,若存在,求正整数k 的最小值,若不存在,请说明理由. 【解析】∵,p q 为正数 ∴2p q ==.又∵11a =,1S q r =-,且11a S = ∴1r =.(2)∵2n n T nb =③∴当2n ≥时,()1121n n T n b --=-④,∴③-④得: ()121n n n b nb n b -=--,即()()121n n n b n b --=-⑤, 又∵()11n n n b nb +-=⑥∴⑤+⑥得: ()()()112211n n n n b n b n b -+-=-+-,即112n n n b b b -+=+ ∴{}n b 为等差数列.(3)∵10b =,22b =,由(2)知{}n b 为等差数列 ∴22n b n =-.又由(1)知12n n a -=,∴122222n n n n n P -+=+ 2322444222n n n n ----+++L , 又∵1222n n n P ++=++L 232221244424422222n n n n n n n n -----++++, ∴121214422222n n n n n n n nP P +--+-=+- 122424n n n n +-⋅=, 令10n n P P +->得122420n n n +-⋅>, ∴61123422n n n n+<=+<,解得1n =, ∴1n =时,10n n P P +->,即21p P >, ∵2n ≥时,24n≥,1342n+< ∴1612322n n n n+>+=,即122420nn n +-⋅<. 此时1n n P P +<,即234p p p >>>L ,∴n P 的最大值为2222227222n P ⨯⨯+=+= 若存在正整数k ,使得对任意正整数n ,n P k ≤恒成立,则max 72k P ≥=, ∴正整数k 的最小值为4.例6、定义:若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“()M q 数列”.设数列{}n b 中131,7b b ==(1)若24b =,且数列{}n b 是“()M q 数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为“()M q 数列”,并说明理由;(3)若数列{}n b 是“(2)M 数列”,是否存在正整数,m n ,使得4039404020192019m n b b <<?若存在,请求出所有满足条件的正整数,m n ;若不存在,请说明理由. 【解析】【分析】(1)计算21323,3b b b b -=-=,故{}1n n b b +-是公比为1的等比数列,计算得到答案;(2){}n b 是“()M q ”数列,化简得到1122n n n b b b +-=-,即()2113n n n n b b b b +++-=-,得到证明;(3){}1n n b b +-是公比为2的等比数列,12n n n b b +-=,利用累加法得到21nn b =-,得到1m n =+,计算得到答案.【详解】(1)由题意可得21323,3b b b b -=-=,由数列{}n b 为“()M q 数列”可得()3221b b q b b -=-,即1q =,则{}1n n b b +-是公比为1的等比数列,即21*13,n n b b b b n N +-=-=∈,则{}n b 是首项为1,公差为3的等差数列,32n b n =-; (2){}n b 是“()M q ”数列,,理由如下:2n ≥时,由1122n n b S n λ+=-+,可得112(1)2n n b S n λ-=--+, 两式作差可得1122n n n b b b +-=-即113,22n n b b n +-=-≥,则21132n n b b ++-=-,两式作差可得21133n n n n b b b b +++-=-,即()2113,2n n n n b b b b n +++-=-≥,由32313,72b b b -=-=,可得252b =,则()3221933322b b b b -==⨯=-, 则()2113n n n n b b b b +++-=-对任意*n N ∈成立,则{}1n n b b +-为首项是32,公比为3的等比软列,则{}n b 为()M q 数列;(3)由{}n b 是(2)M 数列,可得{}1n n b b +-是公比为2的等比数列, 即()11212n n n b b b b -+-=-,则()32212b b b b -=-,由131,7b b ==,可得23b=,则12n n n b b +-=,则()()()2112132122222n n n n n b b b b b b b b ---=-+-++-=+++=-L L ,则21nn b =-,若正整数,m n 满足4039404020192019m n b b <<,则40392140402019212019m n -<<-, 由210,210n m ->->,则2121m n ->-,则m n >,若2m n ≥+,则22121344212121m n n n n +--≥=+>---,不满足40392140402019212019m n -<<-, 若1m n =+,则140392140402019212019n n +-<<-,则403914040222019212019n -<<--,即1122019212019n <<-, 则2021220202n <<,则正整数10n =,则11m =; 因此存在满足条件的,,11,10m n m n ==.例7、设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合. (1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3,…,N ),则)(A G 的元素个数不小于N a -1a . 【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析. 【解析】(3)当1a a N ≤时,结论成立.只要证明当1a a N >时仍然成立即可. 试题解析:(1))(A G 的元素为2和5.(2)因为存在n a 使得1a a n >,所以{}∅≠>≤≤∈*1,2a a N i N i i . 记{}1,2min a a N i N i m i >≤≤∈=*,则2≥m ,且对任意正整数m k a a a m k <≤<1,. 因此)(A G m ∈,从而∅≠)(A G . (3)当1a a N ≤时,结论成立. 以下设1a a N >. 由(Ⅱ)知∅≠)(A G .设{}p p n n n n n n A G <⋅⋅⋅<<⋅⋅⋅=2121,,,,)(,记10=n . 则p n n n n a a a a <⋅⋅⋅<<<210.对p i ,,1,0⋅⋅⋅=,记{}i n k i i a a N k n N k G >≤<∈=*,.如果∅≠i G ,取i i G m min =,则对任何i i m n k i a a a m k <≤<≤,1. 从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G . 从而对任意n k n p ≤≤,p n k a a ≤,特别地,p n N a a ≤. 对i i n n a a p i ≤-⋅⋅⋅=-+11,1,,1,0.因此1)(111111+≤-+=--++++i i i i i n n n n n a a a a a . 所以p a aa a a a i ip n pi n n N ≤-=-≤--∑=)(1111.【反馈练习】1.已知数列{}n a 的首项13a =,对任意的*n ∈N ,都有11(0)n n a ka k +=-≠,数列{}1n a -是公比不为1的等比数列.(1)求实数k 的值; (2)设4,,1,,n n n n b a n -⎧=⎨-⎩为奇数为偶数数列{}n b 的前n 项和为n S ,求所有正整数m 的值,使得221m m S S -恰好为数列{}n b 中的项.【答案】(1)2;(2)2. 【解析】(1)由11n n a ka +=-,13a =可知,231a k =-,2331a k k =--, 因为{1}na -为等比数列,所以2213(1)(1)(1)a a a -=--,即22(32)2(32)k k k -=⨯--,即231080k k -+=,解得2k =或43k =, 当43k =时,143(3)3n n a a +-=-,所以3n a =,则12n a -=, 所以数列{1}n a -的公比为1,不符合题意;当2k=时,112(1)n n a a +-=-,所以数列{1}na -的公比1121n n a q a +-==-, 所以实数k 的值为2.(2)由(1)知12nn a -=,所以4,,2,,n nn n b n -⎧=⎨⎩为奇数为偶数 则22(41)4(43)4[4(21)]4m m S m =-++-+++--+L2(41)(43)[4(21)]444m m =-+-++--++++L L144(4)3m m m +-=-+,则212244(4)3m m m mS S b m m --=-=-+,因为22+1324m m m b b m +=-+,又222+322+1()()3420m m m m m b b b b ++-+=⨯->, 且2350b b +=>,130b =>,所以210m S ->,则20m S >,设2210,mt m S b t S -=>∈*N , 则1,3t =或t 为偶数,因为31b =不可能,所以1t =或t 为偶数,①当2121=mm S b S -时,144(4)3344(4)3m mm m m m +--+=--+,化简得2624844m m m -+=--≤,即242m m -+≤0,所以m 可取值为1,2,3, 验证2173S S =,433S S =,658723S S =得,当2m =时,413S b S =成立.②当t 为偶数时,1222144(4)331443124(4)134m mmm mm m S S m m m m +---+==+--+--++, 设231244m m m m c -+-=,则211942214m m m m m c c ++-+-=,由①知3m >,当4m =时,545304c c --=<; 当4m >时,10m m c c +->,所以456c c c ><<L ,所以m c 的最小值为5191024c -=, 所以22130151911024m m S S -<<+<-+,令22214m m S b S -==,则2314312414mm m +=-+-+, 即231240m m -+-=,无整数解. 综上,正整数m 的值为2.2.已知无穷数列{}n a ,{}n b ,{}n c 满足:对任意的*n N ∈,都有1n a +=n n b c -,1n b +=n n c a -,1n c +=n n a b -.记n d ={},,n n n max a b c ({},,max x y z 表示3个实数x ,y ,z 中的最大值).(1)若1a =1,1b =2,1c =4,求4a ,4b ,4c 的值; (2)若1a =1,1b =2,求满足2d =3d 的1c 的所有值;(3)设1a ,1b ,1c 是非零整数,且1a ,1b ,1c 互不相等,证明:存在正整数k ,使得数列{}n a ,{}n b ,{}n c 中有且只有一个数列自第k 项起各项均为0.【答案】(1)4a =0,4b =1-,4c =1.(2)2-,1-,1,2.(3)见详解 【解析】(1)由题意:2a =11b c -=24-=2-;2b =11c a -=41-=3;2c =11a b -=12-=1-;以此类推,看得出4a =0,4b =1-,4c =1.(2)若1a =1,1b =2,1c =x ,则2a =2x -,2b =1x -,2c =1-,,3a =11x --,3b =12x --,3c =21|x x ---,当01x ≤<时,3a =x -,3b =1|x -,3c =1,3d =1,由3d =2d ,得|x =1,不符合题意. 当12x ≤<,3a =2x -,3b =1x -,3c =32x -,,由3d =2d ,得x =1,符合题意.当2x ≥,3a =2x -,3b =3x -,3c =1-,由3d =2d ,得x =2,符合题意, 综上1c 的取值是:2-,1-,1,2.(3)先证明:存在正整数3k ≥,使,k a ,k b ,k c 中至少有一个为零, 假设对任意正整数3k ≥,k a ,k b ,k c 都不为零,由1a ,1b ,1c 是非零整数,且1a ,1b ,1c 互不相等,得1*d N ∈,*2d N ∈,若对任意3k ≥,k a ,k b ,k c 都不为零,则*k d N ∈.即对任意1k ≥,*k d N ∈. 当1k ≥时,1k a +={}|,k k k kkb c max b c d -<≤,1k b+=k k k c a d -<,1k c +=k k k a b d -<,所以1k d +={}111,,k k k k max a b c d +++<,所以{}k d 单调递减,由2d 为有限正整数,所以必存在正整数3m ≥,使得0m d ≤,矛盾,所以存在正整数3k ≥,使k a ,k b ,k c 中至少有一个为零,不妨设k a =0,且10a ≠,20a ≠…10k a -≠,则1k b -=1k c -,且1k b -=11k k c a --≠, 否则若1k b -=1k c -=1k a -,因为111k k k a b c ---++=0, 则必有1k a -=1k b -=1k c -=0,矛盾.于是,k b =110k k c a ---≠,k c =110k k a b ---≠,且k b =k c -,所以,1k a +=0,1k b +=k c ,1k c +=k b -=k c -,以此类推,即有:对n k ∀≥,n a =0,1n b +=k c ,1n c +=k c -,0k c ≠, 此时有且仅有一个数列{}n a 自k 项起各项均为0. 综上:结论成立.3.对于项数为m (*m ∈N 且1m >)的有穷正整数数列{}n a ,记{}12min ,,,k k b a a a =⋅⋅⋅(1,2,,)k m =⋅⋅⋅,即k b 为12,,,k a a a ⋅⋅⋅中的最小值,设由123,,,,m b b b b ⋅⋅⋅组成的数列{}n b 称为{}n a 的“新型数列”. (1)若数列{}n a 为2019,2020,2019,2018,2017,请写出{}n a 的“新型数列”{}n b 的所有项;(2)若数列{}n a 满足101,6222,7n n n a n n -⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪-≥⎩,且其对应的“新型数列”{}n b 项数[21,30]m ∈,求{}n b 的所有项的和;(3)若数列{}n a 的各项互不相等且所有项的和等于所有项的积,求符合条件的{}n a 及其对应的“新型数列”{}n b .【答案】(1)数列{}n b 为2019,2019,2019,2018,2017(2)1128(3)满足题意的数列{}n a :1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1.所以对应的“新型数列”{}n b 分别为:1,1,1;1,1,1;2,1,1;2,2,1;3,1,1;3,2,1.【解析】(1)数列{}n b 为2019,2019,2019,2018,2017;(2)由已知得:当6n ≤时,{}n a 关于n 递减;当7n ≥时,{}n a 关于n 递减, 又67,a a >*n N ∴∈时,{}n a 关于n 递减.*N n a ∈Q ,21m ∴≤.又[21,30]m ∈,21m ∴=.{}n b ∴共21项且各项分别与{}n a 中各项相同,其和为262111110241024102415141222T ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭611115(151)2210241212⎛⎫- ⎪+⎝⎭=+-1128=. (3)先不妨设数列{}n a 单调递增,当2m =时,*12,a a N ∈,121222a a a a a +=<,12,a ∴<11a =,此时无解,不满足题意;当3m =时,由123123a a a a a a ++=得12312333a a a a a a a ++=<,123a a ∴<,又12a a <,11,a ∴=22a =,代入原式得33a =.当4m ≥时,1212n n m a a a a a a ma ++⋅⋅⋅+=⋅⋅⋅<, 而12(1)!m m m a a a m a ma ⋅⋅⋅≥->,矛盾, 所以不存在满足题意的数列{}n a .综上,满足题意的数列{}n a :1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1. 所以对应的“新型数列”{}n b 分别为:1,1,1;1,1,1;2,1,1;2,2,1;3,1,1;3,2,1.5.设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,1,,2,k k n kk n c c b n +⎧<<==⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .【答案】(Ⅰ)31n a n =+;32nn b =⨯(Ⅱ)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 依题意得()()262426262424124q d d q d d ⎧=+-=+⎪⎨=++=+⎪⎩,解得32d q =⎧⎨=⎩, 故4(1)331n a n n =+-⨯=+,16232n nn b -=⨯=⨯.所以,{}n a 的通项公式为31n a n =+,{}n b 的通项公式为32nn b =⨯.(Ⅱ)(i )()()()()22211321321941n n n nnnn a c a b -=-=⨯+⨯-=⨯-.所以,数列(){}221n n a c -的通项公式为()221941n n na c -=⨯-.(ii )()22111nni i i i i i i a c a a c ===+-⎡⎤⎣⎦∑∑()2222111nni i i i i a a c ===+-∑∑()2212432n nn ⎛⎫- ⎪=⨯+⨯ ⎪⎝⎭()1941n i i =+⨯-∑ ()()2114143252914n n n n---=⨯+⨯+⨯--()211*2725212n n n n N --=⨯+⨯--∈.5.已知数列{a n }满足:a 1=1,且当n ≥2时,11(1)()2nn n a a R λλ---=+∈(1)若λ=1,证明数列{a 2n -1}是等差数列;(2)若λ=2.①设223n nb a =+,求数列{bn }的通项公式;②设2113ni n i Cn a n ==⋅∑,证明:对于任意的p ,m ∈ N *,当p > m ,都有p C ≥ C m . 【答案】(1)证明见解析;(2)①243nn b =⋅;②证明见解析 【解析】(1)证明:当1λ=时,()1112nn n a a ---=+,()2+12+1221112n n n n a a a --∴=+=+①,()222121112n n n n a a a ----=+=②,则①+②得21211n n a a +--=, 当1n =时,11a =,{}21n a -∴是首项为1,公差为1的等差数列 (2)①当2λ=时,()11122nn n a a ---=+,当2n =时,()22111222a a --=+=, ()2222212111222n n n n a a a ++++--∴=+=①,()212122112212n n n n a a a ++--=+=+②,①+②2⨯得22242n n a a +=+,22222433n n a a +⎛⎫∴+=+ ⎪⎝⎭,即14n n b b +=, 122282333b a =+=+=Q , {}n b \是首项为83,公比为4的等比数列,1824433n n n b -∴=⋅=⋅②由(2)①知()22413nn a =-,同理由212221212n n nn a a a a +-=+⎧⎨=⎩可得212141n n a a +-=+,212111433n n a a +-⎛⎫∴+=+ ⎪⎝⎭, 当1n =时,11141333a +=+=, 2113n a -⎧⎫∴+⎨⎬⎩⎭是首项为43,公比为4的等比数列,12114144333n n n a --∴+=⋅=⋅,()211413nn a -∴=- ()()213212421ni n n i a a a a a a a -=∴=+++++++∑L L()()()()()481414248433414141143143993n n n n n n n n n--=-+-=-+--=----, 1111444343333n n n n n n C n n n +++⎛⎫--∴=--= ⎪⋅⋅⎝⎭,()()211214314434133n n n n n n n n C C n n +++++-+----=-+⋅⋅ ()()()()21243143143413n n n n n n n n n +++⎡⎤-+--+--⎣⎦=+⋅()()122346681213n n n n n n n n ++-++++=+⋅()()122346141213n n n n n n n ++-⋅+++=+当1n =时,21321661412023C C -⨯+++-==⨯;当2n =时,213642428120233C C -+++-==⨯⨯; 当3n ≥时,10n n C C +->,∴对于一切n *∈N ,都有1n n C C +≥,故对任意,p m N *∈,当p m >时,p m C C ≥6.