固体物理第章固体电子论参考答案

合集下载

东南大学固体物理基础课后习题解答

东南大学固体物理基础课后习题解答

《电子工程物理基础》课后习题参考答案第一章 微观粒子的状态1-1一维运动的粒子处在下面状态(0,0)()0(0)xAxe x x x λλψ-⎧≥>=⎨<⎩①将此项函数归一化;②求粒子坐标的概率分布函数;③在何处找到粒子的概率最大? 解:(1)由归一化条件,可知22201xAx edx λ∞-=⎰,解得归一化常数322A λ=。

所以归一化波函数为:322(0,0)()0(0)xxex x x λλλψ-⎧⎪≥>=⎨⎪<⎩(2)粒子坐标的概率分布函数为:32224(0,0)()()0(0)xx e x w x x x λλλψ-⎧≥>==⎨<⎩(3)令()0dw x dx =得10x x λ==或,根据题意,在x=0处,()w x =0,所以在1x λ=处找到粒子的概率最大。

1-2若在一维无限深势阱中运动的粒子的量子数为n 。

①距势阱的左壁1/4宽度内发现粒子概率是多少? ②n 取何值时,在此范围内找到粒子的概率最大?③当n→∞时,这个概率的极限是多少?这个结果说明了什么问题?解:(1)假设一维无限深势阱的势函数为U (x ),0x a ≤≤,那么在距势阱的左壁1/4宽度内发现粒子概率为:22440211()()(sin )sin422a a n n P x x dx x dx a a n ππψπ===-⎰⎰。

(2)当n=3时,在此范围内找到粒子的概率最大,且max 11()+46P x π=。

(3)当n→∞时,1()4P x =。

此时,概率分布均匀,接近于宏观情况。

1-3一个势能为221()2V x m x ω=的线性谐振子处在下面状态2212()()x m x Aeαωψα-=求:①归一化常数A ;②在何处发现振子的概率最大;③势能平均值2212U m x ω=。

解:(1)由归一化条件,可知2221x A e dx α+∞--∞=⎰,得到归一化常数4A απ=。

固体物理第章固体电子论 参考答案

固体物理第章固体电子论 参考答案

第四章 固体电子论 参考答案1. 导出二维自由电子气的能态密度。

解:二维情形,自由电子的能量是:2πL x x k n =,2πL y y k n =在/k =h 到d k k +区间: 那么:2d ()d Z Sg E E =其中:22()πm g E =h2. 若二维电子气的面密度为n s ,证明它的化学势为:解:由前一题已经求得能态密度:电子气体的化学势μ由下式决定: ()()222E-/E-/001d ()d πe 1e 1B B k T k T L m E N g E L E μμ∞∞==++⎰⎰h 令()/B E k T x μ-≡,并注意到:2s N n L=那么可以求出μ:证毕。

3. He 3是费米子,液体He 3在绝对零度附近的密度为0.081 g /cm 3。

计算它的费米能E F 和费米温度T F 。

解:He 3的数密度:其中m 是单个He 3粒子的质量。

可得:代入数据,可以算得: E F =6.8x 10-16 erg = 4.3x 10-4eV.则:F F E T k ==4.97 K.4.已知银的密度为310.5/g cm ,当温度从绝对零度升到室温(300K )时,银金属中电子的费米能变化多少?解:银的原子量为108,密度为310.5/g cm ,如果1个银原子贡献一个自由电子,1摩尔物质包含有6.022x 1023个原子,则单位体积内银的自由电子数为在T=0K 时,费米能量为代如相关数据得2/3272227302812(6.6310)()3 5.910()29.110()8 3.148.8710() 5.54()F erg s cm E g erg eV -----⎛⎫⨯⋅⨯⨯= ⎪⨯⨯⨯⎝⎭≈⨯≈ 在≠T 0K 时,费米能量所以,当温度从绝对零度升到室温(300K )时, 费米能变化为代如相关数据得可见,温度改变时,费米能量的改变是微不足道的。

5. 已知锂的密度为30.534/g cm ,德拜温度为370K ,试求(1)室温(300K )下电子的摩尔比热;(2)在什么温度下,锂的电子比热等于其晶格比热?解:(1)金属中每个电子在常温下贡献的比热 2'0()2B V B F k T C k E π= (1) 式中0FE 为绝对零度下的费米能: 202/33()28F h n E m π= (2)锂的密度30.534/g cm ,原子量6.94,每立方厘米锂包含的摩尔数为0.534/6.94,1摩尔物质中包含 6.022x 1023个原子,每个锂贡献一个电子,则每立方厘米中的电子数已知将数据代入(2)得在室温(300K )下,0.026B k T eV =,由(1)式可以求得电子的摩尔比热代入相关数据得(2)电子比热只在低温下才是重要的。

固体物理(胡安)课后答案(可编辑)

固体物理(胡安)课后答案(可编辑)

