流体力学势流理论

合集下载

第15讲势流理论2

第15讲势流理论2

(1) 速度势
圆柱的绕流的流场等价于均匀 流与偶极的叠加场:
y
v0
a
r
θ
x
M cos θ ϕ = v0 r cos θ + 2π r
这里不必去直接求解拉氏方程。式中的偶极强度M为未知量,可 用边界条件求出。 速度势应满足的边界条件:
∂ϕ =0 ∂r
(圆柱表面上r = a)
∂ϕ ∂ϕ ∂ϕ = v0 cosθ, = −v0 sinθ 或 = v0 (无穷远处) ∂r r∂θ ∂x
有环量是指圆柱作等速直线运动的同时,绕自身轴心转动。圆柱转 动时,由于粘性作用,会诱导周围流体随之转动。当忽略粘性作为理想 流体处理时,这种诱导效应不能忽略。 圆柱旋转的诱导作用等同于圆心处一个平面点涡的作用。也就说, 可以用一个平面点涡代替圆柱的旋转。设圆柱的旋转角速度为ω,点涡的 涡强要满足圆柱表面速度为aω ,所以点涡强度应为:
平面势流的基本解的叠加均匀流和点源的叠加速度势流函数和复势均具有叠加性利用这一性质通过基本解叠加可以构造出复杂流动的解称为基本解叠加法也称奇点叠加法
第15讲 势流理论(2)
(Potential Flow Theory)
主要内容: 1.平面势流的基本解的叠加
速度势、流函数和复势均具有叠加性,利用这一性质,通过基本解叠 加可以构造出复杂流动的解,称为基本解叠加法,也称 奇点叠加法。
解得流线方程:
θ = 0 或 θ =π,
M r = = a2 2πv0
2
过驻点的流线有两条,一条是x轴,一条是以a为半径的圆。均匀流与 偶极的叠加可以模拟流体绕流圆柱的流动。 上述三种叠加流场的分析表明,奇点的适当叠加可以模拟流体绕流物 体的流动。
4 绕圆柱体无环量流动

势流理论

势流理论

第六章:势流理论一.内容总结:二元流动包括平面流动和轴对称流动。

对于不可压缩流体的平面定常势流可以引入流函数和速度势函数。

而不可压缩平面势流速度势函数和流函数均满足拉普拉斯方程。

速度势函数的等值线与流函数等值线正交,流函数的等值线与流线重合。

本章研究物体在静止理想流体中平面运动时,流体对物体的作用力。

求解势流问题的思路为:当物体在流体中运动,即物体与流体之间产生相对运动时,物体受到流体的作用力。

对于理想流体的运动不存在切应力,理想流体中运动的物体表面上只受到法向的压力作用。

因此要解决在流场中物体所受的作用力,只要把物体表面上合压力求出即可。

由伯努利方程可知,若物面上(理想流体中无分离绕流时物面与流线重合)的速度分布已知可求出物面上压力分布,再沿物面积分便可求出物体受到的合压力。

因此,问题归结为求出流场的速度分布,对于不可压缩平面流动,求速度分布的问题又可归结为求速度势函数和流函数问题。

1. 势流问题求解的思路 基本方程 : 20ϕ∇= 无旋流动20ψ∇=二维不可压缩流动V grad φ=G即得到三个速度分量u v 伯努立方程压力,,w →→P 再由边界条件→ 积分 spds ∫便求得了合力,因此只要确定V ϕ→→p G就可积分求合力了。

对于二维不可压缩无旋流动,整个问题的关键在于找到满足边界条件的ϕ或ψ。

求速度势ϕ的方法:因为方程是线性方程, 几个解的线性之和仍满足拉普拉斯方程。

20ϕ∇=根据已知知识确定应选的势流. 简单平面势流的表示式 1) 等速直线运动等速V 平行x 轴的平行流动速度势和流函数为: 0V x ϕ= 0V y ψ=2) 源和汇源心在坐标原点时速度势和流函数在平面极坐标下为: ln 2Q r ϕπ= 2Q ψθπ= 式中为源 为汇0Q >0Q <3) 旋涡速度势和流函数在平面极坐标下为: 2ϕθπΓ= ln 2r ψπΓ=−4)偶极子速度势和流函数为:222M x z x y ϕπ=+ 222M yx yψπ=−+ 221214sin p p p c V θρ∞∞−==− 在位置上,指向与X 轴成β角. 0z M :称偶极矩,由汇指向源。