对于*,n N ∀∈若数列{}n x 满足11,n n x x +->则称这个数列为“K 数列”.(1)已知数列1,21,m m +是“K 数列”,求实数m 的取值范围;(2)是否存在首项为1-的等差数列{}n a 为“K 数列”,且其前n 项和n S 使得212n S n n <-恒成立?若存在,求出{}n a 的通项公式;若不存在,请说明理由;(3)已知各项均为正整数的等比数列{}n a 是“K 数列”,数列12n a ⎧⎫⎨⎬⎩⎭不是“K 数列”,若1,1n n a b n +=+试判断数列{}n b 是否为“K 数列”,并说明理由. 【答案】(1)2m >;(2)见解析;(3)见解析. 【解析】(Ⅰ)由题意得()111,m +->()211,m m -+>解得2,m >所以实数m 的取值范围是 2.m >(Ⅱ假设存在等差数列{}n a 符合要求,设公差为,d 则1,d > 由11,a =-得()1,2n n n S n d -=-+由题意,得()21122n n n d n n --+<-对*n N ∈均成立,即()1.n d n -< ①当1n =时,;d R ∈ ②当1n >时,,1n d n <- 因为111,11n n n =+>-- 所以1,d ≤与1d >矛盾, 所以这样的等差数列不存在.(Ⅲ)设数列{}n a 的公比为,q 则11,n n a a q -=因为{}n a 的每一项均为正整数,且()1110,n n n n n a a a q a a q --=-=->> 所以在{}1n n a a --中,“21a a -”为最小项. 同理,11122n n a a -⎧⎫-⎨⎬⎩⎭中,“211122a a -”为最小项. 由{}n a 为“K 数列”,只需211,a a ->即()111,a q -> 又因为12n a ⎧⎫⎨⎬⎩⎭不是“K 数列”,且211122a a -为最小项, 所以21111,22a a -≤即()112a q -≤, 由数列{}n a 的每一项均为正整数,可得()112,a q -= 所以11,3a q ==或12, 2.a q ==①当11,3a q ==时,13,n n a -=则3,1nn b n =+令()*1,n n n c b b n N+=-∈则()()133213,2112n n n n n c n n n n ++=-=⋅++++又()()()()12321332312n n n n n n n n +++⋅-⋅++++()()234860,213n n n n n n ++=⋅>+++ 所以{}n c 为递增数列,即121,n n n c c c c -->>>⋅⋅⋅> 所以213331,22b b -=-=> 所以对于任意的*,n N ∈都有11,n n b b +->即数列{}n b 为“K 数列”.②当12,2a q ==时,2,nn a =则12.1n n b n +=+因为2121,3b b -=≤ 所以数列{}n b 不是“K 数列”.综上:当11,3a q ==时,数列{}n b 为“K 数列”,当12,2a q ==时,2,nn a =数列{}n b 不是“K 数列”.7.数列{}n a 满足112n n n a a a +-=-对任意的*2,n n N ≥∈恒成立,n S 为其前n 项的和,且44a =,836S =. (1)求数列{}n a 的通项n a ;(2)数列{}n b 满足()12122321213212nn n k n k n n b a b a b a b a a --+-++⋅⋅⋅++⋅⋅⋅+=--,其中*1,2,,,=⋅⋅⋅∈k n n N .①证明:数列{}n b 为等比数列;②求集合()*3,,,.p m m p a a m p m p N b b ⎧⎫⎪⎪=∈⎨⎬⎪⎪⎩⎭【答案】(1)*,n a n n N =∈;(2)①过程见详解;②(){}6,8.【解析】(1)因为数列{}n a 满足112n n n a a a +-=-对任意的*2,n n N ≥∈恒成立,所以数列{}n a 是等差数列,设公差为d ,因为44a =,836S =,所以1134878362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:111a d =⎧⎨=⎩, 因此*,n a n n N =∈;(2)①因为数列{}n b 满足()12122321213212nn n k n k n n b a b a b a b a a --+-++⋅⋅⋅++⋅⋅⋅+=--,()()1221(23)3212-+-+⋅⋅⋅+=--n n b n b n b n ,所以()()1121(23)2532122---+-+⋅⋅⋅+=--+n n b n b n b n (*2,n n N ≥∈),两式作差可得:()11212322--++⋅⋅⋅++=⋅-n n n b b b b (*2,n n N ≥∈),又()113212=--b a 也满足上式,所以()11212322--++⋅⋅⋅++=⋅-n n n b b b b ()*n N ∈,记数列{}n b 的前n 项和为n T , 则12322--=⋅-n n n T b ,当2n ≥时,2112322----=⋅-n n n T b ,两式作差可得:2132n n n b b --+=⋅,所以()12101122(1)(2)0-----=--=⋅⋅⋅=--=n n n n n b b b ,即()121011122(1)(2)(1)(11)0------=--=⋅⋅⋅=--=--=n n n n n n b b b ,所以12n n b -=,因此12n nb b +=,即数列{}n b 为等比数列; ②由3p m m p a a b b =得11322m p m p --=,即32p mp m-=, 记n n n a c b =,由①得12-=n n n c ,所以1112++=≤n n c n n c ,因此1n n c c +≥(当且仅当1n =时等号成立).由3pm m pa ab b =得3=>m p pc c c ,所以<m p . 设(,,)*=-∈t p m m p t N ,由32p mp m-=得3()2+=tm t m ,即323t t m =-;当1t =时,3m =-,不符合题意; 当2t =时,6m =,此时8p =符合题意;当3t =时,95m =,不符合题意; 当4t =时,1213m =,不符合题意,下面证明当4t ≥,*t N ∈时,3123=<-t tm , 不妨设()233(4)=--≥xf x x x ,则()2ln 230'=->xf x 在[)4,+∞上恒成立,所以()f x 在[)4,+∞单调递增; 所以()(4)10≥=>f x f , 所以,当4t ≥,*t N ∈时,3123=<-t tm 恒成立,不符合题意; 综上,集合()(){}*3,,,6,8p m m pa a m p m p Nb b ⎧⎫⎪⎪=∈=⎨⎬⎪⎪⎩⎭. 8.给定数列{}n a ,若满足1a a =(0a >且1a ≠),对于任意的*,n m ∈N ,都有m n n m a a a +=,则称数列{}n a 为“指数型数列”.(1)已知数列{}n a 的通项公式为4nn a =,试判断数列{}n a 是不是“指数型数列”;(2)已知数列{}n a 满足112a =,()*1123n n n n a a a a n ++=+∈N ,证明数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,并判断数列11n a ⎧⎫+⎨⎬⎩⎭是否为“指数型数列”,若是给出证明,若不是说明理由; (3)若数列{}n a 是“指数型数列”,且()*112a a a a +=∈+N ,证明数列{}n a 中任意三项都不能构成等差数列. 【答案】(1)是;(2)是,理由详见解析;(3)详见解析. 【解析】(1)数列{}n a ,444n mn m n m n m a a a ++==⨯=,所以数列{}n b 是“指数型数列”(2)数列11n a ⎧⎫+⎨⎬⎩⎭是“指数型数列”11111311232131n n n n n n n n a a a a a a a a ++++⎛⎫=+⇒=+⇒+=+ ⎪⎝⎭,所以11n a ⎧⎫+⎨⎬⎩⎭是等比数列, 11111133n n n a a -⎛⎫+=+⨯= ⎪⎝⎭,111113331m n n m n n n m a a a ++⎛⎫⎛⎫⎛⎫++===+ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 所以数列11n a ⎧⎫+⎨⎬⎩⎭是“指数型数列” (3)若数列{}n a 是“指数型数列”,由定义得:11112nn n mn m n n n a a a a a a a a a a +++⎛⎫=⇒=⇒== ⎪+⎝⎭假设数列{}n a 中存在三项s a ,t a ,u a 成等差数列,不妨设s t u <<则2t s u a a a =+,得:11122222t s ut s u a a a a a a a a a +++⎛⎫⎛⎫⎛⎫=+⇒=+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭整理得:2(1)(2)(2)(1)t su s u s u s a a a a ----++=+++(*)若a 为偶数时,右边为偶数,(1)u sa -+为奇数,则左边为奇数,(*)不成立; 若a 为奇数时,右边为偶数,(2)u sa -+为奇数,则左边为奇数,(*)不成立;所以,对任意的*a ∈N ,(*)式不成立.9.定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n },对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e .列表如下:f (x ) 极大值因为2663=<=,所以max ()(3)3f k f ==. 取33q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.10.对于数列{}n a ,把1a 作为新数列{}n b 的第一 项,把i a 或()2,3,4,...,i a i n -=作为新数列{}n b 的第i 项,数列{}n b 称为数列{}n a 的一个生成数列.例如,数列 1,2,3,4,5的一个生成数列是1,2,3,4,5--.已知数列{}n b 为数列()12n n N *⎧⎫∈⎨⎬⎩⎭的生成数列,n S 为数列{}n b 的前n 项和. (1)写出3S 的所有可能值; (2)若生成数列{}n b 满足311178n n S ⎛⎫=-⎪⎝⎭,求数列{}n b 的通项公式. 【答案】(1)1357,,,8888;(2)1,322()1,322n n nn k b k N n k *⎧=-⎪⎪=∈⎨⎪-≠-⎪⎩. 【解析】(1)由已知,()1231111,,2,,2248n n b b n N n b b *==∈≥∴=±=±,由于31117111511131111,,,,2488248824882488S ++=+-=-+=--=∴可能值为 1357,,,8888. (2)311178n n S ⎛⎫=- ⎪⎝⎭Q ,当1n =时,12331111788a a a S ⎛⎫++==-= ⎪⎝⎭.当2n ≥时, 323133331111111178788n n n n n nn n a a a S S ----⎛⎫⎛⎫++=-=---=⎪ ⎪⎝⎭⎝⎭,{}323131,,8n n n n n a a a n N b *--∴++=∈Q 是()12n n N *⎧⎫∈⎨⎬⎩⎭的生成数列,323133231332313111;;,222n n n n n n n n nb b b b b b ------∴=±=±=±∴++()()323131111142122288n n n n n n N *--=±±±=±±±=∈,在以上各种组合中,当且仅当()32313421,,888n n n n n n b b b n N *--==-=-∈时才成立.1,322()1,322n n nn k b k N n k *⎧=-⎪⎪∴=∈⎨⎪-≠-⎪⎩.。
高中数学一轮复习数表、数阵中的数列问题
[阶梯练习简答]
1、B 2、C 3、C 4、D 5、C
6、 ;
7、 ;
8、
9、(1)表示方阵中的士兵人数的数列是6、12、20、30、42、…;
(2)数列中的第5项和第6项分别是42、56,即 ;
(3) ;
(4) , 所表示的实际意义是有11行12列的士兵方阵的人数是132人;
(III)证明:正整数N在该等差数列阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.
【解】(I)
(II)该等差数阵的第一行是首项为4,公差为3的等差数列:
第二行是首项为7,公差为5的等差数列:
……
第i行是首项为 ,公差为 的等差数列,因此
(III)必要性:若N在该等差数阵中,则存在正整数i,j使得
◆高考专题复习◆
数表、数阵中的数列问题
[复习说明]
数表、数阵等问题历来是竞赛的热点,如1990年全国高中联赛试题就是用 个正数排成的一个数阵,1998年希望杯邀请赛试题是以数表的形式出现的,等等.近年来,数表、数阵等问题频繁地出现在高考试题中,如: 2003年全国卷的压轴题,它将一个数列 的各项按照一定的规律排成一个三角形数阵;2004年北京市春季高考的压轴题是一个“等差数阵”题,如此等等.而这些试题大多为压轴题,且都与数列有着深刻的联系.
从而
即正整数2N+1可以分解成两个不是1的正整数之积。
充分性:若2N+1可以分解成两个不是1的正整数之积,由于2N+1是奇数,则它必为两个不是1的奇数之积,即存在正整数k,l,使得
从而
可见N在该等差数阵中.
综上所述,正整数N在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.
存在性问题专题 (含答案)
第 8页(共 80 页)高中数学解题研究会 339444963 群文件
35. 设 (1)求 ( 2 )设 立,求 ( 3 )设
ln h
,
的极大值; , ,若
h
e
e
,其中 t
.
的最大值; 成立,求
h
对任意的
t
h
t㔶 ,使
h
恒成
h ,若对任意给定 的
的取值范围.
te ,在区间
te 上总存在 t
36. 已知函数 (1)求 (2)若对任意的
㔶
成等比数列.
(3)是否存在实数 ,使得对任意的正整数 的最大值;若不存在,请说明理由.
h
h ,
h
,当
h
h
, ,都有
h 时,比较
h
的大小; 成立.若存在,求
h
h
第 4页(共 80 页)高中数学解题研究会 339444963 群文件
19. 已知函数 (1)当 (2)若存在实数
时,解不等式 满足
h h h , h
,求函数
h
h
ln
. 的单调区间; t 上是减函数,求实数 的取值范围; 的切线,证明:切点的横坐标为 .
在区间 作曲线
(3)过坐标原点
第 5页(共 80 页)高中数学解题研究会 339444963 群文件
23. 已知函数 (1)设 (2)求证:存在
,若
h
h
h . 在
t
.
的斜率为 ,是否存在
的值,若不存在,
请说明理由.
48. 已知函数 (1)当
时,求函数
h
h
h
的单调减区间; ,求 的最大值. t 时,有 ;
高三英语一轮复习中存在的问题及对策-百度文库概要
高三英语一轮复习中存在的问题及对策大连教育学院高中教师教育中心王锦秀2009年的高考备考工作今非昔比,意义不同寻常。
如何用新的理念去指导辽宁省课改后的第一年高考备考工作,夺取高考成绩的全面丰收,是摆在高三教师们面前的重要任务。
笔者通过两个月来对不同层次学校的听课调研,针对目前高三英语基础知识复习阶段课堂教学中发现的问题,提出自己的观点和建议。
问题之一:新课标、新教材、新高考,但课堂教学新理念不明显。
改进意见:针对 2009年高考的特点,教师要进一步更新观念,树立正确学生观,强化学生主体意识,重视“知识与技能” , “过程与方法” , “情感态度与价值观”三维目标的落实与达成。
新课标倡导自主、合作、探究的学习方式, 新高考重在考查学生“综合语言运用能力” 。
我们的课堂要充分考虑留给学生足够的自主学习时间,让他们在老师指导下积极参与课堂教学,通过主动体验、练习、合作、探究、讨论、反思等方式,逐步形成自主学习的能力,改变学生被动接受知识的局面。
课堂教学要以学生的需求为出发点,从学生的问题入手, 不能只凭个人的经验和感觉。
学生会了的就不要再讲,学生不会的,千万不能一带而过,要给学生发问的机会,找到学生的错误原因所在。
习题讲解避免面面俱到,平均用力,针对共性问题,讲清楚了还需设计足够的习题练到位,重在突破,重在提高效率。
语言学科实践性强,不可能讲会,运用能力的提高只能靠 ,在老师指导下的 , 灵活多样的 , 结合话题的 ,通过篇章的。
另外,教师对《课标》中关于文化意识目标的重视程度还要加强。
高考试题中涉及到英语国家的历史地理、风土人情、传统习俗、生活方式、文学艺术、行为规范和价值观念等文章时,学生理解起来常常遇到困难,甚至产生。
语言有丰富的文化内涵,而相当一部分学生有知识没文化,这是一件可怕的事。
所以说课堂上应利用有关语料不失时机地进行文化意识渗透,培养学生跨文化交际的能力,这不但是新课标的要求,也是新高考的要求。
化繁为简化难为易--巧解数列中的一类存在性问题
1 = ( 3 -1) 1 1 1 ( ) , 因为数列 单调递减, + 1 ( { 3 -1) ( 3 -1) 3 -1}
狀 狆
式两边同 除 2 可 得 2
+
犿
狀+1-犿
=1+2
狆-犿
, 因 为 狀+1-犿
+ 狀+1-犿 狆-犿 为 所以2 为 偶 数, 而 1+2 ∈犖 , 狆-犿∈ 犖 ,
又因为 犿 <狀 犿 ≤狀-1 可 推 出
狀 3 , 3 而 狀3 - 狀2 = 狀 3 +3 >0 狀 狀 狀 ) ( ) -3 3 -3 3 -1 ( 3 -1 3 -3 3 3 -3
1 2 , 因为 狆1 >0 可 推 出 犿1 + 狆 > 狀 > 3 -1 3 -1 3 -1 3 -1
(
)( )
犿 狀 狆
2
1 , ( ) 式不成立 , 所以不存在三 项 犪 , 1 犪, 犪 成 ( 3 -1)
1 1 = ≥ 狀-1 犿 3 -1 3 -1
奇数 , ( )式不成立 , 所以不存在三项 犪 1 犪 犪 犿, 狀, 狆 成等差 数列 . 解析二 : 假设存在三项 犪 使数列犪 犪 犪 犪 犪 犿, 狀, 犿, 狀, 狆, 狆
狀+1 犿 狆() 是等差数列 , 可得 2 因 犪 犪 犪 =2 +2 1, 狀= 犿+ 狆 即2 狀+1 犿 狆 狆 为 狆> 因为2 所以2 狀狆≥狀+12 + ≥2 , >0,
狀
等差数列 . 说明 : 解析 一 根 据 数 字 特 点 巧 妙 判 断, 但局限性 较大; 解析二运用了两个不 等的 正 整 数 之 间 至 少相 差
狆 犿 狀-1 狀 狀 狆 犿 狆 狀 犿 狀 犿
犮 犿< 犽< 狉, 犿, 犽, 狉∈犖+ . 2 犽,
专题6.10:数列中存在性问题的研究与拓展
,d 2 ,
3a1 3d 9 3 2
故 an 2n 1 2,Sn n(n 2) .
(2)由(1)得 bn
Sn n
n
2.
假设数列{bn}中存在三项 bp,bq,br ( p,q,r 互不相等)成等比数列,则 bq2 bpbr .
即 (q 2)2 ( p 2)(r 2) .
, (1 3
q 3q
)max
4 9
,即
p
2, q
3 时,
2p 3p
1 3
q 3q
又当 p 3 时, 2 p 2 3 2 1 ,故无正整数 q 使得 2 p 1 q 成立.