固体物理(胡安)课后答案第一章晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。

为什么?作出这一结构所对应的两维点阵和初基元胞。

解:石墨层中原子排成的六角网状结构是复式格子。

因为如图点A和点B的格点在晶格结构中所处的地位不同,并不完全等价,平移A→B,平移后晶格结构不能完全复原所以是复式格子。

1.2在正交直角坐标系中,若矢量,,,为单位向量。

为整数。

问下列情况属于什么点阵?(a)当为全奇或全偶时;(b)当之和为偶数时。

解:当为全奇或全偶时为面心立方结构点阵,当之和为偶数时是面心立方结构1.3 在上题中若奇数位上有负离子,偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。

1.4 (a)分别证明,面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角相等,对fcc为,对bcc为(b)在金刚石结构中,作任意原子与其四个最近邻原子的连线。

证明任意两条线之间夹角θ均为解:(1)对于面心立方 (2)对于体心立方 (3)对于金刚石晶胞1.5 证明:在六角晶系中密勒指数为(h,k,l)的晶面族间距为证明:元胞基矢的体积倒格子基矢倒格矢:晶面间距1.6 证明:底心正交的倒点阵仍为底心正交的。

证明:简单六角点阵的第一布里渊区是一个六角正棱柱体底心正交点阵的惯用晶胞如图: 初级晶胞体积: 倒易点阵的基矢: 这组基矢确定的面是正交底心点阵1.7 证明:正点阵是其本身的倒易点阵的倒格子。

证明:倒易点阵初级元胞的体积:是初基元胞的体积而由于而或:现在证明: 又令又:代入同理 1.8 从二维平面点阵作图说明点阵不可能有七重旋转对称轴。

解: 1.9 试解释为什么:(a)四角(四方)晶系中没有底心四角和面心四角点阵。

(b)立方晶系中没有底心立方点阵。

(c)六角晶中只有简单六角点阵。

解:(a)因为四方晶系加底心,会失去4次轴。

(b)因为立方晶系加底心,将失去3次轴。

固体物理答案

固体物理答案

(1)共价键结合的特点?共价结合为什么有“饱和性”和“方向性”?之答禄夫天创作饱和性和方向性饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。

N<4,有n个共价键;n>=4,有(8-n)个共价键。

其中n为电子数目。

方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。

(2)如何理解电负性可用电离能加亲和能来表征?电离能:使原子失去一个电子所必须的能量其中A为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B为释放的能量,也可以标明原子束缚价电子的能力,而电负性是用来暗示原子得失电子能力的物理量。

故电负性可用电离能加亲和势能来表征。

(3)引入玻恩-卡门条件的理由是什么?在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。

这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。

而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不克不及用中间的原子的运动方程来描述。

波恩—卡门条件解决上述困难。

(4)温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多?对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多?温度一定,一个声学波的声子数目多。

对于同一个振动模式,温度高的声子数目多。

(5)长声学格波能否导致离子晶体的宏观极化?不克不及。

长声学波代表的是原胞的运动,正负离子相对位移为零。

(6)晶格比热理论中德拜(Debye)模型在低温下与实验符合的很好,物理原因是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么?在甚低温下,不但光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。

长声学格波即弹性波。

德拜模型只考虑弹性波对热容德贡献。

因此,在甚低温下,德拜模型与事实相符,自然与实验相符。

爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差别,依照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

黄昆版固体物理学课后答案解析答案 (2)

黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

固体物理金属电子论作业答案

固体物理金属电子论作业答案
K+离子位移: 位移: l
E48 1040 F m 2 105V m 1 9.25 1017 m 1.6 1019 C
Cl+离子位移:
l
Eeff
q
3.29 1040 F m 2 105V m 1 2.06 1016 m 1.6 1019 C
2m 2 9.1110 kg
8.711019 J 5.44eV
EF 0 8.7110 19 J TF 63116 K 23 k B 1.38 10 J / K
2)费米波矢
k F 3 n
2


1/ 3
(3 3.142 5.86 1022 cm3 )1/ 3 1.20 108 cm1
•传统硅基集成电路的栅介电材料和互连介质材料均为SiO2,但随集成度的提高, 需要提高栅介电的介电常数,而互连介质的介电常数最好能降低。根据克劳修斯莫索提关系,请试给出你认为可行的技术措施。 答:根据克劳修斯-莫索提关系,介电常数与原子密度和原子极化率有关。 提高介电常数:掺N(致密度或极化率提高)或采用其它氧化物(ZrO2、HfO2等) 降低介电常数:掺F(利用F离子强束缚电子特性降低极化率)或制备多空SiO2或 采用有机材料。
3) 费米速度
0 2 EF k F 1.05 10 34 J s vF 1.20 1010 m 1 m m 9.1110 31 kg
1.38 106 m / s 1.38 108 cm / s
3.用a3代表每个原子占据的体积,若金属中的自由电子气体在温 度为0K时能级被填充到kF0=(62)1/3/a,试计算每个原子的价电子 数目?并导出电子气在温度0K时的费米能的表达式? 解:假设价电子数位Z,则电子浓度为: n

104117_陆栋固体物理学第一版(上海科技出版社)课后答案 (1)

