大学物理化学实验报告络合物的磁化率的测定.pdf

合集下载

络合物磁化率的测定

络合物磁化率的测定

络合物磁化率的测定络合物的磁化率测定磁场强度和磁感应强度均为表征磁场性质(即磁场强弱和方向)的两个物理量。

由于磁场是电流或者说运动电荷引起的,而磁介质(除超导体以外不存在磁绝缘的概念,故一切物质均为磁介质)在磁场中发生的磁化对源磁场也有影响(场的迭加原理)。

因此,磁场的强弱可以有两种表示方法:在充满均匀磁介质的情况下,若包括介质因磁化而产生的磁场在内时,用磁感应强度B表示,其单位为特斯拉T,是一个基本物理量;单独由电流或者运动电荷所引起的磁场(不包括介质磁化而产生的磁场时)则用磁场强度H表示,其单位为A/m2,是一个辅助物理量。

络合物的磁化率测定 (2)Ⅰ、实验目的 (3)Ⅱ、实验原理 (3)Ⅲ、仪器与试剂 (8)Ⅳ、实验步骤 (9)Ⅴ、数据处理 (10)Ⅵ、思考题 (12)Ⅶ、实验的重点难点 (12)Ⅷ、网上答疑 (16)Ⅸ、注意事项 (16)Ⅹ、仪器操作 (17)Ⅺ、在线测试 (20)Ⅰ、实验目的一、掌握古埃(Gouy)磁天平测定物质磁化率的基本原理和实验方法;二、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型; Ⅱ、实验原理1. 摩尔磁化率和分子磁矩物质在外磁场0H 作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H '。

物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:4H H πχ=' χ称为物质的体积磁化率,是物质的一种宏观性质,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。

化学上常用摩尔磁化率M χ表示磁化程度,它与χ的关系为ρχχMM =式中M 、ρ分别为物质的摩尔质量与密度。

M χ的单位为13-⋅mol m 。

物质在外磁场作用下的磁化现象有三种: 第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩0=m μ。

当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。

络合物磁化率的测定实验报告

络合物磁化率的测定实验报告

络合物磁化率的测定实验报告实验十配合物磁化率的测定实验十配合物磁化率的测定1 实验目的(1)掌握古埃(Gouy)法磁天平测定物质磁化率的基本原理和实验方法。

(2)用古埃磁天平测定FeSO4·7H2O、K4Fe(CN)6·3H2O这两种配合物的磁化率,推算其不成对电子数,从而判断其分子的配键类型。

2 实验原理(1)磁化率的定义在外磁场的作用下,物质会被磁化产生附加磁感应强度,则物质内部的磁感应强度B=B0+B’=μ0H+B’(2-1) 式中:B0为外磁场的磁感应强度;B’为物质磁化产生的附加磁感应强度;H为外磁场强度;μ0=4π×10-7N·A-2为真空磁导率。

物质的磁化可用磁化强度M来描述,M也是一个矢量,它与磁场强度成正比M=χh(2-2)式中:χ称为物质的体积磁化率,是物质的一种宏观磁性质。

B’与M的关系为B’=μ0M=χμ0H (2-3)将(2-3)代入(2-1)得B=(1+χ) μ0H =μμ0H (2-4)式中μ称为物质的相对磁导率。

化学上常用单位质量磁化率χm或摩尔磁化率χM来表示物质的磁性质,它们的定义为(2-5)(2-6)(2)物质的原子、分子或离子在外磁场作用下的三种磁化现象第一种情况是物质本身不呈现磁性,但由于其内部的电子轨道运动,在外磁场作用下会产生拉摩进动,感应出一个诱导磁矩来,表现为一个附加磁场,磁矩的方向与外磁场相反,其磁化强度与外磁场强度呈正比,并随着外磁场的消失而消失,这类物质称为逆磁性物质,其μ1,χM0.第二种情况是物质的原子、分子或离子本身具有永久磁矩μm,由于热运动,永久磁矩指向各个方向的机会相同,所以该磁矩的统计值等于零。

但在外磁场作用下,永久磁矩会顺着外磁场方向排列,其磁化方向与外磁场相同,其磁化强度与外磁场强度成正比,此物质内部的电子轨道运动也会产生拉摩进动,其磁化方向与外磁场相反。

这类物质被称为顺磁性物质。

显然,此类物质的摩尔磁化率是摩尔顺磁化率χμ和摩尔逆磁化率χ0 之和χm=χμ+χ0 (2-7)由于χμ?|χ0|,故有χm≈χμ(2-8)顺磁性物质的μ>1,χm>0。