3p 27 9 3
3p 3 3q
解法
2:同上有,
2 3
p
p
1 q 3 3q
1 3
,且数列{
(2)
am am 1 am2
=
(2m
7)(2m 2m 3
5)
,若其是 an
中的项,则
(2m
7)(2m 2m 3
5)
2n
7
,
令 t 2m 3 ,则 amam1 = (t 4)(t 2) t 8 6 2n 7 ,
am2
t
t
即: 2n t 8 1 t
又 a1=0,a2=1,a2-a1=1,
所以,数列{an}是以 0 为首项,1 为公差的等差数列.
所以,an=n-1.
(3)解法 1:假设存在正整数数组(p,q),使 b1,bp,bq 成等比数列,则 lgb1,lgbp,lgbq 成等差数列,于
数列中的存在性问题研究
因为 , . 一户 >0 , r —q +1 >0 , 且 r —P∈N , r —q +1
将一个参数 用另一 个参数来表 示, 然后 可 以根据 参数的
正 整数 性或 者将 一 个 变量 看 作 另 一 个 变量 的 函 数 , 这 样
所 以等式的左边为奇数 , 右边为偶数 , 等式不成立.
的题 型经常可以遇到. 但是学 生在做 此类题 型时往 往 由
于计算不熟练、 等 式 变换 生 疏 而 导 致 失 分.
所 以数列 { “ ) 中不 存在 任意 三项 按原 来顺 序排 列
后成等差数列. 说 明: 该题主要是根据等式“ 2 卜 一2 l - +2 1 - r , , 说明 这样 的 P , q , r是 否 存 在 , 直 接 求 出是 不 可 能 的 , 所 以 根
s 为其前 ”项的和 , 且 满足 “ 一S : , 令 b 一—l l l
“ ’ “” + 1
,
数列 { b } 的前 项和为 T . ( 1 ) 求数列 { n } 的通项公 式及数列 { b 的前 ”项和
T ;
掌握等差 、 等 比数列 的通项公 式及前 项和公 式 ; 另 一 方 面主要考察 分析 、 探 究及 逻辑推 理的能力 , 主要是 一 些探索性结 论 的证 明及数 列 不等 式. 本 文就 其 中 的一 类—— 存在性问题进 行分 析研 究 , 旨在探 索解 题规 律 ,
由.
据这 3 项都 以 2为 底 , 利 用奇数 、 偶 数不 可能 相等 的事 实, 将表达 式转换到 2 州一2 +1来处理.
二、 利 用 数 为 正 整 数 求 解 存在 性
例 2 已知数列 { } 是各 项均不 为 0的等 差数列 ,
高考数学一轮复习 考点32 数列的综合问题必刷题 理(含解析)-人教版高三全册数学试题
考点32 数列的综合问题1.(市房山区2019年高考第一次模拟测试理)《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)A.天B.天C.天D.天【答案】C【解析】设蒲的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n,则A n=.莞的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则B n,由题意可得:,整理得:2n+=7,解得2n=6,或2n=1(舍去).∴n=≈2.6.∴估计2.6日蒲、莞长度相等.故选:C.2.(某某乌鲁木齐市2018届高三第三次诊断性测验)已知数列,满足,,,则数列的前10项的和为A.B.C.D.【答案】D【解析】由a n +1﹣a n 2,所以数列{a n }是等差数列,且公差是2,{b n }是等比数列,且公比是2. 又因为=1,所以a n =+(n ﹣1)d =2n ﹣1. 所以b 2n ﹣1=•22n ﹣2=22n ﹣2.设,所以=22n ﹣2,所以4,所以数列{∁n }是等比数列,且公比为4,首项为1.由等比数列的前n 项和的公式得:其前10项的和为(410﹣1).故选:D .3.(某某省“皖南八校”2018届高三第三次(4月)联考)删去正整数数列 中的所有完全平方数,得到一个新数列,这个数列的第2018项是( ) A .B .C .D .【答案】B 【解析】由题意可得,这些数可以写为:,第个平方数与第个平方数之间有个正整数,而数列共有项,去掉个平方数后,还剩余个数,所以去掉平方数后第项应在后的第个数,即是原来数列的第项,即为,故选B.4.(华大新高考联盟2018届高三上学期11月教学质量测评理)已知等比数列{}n a 的前n 项和为n S ,,则42S S =( ) A .2 B .3C .4D .5【答案】B 【解析】由可得312a a =,所以22q =,又因为,所以选B.5.(某某省2017届高三高考冲刺预测卷六理)最近各大城市美食街火爆热开,某美食店特定在2017年元旦期间举行特大优惠活动,凡消费达到88元以上者,可获得一次抽奖机会.已知抽奖工具是一个圆面转盘,被分为6个扇形块,分别记为1,2,3,4,5,6,其面积成公比为3的等比数列(即扇形块2是扇形块1面积的3倍),指针箭头指在最小的1区域内时,就中“一等奖”,则一次抽奖抽中一等奖的概率是( ) A .140B .1121C .1364D .11093【答案】C 【解析】由题意,可设1,2,3,4,5,6 扇形区域的面积分别为,则由几何概型得,消费88 元以上者抽中一等奖的概率,故选C.6.(某某省钟祥市2019届高三高考第一次模拟考试理)对于实数x ,[x]表示不超过x 的最大整数,已知正数列{a n }满足S n =12(a n n 1a +),n ∈N*,其中S n 为数列{a n }的前n 项的和,则[]=______.【答案】20 【解析】由题可知0n S >,当1n >时,化简可得,当所以数列2{}n S 是以首项和公差都是1的等差数列,即又1n >时,记一方面另一方面所以2021S << 即[]20S = 故答案为207.(市某某区2019届高三第一次(3月)综合练习一模)天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的某某石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.【答案】2433402 【解析】第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块, 则依题意得:每环的扇面形石块数是一个以9为首项,9为公差的等差数列, 所以,a n =9+(n -1)×9=9n , 所以,a 27=9×27=243, 前27项和为:=3402.8.(某某省某某师大附中2018届高三高考考前模拟考试)在数列{a n }中,若a 4=1,a 12=5,且任意连续三项的和都是15,则a 2018=______. 【答案】9【解析】分析:将a n +a n+1+a n+2=15中n 换为n+1,可得数列{a n }是周期为3的数列.求出a 2,a 1,即可得到a 2018 详解:由题意可得a n +a n+1+a n+2=15,将n 换为a n+1+a n+2+a n+3=15,可得a n+3=a n ,可得数列{a n 是周期为3的数列.故,由a n +a n+1+a n+2=15,n 取1可得,故,故答案为9.9.(某某省武昌2018届元月调研考试)对任一实数序列,定义新序列,它的第项为,假设序列的所有项都是,且,则__________. 【答案】100. 【解析】 设序列的首项为,则序列,则它的第n 项为,因此序列A 的第项,则是关于的二次多项式,其中的系数为,因为,所以必有,故。
2020届高三政治一轮复习中存在的问题及对策
2020届高三政治一轮复习中存在的问题及对策一轮复习面临的问题高中政治教材以生活逻辑为主线,淡化知识体系。
高一、高二的教学都是按照“部分--部分--整体”的顺序进行,结果造成知识之间缺乏联系,学生在学习过程中“只见树木不见森林”这不利于学生认知结构的行成,从而影响学生的能力发展。
一轮复习的具体措施1.端正态度,营造和谐的学习氛围-一“我要学'(1)明确奋斗目标,为备考提供动力支持。
高三复习学生容易产生疲倦感,很难保持较长时间的学习兴趣,往往产生消极被动的学习状况。
外在表现为:应付式地看教材,过分地依赖教师,很少会主动采用做笔记、卡片等更有效的学习方式;很少带着问题阅读教材,老师要求识记的知识点就死背,这显然不利于归纳、比较、分析和概括等学科能力的培养:;对考试麻木不仁,很少进行反思等。
这种被动学习的态度与行动,显然与“以能力测试为主导”的高考改革方向相悖,因而也就难以取得理想的学习效果。
怎样才能改变这种消极被动的状态呢?我们不难从马斯洛需要层次理论和奥苏贝尔“动机理论”中得到启示:要改变学生学习现状,就需要学生产生自我实现的动机---考入理想的大学。
在有了实现自我的动机下使学生在“集中注意""加强努力”"学习持久性”和“挫折忍受力”等方面发挥出更大潜能,从而改变那种“要我学”的现状(2)调整心态"享受学习”,为高考磨砺意志学习是苦中求乐、先苦后甜的过程。
在学习过程中,获得了新知识,发展了新能力,这本身就是一种体验成功的享受过程。
高三这一年,既是漫长的,又是短暂的,只有调节好心态,才能在决战中笑得甜、笑得“我会学"2.积极引导,掌握科学的学习方法学习得法,事半功倍。
达尔文曾说过“最有价值的知识是关于方法的知识”学好政治应掌握好以下几个关键环节。
(1)首当其冲一制定复习计划学生根据教师复习的安排来制定本学科的复习计划,尽可能使计划具有合理性和可操作性.(2)万变不离其宗一-重视并吃透教材从历年高考主观试题的参考答案中可以发现: 答案=教材语言(约占60%)+时政语言(约占5-10%)+材料语言(约占25-35%)。
存在性问题专题 (含答案)
h 存在性问题专题 (含答案)1. 已知函数 ƒ x = x — t |x| t C R . (1)试讨论函数 ƒ x 的单调区间;(2)若 Et C 0th ,对于 6x C 1th ,不等式 ƒ x Σ x h a 都成立,求实数 a 的取值范围.2. 已知函数 ƒ x = x 3 — ax h h 10.(1)当 a = 1 时,求曲线 y = ƒ x 在点 h t ƒ h处的切线方程;(2)在区间 1th 内至少存在一个实数 x ,使得 ƒ x € 0 成立,求实数 a 的取值范围.3. 已知等差数列 a n 满足:a 1 = t ,a 5 = 0.数列 b n 的前 n 项和为 S n = h n —1 — 1 n C N ×(1)求数列 a n 和 b n 的通项公式;(2)令 c n = h a n ,试问:是否存在正整数 n ,使不等式 b n c n h 1 Σ b n h c n 成立?若存在,求出相应 n 的值;若不存在,请说明理由.4. 已知函数 ƒ x = lnx — 1 ax h — hx h 1,a C Rh(1)若 ƒ x 在 x = h 处的切线与直线 hx h y = 0 垂直,求 a 的值; (2)若 ƒ x 存在单调递减区间,求 a 的取值范围.5. 已知函数 ƒ x = x h — mx h n mtn C R .(1)若 n = h ,且不等式 ƒ x ≤ 0 在 0t 㔶 m 的最小值;(2)若 x 1,x h 是方程 ƒ x = 0 的两实根,且满足 0 € x 1 € h € x h € 㔶,试求 m h n 的范围.h 6. 已知函数 y = x h t 有如下性质:如果常数 t Σ 0,那么该函数在 0tx上是减函数,在 tt h œ上是增函数.(1)已知 ƒ x = 㔶x h —1hx —3 tx C 0t1 ,利用上述性质,求函数 ƒ x 的单调区间和值域;hxh1(2)对于(1)中的函数 ƒ x 和函数 g x =— x — ha ,若对任意 x 1 C 0t1 ,总存在 x h C 0t1 ,使得 g x h = ƒ x 1 成立,求实数 a 的值.7. 已知函数 ƒ x = x x hb,其中 b C R .(1)求 ƒ x 的单调区间;(2)设 b Σ 0,若 Ex C 1t 3,使 ƒ x ≤ 1,求 b 得取值范围.㔶㔶8. 设 ƒ x 是 R 上的奇函数,且对任意的实数 a ,b 当 a h b G 0 时,都有 ƒ a hƒ bΣ 0.(1)若 a Σ b ,试比较 ƒ a ,ƒ b 的大小;(2)若存在实数 1 t 3 使得不等式 ƒ x — c h ƒ x — c h Σ 0 成立,试求实数 c 的取值范围.h h9. 已知函数 ƒ x = x — 1 h x — a . (1)若 a =— 1,解不等式 ƒ x ≤ 3;(2)如果 Ex C R ,使得 ƒ x € h 成立,求实数 a 的取值范围.10. 已知函数 ƒ x = x — a — x — 㔶 x C Rta C R 的值域为 3t3 .(1)求实数 a 的值;(2)若存在 x 0 C R ,使得 ƒ x 0 ≤ hm — m h ,求实数 m 的取值范围.txh1 hh11. 设二次函数 ƒ x = ax h h bx h c atbtc C Rta G 0 满足条件:(a )当 x C R 时,ƒ x — 㔶 = ƒ h — x ,且ƒ x ≤ x ; h(b )当 x C 0th 时,ƒ x ≤;(c )ƒ x 在 R 上的最小值为 0.求最大的 m m Σ 1 ,使得存在 t C R ,只要 x C 1tm ,就有 ƒ x h t ≤ x .12. 已知函数 ƒ x = kx x h3kk Σ 0 .(1)若 ƒ x Σ m 的解集为 x x €— 3 或 x Σ— h ,求不等式 5mx h h k x h 3 Σ 0 的解集; h(2)若存在 x 0 Σ 3,使得 ƒ x 0 Σ 1 成立,求 k 的取值范围.13. 已知函数 ƒ x = x — 1 h x h 3 ,x C R .(1)解不等式 ƒ x ≤ 5;(2)若不等式 t h h 3t Σ ƒ x 在 x C R 上有解,求实数 t 的取值范围.14. 设 ƒ x = mx h h 3 m — 㔶 x — 9.(1)试判断函数 ƒ x 零点的个数; (2)若满足 ƒ 1 — x = ƒ 1 h x ,求 m 的值;(3)若 m = 1 时,存在 x C 0th 使 得 ƒ x — a Σ 0 成立,求 a 的取值范围.ha a 15. 已知正项数列 a n 的前 n 项的和为 S n ,且 p — 1 S n = p h — a n n C N ×tp Σ 0tp G 1 ,数列b n 满足 b n = hlog p a n .(1)分别求 a n 和 b n 的表达式 ; (2)设数列的前 n 项和 T n ,当 p = 1 时,求证: 0 € T n € 㔶 ; (3)是否存在正整数 M ,使得 n Σ M 时, a n Σ 1 恒成立?若存在,求出相应的 M 的值;若不存在,请说明理由.16. 设 x 1,x h 为函数 ƒ x = ax h h b — 1 x h 1 a Σ 0 两个不同零点,且满足 x h — x 1 = h .(1)若对任意 x C R 都有 ƒ h — x = ƒ h h x ,求 ƒ x ;(2)设 g x =— ƒ x h h x h — x ,试证明必存在 x 0 C R 使得 g x 0 ≤ 㔶 成立.17. 设函数 ƒ x = xe x ,g x = ax h h x(1)若 ƒ x 与 g x 具有完全相同的单调区间,求 a 的值; (2)若当 x ≤ 0 时恒有 ƒ x ≤ g x ,求 a 的取值范围.18. 已知公差不为 0 的等差数列 a n 的首项 a 1 = 1,前 n 项和为 S n ,且 a 1,a h ,a 㔶 成等比数列.(1)求数列 a n 的通项公式及 S n ;(2) 记 A = 1 h 1 h ... h 1 ,B = 1 h 1 h (1),当 n ≤ h 时,比较 A 与 B 的大小;S 1 S h S n1 n —1hhh(3)是否存在实数 k ,使得对任意的正整数 m ,n ,都有 a h h a h ≤ k · a h成立.若存在,求k 的最大值;若不存在,请说明理由.mnmhnb n a na19.已知函数ƒx = x —3 h hx h t ,t C R.(1)当t = 1 时,解不等式ƒ x ≤ 5;(2)若存在实数a 满足ƒ a h a —3 € h,求t 的取值范围.20.已知关于x 的不等式x — 1 — hx — 1 Σlog1a (其中a Σ0 ).3(1)当 a = 3 时,求不等式的解集;(2)若不等式有解,求实数 a 的取值范围.21.设函数ƒx = |ax — 1|.(1)若ƒ x ≤ h 的解集为— 6th ,求实数a 的值;(2)当 a = h 时,若存在x C R,使得不等式ƒ hx h 1 —ƒ x —1 ≤ 7 — 3m 成立,求实数m 的取值范围.22.设函数ƒx = x h h ax —lnx a C R .(1)若 a = 1,求函数y = ƒ x 的单调区间;(2)若函数ƒ x 在区间0t1 上是减函数,求实数a 的取值范围;(3)过坐标原点0 作曲线y = ƒ x 的切线,证明:切点的横坐标为1.ƒ x x23. 已知函数 ƒ x = x h h ax h b .(1)设 b = a ,若 |ƒ x | 在 x C 0t1 上单调递增,求实数 a 的取值范围. (2)求证:存在 x 0 C — 1t1 ,使 |ƒ x 0 | ≤ |a|.24. 已知命题 p 知 关于 x 的方程 a h x h h ax — h = 0 在 — 1t1 上有解;命题 q 知 只有一个实数 x 满足不等式 x h h hax h ha ≤ 0.若“p 或 q ”是假命题,求实数 a 的取值范围.25. 已 知 二 次 函 数 ƒ x = hx h h ax h b为 偶 函 数 , g x =h x = c x h 1 h c G h .关于 x 的方程 ƒ x = h x 有且仅有一根 1. h— 1 x h m ,(1)求 a ,b ,c 的值;(2)若对任意的 x C — 1t1 ,≤ g x 恒成立,求实数 m 的取值范围; (3) 令 x = h 数 m 的取值范围.,若存在 x 1tx h C 0t1 使得 x 1 — x h ≤ g m ,求实26. 设函数 ƒ x = px — p — hlnx ,其中 e 是自然对数的底数.x(1)当 p = 3 时,求函数 ƒ x 的极值h(2)若 ƒ x 在其定义域内为单调函数,求实数 p 的取值范围.(3)设 g x = he ,若在1te 上至少存在一点 x 0,使得 ƒ x 0 Σ g x 0 成立,求实数 p 的取值 范围.3 ƒ x ƒ 1 — xh 27. 已知函数 ƒ x = e x x h h ax h a .(1)当 a = 1 时,求函数 ƒ x 的单调区间;(2)若关于 x 的不等式 ƒ x ≤ e a 在 at h œ 上有解,求实数 a 的取值范围;(3)若曲线 y = ƒ x 存在两条互相垂直的切线,求实数 a 的取值范围;(只需直接写出结果)28. 已知函数 ƒ x = x h h a — 㔶 x h 3 — a .(1)若 ƒ x 在区间 0t1 上不单调,求 a 的取值范围;(2)若对于任意的 a C 0t 㔶 ,存在 x 0 C 0th ,使得 ƒ x 0 ≤ t ,求 t 的取值范围.29. 已知函数 ƒ x = mx 3h ax h h 1 — b h x ,mtatb C R .3(1)求函数 ƒ x 的导函数 ƒ' x ;(2)当 m = 1 时,若函数 ƒ x 是 R 上的增函数,求 z = a h b 的最小值;(3)当 a = 1,b = 时,函数 ƒ x 在 ht h œ 上存在单调递增区间,求 m 的取值范围.30. 已知 ƒ x = ax h h bx h c ,atbtc C R ,定义域为 — 1t1 .