104117_陆栋固体物理学第一版(上海科技出版社)课后答案 (1)

后 答
4r 3a 比
3 2 4 3 3 r 3 ( 4r ) 8 3
kh
a 8r
3 4 4 3 r
da

3 2
3 2 a c 2 8 1 c ( ) 2 2r 3
体对角线 (a a a )
2 2 2

(3)面心立方 晶胞面对角线=4r
2a 2 16r 2 比

b b j,


c k c

ቤተ መጻሕፍቲ ባይዱ
晶面族(h,k,l)的面间距为 d。

a ( b c ) K h ,k ,l h a * k b* l c * d nkl k l 2 h ( ) 2 ( ) 2 ( ) 2 b c K hkl a
sdsp?sttds???dppsdtt???????????????????dptvtdtcdppstdttpptp???????????????s?????????2麦开关系之一ppvtt??????????????????由1和2得dptvtdtcdvtptdtcpvvv??????????????????以pv为独立变量dvvtdpptdtpv??????????????????61dptvtdvtptdpptdvvtccpvvpvp??????????????????????????????????????????独立变量前系数应相等

的 b 1 , b 2 , b 3 确定的格子叫 a 1 , a 2 , a 3 晶格之倒格子, 含 a1 a 2 座 标面为正晶格内原胞基矢 a 1 , a 2 所决定之晶石, 则对应晶石的 面间距为 d 3 , 在 a1 a 2 法线上确定一长度

固体物理基础参考解答

固体物理基础参考解答

当 T > 0 K 时,费米分布函数有

⎪1
f

)
=
⎪ ⎨0
⎪ ⎪
1
⎩2
ε << µ ε >> µ
ε =µ
下图给出了在基态 T=0K 和较低温度下 T > 0 K 时的费米分布函数。
基态和较低温度下的费米分布函数

− ∂f ∂ε
=
1 kBT
1 e(ε −µ ) kBT
1 + 1 e-(ε −µ ) kBT
三维自由电子体系,在低能态的能态密度趋于零,因而低温下所引起的热涨落极
小,体系可具有长程序。对一维自由电子体系来说,从图中可以看出,在低能态
的能态密度很大,而且随能量的降低而趋于无穷,因而低温下所引起的热涨落极
大,导致一维体系不具长程序。从图中可以看出,二维自由电子体系的能态密度
是常数,介于一维和三维中间,体系可具有准长程序,而且极易出现特殊相变,
费米分布函数可表示为:
f
(εi )
=
1 e(εi −µ ) kBT
+1
上 式 直 接 给 出 了 体 系 在 热 平 衡 态 (温 度 为 T)时 ,能 量 为 εi 的 单 电 子 本 征 态 被 一
个电子占据的概率。根据泡利原理,一个量子态只能容纳一个电子,所以费米分
布函数实际上给出了一个量子态的平均电子占据数。
∵εF =
2kF 2 2m
,
kF 3
=

2n
2
2
( ) ∴εF
= 2m
3π 2n
3
( ) 1.0557 ×10−34 2
2
( ) ∴ε F = 2 × 9.11×10−31 × 3× 3.142 ×8.48×1028 3 = 1.13×10−18 J = 7.06eV

固体物理基础 课后答案 西安电子科技大学出版社(曹全喜 雷天明 黄云霞 李桂芳 著) 第一二三四五章

固体物理基础 课后答案 西安电子科技大学出版社(曹全喜 雷天明 黄云霞 李桂芳 著)  第一二三四五章

m1
Gh
a1 h
a2 k
hb1
kb2
lb3
a1 h
a2 k
2h
a2 a3 a1 a2 a3
2k a3 a1 a1 a2 a3
2l a1 a 2 a1 a2 a3
0
同理,有 m2 G h 0 , m3 G h 0
所以,倒格矢 Gh hkl晶面。
解:由布拉格反射模型,认为入射角=反射角,由布拉格公式:2dsin=,可得
d n 2 sin
(对主极大取 n=1)
d
1.54 2 sin19.20
2.34(A)
10 ǃ试证明:劳厄方程与布拉格公式是等效的。
证明:由劳厄方程: Rl (k k 0 ) 2 与正倒格矢关系: Rl G h 2 比较可知:
e 2 4 0
(1)
R
2
N
e 2 4 0 R
2
Bn R n1
解:
2
4 ǃ考虑指数为(100)和(001)的面,其晶格属于面心立方,且指数指的是立方惯用原胞。若采用初基 原胞基矢坐标系为轴,这些面的指数是多少?
解:如右图所示:在立方惯用原胞中的(100)晶面,在初基原胞基矢坐标
系中,在 a1 、 a 2 、 a3 三个基矢坐标上的截距为 2, , 2 ,则晶面
第二条 本习题解答基于版本:固体物理基础-西安电子 科技大学出版社(曹全喜 雷天明 黄云霞 李桂芳 著) ,且仅限于习题解答,而不包含思考题部分;
第三条 此版本只含有习题参考答案(部分题目提供了多 习了前 5 章,因此本解答仅包含 前 5 章内容,完整版将于寒假后奉上;
2 Gh
;(c)
对于简单立方晶格有 d 2
a2 h2 k2 l2