物化实验报告磁化率-络合物结构测定

物化实验报告磁化率-络合物结构测定

可见,测量磁化率可以区分物质的磁性类型,还可以检测外界条件
改变时磁性的转变;测定顺磁性物质的磁化率,有助于计算出每个分子
中的非成对电子数,从而推测出该物质分子的配位场电子结构。
仪器与试剂
古埃磁天平(包括磁场,电光天平,励磁电源等); CT5型高斯计一台; 软质玻璃样品管4支;
装样品工具(研钵、角匙、小漏斗、玻璃棒)一套。
4A时: =-4.902 E-7 m3/g 所以χm=6.809 E-7m3/g 由公式 , T=290.85K,NA=6.022E23 mol-1,K=1.381E-16 erg/K,β=9.274E-21 erg/Gauss 解得:n=0
0
13.195 13.195 26.568 26.568
K4Fe(CN)6·3H2O: 样品柱高度h3=15.35cm Table 3
励磁电流 /A
空管视质量/g
0
12.706 12.706
3
12.706 12.706
4
12.706 12.706
4
12.705 12.706
3
12.706 12.706
3) 测定FeSO4·7H2O和K4Fe(CN)6·3H2O的相关数据:另取一只 空样品管,仿照测(NH4)2SO4·FeSO4·6H2O的步骤,将样品 改为FeSO4·7H2O测定并记录有关数据。再换一只空样品 管,测K4Fe(CN)6·3H2O。
.3 注意事项
1)操作中电流调节要缓慢,并注意电流稳定后方可称量; 2)样品管底部要与磁极中心线齐平; 3)称量时样品管要处于两个磁极的中间; 4)样品的高度必须h≥15cm,而且准确记录下来; 5)样品要研细、填实。
∴ =3307.7 Gauss (I=3A), = 4410.3 Gauss (I=4A)。

络合物磁化率的测定

络合物磁化率的测定

络合物磁化率的测定一、实验目的1、用古埃法测定物质的磁化率,推算分子磁矩,估算分子内未成对电子数。

2、掌握古埃磁天平测定磁化率的原理和方法。

二、实验原理物质在外磁场H 0作用下由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。

物质被磁化的程度用χ表示H'=4πχH 0 H 0—外磁场 H'—附加磁场 χ—磁化率χ m=χM/ρ χ m ——摩尔磁化率 M 、ρ 分别表示物质的摩尔质量和密度kTL mm 320μμχ=L(6.022×1023mol -1)为阿佛加德罗常数,k 为玻尔兹曼常数(1.3806×10-23J/K ),T 为绝对温度 µ0为真空磁导率(4π×10-7 N •A -2)µB为玻尔磁子(9.274 ×10-24J•T -1),是磁矩的自然单位物质在磁场中受到的吸引力MhH m F m 2021μχ=g m m F )(0∆-∆=∆m 为装样品后有无磁场的称量变化值 ∆m 0为空样品管在有无磁场的称量变化值200)(2mH ghM m m m μχ∆-∆=其中用莫尔氏盐标定H 的值)(10419500)(139--∙⨯+=mol m M T m πχ莫尔氏盐式中M 为莫尔氏盐的摩尔质量(kg/mol ) 三、实验步骤1、取一支洁净、干燥的空样品管,悬挂在天平一端的挂钩上,使样品管的底部在磁极的中心连线上,准确称量空样品管。

2、将励磁电流电源接通,依次称量2.5、5.0A 时空样品管,接着电流调至6A ,然后依次减小电流,再依次测量5.0、2.5A 时空样品管(抵消剩磁现象影响)。

3、加样品管重复前面的步骤。

四、数据记录及处理h/cmI/Am/gm /gI↑I↓样品管0 2.5 5.0样品管+莫尔氏盐0 2.5 5.0样品管+亚铁氰化钾0 2.5 5.0样品管+硫酸亚铁0 2.5 5.0五、注意事项1、天平称量时,必须关上磁极架外面的玻璃门,以免空气流动对称量的影响。

物化实验报告_实验A磁化率-络合物结构测定

物化实验报告_实验A磁化率-络合物结构测定

磁化率-络合物的测定摘要:本实验对磁介质在磁场中的磁化现象进行了探讨,并通过对一些物质的磁化率的测定,求出未成对电子数并判断络合物中央离子的电子结构和成键类型。

此外,加强了对古埃法测定磁化率原理和技术的理解及学习使用了磁天平。

关键词:磁化率、络合物、结构The Determination of Magnetic SusceptibilityAbstract:In the experiment, we mainly discuss the measurement of magnetic susceptibility and count the number of unpaired electrons. Also we have improved our understanding of GOUY Magnetic Balance Measurement.Key words: magnetic susceptibility, complexes, structure1. 前言磁化率是各种物质都普遍具有的属性。

考察组成物质的分子:如果分子中的电子都是成对电子,则这些电子对的轨道磁矩对外加磁场表现出“抗磁性”或“反磁性”,该物质的磁化率将是一个负值,其数量级约10-5~10-6emu。

但是如果分子中还存在非成对电子,那么这些非成对电子产生的磁矩会转向外磁场方向,并且这种效应比产生“抗磁性”的楞次定律效应强很多,完全掩盖了成对电子的“抗磁性”而表现出“顺磁性”,其磁化率是正值,数量级约10-2~10-5emu。