(1)当 a = 1,|ƒ x | ≤ 1 时,求证:|1 h c| ≤ 1;(2)当 b Σ ha Σ 0 时,是否存在 x C — 1t1 ,使得 |ƒ x | ≤ b ?31. 已知函数 ƒ x = alnx h x h h bx (a 为实常数).(1)若 a =— h ,b =— 3,求 ƒ x 的单调区间;(2)若 b = 0,a Σ— h e h 求函数 ƒ x 在 1t e 上的最小值及相应的 x 值;(3)设 b = 0,若存在 x C 1t e ,使得 ƒ x ≤ a h h x 成立,求实数a 的取值范围.32. 已知函数 ƒ x = lnx .x(1)记函数 F x = x h — x · ƒ x x C 1 th ,求函数 F x 的最大值;h(2)记函数 H x =tx ≤ st x t0 € x € st若对任意实数 k ,总存在实数 x 0,使得 H x 0 = k 成立,求实数 s 的取值集合.33. 已知过原点 0 的动直线 l 与圆 C 知 x h 1 h h y h = 㔶 交于 A ,B 两点.(1)若 |AB| = 15,求直线 l 的方程.(2)在 x 轴上是否存在定点 M x 0t0 ,使得当 l 变动时,总有直线 MA ,MB 的斜率之和为 0?若存在,求出 x 0 的值;若不存在,说明理由.34. 己知函数 ƒ x = mx h n e —x (mtn C R ,e 是自然对数的底).(1)若函数 ƒ x 在点 1t ƒ 1 处的切线方程为 x h e y — 3 = 0,试确定函数 ƒ x 单调区间; (2)① 当 n =— 1,m C R 时,若对于任意 x C 1 th ,都有 ƒ x ≤ x 恒成立,求实数 m 的最小h值;② 当 m = n = 1 时,设函数 g x = xƒ x h tƒ' x h e —x t C R ,是否存在实数 atbtc C 0t1 , 使得 g a h g b € g c ?若存在,求出 t 的取值范围;若不存在,说明理由.xheƒ1 g x hx35. 设 ƒ x = alnx h bx — b ,g x = ex ,其中 atb C R . e(1)求 g x 的极大值;(2)设 b = 1,a Σ 0,若 ƒ x h — ƒ x 1 €—立,求 a 的最大值;对任意的 x 1tx h C 3t 㔶 x 1 G x h 恒成( 3) 设 a =— h , 若对任意给定的 x 0 C 0te , 在区间 0te 上总存在 stt s G t , 使 ƒ s = ƒt = g x 0 成立,求 b 的取值范围.36. 已知函数 ƒ x = alnx — x h h ,其中 a G 0.(1)求 ƒ x 的单调区间;(2)若对任意的 x 1 C 1te ,总存在 x h C 1te ,使得 ƒ x 1 h ƒ x h = 㔶,求实数 a 的值.37. 已知函数 ƒ x = x h a · e —x .(1)当 a = e h 时,求 ƒ x 在区间 1t3 上的最小值; (2)求证:存在实数 x 0 C — 3t3 ,有 ƒ x 0 Σ a .38. 已知函数 ƒ x = 1 ax h — ha h 1 x h hlnx a C R .h(1)若曲线 y = ƒ x 在 x = 1 和 x = 3 处的切线互相平行,求 a 的值; (2)求 ƒ x 的单调区间;(3)设 g x = x h — hx ,若对任意 x 1 C 0th ,均存在 x h C 0th ,使得 ƒ x 1 € g x h ,求 a 的取值范围.1g x 1x39. 已知函数 ƒ x = a x — 1x— hlnx a C R .(1)若 a = h ,求曲线 y = ƒ x 在点 1t ƒ 1 处的切线方程;(2)求函数 ƒ x 的单调区间;(3)设函数 g x =— a .若至少存在一个 x 0 C 1te ,使得 ƒ x 0 Σ g x 0 成立,求实数 a 的取 值范围.40. 已知函数 ƒ x = ax h h hx — a e x ,g x = 1 ƒ lnx ,其中 a C R ,e = h.71tht … 为自然对数的h底数.(1)若函数 y = ƒ x 的图象在点 M h t ƒ h处的切线过坐标原点,求实数 a 的值;(2)若 ƒ x 在 — 1t1 上为单调递增函数,求实数 a 的取值范围; (3)当 a = 0 时,对于满足 0 € x 1 € x h 的两个实数 x 1tx h ,若存在 x 0 Σ 0,使得 g' x = g x 1 —g x hx 1—x h成立,试比较 x 0 与 x 1 的大小.41. 已知函数 ƒ x = x — alnx h 1ha xa C R .(1)求 ƒ x 的单调区间;(2)若在 1te e = h.71tht… 上存在一点 x 0,使得 ƒ x 0 ≤ 0 成立,求 a 的取值范围.42. 已知函数 ƒ x = e mx — lnx — h .(1)若 m = 1,证明:存在唯一实数 t C 1 t1 ,使得 ƒ' t = 0;h(2)求证:存在 0 € m € 1,使得 ƒ x Σ 0.x h y h h43.已知椭圆C知a hhb h= 1(a Σb Σ0)的离心率为C 上,直线PA 交x 轴于点M.,点P 0t1 和点A mtn (m G 0)都在椭圆h(1)求椭圆C 的方程,并求点M 的坐标(用m,n 表示).(2)设0 为原点,点 B 与点A 关于x 轴对称,直线PB 交x 轴于点N,问:y 轴上是否存在点Q,使得²0QM = ²0NQ ?若存在,求点Q 的坐标;若不存在,说明理由.44.已知函数ƒx = e x hx —1 —ax h a a C R ,e 为自然对数的底数.(1)当a=1 时,求函数ƒ x 的单调区间;(2)①若存在实数x,满足ƒ x € 0,求实数 a 的取值范围;②若有且只有唯一整数x0,满足ƒ x0€ 0,求实数a 的取值范围.45.已知函数ƒx = log a x h 1 a Σ1 ,若函数y = g x 的图象与函数y = ƒx 的图象关于原点对称.(1)写出函数g x 的解析式;(2)求不等式hƒ x h g x ≤ 0 的解集A;(3)问是否存在m C 0t h œ ,使不等式ƒ x h hg x ≤ log a m 的解集恰好是A ?若存在,请求出m 的值;若不存在,请说明理由.xe x46.已知函数ƒx = xh1(e 为自然对数的底数).e(1)求函数ƒ x 的最大值;(2)设函数x = xƒ x h tƒ' x h 1,存在实数x1,x h C 0t 1 ,使得h x1€ x h成立,求实数t 的取值范围.47.设函数ƒ x = mlnx —1 x h 1 . m C R .h hx(1)当m = 5时,求ƒ x 的极值;㔶(2)设A 、B 是曲线y = ƒ x 上的两个不同点,且曲线在A 、B 两点处的切线均与x 轴平行,直线AB 的斜率为k,是否存在m,使得m — k = 1 ? 若存在,请求出m 的值,若不存在,请说明理由.48.已知函数ƒx = x3 h 3h1 —a x h —3ax h 1,a Σ 0.(1)当 a = 1 时,求函数ƒ x 的单调减区间;(2)证明:对于任意正数a,存在正数p,使得当x C 0tp 时,有ƒx ≤ 1;(3)设(2)中的p 的最大值为g a ,求g a 的最大值.2 149. 设函数 ƒ x = lnx — ax h 1—a — 1.x(1)当 a = 1 时,过原点的直线与函数 ƒ x 的图象相切于点 P ,求点 P 的坐标; (2)当 0 € a € 1 时,求函数 ƒ x 的单调区间;h(3)当 a = 1 时,设函数 g x = x h — hbx — 5 ,若对于 6x 1 C 0te ,Ex h C 0t1 使 ƒ x 1 ≤31hg x h 成立,求实数 b 的取值范围(e 是自然对数的底数,e €h 1).50. 已知函数 ƒ x = ax — ha h 1 lnx — h ,g x =— halnx — h ,其中 a C R .xx(1)当 a = h 时,求曲线 y = ƒ x 在点 1t ƒ 1 处的切线方程;(2)当 a Σ 0 时,求 ƒ x 的单调区间;(3)若存在 x C 1 te h ,使不等式 ƒ x ≤ g x 成立,求 a 的取值范围.e51. 函数 y = Asin mx h A Σ 0tm Σ 0t0 ≤ ≤ π h在 x C 0t7π 内只取到一个最大值和一个最小值,且当 x = π 时,y max = 3;当 x = 6π 时,y min =— 3. (1)求出此函数的解析式; (2)求该函数的单调递增区间;(3)是否存在实数 m ,满足不等式 Asin m存在,求出 m 的范围(或值),若不存在,请说明理由.h Σ Asin mh ? 若52. 已知函数 ƒ x = x h — k h 1 x h 9,g x = hx — k ,其中 k C R .㔶(1)若 ƒ x 在区间 1t 㔶 上有零点,求实数 k 的取值范围;( )设函数 p x = ƒ x tx € 0t是否存在实数 k ,对任意给定的非零实数 x ,存在唯一的非零 g x tx ≤ 0t实数 x h x 1 G x h ,使得 p x 1 = p x h .若存在,求出 k 的值,若不存在,请说明理由.3 — m h h hm h 3 — m h h 㔶h㔶53. 已知函数 ƒ x = ln 1 h 1 ax h x h — ax ( a 为常数,a Σ 0 ).hh(1)当 y = ƒ x 在 x = 1 处取得极值时,若关于 x 的方程 ƒ x — b = 0 在 0th 上恰有两个不h相等的实数根,求实数 b 的取值范围;(2)若对任意的 a C 1th ,总存在 x 0 C 1 t1 ,使不等式 ƒ x 0 Σ m a hh ha — 3 成立,求实数 m 的取值范围.54. 已知函数 ƒ x = e x ,点 A at0 为一定点,直线 x = t t G a 分别与函数 ƒ x 的图象和 x 轴交于点 M ,N ,记 O AMN 的面积为 S t . (1)当 a = 0 时,求函数 S t 的单调区间;(2)当 a Σ h 时,若 Et 0 C 0th ,使得 S t 0 ≤ e ,求实数 a 的取值范围.55. 已知函数 ƒ x = x — alnx ,g x =— 1ha x(1)若 a = 1,求函数 ƒ x 的极值;a Σ 0 .(2)设函数 h x = ƒ x — g x ,求函数 h x 的单调区间; (3)若存在 x 0 C 1te ,使得 ƒ x 0 € g x 0 成立,求 a 的取值范围.56. 已知函数 ƒ x — lnx — ax h 1—a — 1 a C R .x(1)当 a ≤ 1 时,讨论 ƒ x 的单调性;h( 2) 设 g x = x h — hbx h 㔶. 当 a = 1 时, 若对任意 x 1 0th , 存在 x h C 1th , 使 ƒ x 1 ≤ g x h ,求实数 b 取值范围.57.已知二次函数ƒx = ax h h bx h c a Σ0 的图象过点1t0 .(1)记函数ƒ x 在0th 上的最大值为M,若M ≤ 1,求a 的最大值;(2)若对任意的x1 C 0th ,存在x h C 0th ,使得ƒ x1h ƒ x hΣ 3 a,求 b 的取值范围.h a58.设a 为正实数,函数ƒx = ax,g x = lnx.(1)求函数h x = ƒ x · g x 的极值;(2)证明:Ex0 C R,使得当x Σ x0时,ƒ x Σ g x 恒成立.59.设函数ƒ x = p x 1x —hlnx,g x = he(p 是实数,e 为自然对数的底数).x(1)若ƒ x 在其定义域内为单调函数,求p 的取值范围;(2)若在1te 上至少存在一点x0,使得ƒ x0Σ g x0成立,求p 的取值范围.60.设二次函数ƒx = ax h h bx h c atbtc C R 满足下列条件:①当x C R 时,其最小值为0,且ƒ x — 1 = ƒ — x — 1 成立;②当x C 0t5 时,x ≤ ƒ x ≤ h|x — 1| h 1 恒成立.(1)求ƒ 1 的值;(2)求ƒ x 的解析式;(3)求最大的实数m m Σ 1 ,使得存在t C R,只要当x C 1tm 时,就有ƒ x h t ≤ x 成立.61. 已知函数 ƒ x = e x ,A at0 为一定点,直线 x = t (t G a )分别与 ƒ x 的图象和 x 轴交于点 M ,N ,记 O AMN 的面积为 S t .(1)当 a = 0 时,求函数 S t 的单调区间;(2)当 a Σ h 时,若 Et0 S t 0 ≤ e ,求 a 的取值范围.62. 已知函数 ƒ x = ax h — ha h 1 x a C R .(1)当 a ≤ 0 时,讨论函数 ƒ x 的单调性;(2)设 g x = bx h ,当 a = 1 时,若对任意 x C 0th ,存在 x C 1th , 使 ƒ x ≤ g x , 求lnx h实数 b 的取值范围.1 h 1 h63. 已知函数 ƒ x = 1 ax h — a h 1 x h lnx ,g x = x h — hbx h 7.ht(1)当 a = 0 时,求曲线 y = ƒ x 在点 1t ƒ 1 处的切线方程;(2)当 a € 1 时,求函数 ƒ x 的单调区间;(3)当 a = 1 时,函数 ƒ x 在 0 th M ,若存在 g x ≤ M 成立,㔶求实数 b 的取值范围.0 0 64.已知函数ƒx = x·ex—aa € 0 .(1)当 a =—㔶时,试判断函数ƒ x 在—㔶t h œ 上的单调性;(2)若函数ƒ x 在x = t 处取得极小值,1 求实数t 的取值集合T;h 问是否存在整数m,使得m ≤ t hth1数m 的值;若不存在,请说明理由.ƒ t ≤ m h 1 对于任意t C T 恒成立.若存在,求出整65.设函数ƒx=a ln x h1—a x h—b x a G1,曲线y=ƒx在点1tƒ1处的切线斜率为0.h(1)求b;(2)若存在x ≤ 1,使得ƒx €a,求a 的取值范围.a—166.设函数ƒx = e x—1,x G 0.x(1)判断函数ƒ x 在0t h œ 上的单调性;(2)证明:对任意正数a,存在正数x,使不等式ƒ x —1 € a 成立.a 2 167. 已知 a Σ 0 且 a G 1,函数 ƒ x = log h .1—x(1)求 ƒ x 的定义域 D 及其零点;(2)讨论并证明函数 ƒ x 在定义域 D 上的单调性;(3)设 g x = mx h — hmx h 3,当 a Σ 1 时,若对任意 x 1 C — œt — 1 存在 x h C 3t 㔶 ,使得ƒ x 1 ≤ g x h ,求实数 m 的取值范围.68. 已知函数 ƒ x = log a h x .(1)判断并证明 ƒ x 的奇偶性;(2)若两个函数 F x 与 G x 在闭区间 ptq 上恒满足 F x — G x Σ h ,则称函数 F x 与G x在闭区间 p t q 上是分离的.是否存在实数 a 使得 y = ƒ x 的反函数 y = ƒ—1 x 与 g x = a x 在闭区间 1th 上分离?若存在,求出实数 a 的取值范围;若不存在,请说明理由.69. 已知函数 ƒ x = ax h — hax h b a Σ 0 在区间 — 1t 㔶 上有最大值 10 和最小值 1.设 g x = ƒ x .(1)求 a ,b 的值;(2)证明:函数 g x 在 bt h œ 上是增函数;(3)若不等式 g h x — k · h x ≤ 0 在 x C — 1t1 上有解,求实数 k 的取值范围.70. 已知函数 ƒ x = x 3 — k h — k h 1 x h h 5x — h t g x = k h x h h k x h 1,其中 k C R .(1)设函数 p x = ƒ x h g x .若 p x 在区间 0t3 上不单调,求 k 的取值范围;( )设函数 q x = g x t x ≤ 0,是否存在 k ,对任意给定的非零实数 x ,存在惟一的非零实 ƒ x t x € 0数 x h x h G x 1 ,使得 q' x h = q' x 1 成立?若存在,求 k 的值;若不存在,请说明理由.x h h 1xha hhhhxh71.已知函数ƒx = .(1)若ƒ' a = 1,求 a 的值;(2)设 a ≤ 0,若对于定义域内的任意x1,总存在x h使得ƒ x h€ ƒ x1,求a 的取值范围.72.设函数ƒx = x h —ax h lnx (a 为常数).(1)当 a = 3 时,求函数ƒ x 的极值;(2)当0 € a € h h 时,试判断ƒ x 的单调性;(3)若存在x0C 1th ,使不等式ƒ x0€ mlna 对任意a C 0t 1恒成立,求实数m 的取值范围.73.已知集合P = x 1≤ x ≤ h ,函数y = log ax h — hx h h 的定义域为Q.h(1)若P fi Q G t,求实数 a 的取值范围;(2)若方程log ax h — hx h h = h 在 1 th 内有解,求实数a 的取值的取值范围.h74.已知函数ƒx = ex,其导函数记为ƒ' x (e 为自然对数的底数).e(1)求函数ƒ x 的极大值;(2)解方程ƒƒx = x;(3)若存在实数x1tx h x1G x h使得ƒ x1 = ƒ x h,求证:ƒ' x1hx h€ 0.75.已知函数ƒx = lnx —x—1h.(1)求函数ƒ x 的单调递增区间;(2)证明:当x Σ 1 时,ƒ x € x —1;(3)确定实数k 的所有可能取值,使得存在x0Σ 1,当x C 1tx0,恒有ƒ x Σ k x — 1 .76.已知函数ƒx = 1h alnx a G 0ta C Rx(1)若 a = 1,求函数ƒ x 的极值和单调区间;(2)若在区间0te 上至少存在一点x0,使得ƒ x0€ 0 成立,求实数a 的取值范围.77.已知函数ƒx = x h —ax —aln x —1 a C R .(1)求函数ƒ x 的单调区间;h (2)试判断是否存在实数 a a ≤ 1 ,使y = ƒ x 的图象与直线y = 1 h ln无公共点(其中自然对数的底数e 为无理数且e = h.71tht…).78.设ƒ x = a h xlnx,g x = x3 —x h —3.x(1)当a = h 时,求曲线y = ƒ x 在x = 1 处的切线方程;(2)如果存在x1,x h C 0th 使得g x1— g x h≤ M 成立,求满足上述条件的最大整数M;(3)如果对任意的stt C 1 th 都有ƒ s ≤ g t 成立,求实数a 的取值范围.h79. 设函数 ƒ x = xhlnx,g x = ax3 — xh. (1)求函数 ƒ x 的最小值; (2)若存在 x C 0t h œ ,使 ƒ x Σ g x 成立,求实数 a 的取值范围;1(3)若使关于 x 的方程 ƒ x — g x = 0 在 e — 3ten (其中 e = h.71…… 为自然对数的底数)上 有解的 a 的最小值为 an,数列 an 的前 n 项和为 Sn,求证:Sn € 3.80. 已知函数 ƒ x = 1 axh — ha h 1 x h hlnx a C R .h(1)若曲线 y = ƒ x 在 x = 1 和 x = 3 处的切线互相平行,求 a 的值; (2)求 y = ƒ x 的单调区间; (3)设 g x = xh — hx,若对任意 x1 C 0th ,均存在 xh C 0th ,使得 ƒ x1 € g xh ,求 a 的取值范围.81. 