中考数学一轮复习第一部分教材同步复习第八章统计与概率第30讲数据的分析5年真题精选 (2)

合集下载

中考数学一轮复习第一部分教材同步复习第八章统计与概率第31讲概率及其应用5年真题精选

中考数学一轮复习第一部分教材同步复习第八章统计与概率第31讲概率及其应用5年真题精选

第一部分 第八章 第31讲命题点1 频率与概率1. (2015·曲靖13题3分)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有__14__颗.命题点2 应用列举法求概率类型1 直接应用列举法求概率2.(2018·云南19题7分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x ,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y .(1)用列表法或画树状图法(树状图也称树形图)中的一种方法,写出(x ,y )所有可能出现的结果;(2)求取出的两张卡片上的数字之和为偶数的概率P . 解:(1)画树状图如答图:答图由树状图知共有6种等可能的结果:(1,2),(1,3),(2,1),(2,3),(3,1),(3,2). (2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果, ∴取出的两张卡片上的数字之和为偶数的概率P =26=13.3.(2018·昆明18题6分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动.现从A ,B ,C 三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B 队和C 队参加交流活动的概率. 解:(1)列表如下:(2)由表知共有2种结果, 所以抽到B 队和C 队参加交流活动的概率为26=13.4.(2018·曲靖21题8分)数学课上,李老师准备了四张背面看上去无差别的卡片A ,B ,C ,D ,每张卡片的正面标有字母a ,b ,c 表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或者列表表示所有可能出现的结果;(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率. 解:(1)画树状图如答图:答图共有12种等可能的结果.(2)∵共有12种等可能的结果,其中抽取的两张卡片中每张卡片上的三条线段都能组成三角形有2种结果,∴抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率为212=16.5.(2017·云南19题7分)在一个不透明的盒子中,装有3个分别写有数字6,-2,7的小球,它们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或画树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P . 解:(1)根据题意画树状图如答图:答图所有可能出现的结果共有9种,分别为(6,6),(6,-2),(6,7),(-2,6),(-2,-2),(-2,7),(7,6),(7,-2),(7,7).(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况, ∴两次取出小球上的数字相同的概率P =39=13.6.(2016·云南21题8分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1,2,3,4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或画树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P . 解:(1)列表如下:(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8,6,5的结果有8种,所以能中奖的概率P =816=12.7.(2016·昆明19题8分)甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.解:(1)画树状图如答图:答图所有可能出现的结果共有6种.(2)∵共有6种等可能的情况,两个数字之和能被3整除的情况有2种, ∴P (两个数字之和能被3整除)=26=13.8.(2016·曲靖21题9分)在平面直角坐标系中,把横、纵坐标都是整数的点称为“整点”.(1)直接写出函数y =3x图象上的所有“整点”A 1,A 2,A 3,…的坐标;(2)在(1)的所有整点中任取两点,用画树状图法或列表法求出这两点关于原点对称的概率.解:(1)A 1(-3,-1),A 2(-1,-3),A 3(1,3),A 4(3,1). (2)所有可能结果列表如下:∴P (两点关于原点对称)=412=13.9.(2015·昆明19题3分)小云玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,2的不透明卡片,背面完全相同.转盘被平均分成3个相等的扇形,并分别标有数字-1,3,4(如图所示),小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则重转一次,直到指针指向某一区域为止).(1)请用列表或画树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积为负数的概率.解:(1)列表如下:(2)∵两个数字之积为负数的结果共有2种:(1,-1),(2,-1),∴P(两个数字之积为负数)=26=13.10.(2015·曲靖22题9分)某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:复选人员统计表(1)求a,b的值;(2)求扇形统计图中跳远项目对应圆心角的度数;(3)用列表或画树状图的方法求在短跑和乒乓球项目中选出的两位同学都为男生的概率.解:(1)总人数为(1+2)÷ 12%=25(人),a =25× (1-36%-12%-12%)-6=10-6=4,b =25× 36%-3=9-3=6.(2)360°× (1-36%-12%-12%)=144°. (3)根据题意画出树状图如答图:答图一共有9种等可能的情况,选出的两位同学都为男生的情况有2种, ∴P (选出的两位同学都为男生)=29.类型2 判断游戏的公平性11.(2015·云南20题7分)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方体骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同).先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢.问小明和小王谁赢的可能性更大?请说明理由.解:(1)画树形图(树状图)如答图:答图共有18种等可能的情况,其中骰子向上一面出现的数字与卡片上的数字之积为6的情况有3种,∴P (骰子向上一面出现的数字与卡片上的数字之积为6)=318=16.(2)由图可知,该游戏所有等可能的结果共18种,其中骰子向上一面出现的数字与卡片上的数字之积大于7的结果有7种,骰子向上一面出现的数字与卡片上的数字之积小于7的结果有11种,∴小明赢的概率为718,小王赢的概率为1118,故小王赢的可能性更大.12.(2014·云南19题7分)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1,2,3,4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由. 解:(1)根据题意列表得:(2)公平.理由如下:其中两张卡片上的数字之和为奇数的结果有8种,偶数的结果有8种,∴P (小明去)=P (小亮去), ∴这个规则公平.13.(2014·曲靖20题9分)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A ,B ,B ,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B ,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同,电影票归我. (1)求甲获得电影票的概率; (2)求乙获得电影票的概率; (3)此游戏对谁有利?解:(1)根据题意,得P (甲获得电影票)=23.(2)列表如下:所有等可能的结果有9种,其中两次抽取的字母相同的结果有5种, 则P (乙获得电影票)=59.(3)∵23>59,∴此游戏对甲有利.。