原子核的自旋磁矩也会产生顺磁效应,不过核顺磁磁化率只有约10-10emu,一般不予考虑。

上述的顺磁性和抗磁性均为弱磁性,其相应的磁化率都远小于1;还有一种“铁磁性”,其磁化率远大于1——被称为强磁性。

弱磁性和强磁性还有一个显著区别是:弱磁性物质的磁化率基本上不随磁场强度而变化,强磁性物质的磁化率却随磁场强度而剧烈变化。

磁化率的测定(实验报告)

磁化率的测定(实验报告)

磁化率的测定1.实验目的1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。

1.2掌握古埃掌握古埃(Gouy)(Gouy)(Gouy)磁天平测定磁化率的原理和方法。

磁天平测定磁化率的原理和方法。

2.实验原理2.1摩尔磁化率和分子磁矩物质在外磁场H 0作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。

物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。

化学上常用摩尔磁化率χm 表示磁化程度,它与χ的关系为式中M 、ρ分别为物质的摩尔质量与密度。

χm 的单位为m 3·mol -1。

物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,µm =0。

当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。

如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。

这种物质称为反磁性物质,如Hg ,Cu ,Bi 等。

它的χm 称为反磁磁化率,用χ反表示,且χ反<0。

第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩µm ≠0。

这些杂乱取向的分子磁矩在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn ,Cr ,Pt 等,表现出的顺磁磁化率用χ顺表示。

但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm 是顺磁磁化率χ顺。

与反磁磁化率χ反之和。

因|χ顺|»|χ反|,所以对于顺磁性物质,可以认为χm =χ顺,其值大于零,即χm >0。

第三种,第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,物质被磁化的强度随着外磁场强度的增加而剧烈增强,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不而且在外磁场消失后其磁性并不消失。

磁化率的测定 实验报告

磁化率的测定 实验报告

磁化率的测定一、实验目的1.掌握古埃(Gouy)法测定磁化率的原理和方法。

2.测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。

二、预习要求1.了解磁天平的原理与测定方法。

2.熟悉特斯拉计的使用。

三、实验原理1.磁化率物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度 H′与外磁场强度 H 之和称为该物质的磁感应强度 B,即B = H + H′(1)H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。

还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达 104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。

物质的磁化可用磁化强度 I 来描述,H′=4πI。

对于非铁磁性物质,I 与外磁场强度 H成正比I = KH (2)式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。

在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物质的磁性质,它的定义是χm = K/ρ(3)χM = MK/ρ(4)式中,ρ和M分别是物质的密度和摩尔质量。

由于K是无量纲的量,所以χm和χM的单位分别是cm3•g-1和cm3•mol-1。

磁感应强度 SI 单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。

2.分子磁矩与磁化率物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。

但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。

其χM就等于反磁化率χ反,且χM<0。

在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。

在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。

顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即χM =χ顺 + χ反(5)通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。

大学物理化学实验报告络合物的磁化率的测定

大学物理化学实验报告络合物的磁化率的测定

大学物理化学实验报告络合物的磁化率的测定实验目的:通过实验测定络合物的磁化率,掌握磁化率的测定方法和技巧。

实验仪器:洛氏天平、电磁振荡器、振荡电路、Q计、恒温水浴器、实验室电子天平。

实验原理:络合物的磁化率是指在外磁场的作用下,物质自身产生的磁场强度和外磁场强度之比。

磁化率是描述物质磁性的重要物理量。

磁场的作用下,物质的磁矩将朝着磁场方向排列,这个现象被称为磁化。

当物质产生极化时,在极化过程中产生的电磁感应力,会引起磁化电流。

用磁化电流制造磁场,又改变物质的磁极朝向,把磁场放置于物质的磁场中使磁极反向,则外场所占的元素数越小,磁化强度越强。

实验步骤:1.将洛氏天平调零,并将所需量的化合物精致称取后转移到可锡金属内。

2.将所需化合物置于电磁振荡器中,并加入微量的稳定剂。

3.振荡电路管路所接的Q计为230,测量电路输出的信号频率差,以求得振动频率。

4.将所需化合物加入到恒温水浴器中,约测温乘实验执行时的时间,记录所需化合物的质量。

5.测量化合物的磁化率,将约6克的化合物加入到电磁振荡器的内锡金属中。

开启泵浦,使化合物处于稳定状态。

记录全质量平衡的精细称量,在稳定状态下开启振荡电路,并标记振荡频率。

6.依照实验操作所得温度T值,计算化合物的磁化率,记录测量值。

7.将测试结果记录在记录表中,记录实验所用的仪器,设备的具体信息、操作步骤,实验过程中所需注意的问题及所得数据与结论。

实验结果分析:实验结果表明,所得化合物的磁化率与温度呈正比例关系,在一定的磁场强度下,化合物的磁化率随着温度升高而增加,在磁场消失后,化合物的磁化率随着温度的升高而降低。