已知函数 ƒ x = ex — axh h a — e h 1 x — 1(e 是自然对数的底数,a 为常数). (1)若函数 g x = ƒ x — 1 x ·ƒ' x 在区间 1t h œ 上单调递减,求 a 的取值范围.h(2)当 a C e — ht1 时,函数 ƒ x = ex — axh h a — e h 1 x — 1 在 0t1 上是否有零点?并说明 理由.2182. 设 x = 3 是函数 ƒ x = xh h ax h b e3—x x C R 的一个极值点.(1)求 a 与 b 的关系式(用 a 表示 b),并求 ƒ x 的单调区间;(2)设a Σ 0,g x = ah hh5 㔶ex.若存在 ɛ1,ɛhC 0t㔶 使得 |ƒ ɛ1— g ɛh| € 1 成立,求 a的取值范围.83. 已知函数 ƒ x = ax — lnx — 㔶 a C R . (1)讨论 ƒ x 的单调性; (2)当 a = h 时,若存在区间 mtn Š 1 t h œ ,使 ƒ x 在 mtn 上的值域是h的取值范围.k t k ,求 kmh1 nh184. 已知定义在 R 上的偶函数 ƒ x ,当 x C 0t h œ 时,ƒ x = ex. (1)当 x C — œt0 时,求过原点与函数 ƒ x 图象相切的直线的方程; (2)求最大的整数 m m Σ 1 ,使得存在 t C R,只要 x C 1tm ,就有 ƒ x h t ≤ ex.85. 设函数 ƒ x = a h lnx,g x = x3 — xh — 3.xh(1)讨论函数 ƒ x 的单调性;(2)若存在x1txhC—1 3t3,使得g x1 — g xh ≤ M 成立,求满足条件的最大整数M;(3)若对任意的 stt C 1 th ,都有 sƒ s ≤ g t 成立,求实数 a 的取值范围.32286. 数列an各项均为正数,a1=1,且对任意的hn C N×,有 anh1 = an h canh c Σ 0 .(1)求 c1hca1hc 1hcahh1 的值;a3(2)若c = 1 ,是否存在h016n C N×,使得an Σ 1,若存在,试求出n 的最小值,若不存在,请说明理由.87. 已知函数 ƒ x = axh h bx h c(a Σ 0),g x = ƒ x ·e—㔶x(e 为自然对数的底),当 — 1 ≤ x ≤ 1 时,|ƒ x | ≤ 1,且 a h b = h. (1)求 ƒ x ; (2)求函数 g x 可能的最大值和最小值; (3)若 Ex0 C R,当 x C — œtx0 ,g x ≤ ƒ' x 成立(ƒ' x 是 ƒ x 的导函数),求最大整数 x0.88. 已知函数 ƒ x = lnx.x(1)若关于 x 的不等式 ƒ x ≤ m 恒成立,求实数 m 的最小值;(2)对任意的 x1,xh C0th ,已知存在 x0 Cx1txh ,使得 ƒ' x0=ƒxh—ƒ x1 x —hx 1,求证:x0€x1xh.23答案1. (1) ƒ x = xh — txtx ≤ 0 ,— xh h txtx € 0当 t Σ 0 时,ƒ x 的单调增区间为 t t h œ , — œt0 ,单调减区间为 0t t .hh当 t = 0 时,ƒ x 的单调增区间为 — œt h œ .当 t € 0 时,ƒ x 的单调增区间为 0t h œ , — œt t ,单调减区间为 t t0 .h(2) 方法一:设 g x = ƒ x — x = xh — t h 1 xhtx C 0th .— xh h t — 1 x tx C — 1t0x C 0th 时,因为 th1 C 0th ,所以 gx = g th1 =— th1 h .hminh㔶x C — 1t0 时,因为 g — 1 =— t,g 0 = 0,所以 gmin x =— t .故只须 Et C 0th ,使得:—th1 㔶hΣa成立,即—1㔶≤a,—tΣ a0≤a所以 a ≤— 1 .㔶方法二:设 h t = ƒ x — x =— |x| ·t h x|x| — x,t C 0th .只须 h t max ≤ a ,对 x C — 1th 都成立.则只须 h 0 = x|x| — x ≤ a,对 x C — 1th 都成立.再设 m x = x|x| — x,x C — 1th ,只须 m x min ≤ a,易求得 a ≤— 1 .㔶 2. (1) 当 a = 1 时,ƒ' x = 3xh — hx,ƒ h = 1㔶.曲线 y = ƒ x 在点 htƒ h 处的切线斜率 k = ƒ' h = t,所以曲线 y = ƒ x 在点 htƒ h 处的切线方程为 y — 1㔶 = t x — h ,即 tx — y — h = 0. (2) 由已知,得 a Σ x3h10 = x h 10,xhxh设 g x = x h 10 1 ≤ x ≤ h , 则 g' x = 1 — h0.xhx3因为 1 ≤ x ≤ h,所以 g' x € 0,所以 g x 在 1th 上是减函数.所以 g x min = g h = 9,所以 a Σ 9.hh3. (1) 设数列 an 的公差为 d,由 a5 = a1 h 㔶d,得 d =— h,得 an =— hn h 10.由数列bn的前n和为Sn=hn—1—1 hn C N× 可知,当n=1时,b1=S1=1.h当 n ≤ h 时,bn = Sn — Sn—1 = hn—h.因为h1—h=1h=b1,所以n ≤ 1 时,bn = hn—h.故数列 an 的通项公式为 an =— hn h 10, bn 的通项公式为 bn = hn—h.(2) cn = han = h10—hn = 㔶5—n,bn = hn—h.假设存在正整数 n 使不等式 bncn h 1 Σ bn h cn 成立,即要满足 cn — 1 bn — 1 Σ 0.因为 cn,bn 需满足同时大于 1 或同时小于 1. 则由指数函数性质得 5 — n Σ 0t 或 5 — n € 0tn — h Σ 0. n — h € 0.24解得 h € n € 5.综上所述,存在正整数 n = 3,㔶 时,使不等式 bncn h 1 Σ bn h cn 成立.4. (1) 直线 hx h y = 0 的斜率 k =— h,若 曲线 ƒ x 在 x = h 处的切线与直线 hx h y = 0 垂直,则 ƒ' h = 1,hƒ x = lnx — 1 axh — hx h 1,hƒ' x = 1 — ax — h,x则 ƒ' h = 1 — ha — h = 1,解得 a =— 1.hh(2) 若 ƒ x 存在单调递减区间,即 ƒ' x = 1 — ax — h € 0 在 0t h œ 上有解,即 1 — h € ax,则xx设 g x = 1—hx,则 g x =xh1 — hxhaΣhxh t1 — h ·1 = 1 — 1 — 1 ≤— 1, 则xxxa Σ— 1.5. (1) 由 ƒ x ≤ 0 得 m ≤ x h h 在 0t㔶 上有解(易检验 x = 0 不是已知不等式的解),x则 m ≤ h h,即 m 的最小值为 h h.ƒ 0 Σ 0t n Σ 0t (2) 设 ƒ x = xh — mx h n,则由题意得 ƒ h € 0t 即 㔶 — hm h n € 0tƒ 㔶 Σ 0t 16 — 㔶m h n Σ 0.利用线性规划可得 m h n 的范围为 ht1㔶 .6. (1) y = ƒ x = 㔶 xh—1hx—3 = hx h 1 h 㔶 — t,hxh1hxh1设 u = hx h 1tx C 0t1 t1 ≤ u ≤ 3,则 y = u h 㔶 — ttu C 1t3 .u由已知性质得,当 1 ≤ u ≤ h,即 0 ≤ x ≤ 1 时,ƒ x 单调递减;h所以减区间为 0t 1 ;h当 h ≤ u ≤ 3,即 1 ≤ x ≤ 1 时,ƒ x 单调递增;h所以增区间为 1 t1 ;h由 ƒ 0 =— 3tƒ 1 =— 㔶tƒ 1 =— 11,h3得 ƒ x 的值域为 — 㔶t — 3(2) g x =— x — ha 为减函数,故 g x C — 1 — hat — ha tx C 0t1 .由题意,ƒ x 的值域是 g x 的值域的子集,所以 — 1 — ha ≤— 㔶.所以 a = 3.— ha ≤— 3h7. (1) ① 当 b = 0 时,ƒ x = 1.x故 ƒ x 的单调区区间为 — œt0 , 0t h œ ;无单调增区间.25②当 b Σ 0 时,ƒ'x=b—xh xhhb h.令 ƒ' x = 0,得 x1 = b,xh =— b. ƒ x 和 ƒ' x 的情况如下:x — œt — b — b — bt b bƒ' x—0h0ƒxk³bt h œ— kƒ x 和 ƒ' x 的情况如下:故 ƒ x 的单调减区间为 — œt — b , bt h œ ;单调增区间为 — bt b .③ 当 b € 0 时,ƒ x 的定义域为 D = x C Rh因为ƒ'x=b—x xhhbh€0在D 上恒成立,x Gt— b.故 ƒ x 的单调减区间 — œt — — b , — — bt — b ;无单调增区间.(2) 因为 b Σ 0,x C 1 t 3 ,㔶㔶所以 ƒ x ≤ 1 等价于 b ≤— xh h x,其中 x C 1 t 3 .㔶㔶设 g x =— xh h x,g x 在区间 1 t 3 上的最大值为 g 1 = 1.㔶㔶h㔶则“E C 1 t 3 ,使得 b ≤— xh h x”等价于 b ≤ 1.㔶㔶㔶所以,b 的取值范围是 0t 1 .㔶8. (1) 因为 ƒ x 是 R 上的奇函数,所以ƒ a—ƒ b a—b= ƒ ahƒ —b ah—bΣ 0t又因为 a Σ b,所以 a — b Σ 0,所 以 ƒ a — ƒ b Σ 0,即 ƒ a Σ ƒ b .(2) 由(1)知,a Σ b 时,都有 ƒ a Σ ƒ b ,所以 ƒ x 在 R 上单调递增. 因为 ƒ x 为奇函数,所以 ƒ x — c h ƒ x — ch Σ 0 等价于 ƒ x — c Σ ƒ ch — x ,所以不等式等价于 x — c Σ ch — x,即 ch h c € hx,因为存在实数 x C 1 t 3 使得不等式 ch h c € hx 成立,hh所以 ch h c € 3,即 ch h c — 3 € 0,解得 c 的取值范围为 — 1h 13 t 13—1 .hh9. (1) 若 a =— 1,ƒ x ≤ 3,即 为 x — 1 h x h 1 ≤ 3,当 x ≤— 1 时,1 — x — x — 1 ≤ 3,即有 x ≤— 3;h当 — 1 € x € 1 时,1 — x h x h 1 = h ≤ 3 不成立;当 x ≤ 1 时,x — 1 h x h 1 = hx ≤ 3,解得 x ≤ 3;h综上可得,ƒ x ≤ 3 的解集为 — œt — 3 U 3 t h œ ;hh(2) Ex C R,使得 ƒ x € h 成立,26即有 h Σ ƒ x min, 由函数 ƒ x = x — 1 h x — a ≤ x — 1 — x h a = a — 1 ,当 x — 1 x — a ≤ 0 时,取得最小值 a — 1 ,则 a — 1 € h,即 — h € a — 1 € h,解得 — 1 € a € 3.则实数 a 的取值范围为 — 1t3 .10. (1) 对于任意 x C R,ƒ x=x—a — x—㔶 C — a—㔶ta—㔶 ,可 知 a — 㔶 = 3,解得:a = 1 或 a = 7;(2) 依题意有 — 3 ≤ hm — mh, 即 mh — hm — 3 ≤ 0,解得:m C — 1t3 .11. 由(a)知,函数 ƒ x 的对称轴为 x =—1. 所以b = ha ……Ⓢ由(c)知,x =—1 时,y =0,即a — b h c = 0 ……Ⓢ a由(a)、(b)知 ƒ 1 = 1,即h b h c = 1 ……Ⓧ联立①、②、③得 所以1 11 a = 㔶tb = h tc = 㔶.ƒx 1 h 1 1 1h假设存在 t C R,只要 x C 1tm ,=㔶xhhxh㔶=㔶xh1.就有 ƒ x h t≤ x,即 1㔶x h t h 1 h ≤ x 恒成立.设g x = xh h h t — 1 x h t h 1 ht 只需证“存在 t C R,只要 x C 1tm ,g x = xh h h t — 1 x h t h 1 h ≤ 0 恒成立”,其充要条件为g 1 ≤ 0t g m ≤ 0.取 x = 1,有 解得1 㔶thhh≤1t— 㔶 ≤ t ≤ 0t27取 x = m,有 即1 㔶mhth1h≤mt解得mh — h 1 — t m h th h ht h 1 ≤ 0t所以 m ≤ 1 — t h — 㔶t.1 — t — — 㔶t≤ m ≤ 1 — t h — 㔶 tt因为 0 ≤— t ≤ 㔶,所以 m ≤ 1 h 㔶 h 㔶 = 9.故当 t =— 㔶 时,mmax = 9. 12. (1) 因为 k Σ 0,所以ƒxΣm¤ kxxh h3kΣm¤ mxh —kxh3km€0,因为不等式 mxh — kx h 3km € 0 的解集为 x x €— 3 或 x Σ— h ,所以 — 3,— h 是方程 mxh — kx h 3km = 0 的根,且 m € 0.所以k =— 5tm‹3k = 6k = ht m =— h t5所以 5mxh h k x h 3 Σ 0 ¤hxh — x — 3 € 0 ¤— 1 € x € 3.hh所以不等式 5mxh h k x h 3 Σ 0 的解集为 — 1t 3 .hh(2)因为ƒxΣ1¤ kxxh h3kΣ1kΣ0¤xh—kxh3k€0¤x—3kΣxh,存在 x0 Σ 3,使得 ƒ x0Σ1成立,即存在x0Σ3,使得kΣ 0x成 h 立.x0—3h令 g x = x ,x C 3t h œ , 则 k Σ g xx—3min.h令 x — 3 = t, 则 t C 0t h œ ,y = th3 = t h 9 h 6 ≤ httt ·9 h 6 = 1h.t当且仅当 t = 9 即 t = 3 即 x = 6 时等号成立.t所以 g x min = 1h,所以 k C 1ht h œ .13. (1) 原不等式等价于 x €— 3t或— h — hx ≤ 5— 3 ≤ x ≤ 1t 㔶≤ 5或x Σ 1t hx h h≤5t得73— h ≤ x €— 3 或 — 3 ≤ x ≤ 1 或 1 € x ≤ h t因此不等式的解集为 — 7 t 3 .hh(2) ƒ x = x — 1 h x h 3 ≤ x — 1 — x h 3 = 㔶,要使 th h 3t Σ ƒ x 在 x C R 上有解,只需 th h 3t 大于 ƒ x 的最小值,th h 3t Σ ƒ x min = 㔶 ‹ th h 3t — 㔶 Σ 0 ‹ t €— 㔶 或 t Σ 1.14. (1) (i)当 m = 0 时,ƒ x =— 1hx — 9 为一次函数,有唯一零点.(ii)当 m G 0 时,由 6 = 9 m — 㔶 h h 36m = 9 m — h h h 10t Σ 0,故 ƒ x 必有两个零点.(2) 由条件可得 ƒ x 的图象关于直线 x = 1 对称,所以 — 3 m— = 1 且 m G 0,解得 㔶hm281h m= .5(3) 依题原命题等价于 ƒ x — a Σ 0 有解,即 ƒ x Σ a 有 解. 所以 a € ƒ x max,因为 ƒ x 在 0th 上递减, 所以 ƒ x max = ƒ 0 =— 9,故 a €— 9. 15. (1) 当 n = 1 时,由 p — 1 a1 = ph — a1 ,得 a1 = p . 当 n ≤ h 时,p — 1 Sn = ph — an p — 1 Sn—1 = ph — an—1两式相减,整理得 an = 1 .an—1 pan = p1 pn—1 = ph—n ,从而bn= 㔶 — hn .(2) an 为等比数列, bn 为等差数列,由错位相减法,得Tn=㔶n hn—1.当 n = 1th 时, T1 = Th = 㔶 .当 n ≤ 3 时 , Tn = Tn—1 =hnh——3 n € 0 . 0 € Tn € T3 = 3 , 故 0 € Tn ≤ 㔶 . (3) 当 0 € p € 1 时,存在 M = h ,使得当 n Σ h 时, an Σ 1 恒成立. 当 p Σ 1 时,由 an = ph—n Σ 1 ,得 h — n Σ 0 即 n € h . 所以满足要求的 M 不存在 .16. (1) 由 ƒ h — x = ƒ h h x 得函数 ƒ x 关于 x = h 对称,则 — b—1 = h,ha又 xh — x1 = h 可知 x1 = 1,xh = 3,则 a h b — 1 h 1 = 0,解得 a = 1,b =— 1,则 ƒ x = 1 xh — 㔶 x h 1.3333gx = (2)=— a x — x1 x — xh h h xh — xa xh — xx—x1hh a≤axh—x1hha hht等号成立条件为x0=xhhx1—ha,h设函数 g x 的最大值为 h a ,则 h a = ahhhah=a1h1h =ah 1hh≤㔶,haa故必存在 x0 C R 使得 g x0 ≤ 㔶 成立. 17. (1) 因为 ƒ x = xex,所以 ƒ' x = ex h xex = 1 h x ex 当 x €— 1 时,ƒ' x € 0,所以 ƒ x 在 — œt —1 内单调递减;当 x Σ— 1 时,ƒ' x Σ 0,所以 ƒ x 在 — 1t h œ 内单调递增.又 g' x = hax h 1,由 g' — 1 =— ha h 1 = 0,得 a = 1,h此 时 g x = 1 xh h x = 1 x h 1 h — 1,hhh29显然 g x 在 — œt — 1 内单调递减,在 — 1t h œ 内单调递增,故 a = 1.h(2) 当 x ≤ 0 时恒有 ƒ x ≤ g x ,即 ƒ x — g x = x ex — ax — 1 ≤ 0 恒成立. 故只需 F x = ex — ax — 1 ≤ 0 恒成立,对 F x 求导数可得 F' x = ex —a. 因为 x ≤ 0,所以 F' x = ex — a,若 a ≤ 1,则当 x C 0t h œ 时,F' x Σ 0,F x 为增函数, 从而当 x ≤ 0 时,F x ≤ F 0 = 0,即 ƒ x ≤ g x ;若 a Σ 1,则当 x C 0tlna 时,F' x € 0,F x 为减函数,从而当 x C (0tlna쳌 时,F(x쳌 € F(0쳌 = 0,即 ƒ(x쳌 € g(x쳌,故 ƒ(x쳌 ≤ g(x쳌 不恒成立.故 a 的取值范围为:a ≤ 1.18. (1) 设公差为 d,由 a1,ah,a㔶 成等比数列得:ah = a a1 㔶,h即 1 h d h = 1 ·1 h 3d ,求得:d = 1 或 d = 0 舍去 .所以na=1hn—1·1=n,S=n1han·n=h1nnhh1.(2) A = 1 h 1 h … h 1 = h 1 h 1 h … h1 =h 1— 1 ,S1 ShSn1×h h×3n× nh1nh1B=1h1h…1 =1h1h…1 =h—1 =h 1— 1 ,a0h a1hanh—1h0 h1hn—1hn—1hn因为当 n ≤ h 时,hn Σ n h 1,即 1 — 1 Σ 1 — 1 .hnnh1所以 A € B.