广东省数学中考一轮复习第八章统计与概率第30讲统计课件

广东省数学中考一轮复习第八章统计与概率第30讲统计课件
3h .
6.(202X德阳模拟)小明在体考时选择了投掷实心球,如图是体 育老师记录的小明在训练时投掷实心球的6次成绩的折线统 计图,则这6次成绩的中位数是 9.75 m .
7.(202X齐齐哈尔)喜迎建党100周年,某校将举行小合唱比赛,
七个参赛小组人数如下:5,5,6,7,x,7,8.已知这组数据的平均数
7.(202X广州)某中学为了解初三学生参加志愿者活动的次数, 随机调查了该年级20名学生,统计得到该20名学生参加志愿 者活动的次数如下:
3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4. 根据以上数据,得到如右表所示不完整的频数散布表.
(1)表格中的a= 4 ,b= 5 ; (2)在这次调查中,参加志愿者活动的次数的众数为 4 ,中 位数为 4 ; (3)若该校初三年级共有300名学生,根据调查统计结果,估计 该校初三年级学生参加志愿者活动的次数为4次的人数.
第三部分 统计与概率
第八章 统计与概率
第30讲 统 计
命题分析
广东省卷近年中考数学命题分析
命题点 202X 202X 202X 202X 202X 202X 2015
平均数 题19(1), 2分
中位数 题19(1), 题2,3 题6,3 题4,3 1分 分 分 分
题6,3 题3,3 分分
众数
题19(1), 1分
150
答:估计该校学生家长中对《通知》“十分了解”和“了解较多”的 一共有 1 120 人.
14.(202X岳阳)国务院教育督导委员会办公室印发的《关于
组织责任督学进行“五项管理”督导的通知》指出,要加强中
小学生作业、睡眠、手机、读物、体质管理.某校数学社团
成员采用随机抽样的方法,抽取了八年级部分学生,对他们一