固体物理学答案(朱建国版)

固体物理学答案(朱建国版)

固体物理学·习题指导配合《固体物理学(朱建国等编著)》使用2019年11月20日第1章晶体结构 (1)第2章晶体的结合 (12)第3章晶格振动和晶体的热学性质 (20)第4章晶体缺陷 (33)第5章金属电子论 (37)第1章 晶体结构1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。

从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于 多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于 面心的原子与顶角原子的距离为:R f =22a 对于体心立方,处于体心的原子与顶角原子的距离为:Rb =32a 那么,Rf Rb =23aa=631.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:晶面族(123)截a 1,a 2,a 3分别为1,2,3等份,ABC 面是离原点O 最近的晶面,OA 的长度等于a 1的长度,OB 的长度等于a 2长度的1/2,OC 的长度等于a 3长度的1/3,所以只有A 点是格点。

若ABC 面的指数为(234)的晶面族,则A 、B 和C 都不是格点。

1.3 二维布拉维点阵只有5种,试列举并画图表示之。

答:二维布拉维点阵只有五种类型,两晶轴b a 、,夹角ϕ,如下表所示。

序号 晶系 基矢长度与夹角关系 布拉维晶胞类型 所属点群 1 斜方 任意2,πϕ≠b a 、简单斜方(图中1所示) 1,2 2 正方 2,πϕ==b a简单正方(图中2所示) 4,4mm 3 六角 32,πϕ==b a简单六角(图中3所示) 3,3m ,6,6mm 4长方2,πϕ=≠b a简单长方(图中4所示) 有心长方(图中5所示)1mm ,2mm1 简单斜方2 简单正方3 简单六角4 简单长方5 有心长方二维布拉维点阵1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。

黄昆版固体物理学课后答案解析答案 (3)

黄昆版固体物理学课后答案解析答案 (3)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r 同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

固体物理 阎守胜 课后习题答案 北京大学出版社第一章 课后答案

固体物理 阎守胜 课后习题答案 北京大学出版社第一章 课后答案
2


(1.5.2)
取近似,忽略 k 的2阶以上无穷小量
P ne 2 2k0 2k0 k cos sin cos d
2 0

4nek0 k 2 cos sin cos d
3 0

cos 3 3 4nek0 k 3 4 3 nek0 k 3


(1.7m
(1.7.2) 分量式
e J y Bz J z By J x E 0 x m e J z Bx J x Bz J y 0 E y m e 0 E z m J x B y J y Bx J z
0 0 zL V z 0, z L
(1.8.3)
1 D 0 D 1 ik L ik L z z 0 k z L n e De
(1.8.4) (1.8.5)
Ψ A sin k z z exp i k x x k y y
3
24
g。
He 原子当作负电背景下的正电费米子气体. Z=1. 1 0.081 Z 1.62 10 22 cm 3 1.62 10 28 m 3 n m 24 5 10 m (1.2.1)
k F 3 2 n 3 7.8279 10 7 cm 1 7.8279 109 m 1


1
F
k 1.055 10 7.8279 10 2m 2 5.0 10 27
2 2 F

34
9 2

(1.2.2)
6.80174 10 23 J 4.2626 10 4 eV
(1.2.3)

固体物理基础 第三版 课后答案 西安电子科技大学出版社(曹全喜 雷天明 黄云霞 著)

固体物理基础 第三版 课后答案 西安电子科技大学出版社(曹全喜 雷天明 黄云霞 著)

13.若轴矢 a 、 b、 c 构成简单正交系,证明。晶面族(h、k、l)的面间距为
2 d hkl
1 l 2 ( ) ( ) (c )
h 2 a k 2 b
co

证毕
m
2 a1 a 2 2 b3 k c



证 1:把原点选在该面族中任意一晶面上任一点,设相邻晶面分别与正交系 a 、 b、 c 交于
求面间距 d111。 解:由布拉格反射模型,认为入射角=反射角 2dsin= d=
ww
1.54 =2.34(Å) 2 sin 19.2 0
17.试说明:1〕劳厄方程与布拉格公式是一致的; 2〕劳厄方程亦是布里渊区界面方程; 解:1〕由坐标空间劳厄方程: 与正倒格矢关系
Rl k h 2
w.