磁化率的测定(实验报告)

磁化率的测定(实验报告)

磁化率的测定1.实验目的1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。

1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。

2.实验原理2.1摩尔磁化率和分子磁矩物质在外磁场H0作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。

物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。

化学上常用摩尔磁化率χm表示磁化程度,它与χ的关系为式中M、ρ分别为物质的摩尔质量与密度。

χm的单位为m3·mol -1。

物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,µm=0。

当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。

如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。

这种物质称为反磁性物质,如Hg, Cu, Bi等。

它的χm称为反磁磁化率,用χ反表示,且χ反<0。

第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩µm≠0。

这些杂乱取向的分子磁矩在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn, Cr,Pt等,表现出的顺磁磁化率用χ顺表示。

但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm是顺磁磁化率χ顺。

与反磁磁化率χ反之和。

因|χ顺|»|χ反|,所以对于顺磁性物质,可以认为χm=χ顺,其值大于零,即χm>0。

第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。

这种物质称为铁磁性物质。

对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩µm关系可由居里-郎之万公式表示:式中L为阿伏加德罗常数(6.022 ×1023mol-1),、k为玻尔兹曼常数(1.3806×10-23J·K-1),µ0为真空磁导率(4π×10-7N·A-2,T为热力学温度。

实验二十三 络合物磁化率的测定

实验二十三 络合物磁化率的测定

实验二十三 络合物磁化率的测定一、实验目的1. 学习古埃法测定物质磁化率的原理和方法;2. 通过对FeSO 4·7H 2O 与K 4[Fe (CN )6]·3H 2O 磁化率的测定,推算未成对电子数。

二、实验原理物质在磁场中被磁化,在外磁场强度H (A·m -1)的作用下,产生附加磁场H'。

这时该物质内部的磁感应强度B 为外磁场强度H 与附加磁场强度H'之和:B =H 十H '=H 十4πχH = μH (15-1)式中χ称为物质的体积磁化率、表示单位体积物质的磁化能力,是无量纲的物理量。

μ称为磁导率,与物质的磁化学性质有关。

由于历史原因,目前磁化学在文献和手册中仍多半采用静电单位(CGSE),磁感应强度的单位用高斯(G ),它与国际单位制中的特斯拉(T )的换算关系是1T = 10000G 。

磁场强度与磁感应强度不同、是反映外磁场性质的物理量。

与物质的磁化学性质无关。

习惯上采用的单位为奥斯特(Oe ),它与国际单位A·m -1 的换算关系为1Oe = 31410π-⨯ A·m -1由于真空的导磁率被定为:μ0=4π×10-7 Wb·A -1·m -1,而空气的导磁率μ空 ≈μ0,因而B =μ0H = 4π ×10-7 Wb·A -1·m -1 × 1Oe =1×10-4 Wb·m -2 =1×10-4 T =1G 。

这就是说1奥斯特的磁场强度在空气介质中所产生的磁感应强度正好是1高斯,二者单位虽然不同,但在量值上是等同的。

习惯上用测磁仪器测得的“磁场强度”实际上都是指在某一介质中的磁感应强度,因而单位用高斯,测磁仪器也称为高斯计。

除χ外化学上常用单位质量磁化率χm 和摩尔磁化率χM 来表示物质的磁化能力,二者的关系为:χM =M ·χm (15-2)式中M 是物质的分子量,χm 的单位取cm 3·g -1,χM 的单位取cm 3·mol -1。

物化实验报告磁化率-络合物结构测定

物化实验报告磁化率-络合物结构测定

磁化率-络合物的测定本实验对磁介质在磁场中的磁化现象进行了探讨,并通过对一些物质的磁化率的测定,求出未成对电子数并判断络合物中央离子的电子结构和成键类型。

此外,加强了对古埃法测定磁化率原理和技术的理解及学习使用了磁天平。

磁化率是各种物质都普遍具有的属性。

考察组成物质的分子:如果分子中的电子都是成对电子,则这些电子对的轨道磁矩对外加磁场表现出“抗磁性”或“反磁性”,该物质的磁化率将是一个负值,其数量级约10-5~10-6emu。

但是如果分子中还存在非成对电子,那么这些非成对电子产生的磁矩会转向外磁场方向,并且这种效应比产生“抗磁性”的楞次定律效应强很多,完全掩盖了成对电子的“抗磁性”而表现出“顺磁性”,其磁化率是正值,数量级约10-2~10-5emu。