(3) 要使 ah h ah ≤ k ·ah mtn C Nh 成立,只须:k ≤ amh hahn mtn C Nh 恒成立,即 k ≤mnmhnahmhnahmhah n ahmhn min因为= amh hnahahmhnmhhnh mhn h=mhhnh mhhnhhhmn,又因为hmn ≤ mh h nh所以 mhhnhmhhnhhhmn≤ mh mhhhnhhn=h1 h当且仅当m = n 时等号成立所以 k ≤ 1 时,对任意的正整数 m,n,不等式 ah h ah ≤ k ·ah 都成立,hmnmhn即实数 k 存在,最大值为 1 .h19. (1) 当 t = 1 时,ƒ x = x — 3 h hx h 1 ,由 ƒ x ≤ 5 得 x — 3 h hx h 1 ≤ 5,当 x ≤ 3 时,不等式等价为 x — 3 h hx h 1 ≤ 5,即 3x ≤ 7,得 x ≤ 7,此时 x ≤ 3,3当 — 1 € x € 3 时,不等式等价为 — x — 3 h hx h 1 ≤ 5,即 x ≤ 1,此时 1 ≤ x € 3,h当 x €— 1 时,不等式等价为 3 — x — hx — 1 ≤ 5,解得 x ≤— 1,得 x ≤— 1,h综上,x ≤ 1 或 x ≤— 1,即不等式的解集为 — œt — 1 U 1t h œ .ƒ a h a — 3 = h a — 3 h ha h t(2)≤ ha h t — ha — 6= th6t则命题 ƒ a h a — 3 € h,等价为 ƒ a h a — 3 min € h,即 t h 6 € h,则 — h € t h 6 € h,即 — t € t €— 㔶,即 t 的取值范围是 — tt — 㔶 .20. (1) 当 a = 3 时, x — 1 — hx — 1 Σ— 1 ,30所以x≤1 x—1—hx—1Σ—1或x≤1h1 — x — 1 — hx Σ— 1或1€ x € 1h1 — x — hx — 1 Σ— 1所以x≤ 1h或1€ x € 1h,x Σ— 1 h — 3x Σ— 1所以 — 1 € x ≤ 1 或1 € x € 1,即 — 1 € x € 1,hh所以不等式的解集为 — 1t1 .— xt x ≤ 1(2) ƒ x = x — 1 — hx — 1 =h — 3xt 1 € x € 1hxt 所以 ƒ x C — œt 1 ,所以 ƒ x 的最大值为 1.x≤ 1hhh因为不等式有解,所以1 Σ log1a,所以1a Σ 1 h,即a Σ 3.h33321. (1) 显然 a G 0,当 a Σ 0 时,解集为 — 1 t 3 ,— 1 =— 6,3 = h,无解;aaaa当 a € 0 时,解集为 3 t — 1 ,令 — 1 = h,3 =— 6,a =— 1,aaaah综上所述,a =— 1.h(2) 当 a = h 时,令 h x = ƒ hx h 1 — ƒ x — 1 = |㔶x h 1| — |hx — 3| =— hx —㔶t x ≤— 1 t㔶6x — ht — 1 € x € 3 t㔶hhx h 㔶t x ≤ 3 .h由此可知,h x 在 — œt — 1 单调减,在 — 1 t 3 和 3 t h œ 单调增,㔶㔶hh则当 x =— 1 时,h x 取到最小值 — 7,㔶h由题意知,— 7 ≤ 7 — 3m,则实数 m 的取值范围是 — œt 7 .hh22. (1) a = 1 时 ,ƒ x = xh h ax — lnx x Σ 0 ,所 以 ƒ' x = hx h 1 — 1 = hx—1 xh1 ,xxx C 0t 1 ,ƒ' x € 0,x C 1 t h œ ,ƒ' x Σ 0,hhƒ x 的减区间为 0t 1 ,增区间 1 t h œ .hh(2) ƒ' x = hx h a — 1.x因为 ƒ x 在区间 0t1 上是减函数,所以 ƒ' x ≤ 0 对任意 x C 0t1 恒成立,即 hx h a — 1 ≤ 0 对任意 x C 0t1 恒成立,x所以 a ≤ 1 — hx 对任意 x C 0t1 恒成立,x令 g x = 1 — hx,x所以 a ≤ g x min,31易知 g x 在 0t1 单调递减,所 以 g x min = g 1 =— 1. 所以 a ≤— 1.(3) 设切点为 M ttƒ t ,ƒ' x = hx h a — 1,x切线的斜率 k = ht h a — 1,又切线过原点 k = ƒ t ,ttƒ t = ht h a — 1,即:th h at — lnt = hth h at — 1.tt所以 th — 1 h lnt = 0,存在性:t = 1 满足方程 th — 1 h lnt = 0,所以 t = 1 是方程 th — 1 h lnt = 0 的根.再证唯一性:设 t = th — 1 h lnt, ' t = ht h 1 Σ 0,tt 在 0t h œ 单调递增,且 1 = 0, 所以方程 th — 1 h lnt = 0 有唯一解.综上,切点的横坐标为 1.23. (1) ① 当 — a ≤ 0 即 a ≤ 0 时,只需 ƒ 0 = a ≤ 0 即可,h所以 a ≤ 0 满足题意.② 当 0 €— a € 1 即 — h € a € 0 时不合题意.h③ 当 — a ≤ 1 即 a ≤— h 时,只需 ƒ 0 = a ≤ 0 即可,h所以 a ≤— h.所以 a ≤— h 或 a ≤ 0.(2) 解法一:如果 |ƒ 1 | 与 |ƒ — 1 | 中有一个不小于 |a|,那么命题成立,而 |ƒ 1 | = |1 h a h b| ≤ |a| ¤ 1 h b 1 h ha h b ≤ 0,此不等式在平面直角坐标系下表示的区域记为M(图略),|ƒ — 1 | = |1 — a h b| ≤ |a| ¤ 1 h b 1 — ha h b ≤ 0,此不等式在平面直角坐标系下表示的区域记为 N(图略).由于 M U N = xty xty C R ,故 |ƒ 1 | ≤ |a| 与 |ƒ — 1 | ≤ |a| 至少有一个成立. 解法二:当 a = 0 时,|ƒ x0 | ≤ 0 显然成立. 当 a Σ 0,假设 6x C — 1t1 t|ƒ x | € a 恒成立,即 — a € ƒ x € x, 所 以 — a € ƒ 1 = 1 h a h b € at— a € ƒ — 1 = 1 — a h b € at 所 以 — 1 — ha € b €— 1t— 1 € b €— 1 h hat 所以 b C t.当 a €0 时,同理可得 b C t,故假设不成立,综上知原命题结论成立.24. 对于方程 ahxh h ax — h = 0.32。
微专题51数列中的存在性问题
微专题51数列中的存在性问题数列中的存在性问题一般转化为求不定方程正整数解的问题,往往涉及数论、函数、例题:已知a n=2n,是否存在正整数p,q,r(p<q<r),使得a p,a q,a r成等差数列?并说明理由.变式1已知a n=2n,是否存在三个互不相等正整数p,q,r,且p,q,r成等差数列,使得a p-1,a q-1,a r-1成等比数列?并说明理由.变式2已知a n=n+2,是否存在正整数p,q,r(p<q<r),使得a p,a q,a r成等比数列?并说明理由.串讲1已知数列是各项均不为0的等差数列,S n 为其前n 项和,且满足a n 2=S 2n -1,令b n =1a n ·a n +1,数列{b n }的前n 项和{b n }为T n .(1)求数列{a n }的通项公式及数列{b n }的前n 项和T n ;(2)是否存在正整数m ,n(1<m<n),使得T 1,T m ,T n 成等比数列?若存在,求出所有的m ,n 的值,若不存在,请说明理由.串讲2已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n+1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A tB t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.(2018·无锡期末)已知数列{a n }满足⎝⎛⎭⎫1-1a 1⎝⎛⎭⎫1-1a 2…⎝⎛⎭⎫1-1a n =1a n,n ∈N *,S n 是数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)若a p ,30,S q 成等差数列,a p ,18,S q 成等比数列,求正整数p ,q 的值;(3)是否存在k ∈N *,使得a k a k +1+16为数列{a n }中的项?若存在,求出所有满足条件的k 的值;若不存在,请说明理由.(2018·扬州期末)已知各项都是正数的数列{a n }的前n 项和为S n ,且2S n =a n 2+a n ,数列{b n }满足b 1=12,2b n +1=b n +b na n.(1)求数列{a n },{b n }的通项公式;(2)设数列{c n }满足c n =b n +2S n,求和c 1+c 2+…+c n ;(3)是否存在正整数p ,q ,r (p <q <r ),使得b p ,b q ,b r 成等差数列?若存在,求出所有满足要求的p ,q ,r ,若不存在,请说明理由.答案:(1)a n =n ,b n =n 2n ;(2)12-1(n +1)2n +1;(3)存在,p =1,q =3,r =4.或p =2m +1-m -1,q =2m +1-m ,r =2m +1.解析:(1)2S n =a n 2+a n ①,2S n +1=a n +12+a n +1②,②-①得2a n +1=a n +12-a n 2+a n +1-a n ,即(a n +1+a n )(a n +1-a n -1)=0.1分因为{a n }是正数数列,所以a n +1-a n -1=0,即a n +1-a n =1,所以{a n }是等差数列,其中公差为1,2分在2S n =a n 2+a n 中,令n =1,得a 1=1,所以a n =n ,由2b n +1=b n +b n a n 得b n +1n +1=12·b nn,所以数列⎩⎨⎧⎭⎬⎫b n n是等比数列,其中首项为12,公比为12,所以b n n =⎝⎛⎭⎫12n ,即b n =n2n .(注:也可累乘求{b n }的通项.)3分(2)c n =b n +2S n =n +2(n 2+n )2n +1,裂项得c n =1n ·2n -1(n +1)2n +1,所以c 1+c 2+…+c n =12-1(n +1)2n +1.3分(3)假设存在正整数p ,q ,r (p <q <r ),使得b p ,b q ,b r 成等差数列,则b p +b r =2b q ,即p2p+r 2r =2q 2q , 因为b n +1-b n =n +12n +1-n 2n =1-n 2n +1,所以数列{b n }从第二项起单调递减,当p =1时,12+r2r=2q2q , 若q =2,则r 2r =12,此时无解;7分若q =3,则r 2r =14,因为{b n }从第二项起递减,故r =4,所以p =1,q =3,r =4符合要求,若q ≥4,则b 1b q ≥b 1b 4≥2,即b 1≥2b q ,不符合要求,此时无解;9分 当p ≥2时,一定有q -p =1,否则若q -p ≥2,则b p b q ≥b p b p +2=4p p +2=41+2p ≥2,即b p ≥2b q ,矛盾,11分所以q -p =1,此时r 2r =12p ,令r -p =m +1,则r =2m +1,所以p =2m +1-m -1,q =2m+1-m ,13分综上得,存在p =1,q =3,r =4或p =2m +1-m -1,q =2m +1-m ,r =2m +1满足要求.14分。
2025年高考一轮复习-专题复习- 恒成立与存在性问题【含解析】
专题8:恒成立与存在性问题【原卷版】1.设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是()A .3[,1)2e-B .33[,24e -C .33[,)24e D .3[,1)2e2.设函数()(21)x f x e x ax a =--+,其中1a <,若存在两个整数1x ,2x ,使得1()f x ,2()f x 都小于0,则a 的取值范围是()A .25[3e ,3)2eB .3[2e-,3)2eC .25[3e ,1)D .3[2e,1)3.设函数()(21)x f x x e =-,()(1)g x a x =-,其中1a <,若存在唯一的整数0x 使得00()()f x g x <,则a 的取值范围是()A .3[2e-,1)B .3[2e,1)C .3[2e-,34D .3[2e,344.设函数()(31)x f x e x ax a =--+,其中1a <,若有且只有一个整数0x 使得0()0f x ,则a 的取值范围是()A .23(,4e B .23[,)4e C .2(,1)eD .2[,1)e5.已知函数2()()f x x a lnx =-,曲线()y f x =上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是()A .21(,0)e-B .(1,0)-C .21(,)e-+∞D .(1,)-+∞6.已知函数1()()xf x x a e =-,曲线()y f x =上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是()A .2(e -,)+∞B .2(e -,0)C .21(e-,)+∞D .21(e-,0)7.已知21()(0)2f x alnx x a =+>,若对任意两个不等的正实数1x ,2x 都有1212()()2f x f x x x -- 恒成立,则a 的取值范围是()A .(1,)+∞B .[1,)+∞C .(0,1]D .(0,1)8.已知21()2f x alnx x =+,若对任意两个不等的正实数1x ,2x 都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是()A .[0,)+∞B .(0,)+∞C .(0,1)D .(0,1]9.已知函数2()(1)f x aln x x =+-,若对p∀,(0,1)q ∈,且p q≠,有(1)(1)2f p f q p q+-+>-恒成立,则实数a 的取值范围为()A .(,18)-∞B .(-∞,18]C .[18,)+∞D .(18,)+∞10.已知函数21()(1)2f x aln x x =+-,在区间(0,1)内任取两个数p ,q ,且p q ≠,不等式(1)(1)3f p f q p q+-+>-恒成立,则实数a 的取值范围是()A .[8,)+∞B .(3,8]C .[15,)+∞D .[8,15]11.设函数3()(33)(2)x x f x e x x ae x x =-+--- ,若不等式()0f x 有解,则实数a 的最小值为()A .21e-B .22e-C .11e-D .212e +12.设函数3()()(31)(3)f x x lnx x lnx a x =-++-,若不等式()0f x 有解,则实数a 的最小值为()A .21e-B .22e -C .212e +D .11e-13.设函数323()(62)22x x f x e x x x ae x =+-+--,若不等式()0f x 在[2-,)+∞上有解,则实数a 的最小值为()A .312e--B .322e--C .3142e --D .11e--14.已知函数2()()()lnx x b f x b R x+-=∈,若存在1[2x ∈,2],使得()()f x x f x >-' ,则实数b 的取值范围是()A.(,-∞B .3(,)2-∞C .9(,4-∞D .(,3)-∞15.已知()x f x xe =,2()(1)g x x a =-++,若存在1x ,2x R ∈,使得21()()f x g x 成立,则实数a 的取值范围为()A .1[e,)+∞B .1[e-,)+∞C .(0,)e D .1[e-,0)16.设过曲线()2cos g x ax x =+上任意一点处的切线为1l ,总存在过曲线()x f x e x =--上一点处的切线2l ,使得12//l l ,则实数a 的取值范围为()A .[1,)+∞B .[1,]+∞C .(-∞,3]-D .(,3)-∞-17.设函数24(),()xx f x g x xe x+==,若对任意1x ,2(0x ∈,]e ,不等式12()()1g x f x + k k恒成立,则正数k 的取值范围为()A .141(,]e e e+B .(e ,4]C .1(0,]4e e e+-D .14(0,]4e e +-18.设e 表示自然对数的底数,函数22()()()()4x e a f x x a a R -=+-∈,若关于x 的不等式1()5f x有解,则实数a 的值为.19.已知21()2f x alnx x x =++,若对任意两个不等的正实数1x ,2x ,都有122212()()1f x f x x x -<-恒成立,则a 的取值范围是.20.(1)设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是.(2)已知()x f x xe =,2()(1)g x x a =-++,若1x ∃,2x R ∈,使得21()()f x g x 成立,则实数a 的取值范围.21.当(0,)x ∈+∞时,不等式22(1)0c x cx lnx cx -++ 恒成立,则实数c 的取值范围是.22.若关于x 的不等式(1)()0x ax e aex +- 在(0,)+∞上恒成立,则实数a 的取值范围是.23.关于x 的不等式(1)()0ax lnx ax -+ 在(0,)+∞上恒成立,则实数a 的取值范围是.24.已知关于x 的不等式321ax x x lnx x+++ 在(0,)+∞上恒成立,则实数a 的取值范围是.25.已知函数()1(0)f x x alnx a =--<,4()g x x=,若对任意1x ,2(0x ∈,1]都有1212|()()||()()|f x f x g x g x --成立,则实数a 的取值范围为.26.若()1f x x alnx =--,()xex g x e=,0a <,且对任意1x ,2[3x ∈,124]()x x ≠,121211|()()|||()()f x f xg x g x -<-的恒成立,则实数a 的取值范围为.27.设过曲线()3x f x e x a =--+上任意一点处的切线为1l ,总存在过曲线()(1)2cos g x x a x =-+上一点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为.28.设函数2221(),()xe x e xf xg x x e+==,对任意1x 、2(0,)x ∈+∞,不等式12()()1f x g x k k+ ,恒成立,则正数k 的取值范围是.29.已知函数()1()f x x alnx a R =--∈,()xe g x x=,当0a <时,且对任意的1x ,2[4x ∈,125]()x x ≠,1212|()()||()()|f x f x g x g x -<-恒成立,则实数a 的取值范围为.专题8:恒成立与存在性问题【解析版】1.设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是()A .3[,1)2e-B .33[,24e -C .33[,)24e D .3[,1)2e【解析】设()(21)x g x e x =-,y ax a =-,由题意知存在唯一的整数0x 使得0()g x 在直线y ax a =-的下方,()(21)2(21)x x x g x e x e e x '=-+=+ ,∴当12x <-时,()0g x '<,当12x >-时,()0g x '>,∴当12x =-时,()g x 取最小值122e --,当0x =时,(0)1g =-,当1x =时,g (1)0e =>,直线y ax a =-恒过定点(1,0)且斜率为a ,故(0)1a g ->=-且1(1)3g e a a --=--- ,解得312a e< 故选:D .2.