流体力学第5章 平面势流理论

流体力学第5章  平面势流理论
解析复变函数称为流动的复势。平面势流必然对 应一个确定的复势W(z),而一个复势也代表一种平面 势流。
工程流体力学
5.1.2 几种简单的平面势流复势
1.均匀直线流动(均流)
当流动速度为 U 0 ,方向同x轴方向一致时,复势
W (z) U0x iU0 y U0 (x iy) U0z
-m
U0
+m U0
+m -m
U0
+m
(b)
(a)
(c)
图5.7 均流和源叠加(a)、均流和源、汇叠加(b)、(c)
当均流叠加偶极子组合,会有圆柱流线形成。它们 组合流场的复势为
工程流体力学
W (z)
W1 (z) W2 (z) U 0 z
M 2p
1 z
(M
0)
对于这个组合流场,只要选择适当的偶极子强度 M
工程流体力学
流动图形的分析 :
W (z) (A Bi) ln z (A Bi) ln rei (Aln r B) i(A B ln r)
故速度势函数 Aln r B
流函数
A B ln r
流场中速度分布
vr


r

A r
v

r
分别为 v 2U0,速度的大小是来流速度的两倍,是圆
柱面上最大速度点。
【解】有以下解析式:
W (z) (A Bi) ln z Aln z Bi ln z
对于W1(z) Aln z 是强度为m 2πA的源(汇)放置于 (0,0)点的复势;
对于W2(z) Bi ln z ,则是强度为 2πB的点涡放置于 (0,0)点的复势。(当B 0 时,点涡为顺时针方向 旋转,反之则为逆时针方向旋转)

船舶流体力学(打印)

船舶流体力学(打印)
相应的速度势函数的拉普拉斯方程为:
二.速度势函数的性质:
1.若流体不可压缩,流速势函数满足拉普拉斯方程,是调和函数。
2.流线与等势面相互垂直。
可见,流速矢量与等势面垂直。而流速矢量与该点流线相切,故流线与等势面垂直。
若为平面流动,则流线与等势线垂直。
3.速度势对任一方向n的偏导数,等于流速矢量在该方向的投影。
三个基本解都具有奇异性。因为真实流场中不应该有无穷大的速度,所以通常要把它们布置在流场之外(物体区域内)。
例3:理想不可压缩流体作平面无旋流动。假设流场的复势是W(z) = az2( a > 0 ),并且在坐标原点处压强为p0,试求:(1)上半平面的流动图案;(2)沿y = 0的速度与压强。
解:令z = rei,于是:
2.螺旋流:
现研究点汇与点涡叠加所形成的流场:
等势线方程为:
流线方程为:
在流场任意两点1,2应用伯努利方程,有:
水轮机引水室中的旋转水流、旋风燃烧室中的旋转气流等都可以被近似地看成是此类流动。
若将点源与点涡叠加,则流体沿螺旋线由内向外流动,水泵压水室中的旋转水流就是这种流动。
例4.设在(-a,0)处有一平面点源,在(a,0)处有一平面点汇,他们的强度为Q。若平行于x轴的直线流动和这一对强度相等的点源和点汇叠加。试问:此流动表示什么样的流动并确定物面方程。
图片:
四.平面偶极子:
z = 0点:点汇–Qz0点:点源Q
叠加后得到:
令r0,Q,不变,并且:
---偶极子的方向角(由点汇指向点源的矢量的方向角)。
这里分析=的情况(即,点源沿x轴的正方向由左至右向点汇趋近)。
因为点源(点汇)流、点涡流和偶极子流在无穷远处的速度都趋于零。将这些基本解与别的解叠加时,在无穷远处速度具有渐近性,所以只需要考虑叠加后的物面边界条件,而不必担心叠加这些基本解会改变无穷远处的速度边界条件