原子核的自旋磁矩也会产生顺磁效应,不过核顺磁磁化率只有约10-10emu,一般不予考虑。

上述的顺磁性和抗磁性均为弱磁性,其相应的磁化率都远小于1;还有一种“铁磁性”,其磁化率远大于1——被称为强磁性。

弱磁性和强磁性还有一个显著区别是:弱磁性物质的磁化率基本上不随磁场强度而变化,强磁性物质的磁化率却随磁场强度而剧烈变化。

可见,测量磁化率可以区分物质的磁性类型,还可以检测外界条件改变时磁性的转变;测定顺磁性物质的磁化率,有助于计算出每个分子中的非成对电子数,从而推测出该物质分子的配位场电子结构。

仪器与试剂古埃磁天平(包括磁场,电光天平,励磁电源等);CT5型高斯计一台;软质玻璃样品管4支;装样品工具(研钵、角匙、小漏斗、玻璃棒)一套。

(NH4)2SO4·FeSO4·6H2O (分析纯)FeSO4·7H2O (分析纯)K4Fe(CN)6·3H2O (分析纯)1.2实验步骤1)研细粉末样品2)测定(NH4)2SO4·FeSO4·6H2O的相关数据:取一只空样品管,使励磁电流从小到大再从大到小,依次测量其在I=0、3A、4A、4A、3A、0时的视重质量,并重复一次。

物理化学-实验三十七:络合物的磁化率测定

物理化学-实验三十七:络合物的磁化率测定

实验三十七 络合物的磁化率测定一.实验目的1.掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法。

2.用古埃磁天平测定FeSO 4·7H 2O 、K 4Fe (CN)6·3H 2O 这两种络合物的磁化率,推算其不成对电子数,从而判断其分子的配键类型。

二.实验原理1.在外磁场的作用下,物质会被磁化产生附加磁感应强度,则物质内部的磁感应强度B H B B B '+='+=00μ (1)式中B 0为外磁场的磁感应强度,B ′为物质磁化产生的附加磁感应强度,H 为外磁场强度,μ0为真空磁导率,其数值等于4π×10-7N ·A -2。

物质的磁化可用磁化强度M 来描述,M 也是一个矢量,它与磁场强度成正比M =x ·H (2)式中x 称为物质的体积磁化率,是物质的一种宏观磁性质。

B ′与M 的关系为B ′=μ0M =x μ0H (3)将式(3)代入式(1)得B =(1+x )μ0H =μμ0H (4)式中μ称为物质的(相对)磁导率。

化学上常用单位质量磁化率x m 或摩尔磁化率x M 来表示物质的磁性质,它们的定义为ρxx m =(5)ρxM x M x m M ⋅=⋅= (6)式中ρ为物质密度,M 为物质的摩尔质量。

2.物质的原子、分子或离子在外磁场作用下的三种磁化现象第一种情况是物质本身不呈现磁性,但由于其内部的电子轨道运动,在外磁场作用下会产生拉摩进动,感应出一个诱导磁矩来,磁矩的方向与外磁场相反,其磁化强度与外磁场强度成正比,并随着外磁场的消失而消失,这类物质称为逆磁性物质,其μ<1,x M <0。

第二种情况是物质的原子、分子或离子本身具有永久磁矩μm ,由于热运动,永久磁矩指向各个方向的机会相同,所以该磁矩的统计值等于零。

但在外磁场作用下,永久磁矩会顺着外磁场方向排列,其磁化方向与外磁场相同,其磁化强度与外磁场强度成正比,此外物质内部的电子轨道运动也会产生拉摩进动,其磁化方向与外磁场相反。

大学物理化学实验报告-络合物的磁化率的测定

大学物理化学实验报告-络合物的磁化率的测定

他x if r rt物理化学实验报告院系化学化工学院班级 __________ 化学061 _______ 学号 _____________ 13 _________ 姓名 ___________ 沈建明_________实验名称络合物的磁化率的测定日期 2009.4.20 同组者姓名 史黄亮 ________ 室温 22.5 C气压101.6 kPa ________成绩 ___________________、目的和要求1掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法; 2、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型二、基本原理物质的磁性一般可分为三种:顺磁性,反磁性和铁磁性。

a .反磁性是指磁化方向和外磁场方向相反时所产生的磁效应。

反磁物 质的x D < 0 (电子的拉摩进动产生一个与外磁场方向相反的诱导磁矩,导 致物质具有反磁性)。

b.顺磁性是指磁化方向和外磁场方向相同时所产生的磁效应,顺磁物质的Xp > 0。

(外磁场作用下,粒子如原子、分子、离子,中固有磁矩产生 的磁效应)。

c.铁磁性是指在低外磁场中就能达到饱和磁化,去掉外磁场时,磁性 并不消失,呈现出滞后现象等一些特殊的磁效应。

通过测定物质在不均匀磁场中受到的力,求出物质的磁化率 把样品装于园形样品管中,悬于两磁极中间,一端位于磁极间磁场强度最大区域H ,而另一端位于磁场强度很弱的区域 H o ,则样品在沿样品管方向所受的力 F 可表示为: F -mH:H之d.摩尔磁化率:7. M古埃法测定物质的摩尔磁化率(+ 7. 7. DPPM)的原理其中:m为样品质量,H为磁场强度,岀为沿样品管方向的磁场梯度。