中考数学总复习 第一部分 教材同步复习 第八章 统计与概率 第30讲 概率及其应用课件

中考数学总复习 第一部分 教材同步复习 第八章 统计与概率 第30讲 概率及其应用课件
6
• 【注意】 每个小组的频数与数据总数的比值叫做频率.频 率与概率的联系和频区率别:a.联系:当试验次数充分扩概率大后,频 率在⑨________的附近摆动,可以用⑩________来估计事件 的概率.b.区别:概率是伴随着随机事件客观存在的,只要有 事件存在,就有一个概率存在;频率是通过试验得到的,它 随着试验次数的变化而变化.
事件
必然事件和不可能事件统称为⑤ ___确_定__性_事__件_____
在一定条件下,⑥_可__能_发__生_也__可_能__不_发__生__________的事件,称 为随机事件
2
概率 1 0
0或1 0~1
• 【注意】 (1)一般地,不确定事件发生的可能性是有大小 的,它的大小要由它在整个问题中所占比例的大小来确定, 它占整体的比例大,它的可能性就大;它占整体的比例小, 它的可能性就小.不确定事件发生的概率在0到1之间,不包 括0和1.(2)必然事件发生的几率是100%,即概率为1;不 可能事件发生的几率为0,即概率为0.
• (3)列举法求概率的关键在于列举出所有可能的结果,列表 法是一种,但当一个事件涉及三个或更多元素时,为不重不 漏地列出所有可能的结果,通常采用画树状图法.
• (4)画树状图法一般是选择一个元素再和其他元素分别组合, 依次列出,像树的枝丫形式,最末端的枝丫个数就是总的可 能的结果数.
5
(2)几何概型的概率公式 一个试验涉及的图形面积(或体积)是 S,事件 A 发生时涉及的面积(或体积)
S1 是 S1,则事件 A 发生的概率 P(A)=⑧___S_____.
(3)用频率估算概率 一般地,在大量重复试验下,随机事件 A 发生的频率mn(这里 n 是总试验次数, 它必须相当大,m 是在 n 次试验中事件 A 发生的次数)会稳定到某个常数 p.于是, 我们用 p 这个常数表示事件 A 发生的概率,即 P(A)=p.

中考数学高分一轮复习 第一部分 教材同步复习 第八章 统计与概率 课时30 概率及其应用课件

中考数学高分一轮复习 第一部分 教材同步复习 第八章 统计与概率 课时30 概率及其应用课件

适用条件
具体步骤方法 a.画树状图,方法步骤如下:
画树状图 当一次试验涉及两 法求概率 个或更多个因素时
b.运用公式 P(A)=mn 计算概率
• 【注意(zhù yì)】在用列表法和画树状图法求概率时,特别注意,放回与不放回的不同.
9 2021/12/9
第九页,共二十五页。
【夯实基础】
2.一个袋中装有 1 个红球,2 个白球,3 个黄球,它们除颜色外其他完全相同.小
Image
12/9/2021
第二十五页,共二十五页。
在一定条件下,③____必__然_不__会__发_生___的事件,称为④ 不可能 ____不__可_能__事__件____ 事件 必然事件和不可能事件统称为⑤_____确_定__性_事__件___
随机事件
在一定条件下,⑥______可_能__发__生_也__可__能_不__发__生_____的事件,称为 随机事件
错解:画树状图如答图:
答图 由树状图可知,共有 6 种等可能结果,其中两次都摸到黄球的有 2 种结果, ∴两次都摸到黄球的概率为26=13,故选 B.
• 【错解分析】忽略此题是放回实验,也就是说,第二次摸球还是可以从三个球(两个 黄球和一个(yī ɡè)白球)中抽取.
22
2021/12/9
第二十二页,共二十五页。
第一(dìyī)部 分
教材同步(tóngbù)复习
第八章 统计(tǒngjì)与概率
课时30 概率及其应用
2021/12/9
第一页,共二十五页。
知识要点 ·归纳
知识点一 事件(shìjiàn)的分类
事件类型
定义
确定性 事件
必然 在一定条件下,①_必__然_(_b_ìr_á_n_)会__发__生_的事件,称为② 事件 _必__然_(_b_ìr_á_n_)事__件_