案 网
因为 b1 、 b2 、 b3 相互正交。
2 2
2

2
n 2 sin
Rl (k k 0 ) 2
比较可知:若
即入射波矢 k 0 ,衍射波矢 k 之差为任意倒格矢 k h ,则 k 方向产生衍射光, k h k k 0 式
co

the end 对主极大 取 n=1
w.

a3 || b3 , 且 b1 =| b2 |= b3

bi

ai

=m(为常值,且有量纲,即不为纯数)

ww
G hkl m(h a1 k a 2 l a3)=m A


Ghkl 与 A 平行。


若以上正、倒基矢,换为正、倒轴矢,以上证明仍成立,则可用于 fcc 和 bcc 晶格。

黄昆固体物理习题解答-完整版

黄昆固体物理习题解答-完整版

0⎞ ⎟ 0⎟ ε3 ⎟ ⎠
1.12 比较面心立方晶格、金刚石晶格、闪锌矿晶格、Nacl 晶格的晶系、布拉伐格子、平 移群、点群、空间群。 晶格 面心立方晶格 金刚石晶格 闪锌矿晶格 Nacl 晶格的晶系 晶系 立方 立方 立方 立方 布拉伐格子 面心立方 面心立方 面心立方 面心立方 点群 Oh Oh Td Oh 空间群 Fm3m Fd3m
F43m
Fm3m
感谢大家对木虫和物理版的支持!
5
《固体物理》习题解答
第二章
习 题
2.1.证明两种一价离子组成的一维晶格的马德隆常数为 α = 2 ln 2 . 证 设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子 (这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号) ,用 r 表 示相邻离子间的距离,于是有
3π / 8 ≈ 0.68
2π / 6 ≈ 0.74 2π / 6 ≈ 0.74 3π /16 ≈ 0.34
解 设n为一个晶胞中的刚性原子数,r表示刚性原子球半径,V表示晶胞体积,则致
密度为: ρ = 结构 简单立方 体心立方 面心立方 六方密排 金刚石
4π nr 3 (设立方晶格的边长为a) r取原子球相切是的半径于是 3V
6 a
3a / 2
6 a
2a
1.7
画体心立方和面心立方晶格结构的金属在 (100) , (110) , (111) 面上 解:
原子排列.
感谢大家对木虫和物理版的支持!
3
《固体物理》习题解答
体心立方
面心立方
1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的晶向 解 (111)面与(100)面的交线的 AB-AB 平移, A 与 O 重合。B 点位矢 RB = −aj + ak (111) 与 (100) 面的交线的晶向 AB = − aj + ak —— 晶 向指数 ⎡011⎤

黄昆版固体物理学课后答案解析答案(1)

黄昆版固体物理学课后答案解析答案(1)