设函数()(21)x f x e x ax a =--+,其中1a <,若存在两个整数1x ,2x ,使得1()f x ,2()f x 都小于0,则a 的取值范围是()A .25[3e ,3)2eB .3[2e-,3)2eC .25[3e ,1)D .3[2e,1)【解析】函数()(21)x f x e x ax a =--+,其中1a <,设()(21)x g x e x =-,y ax a =-,存在两个整数1x ,2x ,使得1()f x ,2()f x 都小于0,∴存在两个整数1x ,2x ,使得()g x 在直线y ax a =-的下方,()(21)x g x e x '=+ ,∴当12x <-时,()0g x '<,∴当12x =-时,121[()]()22min g x g e -=-=-.当0x =时,(0)1g =-,g (1)0e =>,直线y ax a =-恒过(1,0),斜率为a ,故(0)1a g ->=-,且1(1)3g e a a --=-<--,解得32a e <.(2)2g a a --- ,解得253a e,a ∴的取值范围是25[3e ,32e.故选:A .3.设函数()(21)x f x x e =-,()(1)g x a x =-,其中1a <,若存在唯一的整数0x 使得00()()f x g x <,则a 的取值范围是()A .3[2e-,1)B .3[2e,1)C .3[2e-,34D .3[2e,34【解析】设()(21)x f x e x =-,()(1)g x a x =-,由存在唯一的整数0x 使得00()()f x g x <,()(21)2(21)x x x f x e x e e x '=-+=+ ,∴当12x <-时,()0f x '<,当12x >-时,()0f x '>,∴当12x =-时,()f x 取最小值122e --,当0x =时,(0)1f =-,当1x =时,f (1)0e =>,直线()(1)g x a x =-恒过定点(1,0)且斜率为a ,故(0)1a f ->=-且1(1)3f e a a --=--- ,解得312a e< 故选:B .4.设函数()(31)x f x e x ax a =--+,其中1a <,若有且只有一个整数0x 使得0()0f x ,则a 的取值范围是()A .23(,4e B .23[,)4e C .2(,1)eD .2[,1)e【解析】设()(31)x g x e x =-,()h x ax a =-,则()(32)x g x e x '=+,2(,3x ∴∈-∞-,()0g x '<,()g x 单调递减,2(3x ∈-,)+∞,()0g x '>,()g x 单调递增,23x ∴=-,取最小值233e --,(0)1(0)g a h ∴=-<-=,g (1)h -(1)20e =>,直线()h x ax a =-恒过定点(1,0)且斜率为a ,1(1)(1)420g h e a -∴---=-+>,2a e∴>,1a <,a ∴的取值范围2(e,1).故选:C .5.已知函数2()()f x x a lnx =-,曲线()y f x =上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是()A .21(,0)e-B .(1,0)-C .21(,)e-+∞D .(1,)-+∞【解析】 曲线()y f x =上存在不同的两点,使得曲线在这两点处的切线都与y 轴垂直,()20af x xlnx x x∴'=+-=有两个不同的解,即得222a x lnx x =+有两个不同的解,设222y x lnx x =+,则44y xlnx x '=+,10x e ∴<<,0y '<,函数递减,1x e>,0y '>,函数递增,1x e∴=时,函数取得极小值2e --,x →+∞,y →+∞,20e a -∴-<<,故选:A .6.已知函数1()()xf x x a e =-,曲线()y f x =上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是()A .2(e -,)+∞B .2(e -,0)C .21(e-,)+∞D .21(e-,0)【解析】 曲线()y f x =上存在不同的两点,使得曲线在这两点处的切线都与y 轴垂直,()(1)0x f x a x e -∴'=+-=有两个不同的解,即得(1)x a x e -=-有两个不同的解,设(1)x y x e -=-,则(2)x y x e -'=-,2x ∴<,0y '<,函数递减,2x >,0y '>,函数递增,2x ∴=时,函数取得极小值2e --,x →+∞,0y →,20a e -∴>>-.故选:D.7.已知21()(0)2f x alnx x a =+>,若对任意两个不等的正实数1x ,2x 都有1212()()2f x f x x x -- 恒成立,则a 的取值范围是()A .(1,)+∞B .[1,)+∞C .(0,1]D .(0,1)【解析】设对任意两个不等的正实数12x x >都有2>恒成立,则1212()()22f x f x x x -- ,1122()2()2f x x f x x ∴-- ,令21()()222g x f x x alnx x x =-=+-,则12()()g x g x ,所以函数()g x 是增函数,()20(0)ag x x x x'=+-> 恒成立,22a x x ∴- 恒成立,222(1)1x x x -=--+ ,∴当1x =时,2()2g x x x =-取得最大值g (1)1=,1a ∴ .即a 的取值范围是[1,)+∞.故选:B .8.已知21()2f x alnx x =+,若对任意两个不等的正实数1x ,2x 都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是()A .[0,)+∞B .(0,)+∞C .(0,1)D .(0,1]【解析】对任意两个不等的正实数1x ,2x ,都有1212()()0f x f x x x ->-恒成立则当0x >时,()0f x '>恒成立()0af x x x'=+>在(0,)+∞上恒成立则2()maxa x >-而20x -<,则0a 故选:A .9.已知函数2()(1)f x aln x x =+-,若对p∀,(0,1)q ∈,且p q≠,有(1)(1)2f p f q p q+-+>-恒成立,则实数a 的取值范围为()A .(,18)-∞B .(-∞,18]C .[18,)+∞D .(18,)+∞【解析】因为2()(1)f x aln x x =+-,所以2(1)[(1)1](1)f x aln x x +=++-+,所以(1)2(1)2af x x x '+=-++.因为p,(0,1)q ∈,且p q≠,所以(1)(1)2f p f q p q+-+>-恒成立(1)(1)2(1)(1)f p f q p q +-+⇔>+-+恒成立(1)2f x '⇔+ 恒成立,即2(1)2(01)2ax x x -+<<+ 恒成立,所以22(2)(01)a x x >+<<恒成立,又因为(0,1)x ∈时,282(2)18x <+<,所以18a .故选:C .10.已知函数21()(1)2f x aln x x =+-,在区间(0,1)内任取两个数p ,q ,且p q ≠,不等式(1)(1)3f p f q p q+-+>-恒成立,则实数a 的取值范围是()A .[8,)+∞B .(3,8]C .[15,)+∞D .[8,15]【解析】由函数21()(1)2f x aln x x =+-,22111(1)[(1)1]1)(2)222f x aln x x aln x x x ∴+=++-+=+---(1)12af x x x ∴'+=--+,p ,(0,1)q ∈,且p q ≠,不等式(1)(1)3f p f q p q +-+>-恒成立等价式(1)(1)3(1)(1)f p f q p q +-+>+-+恒成立,转化为(1)3f x '+>恒成立,即132ax x -->+,(01)x <<恒成立,整理可得:268a x x >++,01x << ,∴函数2268(3)1y x x x =++=+-在(0,1)是递增函数.15max y ∴<故得15a .故选:C .11.设函数3()(33)(2)x x f x e x x ae x x =-+--- ,若不等式()0f x 有解,则实数a 的最小值为()A .21e-B .22e-C .11e-D .212e +【解析】()0f x 可化为3(33)0x x e x x ae x -+-- ,即333xx a x x e -+-,令3()33xx F x x x e =-+-,则21()33(1)(33)x xx F x x x x e e--'=-+=-++,令()33x G x x e -=++,则()3x G x e -'=-,故当3x e -=,即3x ln =-时,()33x G x x e -=++有最小值(3)3363(23)0G ln ln ln -=-+=->,故当[2x ∈-,1)时,()0F x '<,(1,)x ∈+∞时,()0F x '>;故()F x 有最小值F (1)111331ee=-+-=-;故实数α的最小值为11e-.故选:C .12.设函数3()()(31)(3)f x x lnx x lnx a x =-++-,若不等式()0f x 有解,则实数a 的最小值为()A .21e-B .22e-C .212e +D .11e-【解析】若不等式()0f x 有解,则31()(3)3a lnx lnx x-++ 有解,令31()()(3)3g x lnx lnx x=-++,则11()(1)[3(1)]g x lnx lnx xx'=-++,令1()3(1)h x lnx x=++,则231()x h x x-'=,令()0h x '>,解得:13x >,令()0h x '<,解得:103x <<,故()h x 在1(0,3递减,在1(3,)+∞,故1()()3(23)03min h x h ln ==->,故()0h x >,令()0g x '>,即10lnx ->,解得:x e >,令()0g x '<,即10lnx -<,解得:0x e <<,故()g x 在(0,)e 递减,在(,)e +∞递增,故()min g x g =(e )11e=-,故a 的最小值是11e-,故选:D .13.设函数323()(62)22x x f x e x x x ae x =+-+--,若不等式()0f x 在[2-,)+∞上有解,则实数a 的最小值为()A .312e--B .322e--C .3142e--D .11e--【解析】323()(62)202x x f x e x x x ae x =+-+-- 在[2-,)+∞上有解3232(62)2x x ae e x x x x ⇔+-+- 在[2-,)+∞上有解323(62)22[](2)x min xe x x x x a x e +-+-⇔- .令32323(62)32()622x x xe x x x xx g x x x x e e+-+-==+-+-,则211()336(1)(36)x xx g x x x x x ee -'=+--=-++,[2x ∈- ,)+∞,∴当[2x ∈-,1)时,()0g x '<,()g x 在区间[2-,1)上单调递减;当(1,)x ∈+∞时()0g x '>,()g x 在区间(1,)+∞上单调递增;∴当1x =时,()g x 取得极小值g (1)313116222e e=+-+-=--,也是最小值,3122a e∴-- ,3142a e∴-- .故选:C .14.已知函数2()()()lnx x b f x b R x+-=∈,若存在1[2x ∈,2],使得()()f x x f x >-' ,则实数b 的取值范围是()A.(,-∞B .3(,)2-∞C .9(,4-∞D .(,3)-∞【解析】2()()lnx x b f x x+-=,0x >,2212()()()x x b lnx x b f x x +----∴'=,12()()()x x b f x xf x x+-∴+'=,存在1[2x ∈,2],使得()()0f x xf x +'>,12()0x x b ∴+->12b x x∴<+,设1()2g x x x=+,()max b g x ∴<,2221()2x g x x -∴'=,当()0g x '=时,解得:2x =,当()0g x '>时,即22x < 时,函数单调递增,当()0g x '<时,即122x <时,函数单调递减,∴当2x =时,函数()g x 取最大值,最大值为g (2)94=,94b ∴<,故选:C .15.已知()x f x xe =,2()(1)g x x a =-++,若存在1x ,2x R ∈,使得21()()f x g x 成立,则实数a 的取值范围为()A .1[e,)+∞B .1[e-,)+∞C .(0,)e D .1[e-,0)【解析】1x ∃,2x R ∈,使得21()()f x g x 成立,等价于()()min max f x g x ,()(1)x x x f x e xe x e '=+=+,当1x <-时,()0f x '<,()f x 递减,当1x >-时,()0f x '>,()f x 递增,所以当1x =-时,()f x 取得最小值1()(1)min f x f e=-=-;当1x =-时()g x 取得最大值为()(1)max g x g a =-=,所以1a e- ,即实数a 的取值范围是1a e- ,故选:B .16.设过曲线()2cos g x ax x =+上任意一点处的切线为1l ,总存在过曲线()x f x e x =--上一点处的切线2l ,使得12//l l ,则实数a 的取值范围为()A .[1,)+∞B .[1,]+∞C .(-∞,3]-D .(,3)-∞-【解析】设()2cos g x ax x =+上为1(x ,1())g x ,()f x 上切点为2(x ,2())f x ,依题得1x R ∀∈,2x R ∃∈,有112sin 1x a x e -=--,[2a -,2](,1)a +⊆-∞-易得3a <-.故选:D .17.设函数24(),()xx f x g x xe x+==,若对任意1x ,2(0x ∈,]e ,不等式12()()1g x f x + k k恒成立,则正数k 的取值范围为()A .141(,]e e e+B .(e ,4]C .1(0,]4e e e+-D .14(0,]4e e +-【解析】对任意1x ,2(0x ∈,]e ,不等式12()()1g x f x +k k恒成立,等价于12()()()()1max min g x f x + k k恒成立,2444()24x f x x x x x x+==+⋅= ,当且仅当2x =时等号成立,∴2()4()min f x =k k;又()x g x xe =,()(1)0x x x g x e xe x e ∴'=+=+>在(0,]e 上恒成立,则11()(11e max g x e +++k k ,∴141e e ++ k k,又0>k ,解得1404e e +<-k.∴正数k 的取值范围为14(0,4e e +-.故选:D .18.设e 表示自然对数的底数,函数22()()()()4x e a f x x a a R -=+-∈,若关于x 的不等式1()5f x有解,则实数a 的值为15.【解析】22()()()()4x e a f x x a a R -=+-∈,若关于x 的不等式1()5f x 有解,有解,由y =,可得函数y 的几何意义为点(,)2xe x 和点(,)2a a 的距离,由于两点在曲线2xe y =和直线20x y -=运动,当直线20x y t -+=与曲线相切,设切点为(,2me m ,可得切线的斜率为122m e =,解得0m =,则切点为1(0,2,可得切点到直线20x y -=的距离为5d =,有解,且等号成立,由20x y -=和122y x =-+联立,可得交点为1(5,1)10,即有15a =,故答案为:15.19.已知21()2f x alnx x x =++,若对任意两个不等的正实数1x ,2x ,都有122212()()1f x f x x x -<-恒成立,则a 的取值范围是(-∞,14-.【解析】设12x x >,则221212()()f x f x x x -<-,221122()()f x x f x x ∴-<-,令221()()2g x f x x alnx x x =-=-+,12()()g x g x ∴<,()g x ∴在(0,)+∞上单调递减,()10ag x x x∴'=-+ ,2211(24a x x x ∴-=--,14x ∴=时,21()4min x x -=-,14a ∴-.a ∴的取值范围是(-∞,14-.故答案为:(-∞,1]4-.20.(1)设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是3[2e,1).(2)已知()x f x xe =,2()(1)g x x a =-++,若1x ∃,2x R ∈,使得21()()f x g x 成立,则实数a 的取值范围.【解析】(1)函数()(21)x f x e x ax a =--+,其中1a <,设()(21)x g x e x =-,y ax a =-,存在唯一的整数0x ,使得0()0f x <,∴存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方,()(21)x g x e x '=+ ,∴当12x <-时,()0g x '<,∴当12x =-时,121[()]()22min g x g e -=-=-.当0x =时,(0)1g =-,g (1)0e =>,直线y ax a =-恒过(1,0),斜率为a ,故(0)1a g ->=-,且1(1)3g e a a --=--- ,解得32a e.a ∴的取值范围是3[,1)2e.(2)1x ∃,2x R ∈,使得21()()f x g x 成立,等价于()()min max f x g x ,()x f x xe =- ,()(1)x f x x e ∴'=+,当1x <-时,()0f x '<;1x >-时,()0f x '>.1x ∴=-时,1()min f x e=-.2()(1)g x x a =++ ,()max g x a ∴=.1a e∴- ,∴实数m 的取值范围是1[,)e-+∞.故答案分别为:(1)3[,1)2e;(2)1[,)e-+∞.21.当(0,)x ∈+∞时,不等式22(1)0c x cx lnx cx -++ 恒成立,则实数c 的取值范围是1[e,){}e +∞- .【解析】当(0,)x ∈+∞时,不等式22(1)0c x cx lnx cx -++ 恒成立,即(0,)x ∈+∞时,()(1)0xc lnx xc -+ 恒成立,即(0,)x ∈+∞时,1lnx c xc x ⎧⎪⎪⎨⎪-⎪⎩或1lnxc xc x ⎧⎪⎪⎨⎪-⎪⎩,令()lnx f x x=,21()lnx f x x-'=,令()0f x '>,解得:0x e <<,令()0f x '<,解得:x e >,()f x ∴在(0,)e 递增,在(,)e +∞递减,()max f x f∴=(e )1e=,而10y x =-<,又当1x e=时,2()(1)(1)0c xc lnx xc e-+=+ 符合条件,c e ∴=-,故1c e,或c e =-,故答案为:1[e,){}e +∞- .22.