中考数学总复习 第1部分 基础过关 第八单元 统计与概率 课时30 概率课件

中考数学总复习 第1部分 基础过关 第八单元 统计与概率 课时30 概率课件

12/6/2021
第十九页,共五十一页。
训练 5.(2017长春)一个不透明的口袋中有三个小 球,上面分别标有字母a,b,c,每个小球除字母不同
(bù tónɡ)外其余均相同,小园同学从口袋中随机摸出一个小 球,记下字母后放回并搅匀,再从口袋中随机摸出一个
小球记下字母.用画树状图(或列表)的方法,求小园同 学两次摸出的小球上的字母相同的概率.
可能的结果,通常采用画树状图法.
12/6/2021
第五页,共五十一页。
4.频率估计概率:一般地,在大量重复试验 时,如果事件 A 发生的频率mn 稳定于某个常数 p, 那么事件 A 发生的概率 P(A)=p.
12/6/2021
第六页,共五十一页。
过考点
考点
事件(shìjiàn)的分类(6年2考)
12/6/2021
第十五页,共五十一页。
例3 (2017衡阳)为弘扬中华传统文化,某校举办 了“国学经典(jīngdiǎn)大赛”.比赛项目为:A.唐 诗;B.宋词;C.论语;D.三字经.比赛形式分 “单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛
项目,恰好抽中“三字经”的概率是多少?
12/6/2021
第三十四页,共五十一页。
4.(2012)如图1,大小、质地(zhìdì)相同,仅颜色不 同的两双拖鞋(分左、右脚)共四只,放置在地板 上.[可表示为(A1,A2),(B1,B2)]
12/6/2021
图1
第三十五页,共五十一页。
(1)若先将两只左脚拖鞋中取出一只,再从两只右脚 拖鞋中随机取出一只,求恰好匹配(pǐpèi)成相同颜色的一 双拖鞋的概率;
12/6/2021Fra bibliotek第十三页,共五十一页。

中考数学高分一轮复习 第一部分 教材同步复习 第八章 统计与概率 课时29 数据的分析课件

中考数学高分一轮复习 第一部分 教材同步复习 第八章 统计与概率 课时29 数据的分析课件

7 2021/12/9
第七页,共二十一页。
【注意】(1)若每一个数都加上(或减去)同一个数 m,则方差不变;若每个数都乘 (或除以)同一个数 n,则方差为 n2s2(或n12s2).
(2)方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组 数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数 据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
是s=2,s=1.5,则射击成绩较稳定的是______(填“甲”或乙“乙”).
9 2021/12/9
第九页,共二十一页。
重难点 ·突破
考点1 平均数、众数(zhònɡ shù)、中位数 (高频考点)
• 【例1】(2018·岳阳)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:
98,90,88,96,92,96,86,这组数据(shùjù)的中位数和众数分别是 ( )
D.无法确
定。19
No
Image
12/9/2021
第二十一页,共二十一页。
• A.3和2 B.3和3
D
• C.0和5 D.3和5
• 3.已知一组从小到大的数据:0,4,x,10的中位数是5,则x= ( )
• A.5B.6
• C.7
D.8
B
6 2021/12/9
第六页,共二十一页。
知识点二 方差(fānɡ chà)
方差:一组数据 x1,x2,…,xn,每一个数据与它们的平均数-x 的差的平方分别 是(x1--x )2,(x2--x )2,(x3--x )2,…,(xn--x )2,我们用这些值的平均数,即用 s2 =n1[(x1--x )2+(x2--x )2+…+(xn--x )2]来衡量这组数据的⑤___波_动_(b_ō_d_ò_n_g_)大_小,并把它 叫做这组数据的方差,记作 s2.

中考数学一轮复习第8单元第30讲 概率课件(共49张)

中考数学一轮复习第8单元第30讲 概率课件(共49张)