第4章 势流理论_1

第4章 势流理论_1
一、布拉休斯合力公式
V 2 p U F (t ) 在理想流体的势运动中, t 2
设流动定常,质量力为零, F(t)=A
则压强 p A V 2 A f z f z
2
2
ip d 为微元 d 上的的总压力,垂直 于c,方向向内
D
2

d n ds 2 2
D s

ds 2 s n
二、有关定理
1、在一个完全为固体壁包围的流体中,不可能有无旋流 (但内部有奇点情况例外);
复速度
f ' ( z) f ' ( z) (u 2 v2 )
在单连同域内
f z dz 0
l
l
柯西定理
证:
f z dz i d x iy
l

dx dy i dy dx
l l
0
利用格林公式
2 2 2 d 2 x y z 2 2 2 u * v * w * d 2 x y z
4.3 平面势运动、复势
一、复势的概念
借助复变函数数学工具解平面势流问题。 1、复数的两种表示方法
z x iy i z re
(1) (2)
2、复变函数
f z x, y i x, y
3、解析函数: 若复变函数的导数无论从何方向趋于零,其导数相同, 则称该复变函数为解析函数。 解析函数存在的充要条件:柯西—黎曼条件

高等流体力学讲义二维势流

高等流体力学讲义二维势流
u = 0 Φ = 0
在不可压缩流体条件下Φ满足拉普拉斯方程
势流基本方程组
2Φ = 0 Φ + p + 1 Φ Φ + gz = f(t) t ρ 2
边界条件
在静止固壁上 ,
Φ = 0 n
无穷远处, r , u u
势流方程组与一般理想不可压缩流动方程组相比在数学上有了较大旳简化:
•后者有四个方程,而前者只有两个方程。
ln
z
-
z0
点汇
以-m 替代 m 就得到点汇旳复位势,
F(z) -m ln z 2π

F( z )
-m 2π
ln
z
-
z0
4.4 点源(汇)和点涡
点涡:势函数 流函数
F(z) ic ln z ic ln(Reiθ )
cθ ic ln R
Φ = c θ Ψ = - c ln R 等势线 c , 从圆点出发旳射线族; 流线 R=c, 同心圆族。
点源: 速度场
4.4 点源(汇)和点涡
W(z) =
dF dz
=
c z
=
c R
e-iθ
=
uR
-i

e-iθ
uR
=
c R
uθ = 0
可看作在原点有一点源释放流体向四面均匀流出,速度只有R方向分量,离 开原点愈远速度愈小。根据连续方程,经过每个同心圆旳流体流量相等。
原点是奇点,速度无穷大 R 0, uR
F(z)=Φ+ iψ
z= x + i y F(z) 旳实数部分是速度势函数Φ,虚数部分是流函数Ψ。 Φ,Ψ 满足柯西-黎曼条件,根据复变函数理论,F(Z) 是解析函数。

船舶流体力学第六章 势流理论

船舶流体力学第六章 势流理论

= Vx
- iVy
= V
\W
(z)=

dW dz
dz
=
V dz
=
V
z
6.5.2 点源
Q向四周流出 +
Q从四周流入 -
Vq =0
Q
Vr = 2pr
pqp qp 公式6.4.6
dw dz
=(Vr

iV q
) e-iq
d w = ( Q - i 0 ) · e - i = Q = Q d z 2 r 2 r e i 2 z
=0
\ V 2 +-U = C 2
(关于流线的常数)
条件 3)无旋 柯西 —— 拉格朗日积分
V=(f)=f
t t
t
V t +V22
+ -U+VV=0
\ft +V22+ -U=0
f \
ft +V22
+ -U
6.2 不可压势流的基本方程和边界条件
6.2.1 .不可压势流的质量守恒方程
V x
+ Vy
+ Vz
=0
x y z
f
Vx = x \
2f 2f 2f
x2 + y 2 + z 2 = 0
2f = 0 (拉普拉斯算子 2 ) 调和函数叠加性
6.2.2 .拉普拉斯 边界条件 速度场 压力分布 流体对固体的力
在空间中不变,只是时间的函数
V 2 + - U + = C ( t )
2 t
4)定常 则 V 2 +- U = C 在全部空间适用
2
6.2.3 边界条件和解法概述