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

固体物理 第一章 思考题及答案

固体物理 第一章 思考题及答案

第一章晶体的结构思 考 题1. 1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比.[解答] 设原子的半径为R , 体心立方晶胞的空间对角线为4R , 晶胞的边长为3/4R , 晶胞的体积为()33/4R , 一个晶胞包含两个原子, 一个原子占的体积为()2/3/43R ,单位体积晶体中的原子数为()33/4/2R ; 面心立方晶胞的边长为2/4R , 晶胞的体积为()32/4R , 一个晶胞包含四个原子, 一个原子占的体积为()4/2/43R , 单位体积晶体中的原子数为()32/4/4R . 因此, 同体积的体心和面心立方晶体中的原子数之比为2/323⎪⎪⎭⎫ ⎝⎛=0.272.2. 2. 解理面是面指数低的晶面还是指数高的晶面?为什么?[解答]晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面.3. 3. 基矢为=1a i a , =2a aj , =3a ()k j i ++2a的晶体为何种结构? 若=3a ()k j +2a+i 23a , 又为何种结构? 为什么?[解答]有已知条件, 可计算出晶体的原胞的体积23321a =⨯⋅=a a a Ω.由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量=-=13a a u 2a()k j i ++-,=-=23a a v 2a()k j i +-,=-+=321a a a w 2a()k j i -+.w v u ,,对应体心立方结构. 根据14题可以验证, w v u ,,满足选作基矢的充分条件.可见基矢为=1a i a , =2a aj , =3a ()k j i ++2a的晶体为体心立方结构.若=3a ()k j +2a+i 23a ,则晶体的原胞的体积23321a Ω=⨯⋅=a a a ,该晶体仍为体心立方结构. 4. 4. 若321l l l R 与hkl R 平行, hkl R 是否是321l l l R 的整数倍? 以体心立方和面心立方结构证明之.[解答] 若321l l l R 与hkl R 平行, hkl R 一定是321l l l R的整数倍. 对体心立方结构, 由(1.2)式可知32a a a +=,13a a b +=, 21a a c +=,hkl R =h a +k b +l c =(k+l )+1a (l+h )+2a (h+k )3a =p 321l l l R =p (l 11a +l 22a +l 33a ), 其中p 是(k+l )、(l+h )和(h+k )的公约(整)数.对于面心立方结构, 由(1.3)式可知,321a a a a ++-=, =b 321a a a +-, =c 321a a a -+,hkl R =h a +k b +l c =(-h+k+l )1a +(h-k+l )2a +(h+k-l )3a =p ’321l l l R = p ’(l 11a +l 22a +l 33a ), 其中p ’是(-h+k+l )、(-k+h+l )和(h-k+l )的公约(整)数.5. 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基矢1a 、2a 和3a 重合,除O 点外,OA 、OB 和OC 上是否有格点? 若ABC 面的指数为(234),情况又如何?[解答]晶面族(123)截1a 、2a 和3a 分别为1、2、3等份,ABC 面是离原点O 最近的晶面,OA 的长度等于1a 的长度,OB 的长度等于2a 的长度的1/2,OC 的长度等于3a 的长度的1/3,所以只有A 点是格点. 若ABC 面的指数为(234)的晶面族, 则A 、B 和C 都不是格点. 6. 6. 验证晶面(102),(111)和(012)是否属于同一晶带. 若是同一晶带, 其带轴方向的晶列指数是什么?[解答] 由习题12可知,若(102),(111)和(012)属于同一晶带, 则由它们构成的行列式的值必定为0.可以验证210111012=0,说明(102),(111)和(012)属于同一晶带.晶带中任两晶面的交线的方向即是带轴的方向. 由习题13可知, 带轴方向晶列[l 1l 2l 3]的取值为l 1=1101 =1, l 2=1120=2, l 3=1112=1.7.带轴为[001]的晶带各晶面,其面指数有何特点?[解答]带轴为[001]的晶带各晶面平行于[001]方向,即各晶面平行于晶胞坐标系的c 轴或原胞坐标系的3a 轴,各晶面的面指数形为(hk0)或(h 1h 20), 即第三个数字一定为0. 8. 8. 与晶列[l 1l 2l 3]垂直的倒格面的面指数是什么?[解答]正格子与倒格子互为倒格子. 正格子晶面(h 1h 2h 3)与倒格式=h K h 11b +h 22b +h 33b 垂直, 则倒格晶面(l 1l 2l 3)与正格矢=l R l 11a + l 22a + l 33a 正交. 即晶列[l 1l 2l 3]与倒格面(l 1l 2l 3) 垂直.9. 9. 在结晶学中, 晶胞是按晶体的什么特性选取的?[解答]在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性.10. 10.六角密积属何种晶系? 一个晶胞包含几个原子?[解答]六角密积属六角晶系, 一个晶胞(平行六面体)包含两个原子.11. 11.体心立方元素晶体, [111]方向上的结晶学周期为多大? 实际周期为多大?[解答]结晶学的晶胞,其基矢为c b a , ,,只考虑由格矢=R h a +k b +l c 构成的格点. 因此, 体心立方元素晶体[111]方向上的结晶学周期为a 3, 但实际周期为a 3/2. 12. 12.面心立方元素晶体中最小的晶列周期为多大? 该晶列在哪些晶面内?[解答]周期最小的晶列一定在原子面密度最大的晶面内. 若以密堆积模型, 则原子面密度最大的晶面就是密排面. 由图 1.9可知密勒指数(111)[可以证明原胞坐标系中的面指数也为(111)]是一个密排面晶面族, 最小的晶列周期为2/2a . 根据同族晶面族的性质, 周期最小的晶列处于{111}面内.13. 在晶体衍射中,为什么不能用可见光? [解答]晶体中原子间距的数量级为1010-米,要使原子晶格成为光波的衍射光栅,光波的波长应小于1010-米. 