[分析] (1)由投放蓝色垃圾桶的人数及其所占百分比可得总人数,用 360° 乘以投放灰色垃圾桶的人数所占比例; (2)根据投放四种垃圾桶的人数之和等于总人数求出绿色部分的人数,从而 补全图形; (3)用总人数乘以样本中将用过的餐巾纸投放到红色收集桶的人数占被调查 人数的比例即可; (4)列表得出所有等可能结果,从中找到恰好抽中 A,B 两人的结果数,再根 据概率公式求解即可.
9.(2017·益阳)垫球是排球队常规训练的重要项目之一.下列图表中的数据 是甲、乙、丙三人每人十次垫球测试的成绩,测试规则为连续接球 10 个, 每垫球到位 1 个记 1 分.
运动员甲测试成绩表 测试序号 1 2 3 4 5 6 7 8 9 10 成绩(分) 7 6 8 7 7 5 8 7 8 7
A.210
B.15
C.14
D.13
2.(2021·长沙)有一枚质地均匀的正方体骰子,六个面上分别刻有 1 到 6 的
点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为 5 的概率是
( A)
A.19
B.16
C.14
D.13
3.(2021·益阳)小李在双休日到田间参加除草劳动,他随机从锄头、铁锹、 1
从沅江 A 地到资阳 B 地有两条路线可走,从资阳 B 地到益阳火车站可经会
龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江 A 地
出发经过资阳 B 地到达益阳火车站的行走路线,那么恰好选到经过西流湾 1
大桥的路线的概率是 3 .
6.(2015·益阳)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中 2
共有 12 种等可能情况,其中两人都是甲班的情况有 3 种,所以所选两人正 好都是甲班学生的概率是 3 =1.