流体力学第六章 势流理论

流体力学第六章  势流理论

2 r2 2
r2
Q ln(1 x cos1 )
2
r2
是个小量,利用泰劳展开得:
Q x cos1 2 r2
当δx→0时,Qδx→M, θ1 →θ,r2→r
利用泰劳展开: ln(1 z) z z2 z3
23
令 z x cos1
r2
展开后并略去δx 二阶以上小量,可得:
Q x cos1 2 r2
极坐标下: M cos
2 r
(6-10)
直角坐标下:
M
2
x x2 y2
(6-11)
对于流函数:
1
2
Q
2
(1
2)
Q
2
( )
这里:r2= x Sinθ1
所以
x sin 1
r2
代入上式得: Q x sin1
2 r2
当δx→0时,Qδx→M,r2→r,θ1→θ
等势线:圆心在x轴上,与y轴相切的一组圆。
这些圆与ψ=const正交
注意:
偶极子的轴线和方向
轴线:源和汇所在的直线
方向:由汇指向源的方向
图6-8(b)
偶极子的方向
为x轴负向
四、点涡(环流)
点涡:无界流场中坐标原点处一无穷长直线涡,
方向垂直于x0y平面,与xoy平面的交点 诱导速度沿点涡为中心的圆周切线方向,大小
第六章 势流理论
课堂提问:为什么上、下弧旋乒乓球的应对方法不同?
势流:理想流体绕物体的流动,或为无旋流动。 像波浪、机翼升力等问题用势流理论进行
研究可获得满意结果。
求解势流问题的思路如下: 1.流体力学最终目的是求流体作用于物体上的
力和力矩; 2.为求力和力矩,须知物面上压力分布,即

流体力学6-势流理论

流体力学6-势流理论
V0
Vr V

边界条件的验证
近场边界条件
Mcos 1 2 V0 rcos 2 r Msin 1 2 V0 rsin 2 r
M 令 0 sin (V0 r )0 2 r sin 0 0或
ψ=0的流线中有一部分是x轴
§6-3 绕圆柱体的有环量流动-麦格鲁斯效应
绕圆柱体的有环量流动:
绕圆柱体的无环流
环量为Γ 顺时针平面点涡
边界条件仍成立: 1.圆柱是一条流线 2.无穷远处的边界条件
一、边界条件:
势函数与流函数
r02 V0 cos (r ) r 2 r02 V0 sin (r ) ln r r 2
均匀流动 + 偶极子 = 绕圆柱体的无环量流动
一、圆柱绕流的边界条件:
1. 无穷远条件(远场边界条件)
在无穷远处为均匀流
r ∞
Vx V0 V y 0

Vr V0 cos V V0 sin
2.物面条件(近场边界条件) 圆柱表面不可穿透 r = r0,Vn= Vr=0 或r = r0 的圆周是一条流线 r = r0,ψ=0(零流线)
伯努利方程(沿圆柱表面) p 2 C
v2
v2
1 V 2V0 sin 2 r0
2 pC C (2V0 sin ) 2 2 2 r0
V0 sin 2 2 2 C 2 2 2 V0 sin 8 r0 r0
用迭加法求势函数φ
Q 1 2 (ln r1 ln r2 ) 2
y
A( r , )

M cos 2 r

【通用】流体力学6-势流理论.ppt

【通用】流体力学6-势流理论.ppt
y=const,流函数等值 线(流线)
x=const,等势线 两组等值线相互正交
0.0
5
v0 v0 y
v0
v0
v0 y
v0
平板
平行平壁间的流动 薄平板的均匀纵向绕流
0.0
6
二、源或汇
流体由平面上坐标原点沿径向流出叫做源,
Vr=f(r), V = 0 2πrVr =Q
∴ Vr=Q/2πr
0.0
• 与该平面相平行的所有其它平面上的流动 情况完全相同。
0.0
2
图 6-1
0.0
3
一、均匀流
Vx=Vo, Vy=0
(1)势函数
d
x
dx
y
dy
Vxdx
Vy dy
V0dx
V0 x C
V0 x
(2)流函数
d
x
dx
y
dy
Vydx
Vx dy
Vody
V0 y
0.0
4
令 V0 y c y const. 令 V0 x c x const.
?讨论:零流线上的速度变化
0.0
23
?讨论:零流线上的速度变化
Vr
V0
cos (1
r02 r2
)
V
V0
sin (1
r02 ) r2
零流线上的速度大小
X轴: V
Vr2
V2
V0
(1
r02 r2
)
圆周:V 2V0 sin
A, 速度减小,A B(D), 速度增加
B(D) C, 速度减小, C ,速度增加
r02 r2
)
0.0
22
二、圆柱表面的速度分布

流体力学:第5章 势流理论-上

流体力学:第5章 势流理论-上

x0 0
M 1 y y0 M W ( z) 2 2 2 z z 0 2 ( x x0 ) ( y y0 )
5.3.3 平面偶极 (dipole)
位于(0,0)偶极:

M x M cos 2 x 2 y 2 2 r
M y M sin 2 x 2 y 2 2 r
位于(x0,y0),沿 -x 轴方向:点源
( x0 , y0 ) ,点汇 ( x0 x0 , y0 )
m m 2 2 ln{( x x0 ) ( y y0 ) } ln{[ x ( x0 x0 )]2 ( y y0 ) 2} 4 4

x x0 M 2 ( x x0 ) 2 ( y y0 ) 2
x m 2b b2 , 2 v0 y0
过驻点流线: m 1 2by vo y tg ( 2 )0 2 2 2 x y b
V0
o

y
x
2v0 y 2by tg ( ) 2 m x y 2 b2
点源推开流线,点汇收回流线。
将流线替换成物面,该解模拟流体绕卵形体的外部流动。
sin 2 sin surface
2
5.4.2 均匀流和一对等强度源汇的叠加
x方向均匀流
+
等强度源汇:源(-b,0)、汇(b,0)
2b

V0
m
m

V0 x
m m ln ( x b) 2 y 2 ln ( x b) 2 y 2 2 2
仍然是解析函数,仍然代表某一种流动的复势。简单 流动组合成复杂流动——叠加法
5.3 平面势流的基本解

流体力学-势流理论

流体力学-势流理论

第六章势流理论本章内容:1.势流问题求解的思路2.库塔----儒可夫斯基条件3. 势流的迭加法绕圆柱的无环绕流,绕圆柱的有环绕流4.布拉休斯公式5.库塔----儒可夫斯基定理学习这部分内容的目的有二:其一,获得解决势流问题的入门知识,即关键问题是求解速度势。

求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。

其二,明确两点重要结论:1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。

2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。

本章重点:1、平面势流问题求解的基本思想。

2、势流迭加法3、物面条件,无穷远处条件4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。

5、四个简单势流的速度势函数,流函数及其流线图谱。

6、麦马格鲁斯效应的概念7、计算任意形状柱体受流体作用力的卜拉修斯定理8、附加惯性力,附加质量的概念本章难点:1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。

2.任意形状柱体受流体作用力的卜拉修斯定理3.附加惯性力,附加质量的概念§6-1 几种简单的平面势流平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。

例如:1)绕一个无穷长机翼的流动,2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。

如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按一、均匀流流体质点沿x轴平行的均匀速度Vo ,如图6-5所示,V x=V o , V y =0dx V dy V dx V dy ydx x d y x 0=+=∂∂+∂∂=ϕϕϕ 积分:φ=V ox (6-4)如图6-3流函数的全微分为,dy V dy V dx V dy ydx x d o x y =+-=∂∂+∂∂=ψψψ 积分:ψ=V o y (6-5 如图6-4由(6-4)和(6-5 流线:y=const ,一组平行于x轴的直线,如图6-3 等势线:x=const ,一组平行于y轴的直线,如图6-3中的虚线。

优选流体力学势流理论上

优选流体力学势流理论上

偶极既有大小,又有方向。
位于(x0,y0),沿 -x 轴方向:点源 (x0 , y0,) 点汇 (x0 x0 , y0 )
m
4
ln{(x
x0 )2
(y
y0 )2}
m
4
ln{[x
( x0
x0 )]2
(y
y0 )2}
M
x x0
2 (x x0 )2 ( y y0 )2
x0 0
M
y y0
n F F
F i F j F k x y z
F x

2
F y
2
F z
2
5.1.1 基本方程——Laplace Equition
vn vb n
F vb F (on S)
若物面运动:对 F(x, y, z,求t)全(0物质)导数
dF dt
F t
F x
dx dt
F y
dy dt
l
dwdz dz
dw
l
l d id l iQl
l
Re
dw l dz
Ql
I
m
l
dw dz
dz
4) W (z) c1 ic2
c1
c2
5.2.1 复势的可叠加性 解析函数 W1(z) 1 i1 W2 (的z) 线性2 组i合2 ,
W (z) W1(z) W2 (z)
优选流体力学势流理论上
5.1 势流问题的基本方程和边界条件
势流问题的数学描述—— Mathematical Model
5.1.1 基本方程——Laplace Equition
v 0
v
0
v
2 0 (in fluid)