但可见光的波长为7.6−4.0710-⨯米, 是晶体中原子间距的1000倍. 因此, 在晶体衍射中,不能用可见光.14. 高指数的晶面族与低指数的晶面族相比, 对于同级衍射, 哪一晶面族衍射光弱? 为什么?[解答]对于同级衍射, 高指数的晶面族衍射光弱, 低指数的晶面族衍射光强. 低指数的晶面族面间距大, 晶面上的原子密度大, 这样的晶面对射线的反射(衍射)作用强. 相反, 高指数的晶面族面间距小, 晶面上的原子密度小, 这样的晶面对射线的反射(衍射)作用弱. 另外, 由布拉格反射公式λθn sin 2=hkl d 可知, 面间距hkl d 大的晶面, 对应一个小的光的掠射角θ. 面间距hkl d 小的晶面, 对应一个大的光的掠射角θ. θ越大, 光的透射能力就越强, 反射能力就越弱. 15. 温度升高时, 衍射角如何变化? X 光波长变化时, 衍射角如何变化?[解答]温度升高时, 由于热膨胀, 面间距hkl d 逐渐变大. 由布拉格反射公式λθn sin 2=hkl d 可知, 对应同一级衍射, 当X 光波长不变时, 面间距hkl d 逐渐变大, 衍射角θ逐渐变小.所以温度升高, 衍射角变小.当温度不变, X 光波长变大时, 对于同一晶面族, 衍射角θ随之变大.16. 面心立方元素晶体, 密勒指数(100)和(110)面, 原胞坐标系中的一级衍射, 分别对应晶胞坐标系中的几级衍射?[解答]对于面心立方元素晶体, 对应密勒指数(100)的原胞坐标系的面指数可由(1.34)式求得为(111), p ’=1. 由(1.33)式可知, hkl h K K 2=; 由(1.16)和(1.18)两式可知, 2/321hkl h h h d d =; 再由(1.26)和(1.27)两式可知, n ’=2n . 即对于面心立方元素晶体, 对应密勒指数(100)晶面族的原胞坐标系中的一级衍射, 对应晶胞坐标系中的二级衍射.对于面心立方元素晶体, 对应密勒指数(110)的原胞坐标系的面指数可由(1.34)式求得为(001), p ’=2. 由(1.33)式可知, hkl h K K =; 由(1.16)和(1.18)两式可知, hklh h h d d =321; 再由(1.26)和(1.27)两式可知, n ’=n , 即对于面心立方元素晶体, 对应密勒指数(110)晶面族的原胞坐标系中的一级衍射, 对应晶胞坐标系中的一级衍射.17. 由KCl 的衍射强度与衍射面的关系, 说明KCl 的衍射条件与简立方元素晶体的衍射条件等效.[解答]Cl 与K 是原子序数相邻的两个元素, 当Cl 原子俘获K 原子最外层的一个电子结合成典型的离子晶体后, -Cl 与+K 的最外壳层都为满壳层, 原子核外的电子数和壳层数都相同, 它们的离子散射因子都相同. 因此, 对X 光衍射来说, 可把-Cl 与+K 看成同一种原子. KCl 与NaCl 结构相同, 因此, 对X 光衍射来说, KCl 的衍射条件与简立方元素晶体等效.由KCl 的衍射强度与衍射面的关系也能说明KCl 的衍射条件与简立方元素晶体的衍射条件等效. 一个KCl 晶胞包含4个+K 离子和4个-Cl 离子,它们的坐标+K :(000)(02121)(21021)(21210)-Cl :(0021)(0210)(2100)(212121)由(1.45)式可求得衍射强度I hkl 与衍射面(hkl )的关系I hkl ={+K f[1+cos ++++++)](cos )(cos )(h l n l k n k h n πππ)]}(cos cos cos cos [-Cl l k h n nl nk nh f +++++ππππ由于+K f 等于-Cl f , 所以由上式可得出衍射面指数nl nk nh , ,全为偶数时, 衍射强度才极大.衍射面指数的平方和222)()()(nl nk nh ++: 4, 8, 12, 16, 20, 24…. 以上诸式中的n 由λθ=++sin )()()(2222nl nk nh a决定. 如果从X 光衍射的角度把KCl 看成简立方元素晶体, 则其晶格常数为='a 2/a , 布拉格反射公式化为λθ=++sin )'()'()'('2222l n k n h n a显然'2n n =, 衍射面指数平方和222)'()'()'(l n k n h n ++: 1, 2, 3, 4, 5, 6…. 这正是简立方元素晶体的衍射规律.18. 金刚石和硅、锗的几何结构因子有何异同?[解答]取几何结构因子的(1.44)表达式)(21j j j lw kv hu n i tj j hkl ef F ++=∑=π,其中u j ,v j ,w j 是任一个晶胞内,第j 个原子的位置矢量在c b a , ,轴上投影的系数. 金刚石和硅、锗具有相同的结构, 尽管它们的c b a , ,大小不相同, 但第j 个原子的位置矢量在c b a , ,轴上投影的系数相同. 如果认为晶胞内各个原子的散射因子jf 都一样, 则几何结构因子化为∑=++=tj lw kv hu n i hkl j j j ef F 1)(2π. 在这种情况下金刚石和硅、锗的几何结构因子的求和部分相同. 由于金刚石和硅、锗原子中的电子数和分布不同, 几何结构因子中的原子散射因子f 不会相同.19. 旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 胶片上的感光线是否等间距?[解答]旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 衍射线构成了一个个圆锥面. 如果胶tgR md m =ϕ.其中R 是圆筒半径, d 是假设等间距的感光线间距, ϕ是各个圆锥面与垂直于转轴的平面的夹角. 由该关系式可得sin 2221R d m R mdm +=ϕ, 即m ϕsin 与整数m 不成正比. 但可以证明222sin l k h a mp m ++=λϕ.即m ϕsin 与整数m 成正比(参见本章习题23). 也就是说, 旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 胶片上的感光线不是等间距的.20. 如图1.33所示, 哪一个衍射环感光最重? 为什么?[解答]最小衍射环感光最重. 由布拉格反射公式θnλd2=sinhkl可知, 对应掠射角θ最小的晶面族具有最大的面间距. 面间距最大的晶面上的原子密度最大, 这样的晶面对射线的反射(衍射)作用最强. 最小衍射环对应最小的掠射角,它的感光最重.。