中考数学一轮总复习讲解 第八章 数据分析及概率

中考数学一轮总复习讲解 第八章 数据分析及概率

中考数学一轮总复习讲解第八章数据分析及概率第30讲数据的收集与整理第31讲数据的分析及其应用第32讲简单事件的概率及其应用第30讲数据的收集与整理1.统计方法2.用样本估计总体3.频数4.四种常见统计图1.(2015·台州)在下列调查中,适宜采用全面调查的是()A.了解我省中学生的视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率2.(2017·温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.(2016·丽水)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少4.(2015·嘉兴)质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是() A.5 B.100 C.500 D.10000【问题】四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图.(1)写出一条你从图中所获得的信息:______________;(2)整理数据时要用哪些统计图,它们有哪些特点?(3)从统计图中获取信息要注意哪些?类型一全面调查与抽样调查例1为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式是______,图中的a 的值是()A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,241.(2016·重庆)下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查类型二总体、样本、个体及样本容量例2今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量2.(1)(2015·聊城)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是()A.2400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况(2)(2015·贺州)某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有____________________名.类型三频数例3(2017·杭州)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.3.(2017·湖州)为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第7天,这一路口的行人交通违章次数是多少次?这20天中,行人交通违章6次的有多少天?(2)请把图2中的频数直方图补充完整;(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?类型四统计图(表)的应用例4(2015·温州)某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有()A.25人B.35人C.40人D.100人例5(2016·金华)为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是mg/L.例6(2017·舟山)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.例7(2017·宁波)大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.4.(1)老师对某班全体学生在电脑培训前后进行了一次水平测试,考分以同一标准划分为“不合格”、“合格”、“优秀”三个等级,成绩见下表.下列说法错误的是()A.培训前“不合格”的学生占80%B.培训前成绩“合格”的学生是“优秀”学生的4倍C.培训后80%的学生成绩达到了“合格”以上D.培训后优秀率提高了30%(2)(2016·安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图,已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()A.18户B.20户C.22户D.24户5.某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从乒乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以下统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?【实际应用题】本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行了第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?【不能正确获取频数分布直方图的信息】某班48名学生,在一次语文测试中分数只取整数,统计其成绩,绘制出频数分布直方图.如图所示,从左到右的小长方形的高度之比是1∶3∶6∶4∶2,则由图可知其分数在70.5到80.5之间的人数是多少?第31讲数据的分析及其应用1.数据的代表2.数据的波动1.(2017·湖州)数据-2,-1,0,1,2,4的中位数是()A.0 B.0.5 C.1 D.22.(2017·温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个3.(2017·绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择() A.甲B.乙C.丙D.丁4.(2017·台州)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【问题】某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表(1)a=________,x乙=________;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中;(4)通过(1)、(2)、(3)解答体验,数据的分析应运用哪些统计量,这些统计量特点是什么?类型一平均数、众数和中位数的计算与应用例1(2017·嘉兴模拟)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2017年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55B.众数是60 C.方差是29D.平均数是54 例2(2016·衢州)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数B.方差C.平均数D.中位数1.(1)(2015·宁波)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数(2)(2016·台湾)图1、图2分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a、b;中位数分别为c、d,则下列关于a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d2.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9.乙:5,9,7,10,9.(1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差____________________.(填“变大”、“变小”或“不变”).类型二方差、标准差的计算与应用例3(2015·吉林)要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差S2甲,S2乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选______参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.3.(2017·舟山)已知一组数据a,b,c的平均数为5,方差为4,那么数据a-2,b-2,c-2的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.5,44.(2017·郑州模拟)九(3)班为了参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,根据成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数x甲组=7,方差S2甲组=1.5.请通过计算说明,哪一组成绩优秀的人数较稳定?类型三利用统计量解决实际问题例4(2016·青岛)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?5.八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).【实际探究题】小亮和小红在公园放风筝,不小心让风筝挂在树梢上,风筝固定在A处(如图),为测量此时风筝的高度,他俩按如下步骤操作:第一步:小亮在测点D处用测角仪测得仰角∠ACE=β.第二步:小红量得测点D处到树底部B的水平距离BD=a.第三步:量出测角仪的高度CD=b.之后,他俩又将每个步骤都测量了三次,把三次测得的数据绘制成如下的条形统计图和折线统计图.请你根据两个统计图提供的信息解答下列问题.(1)把统计图中的相关数据填入相应的表格中:(2)根据表中得到的样本平均值计算出风筝的高度AB.(参考数据:3≈1.732,2≈1.414,结果保留3个有效数字).【忽视选用合适的公式计算平均数】某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表,则这20户家庭这个月的平均用水量是吨.第32讲简单事件的概率及其应用1.事件的分类2.概率的意义与计算1.(2017·宁波)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A .12B .15C .310D .7102.(2017·舟山)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是( )游戏规则:若一人出“剪刀”,另一人出“布”,则出“剪刀”者胜;若一人出“锤子”,另一人出“剪刀”,则出“锤子”者胜;若一人出“布”,另一人出“锤子”,则出“布”者胜.若两人出相同的手势,则两人平局.A .红红不是胜就是输,所以红红胜的概率为12 B .红红胜或娜娜胜的概率相等C .两人出相同手势的概率为13 D .娜娜胜的概率和两人出相同手势的概率一样3.(2017·金华)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )A .12B .13C .14D .16【问题】小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1,2,3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树状图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜;两次抽出的纸牌数字之和为偶数,则小明获胜.这个游戏公平吗?为什么?(3)通过(1)、(2)解答,①你认为求概率有哪几种方法,应注意哪些问题?②利用概率设计游戏方案应注意哪些问题?类型一判断事件的类型例1事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是()A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A)D.P(A)<P(B)<P(C)1.某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是( ) A .购买100个该品牌的电插座,一定有99个合格 B .购买1000个该品牌的电插座,一定有10个不合格 C .购买20个该品牌的电插座,一定都合格 D .即使购买1个该品牌的电插座,也可能不合格2.(2015·广西)小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为____________________事件(填“必然”或“不可能”或“随机”).类型二 计算简单事件的概率例2 在一个不透明的口袋中,有3个完全相同的小球,它们的标号分别为2,3,4,从袋中随机地摸取一个小球后然后放回,再随机地摸取一个小球,则两次摸取的小球标号之和为5的概率是________.3.(1)(2017·湖州)一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是( )A .116B .12C .38D .916(2)(2015·内江)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )A .112B .512C .16D .12(3)(2015·牡丹江)学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A .19B .16C .13D .124.(2015·南昌)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.类型三 用频率估计概率例3 (2016·兰州)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球 个.5.(2017·上虞模拟)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D .掷一个质地均匀的正六面体骰子,向上的面点数是4类型四 与概率有关的一些数学问题例4 (2017·黄岗模拟)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )A .12B .13C .14D .166.(1)(2015·泰安)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .45(2)(2017·武汉模拟)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A .12B .25C .37D .477.(1)(2015·烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为____________________.(2)(2015·郴州)在m 2□6m □9的“□”中任意填上“+”或“-”号,所得的代数式为完全平方式的概率为____________________.类型五概率的实际应用例5(2015·资阳)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.例6(2016·宜昌)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.中考数学一轮总复习讲解 第八章 数据分析及概率318.(2015·扬州)“2015扬州鉴真国际半程马拉松”的赛事共有三项:A.“半程马拉松”、B.“10公里”、C.“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为 ;(2)求小明和小刚被分配到不同项目组的概率.【实际应用题】一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于13,问至少取出了多少个黑球?【不画树状图产生的错误.】掷两枚硬币,规定落地后,国徽朝上为“正”,国徽朝下为“反”,则会出现以下三种情况:“正正”、“反反”、“正反”,分别求出每种情况的概率.。