本实验用摩尔氏盐(六水合硫酸亚铁铵)标定外磁场强度H。

测定亚铁氰化钾和硫酸亚铁的摩尔磁化率,求金属离子的磁矩并考察电子配对状况。

三、仪器、试剂MB-1A磁天平(包括电磁铁,电光天平,励磁电源)1套软质玻璃样品管1只角匙1只漏斗1只莫尔氏盐(NH4)2SO4 • FeSO • 6H2O (分析纯)FeSC4 • 7H2O (分析纯)K4Fe(CN)6 • 3H2O (分析纯)四、实验步骤1. 磁场强度(H)的测定:用已知摩尔磁化率的莫尔氏盐标定某一固定励磁电流时的磁场强度(H)励磁电流变化OA f 3A f 3.5A—4A f 3.5A f 3A f 0A,分别测定励磁电流在各值下的天平的读数(4A的值可以不读,持续2分钟左右,消磁),用同一仪器在同等条件下进行后续的测定。

络合物磁化率的测定

络合物磁化率的测定

络合物的磁化率测定1.实验目的及要求1)掌握古埃(Gouy)法测定磁化率的原理和方法。

2)通过测定一些络合物的磁化率,求算未成对电子数和判断这些分子的配键类型。

2.实验原理1)磁化率物质在外磁场作用下,物质会被磁化产生一附加磁场。

物质的磁感应强度等于(16.1)式中B0为外磁场的磁感应强度;B′为附加磁感应强度;H为外磁场强度;μ0为真空磁导率,其数值等于4π×10-7N/A2。

物质的磁化可用磁化强度M来描述,M也是矢量,它与磁场强度成正比。

(16.2)式中Z为物质的体积磁化率。

在化学上常用质量磁化率χm或摩尔磁化率χM来表示物质的磁性质。

(16.3)(16.4)式中ρ、M分别是物质的密度和摩尔质量。

2)分子磁矩与磁化率物质的磁性与组成物质的原子,离子或分子的微观结构有关,当原子、离子或分子的两个自旋状态电子数不相等,即有未成对电子时,物质就具有永久磁矩。

由于热运动,永久磁矩的指向各个方向的机会相同,所以该磁矩的统计值等于零。

在外磁场作用下,具有永久磁矩的原子,离子或分子除了其永久磁矩会顺着外磁场的方向排列。

(其磁化方向与外磁场相同,磁化强度与外磁场强度成正比),表观为顺磁性外,还由于它内部的电子轨道运动有感应的磁矩,其方向与外磁场相反,表观为逆磁性,此类物质的摩尔磁化率χM是摩尔顺磁化率χ顺和摩尔逆磁化率χ逆的和。

对于顺磁性物质,χ顺>>∣χ逆∣,可作近似处理,χM=χ顺。

对于逆磁性物质,则只有χ逆,所以它的χM=χ逆。

第三种情况是物质被磁化的强度与外磁场强度不存在正比关系,而是随着外磁场强度的增加而剧烈增加,当外磁场消失后,它们的附加磁场,并不立即随之消失,这种物质称为铁磁性物质。

磁化率是物质的宏观性质,分子磁矩是物质的微观性质,用统计力学的方法可以得到摩尔顺磁化率χ顺和分子永久磁矩μm间的关系(16.6)式中N0为阿佛加德罗常数;K为波尔兹曼常数;T为绝对温度。

物质的摩尔顺磁磁化率与热力学温度成反比这一关素,称为居里定律,是居里首先在实验中发现,C为居里常数。

磁化率的测定(实验报告)

磁化率的测定(实验报告)

磁化率的测定1.实验目的1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。

1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。

2.实验原理2.1摩尔磁化率和分子磁矩物质在外磁场H0作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。

物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。

化学上常用摩尔磁化率χm表示磁化程度,它与χ的关系为式中M、ρ分别为物质的摩尔质量与密度。

χm的单位为m3·mol -1。

物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,µm=0。

当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。

如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。

这种物质称为反磁性物质,如Hg,Cu,Bi等。

它的χm称为反磁磁化率,用χ反表示,且χ反<0。

第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩µm≠0。

这些杂乱取向的分子磁矩在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn,Cr,Pt等,表现出的顺磁磁化率用χ顺表示。

但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm是顺磁磁化率χ顺。

与反磁磁化率χ反之和。

因|χ顺|»|χ反|,所以对于顺磁性物质,可以认为χm=χ顺,其值大于零,即χm>0。

第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。

这种物质称为铁磁性物质。

对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩µm关系可由居里-郎之万公式表示:式中L为阿伏加德罗常数(6.022 ×1023mol-1),、k为玻尔兹曼常数(1.3806×10-23J·K-1),µ0为真空磁导率(4π×10-7N·A-2,T为热力学温度。