固体物理期末复习题目及答案

固体物理期末复习题目及答案

09级微电子学专业《固体物理》期末考复习题目至诚学院 信息工程系 微电子学专业姓名:陈长彬 学号:3第一章晶体结构IX 把等体积的硬球堆成下列结构,求球可能占据的最大体积和总体积之比。

(1)简立方(2)体心立方(3)面心立方(4)金刚石解:(IX 简立方,晶胞内含有一个原子∏=1,原子球半径为R,立方晶格的顶点原子球相切,立方边长a=2R, 体积为(2/?)5 ,4 4mR' -J ΓR'V(2町(2)、体心立方晶胞内含有2个原子n=2,原子球半径为R,晶胞边长为"立方晶格的体对角线原子球相切,(3)、面心立方晶胞内含有4个原子24,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方∖R √2(4).金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线;长,体对角线为8R = √L4解:对于体心立方,原胞基欠为:■ Zl . —* —* «3 = γ(* + 丿 一 &)对丁•体心立方原胞体枳为:Q = ^∙(^×ξ)所以=r 0∙52体对角线长为4个原子半径,所以Q =体边长为可所以G=4 √Σ4 、 4x-χR' /T=—一 =—ΛB = 0.7464 I 4 1 n∙-JΓR S×-πR /rK 33√3Vi R )2.证明面心立方和体心立方互为倒格子。

16 " = 034n -πR 3V龙= 0.68根据倒格子旱矢定义,并将体心原胞旱矢代入计灯之,町得:将计算所得到的倒格了•呈矢与外心立方的原胞呈欠相比 较,可知面心立方的倒格子是体心立方。

囚此可以说,曲心立方和体心立方互为倒格子。

3、证明:倒格子原胞体积为y∙ = E≤~,其中VC 为正格子原胞的体积。

对F 面心'工方•原胞皋欠为:金=斗 G + F) S 7=^(k+i)N=斗(7 + j)/ & ■将计只所得到的倒格子堆矢与Ifll 心立方廉胞肚矢相同, 可知体也立方的倒格子妊而心立方。

黄昆版固体物理学课后答案解析答案 (1)

黄昆版固体物理学课后答案解析答案 (1)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体物理第章固体电子
论参考答案
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
第四章 固体电子论 参考答案 1. 导出二维自由电子气的能态密度。

解: 二维情形,自由电子的能量是: 2π
L x x k n =,
2πL y y k n =
在/k =到d k k +区间: 那么:2d ()d Z Sg E E =
其中:22
()πm g E =
2. 若二维电子气的面密度为n s ,证明它的化学势为:
解:由前一题已经求得能态密度:
电子气体的化学势μ由下式决定:
()()22
2E-/E-/001d ()d πe
1e 1
B B k T
k T
L m E N g E L E μμ∞
∞==++⎰⎰ 令()/B
E k T x μ-≡,并注意到:2s N n L
= 那么可以求出μ:
证毕。

3. He 3
是费米子,液体He 3
在绝对零度附近的密度为0.081 g /cm 3。

计算它的费米能E F 和费米温度T F 。

解:He 3
的数密度:
其中m 是单个He 3
粒子的质量。

可得:
代入数据,可以算得:
E F = erg = eV.
则:F
F E T k = K.
4.已知银的密度为3
10.5/g cm ,当温度从绝对零
度升到室温(300K )时,银金属中电子的费米
能变化多少
解:银的原子量为108,密度为3
10.5/g cm ,
如果1个银原子贡献一个自由电子,1摩尔物质包含有个原子,则单位体积内银的自由电子数为
在T=0K 时,费米能量为
代如相关数据得
2/3
272
2
27
3
028
12(6.6310)()3 5.910()29.110()8 3.148.8710() 5.54()
F
erg s cm E g erg eV -----⎛⎫⨯⋅⨯⨯= ⎪⨯⨯⨯⎝⎭
≈⨯≈
在≠T 0K 时,费米能量
所以,当温度从绝对零度升到室温(300K )时, 费米能变化为 代如相关数据得
可见,温度改变时,费米能量的改变是微不足道的。

5. 已知锂的密度为3
0.534/g cm ,德拜温度为370K ,试求
(1)室温(300K )下电子的摩尔比热; (2)在什么温度下,锂的电子比热等于其晶格比热
解:(1)金属中每个电子在常温下贡献的比热
2
'0()2B V
B F
k T
C k E π= (1)
式中0F E 为绝对零度下的费米能:
2
2/33()28F h n E m π= (2)
锂的密度3
0.534/g cm ,原子量,每立方厘米锂包含的摩尔数为,1摩尔物质中包含个原子,每个锂贡献一个电子,则每立方厘米中的电子数 已知
将数据代入(2)得
在室温(300K )下,0.026B k T eV =,由(1)式可以求得电子的摩尔比热 代入相关数据得
(2)电子比热只在低温下才是重要的。

在低温下,由德拜理论知道,晶格比热
依题设,'''V
V
C C = 把(1)式代入,即得 代入相关数据得 T=(K )
6. 已知长为L 的一维方阱中有N 个电子,电子的能级为
22
28n n h
E mL =.
证明,T=0K 时电子的平均能量
式中0F E 为绝对零度下的费米能。

解:
电子在能级上的填充要受泡利原理的限制。

从n=1的基态起,每个能级只能填充自旋相反的2个电子,N 个电子将填满N/2个能级。

这个最后填充的能级是绝对零度下的费米能级,因此,
2
2
2
/032⎪⎭
⎫ ⎝⎛==L N m h E E N F
(1)
电子的平均能量总等于总能量除以电子数。

n E 写成
则平均能量
因N//2远大于1,我们可以用一积分代替上面的求和,并将(1)代入,即得。

相关文档
最新文档