2025年甘肃中考数学一轮复习中考命题探究第8章 统计与概率第30讲 概 率

2025年甘肃中考数学一轮复习中考命题探究第8章   统计与概率第30讲 概 率

500
1000
2000
3000
5000
盖面朝上次数
264
527
1056
1587
2650
盖面朝上频率
0.5280
0.5270
0.5280
0.5290
0.5300
下面有三个推断:①通过上述实验的结果,可以推断这枚瓶盖有很大的可能性不
是质地均匀的;②第2000次实验的结果一定是“盖面朝上”;③随着实验次数的
复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有
17
____个.
3.[2023兰州16题]某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如下表:
累计抛掷次数
50
100
200
300
盖面朝上次数
28
54
106
158
盖面朝上频率
0.5600
0.5400
0.5300
0.5267
累计抛掷次数
构成事件 A 的区域长度(面积)
P(A)=
全部结果所构成的区域长度(面积)
考点 31 概率的应用——判断游戏的公平性(2024省卷中考新增)
判断公平性时需要先计算每个事件的概率,然后比较概率的大小,
概率相等就公平,否则就不公平.
甘肃5年中考真题及拓展
命题点 1 事件的分类
拓展 训练
1.[2024武汉]小美和小好同学做“石头、剪刀、布”的游戏,两人同时
2 1
∴P(选择 A,D 两个景区)= = .
12 6
同.从这6个盒子中随机抽取1个盒子,抽中七巧板的概率是( D )
1
A.
2
1
B.
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分第八章第30讲
命题点1 平均数、众数、中位数的计算
1.(2016·昆明8题4分)某学习小组9名学生参加“数学竞赛”,他们的得分情况如下表:
那么这9
A.90,90 B.90,85
C.90,87.5 D.85,85
2.(2016·云南8题4分)某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如下表:
A.这10名同学的体育成绩的众数为50
B.这10名同学的体育成绩的中位数为48
C.这10名同学的体育成绩的方差为50
D.这10名同学的体育成绩的平均数为48
3.(2016·曲靖5题4分)某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10,6,9,11,8,10.下列关于这组数据描述正确的是( B )
A.极差是6 B.众数是10
C.平均数是9.5 D.方差是16
4.(2015·云南7题3分)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:
A.42,43.5 B.42,42
C.31,42 D.36,54
5.(2015·昆明2题3分)某校组织了“讲文明、守秩序、迎南博”知识竞赛活动,从中抽取了7名同学的参赛成绩如下(单位:分):80,90,70,100,60,80,80.则这组数据的中位数和众数分别是( C )
A.90,80 B.70,80
C.80,80 D.100,80
6.(2014·云南8题3分)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:
A.9.70,9.60 B.9.60,9.60
C.9.60,9.70 D.9.65,9.60
7.(2018·昆明10题4分)下列判断正确的是( D )
A.甲乙两组学生身高的平均数均为1.58,方差分别为s2甲=2.3,s2乙=1.8,则甲组学生的身高较整齐
B.为了了解某县七年级4 000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4 000
C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:
则这30
D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件
8.(2018·云南17题8分)某同学参加了学校举行的“五好小公民·红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:
(2)计算该同学所得分数的平均数.
解:(1)按从小到大排列此数据为5,6,7,7,8,8,8,
数据8出现的次数最多,故众数为8,7处在第4位为中位数.
(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.
9.(2018·曲靖19题8分)某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.。

相关文档
最新文档