若关于x 的不等式(1)()0x ax e aex +- 在(0,)+∞上恒成立,则实数a 的取值范围是[0,1].【解析】当0a =时,不等式(1)()0x ax e aex +- 即为0x e >显然成立;当0a >时,0x >,10ax +>,只要0x e aex - ,即有xe ae x的最小值,令()xe g x x=,2(1)()x e x g x x -'=,当1x >时,()0g x '>,()g x 递增;当01x <<时,()0g x '<,()g x 递减.即有1x =处取得最小值,且为e ,则ae e ,解得01a < ;当0a <时,0x >,0x e aex ->,只要10ax + 恒成立,由于11ax + ,则0a <不恒成立.综上可得a 的范围是[0,1].故答案为:[0,1].23.关于x 的不等式(1)()0ax lnx ax -+ 在(0,)+∞上恒成立,则实数a 的取值范围是1a e-或a e =.【解析】0a <,则0lnx ax + ,令y lnx ax =+,则1y a x'=+,10x a∴<<-时,0y '>,1x a>-时,0y '<1x a ∴=-时,函数取得最大值1(1ln a--,0lnx ax + ,1()10ln a ∴-- ,1a e∴- ;0a =时,则0lnx ,在(0,)+∞上不恒成立,不合题意;0a >时,100ax lnx ax -⎧⎨+⎩ 或100ax lnx ax -⎧⎨+⎩,a e =,综上,1a e-或a e =.24.已知关于x 的不等式321ax x x lnx x+++ 在(0,)+∞上恒成立,则实数a 的取值范围是(-∞,1]-.【解析】当0a 时,取1x =,则3222ax x x a ++=+>,11lnx x+=,不等式321ax x x lnx x+++ 在(0,)+∞上不恒成立,0a ∴<.①当1a -时,3232ax x x x x x ++-++ ,令32()g x x x x =-++,2()321(31)(1)g x x x x x '=-++=-+-,当(0,1)x ∈时,()0g x '>,()g x 为增函数,当(1,)x ∈+∞时,()0g x '<,()g x 为减函数,()g x ∴在(0,)+∞上的极大值也是最大值为g (1)1=.又1()f x lnx x=+,22111()x f x x x x-'=-=,当(0,1)x ∈时,()0f x '<,()f x 为减函数,当(1,)x ∈+∞时,()0f x '>,()f x 为增函数,()f x ∴在(0,)+∞上的极小值也是最小值为f (1)11ln g =+=(1).()()f x g x ∴ 在(0,)+∞上恒成立;②当(1,0)a ∈-时,取1x =,则3221ax x x a ++=+>,11lnx x+=,不等式321ax x x lnx x+++在(0,)+∞上不恒成立.综上,1a - .故答案为:(-∞,1]-.25.已知函数()1(0)f x x alnx a =--<,4()g x x=,若对任意1x ,2(0x ∈,1]都有1212|()()||()()|f x f xg x g x --成立,则实数a 的取值范围为[3-,0).【解析】函数()f x 的定义域为(0,)+∞,则当0a <时,()10a f x x'=->恒成立,此时,函数()f x 在(0,)+∞上是增函数,又函数4()g x x=,在(0,1]上是减函数不妨设1201x x < ,则1221|()()|()()f x f x f x f x -=-,121244|()()|g x g x x x -=-,则不等式1212|()()||()()|f x f x g x g x -- 等价为121211|()()|4||f x f x x x -- ,即212144()()f x f x x x ++ 设44()()1h x f x x alnx x x=+=--+,则121211|()()|4||f x f x x x -- ,等价于函数()h x 在区间(0,1]上是减函数22244()1a x ax h x x x x --'=--=,240x ax ∴-- 在(0,1]上恒成立,即4a x x- 在(0,1]上恒成立,即a 不小于4y x x=-在(0,1]内的最大值.而函数4y x x=-在(0,1]是增函数,4y x x∴=-的最大值为3-3a ∴- ,又0a <,[3a ∴∈-,0).故答案为:[3-,0).26.若()1f x x alnx =--,()xex g x e=,0a <,且对任意1x ,2[3x ∈,124]()x x ≠,121211|()()|||()()f x f xg x g x -<-的恒成立,则实数a 的取值范围为22[33e -,0).【解析】易知1(),()f xg x 在[3x ∈,4]上均为增函数,不妨设12x x <,则121211|()()|||()()f x f xg x g x -<-等价于212111()()()()f x f xg x g x -<-,即212111()()()()f x f xg x g x -<-;令1()()1()xe h xf x x alnxg x ex=-=---,则()h x 在[3x ∈,4]为减函数,则2(1)()10x a e x h x x ex '-=-- 在(3,4)x ∈上恒成立,∴11,[3,4]x x e a x ex x---+∈ 恒成立;令11(),[3,4]x x e u x x ex x--=-+∈,∴11122(1)113()11[()],[3,4]24x x x e x u x ee x x x ----'=-+=--+∈,()u x ∴为减函数,()u x ∴在[3x ∈,4]的最大值为22(3)33u e =-;综上,实数a 的取值范围为22[33e -,0).故答案为:22[33e -,0).27.设过曲线()3x f x e x a =--+上任意一点处的切线为1l ,总存在过曲线()(1)2cos g x x a x =-+上一点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为[1-,2].【解析】由()x f x e x =--,得()1x f x e '=--,11x e +> ,∴1(0,1)1xe ∈+,由()(1)2cos g x x a x =-+,得()2sin g x a x '=-,又2sin [2x -∈-,2],2sin [2a x a ∴-∈-+,2]a +,要使过曲线()3x f x e x a =--+上任意一点的切线为1l ,总存在过曲线()(1)2cos g x a x x =-+上一点处的切线2l ,使得12l l ⊥,则2021a a -⎧⎨+⎩,解得12a - .即a 的取值范围为[1-,2],故答案为[1-,2].28.设函数2221(),()xe x e xf xg x x e+==,对任意1x 、2(0,)x ∈+∞,不等式12()()1f x g x k k+ ,恒成立,则正数k 的取值范围是1k .【解析】 当0x >时,21()2f x e x x=+ 2e =,1(0,)x ∴∈+∞时,函数1()f x 有最小值2e ,2()xe xg x e = ,2(1)()xe x g x e -∴'=,当1x <时,()0g x '>,则函数()g x 在(0,1)上单调递增,当1x >时,()0g x '<,则函数在(1,)+∞上单调递减,1x ∴=时,函数()g x 有最大值g (1)e =,则有1x 、2(0,)x ∈+∞,12()2()min max f x e g x e =>=,不等式12()()1f x g x k k+ 恒成立且0k >,∴21e ek k +,1k ∴ 故答案为:1k .29.已知函数()1()f x x alnx a R =--∈,()xe g x x=,当0a <时,且对任意的1x ,2[4x ∈,125]()x x ≠,1212|()()||()()|f x f x g x g x -<-恒成立,则实数a 的取值范围为.【解析】当0a <时,()10a f x x'=->在[4x ∈,5]上恒成立,∴函数()f x 在[4x ∈,5]上单调递增,()xe g x x=,2(1)()0x e x g x x -'=> 在[4x ∈,5]上恒成立,()g x ∴在[4,5]上为增函数.当0a <时,且对任意的1x ,2[4x ∈,125]()x x ≠,1212|()()||()()|f x f x g x g x -<-恒成立,即2211()()()()f x g x f x g x -<-在[4x ∈,5]上恒成立.设()()()1xe F xf xg x x alnx x=-=---,则()F x 在[4x ∈,5]上为减函数.2(1)()10x a e x F x x x -'=-- 在[4x ∈,5]上恒成立,化为x xe a x e x-+恒成立.设()xxe H x x e x=-+,222(1)11113()11(1)1[()]24x xx x e x H x e e e x x x x -'=-+=--+=--+ ,[4x ∈,5].231133[(]1244x e e x ∴-+>>,[4x ∈,5].()0H x ∴'<在[4x ∈,5]上恒成立,即()H x 为减函数.()H x ∴在[4x ∈,5]上的最大值为H (4)444134444e e e =-+=-.43404e a ∴-<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:数列中的存在性问题学大苏分教研中心 周坤一、单存在性变量解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。
例1、已知数列{na }的前n 项和为n S =235n n +,在数列{n b }中,1b =8,164n n b b+-=0,问是否存在常数c 使得对任意n ,log n c na b +恒为常数M ,若存在求出常数c 和M ,若不存在说明理由.解析:假设存在常数c 使得对任意n ,log n c na b +恒为常数M ,∵nS =235n n +,∴当n =1时,则1a =1S =8,当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +,当n =1适合, ∴na =62n +,又∵164n nb b +-=0, ∴1n n b b +=164,∴数列{n b}是首项为8,公比为164的等比数列, ∴nb =118()64n -=962n -,则log n c na b +=9662log 2n c n -++=62(96)log 2a n n ++-=6(1log 2)29log 2a a n -++,又∵对任意n ,log n c na b +恒为常数M ,∴6(1log 2)a -=0,解得c =2,∴M =29log 2a +=11,∴存在常数c =2使得对任意n ,log n c na b +恒为常数M =11.二、双存在型变量解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。
如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进行检验。
例2、【2010南通一模】设等差数列{}n a 的前n 项和为n S ,且5133349a a S +==,. (1)求数列{}n a 的通项公式及前n 项和公式;(2)设数列{}n b 的通项公式为nn n a b a t=+,问: 是否存在正整数t ,使得12m b b b ,,(3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.【解】(1)设等差数列{}n a 的公差为d. 由已知得51323439a a a +=⎧⎨=⎩,,………………2分即118173a d a d +=⎧⎨+=⎩,,解得112.a d =⎧⎨=⎩,……………………………………………………………4分.故221n n a n S n =-=,.…………………………………………………………………6分(2)由(1)知2121n n b n t -=-+.要使12m b b b ,,成等差数列,必须212m b b b =+,即312123121m t t m t -⨯=+++-+,………………………………………………………………8分.(3)整理得431m t =+-,…………………………………………………………… 11分因为m ,t 为正整数,所以t 只能取2,3,5.当2t =时,7m =;当3t =时,5m =;当5t =时,4m =.故存在正整数t ,使得12m b b b ,,成等差数列. ……………………………… 15分例3、设数列{}n a 的前n 项和2n S n =,数列{}n b 满足*()nn n a b m N a m =∈+.(Ⅰ)若128,,b b b 成等比数列,试求m 的值;(Ⅱ)是否存在m ,使得数列{}n b 中存在某项t b 满足*14,,(,5)t b b b t N t ∈≥成等差数列?若存在,请指出符合题意的m 的个数;若不存在,请说明理由.解:(Ⅰ)因为2n S n =,所以当2n ≥时,121n n n a S S n -=-=-……………………3分又当1n =时,111a S ==,适合上式,所以21n a n =-(*n N ∈)…………………4分所以2121n n b n m -=-+,则1281315,,1315b b b m m m ===+++,由2218b b b =,得23115()3115mm m =⨯+++,解得0m =(舍)或9m =,所以9m =………………7分 (Ⅱ)假设存在m ,使得*14,,(,5)t b b b t N t ∈≥成等差数列,即412t b b b =+,则712127121t m m t m -⨯=+++-+,化简得3675t m =+-…………………………………12分 所以当51,2,3,4,6,9,12,18,36m -=时,分别存在43,25,19,16,13,11,10,9,8t =适合题意, 即存在这样m ,且符合题意的m 共有9个 ………………………………………14分例4、【2010徐州三模】已知数列{}n a是各项均不为0的等差数列,nS 为其前n 项和,且满足221n n a S -=,令11n n n b a a +=⋅,数列{}n b 的前n 项和为n T .(1)求数列{}n a 的通项公式及数列{}n b 的前n 项和为n T ;(2)是否存在正整数,m n (1)m n <<,使得1,,m n T T T 成等比数列?若存在,求出所有的,m n 的值;若不存在,请说明理由.解:(1)因为{}n a,由212121()(21)(21)2n n n na a n a S n a --+-===-,又因为n a ≠,所以21n a n =-,………………………………………………………2分由111111()(21)(21)22121n n n b a a n n n n +===--+-+所以111111(1)2335212121n nT n n n =-+-++-=-++.……………………………6分(2)由(1)知,21n n T n =+, 所以11,,32121m n m nT T T m n ===++,若1,,m n T T T 成等比数列,则21()()21321m nm n =++,即2244163m n m m n =+++.……8分 解法一:由2244163m n m m n =+++,可得223241mm n m -++=,所以22410m m -++>, ……………………………………………………………12分从而:1122m -<<+,又m ∈N ,且1m >,所以2m =,此时12n =.故可知:当且仅当2m =, 12n =使数列{}n T 中的1,,m n T T T成等比数列。
…………16分解法二:因为1136366n n n =<++,故2214416mm m <++,即22410m m --<,………12分从而:11m <<+,(以下同上).三、三个存在型变量------连续的解题思路:这类问题的形式一般是,“是否存在连续的三项,恰好成等差数列(或等比数列)”。
可以先假设存在,然后构造一个关于单存在性变量的方程,即转化为一个方程有正整数根的问题,我们可以按照处理零点问题的方法(“解方程”或者“画图像”)求解。
例5、【扬州2010一模】 已知数列{}n a ,(0,0,,,0,*)n n n a p q p q p q R n N λλλ=+>>≠∈≠∈.⑴求证:数列1{}n n a pa +-为等比数列;⑵数列{}n a 中,是否存在连续的三项,这三项构成等比数列?试说明理由;⑶设{(,)|3,*}n n n n A n b b k n N ==+∈,其中k 为常数,且k N *∈,{(,)|5,*}n n n B n c c n N ==∈,求A ∩B.解:⑴∵na =n np q λ+,∴111()()n n n n n n n a pa p q p p q q q p λλλ+++-=+-+=-,∵0,0,q p q λ≠>≠∴211n n n na pa qa pa +++-=-为常数∴数列1{}n n a pa +-为等比数列------------------------------------------------------------4分⑵取数列{}n a 的连续三项12,,(1,)n n n a a a n n N *++≥∈,∵211222212()()()()n n n n n n n n n n n a a a pq p q p q p q p q λλλλ++++++-=+-++=--,0,0,,0p q p q λ>>≠≠,∴2()0n n p q p q λ--≠,即212n n n a a a ++≠,∴数列{}n a 中不存在连续三项构成等比数列; ------------------------------------------9分⑶当1k =时,3315n n n nk +=+<,此时B C =∅;当3k =时,33323n n n n nk +=+=⋅为偶数;而5n 为奇数,此时B C =∅;当5k ≥时,35n n nk +>,此时B C =∅;----------------------------------------------12分 当2k =时,325n n n+=,发现1n =符合要求,下面证明唯一性(即只有1n =符合要求)。
由325n n n+=得32()()155n n+=,设32()()()55x x f x =+,则32()()()55x xf x =+是R 上的减函数, ∴ ()1f x =的解只有一个从而当且仅当1n =时32()()155n n +=,即325n n n+=,此时{(1,5)}B C =;当4k =时,345n n n+=,发现2n =符合要求,下面同理可证明唯一性(即只有2n =符合要求)。
从而当且仅当2n =时34()()155n n +=,即345n n n+=,此时{(2,25)}B C =;综上,当1k =,3k =或5k ≥时,B C =∅; 当2k =时,{(1,5)}B C =,当4k =时,{(2,25)}B C =。