中国科大物化实验11 磁化率——络合物结构的测定报告

中国科大物化实验11 磁化率——络合物结构的测定报告
实验十一
【摘要】
磁化率——络合物结构的测定
PB14207067 张镇
任何材料在磁场的作用下将被磁化,并显示一定特征的磁性。这 种磁性不仅仅由磁化强度或磁感应强度的大小来表征, 而且应由磁化 强度随外磁场的变化特征来反映。为此,定义材料在磁场作用下,磁 化强度 M 与磁场强度 H 的比值为磁化率: χ=M/H 通过对络合物磁化率的测定,可以判断物质的分子结构。本实验 采用古埃磁天平测定两种络合物的磁化率。
p
2 p H
3 KT

J ( J 1) g 2 2 H 3 KT
(9)
式中 K 为玻尔兹曼常数,T 为绝对温度。 摩尔磁化率是单位磁场强度下一摩尔物质的平均磁矩,即
X PM NO p H N O J ( J 1) g 2 2 3 KT
C T

C T
(10)
式中 NO 为阿佛加德罗常数;C 为居里常数,关系式:
由(14)式可得: XPM = XM -XDM (15)
如果实验测出了 XM 和 XDM,则可通过(15)式求出分子中未配 对的电子数 n。实验中如 XPM≠0,就很难测出 XDM,幸有∣XPM ∣>>∣XDM∣,常把 XDM 从 XM 中略去,有 XM≈XPM,则有
X M X PM N O n(n 2) 3 KT
X PM
(11)
也称为居里定律。后来实验证明在更大的温度范围内,要用以下的居 里——外斯定律来描写。
X PM
2 NO P C 3 K (T Δ ) (T Δ )
(12)
式中Δ为外斯常数。
X DM N Oe 2 n 2 NO D ri H 6mC 2 i 1
(2) (3)

实验一磁化率的测定

实验一磁化率的测定

磁化率的测定实验报告1. 实验目的1.1 掌握古埃(Gouy)法测定磁化率的原理和方法。

1.2 测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。

2. 实验原理 2.1 磁化率物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度 H ′ 与外磁场强度 H 之和称为该物质的磁感应强度 B ,即B = H + H′ (1)H ′与H 方向相同的叫顺磁性物质,相反的叫反磁性物质。

还有一类物质如铁、钴、镍及其合金,H ′比H 大得多(H ′ / H )高达10 4,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。

物质的磁化可用磁化强度I 来描述,H ′ =4πI 。

对于非铁磁性物质,I 与外磁场强度H 成正比I = KH (2)式中,K 为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。

在化学中常用 单位质量磁化率m χ或摩尔磁化率M χ表示物质的磁性质,它的定义是ρχ/m K = (3)ρχ/MK M = (4)式中,ρ和M 分别是物质的密度和摩尔质量。

由于K 是无量纲的量,所以m χ和M χ的单位分别是cm 3•g -1和cm 3•mol -1 。

磁感应强度 SI 单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G 。

2.2 分子磁矩与磁化率物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。

但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。

其M χ就等于反磁化率反χ,且M χ< 0。

在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。

在外磁场中,永久磁矩顺着外磁场方向排列, 产生顺磁性。

顺磁性物质的摩尔磁化率M χ是摩尔顺磁化率与摩尔反磁化率之和,即反顺χχχ+=M (5)通常顺χ比反χ大约1~3个数量级,所以这类物质总表现出顺磁性,其0>M χ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F81 25.8942 25.8492 25.7232
K4Fe(CN)6·3H2O+管/g 25.2363 25.2352 25.2346 25.2345 25.2352 25.2364
六、数据处理
室温: 22.5℃
填料高度: h=8cm
(一) 由莫尔氏盐质量磁化率和实验数据计算相应的励磁电流下的磁场强度值:
在实验温度(22.5℃=295.65K)下:
莫尔氏盐的标准χm =9500/(T+1)*4π*10-9
=9500/(295.65+1)*4π*10-9
4
=4.04*10-7 m3·kg-1
所以莫尔氏盐的摩尔磁化率χM = M 莫尔氏盐*χm =392 g/mol * 4.04*10-7 m3·kg-1 =1.58 ×10-7 m3·mol-1
根据公式
M
=
2(m样品+空管 − m空管)ghM 0mH 2
求不同励磁电流下的磁场强度 H:
I=3.0A 时:
H = 2(m样品+空管 − m空管)ghM M 0m
20.09470 − 0.000409.8 0.08 0.392
= 1.5810−7 4 3.1410−7 5.69895
= 2.26105A m−1
可表示为: F = mH H Z
2
其中:m 为样品质量,H 为磁场强度,H 为沿样品管方向的磁场梯度。 Z
本实验用摩尔氏盐(六水合硫酸亚铁铵)标定外磁场强度 H。测定亚铁氰化钾 和硫酸亚铁的摩尔磁化率,求金属离子的磁矩并考察电子配对状况。
三、仪器、试剂
MB-1A 磁天平(包括电磁铁,电光天平,励磁电源) 1 套
子的配键类型
二、基本原理
物质的磁性一般可分为三种: 顺磁性, 反磁性和铁磁性。 a .反磁性是指磁化方向和外磁场方向相反时所产生的磁效应。反磁物
质的χD < 0(电子的拉摩进动产生一个与外磁场方向相反的诱导磁矩,导 致物质具有反磁性)。
b. 顺磁性是指磁化方向和外磁场方向相同时所产生的磁效应,顺磁物 质的 Xp > 0。(外磁场作用下,粒子如原子、分子、离子,中固有磁矩产生 的磁效应)。
I0=0 I1=3.0 I2=3.5 I2'=3.5 I1'=3.0 I0'=0 △m(I1) △m(I2) m 样品
空管(g) 19.9570 19.9569 19.9568 19.9558 19.9562 19.9569 0.00040 0.00065
空管+莫尔氏盐 (g)
25.6558 25.7470 25.7818 25.7880 25.7542 25.6560 0.09470 0.12900 5.69895
量。求出空管在加磁场前,后的重量变化管 ,重复测定三次读数,取平均 值。 (2)把已经研细的莫尔氏盐通过小漏斗装入样品管,样品高度约为 8m(此时样 品另一端位于磁场强度 H=0 处)。读出样品的高度,要注意样品研磨细小, 装样均匀不能有断层。测定莫尔氏盐在加励磁电流前,后磁场中的重量。 求出在加磁场前后的重量变化样品+管,重复测定三次读数,取平均值。 2.样品的莫尔磁化率测定:
同理可得,I=3.5A 时: H=2.64×105 A·m-1
(二) 计算 FeSO4·7H2O 和 K4Fe(CN)6·3H2O 的χm 再计算其μm 和未成对电子数 n
把测定过莫尔氏盐的试管擦洗干净,把待测样品 K4 Fe(CN)6 3H2O
FeSO4 7H2O ,分别装在样品管中,按着上述步骤(1),(2)分别测定在
加磁场前,后的重量。求出重量的变化(管和样品+管),重复测定三次读数,取
3
平均值。
五、原始数据
T=22.5℃ h=8cm MFeSO4·7H2O =278.02 g/mol
空管+FeSO4·7H2O(g) 25.7229 25.8470 25.8881 25.8942 25.8492 25.7232 0.12505 0.16810 5.7661
空管+K4Fe(CN)6·3H2O(g) 25.2363 25.2352 25.2346 25.2345 25.2352 25.2364 0.00055 0.00180 5.2794
c. 铁磁性是指在低外磁场中就能达到饱和磁化,去掉外磁场时,磁性 并不消失,呈现出滞后现象等一些特殊的磁效应。
d. 摩尔磁化率: M = D + P P 古埃法测定物质的摩尔磁化率( M )的原理
通过测定物质在不均匀磁场中受到的力,求出物质的磁化率 。 把样品装于园形样品管中,悬于两磁极中间,一端位于磁极间磁场强度最大区域 H,而另一端位于磁场强度很弱的区域 H 0,则样品在沿样品管方向所受的力 F
软质玻璃样品管 1 只
角匙
1只
漏斗
1只
莫尔氏盐(NH4)2SO4·FeSO4·6H2O(分析纯) FeSO4·7H2O(分析纯) K4Fe(CN)6·3H2O(分析纯)
四、实验步骤
1. 磁场强度(H)的测定 : 用已知摩尔磁化率的莫尔氏盐标定某一固定励磁电流时的磁场强度(H).
励磁电流变化 0A→3A→3.5A→4A→3.5A→3A→0A,分别测定励磁电流在各值 下的天平的读数(4A 的值可以不读,持续 2 分钟左右,消磁),用同一仪器在同 等条件下进行后续的测定。 具体操作如下: (1)把样品管悬于磁场的中心位置,测定空管在加励磁电流前,后磁场中的重
MK4Fe(CN)6·3H2O =422.39 g/mol
M 莫尔氏盐 =392 g/mol
络合物的磁化率测定
电流/A
0
3
3.5
3.5
3
0
空管/g
19.9507 19.9569 19.9568 19.9558 19.9562 15.9569
莫尔氏盐+管/g 25.6558 25.7470 25.7818 25.7880 25.7542 25.6560
物理化学实验报告
院系 班级 学号 姓名
化学化工学院 化学 061 13 沈建明
1
实验名称 日期 2009.4.20 室温 22.5℃ 成绩
络合物的磁化率的测定
同组者姓名 史黄亮
气压
101.6 kPa
一、目的和要求
1、掌握古埃(Gouy)法磁天平测定物质磁化率的基本原理和实验方法; 2、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分
相关文档
最新文档