《高等流体力学》第6章-势流

《高等流体力学》第6章-势流
证明:
(
流函数与速度势函数这一关系,在数学上称 为柯西(Cauchy)-黎曼(Riemann)条件,满 足这一条件的函数称为共轭函数。
i j)( i j) x y x y x x y y u x (u y ) u y u x 0
复势:
W ( z ) i Q 2 Q 2 Q 2 Q 2 Q Q ln r i 2 2
z r (cos i sin ) z z ei re i
p
Z0处复势:
x x x0 y y y0
(ln r i ) (ln r ln ei ) ln re i ln z
Q Q d 2 2 Q Q d dr d dr 0d ln r r 2r 2
1 ur u r r d dr d r
5
2013-12-29
z x iy
B B B u dl ux dx u y dy uz dz d B A A A
AB
A
(2). 无旋不可压,速度势函数满足拉氏方程
u i j k x y z
(4). 圆柱坐标中速度与速度势函数的关系式
(4 xdx 4 ydy ) ( ydx xdy ) 2 x 2 xy 2 y 2 C
u x x 4 y u y 4 x y
6.4 平面势流的数学提法与一般解法
(3).
u z x 4 (4) 0 x y
ux x 4 y x 1 2 x 4 xy C ( y ) 2 C ( y ) u y 4 x y 4 x y y C ( y ) 1 y C ( y) y 2 y 2 1 1 x 2 4 xy y 2 2 2

流体势流与旋转流的特性研究

流体势流与旋转流的特性研究

流体势流与旋转流的特性研究引言:流体力学是研究流体行为和性质的学科,涉及到流体的运动、力学、热力学和控制等方面。

在流体力学中,流体可以分为势流和旋转流。

势流指的是流体运动中速度场存在势函数的情况,这种流动是无旋的,旋转流则是速度场存在旋度的情况,这种流动是有旋的。

本文将分别讨论势流与旋转流的特性,并对其进行研究,以深入理解流体力学中的基本概念和原理。

一、势流的特性与研究1. 定义与基本特性:势流是指速度场存在势函数的流动。

在势流中,速度场满足无旋的条件,即旋度等于零。

势流的基本方程为拉普拉斯方程,该方程可以用于描述流体势流的运动行为。

2. 研究方法与应用:研究势流的特性常用的方法包括:- 叠加原理:根据速度势线性叠加原理,可以通过汇总各个速度势的贡献,求得整个流体势流的速度势分布。

- 边界条件:边界条件是研究势流的重要手段,通过给定边界条件,可以确定势函数的分布和速度场。

势流的研究在工程实践中有广泛的应用。

例如,在空气动力学中,通过分析势流可研究飞行器的空气动力学性能;在船舶工程中,势流的研究可用于计算水动力性能和推进装置的优化设计。

二、旋转流的特性与研究1. 定义与基本特性:旋转流,又称涡流,是指速度场存在旋度的流动。

旋转流的旋度不为零,表示流体在运动过程中具有涡旋运动。

旋转流通常包括涡旋、涡旋街、涡旋尾等现象。

2. 研究方法与应用:研究旋转流的特性需要考虑旋度,相比势流更加复杂。

旋转流的研究常用的方法包括:- 涡函数法:通过定义涡函数,可以描述流体速度的旋转情况和涡旋的分布。

- 动量方程法:通过对流体动力学方程进行分析,可以推导出旋转流的特性和运动规律。

旋转流的研究在涡流以及湍流模拟、风洞试验、地下水流动、海洋环流等领域中有广泛应用。

对旋转流的研究有助于理解自然界中的环境现象,并为相关工程提供参考和优化设计。

结论:势流和旋转流作为流体力学的两个重要概念,各自具有特定的特性和研究方法。

势流在流场分析和工程实践中有广泛应用,而旋转流的研究在许多自然现象和工程设计中也起着重要作用。

流体力学势流

流体力学势流

涡线微分方程
根据定义,涡线的微分方程为 其中
Ω d l 0
dl d xi d y j d zk
i j dx dy x y
k dz 0 z
dx dy dz x ( x, y , z , t ) y ( x , y , z , t ) z ( x , y , z , t )

U
d
h/2 h/2 Γ L/2 L/2
卡门的分析研究表明,当涡列的空间尺度为 h / L 0.281 时, 涡列对于小扰动才是稳定的,实测证实了这一点。
§5—4 有势流动及解法概述
由开尔文定理可知,理想不可压缩流体从静止或无旋状态开始 的流动将保持为无旋流动。所以无旋流动往往是以理想流体为前 提条件的。无旋流动即为有势流动。 一. 无旋流动的速度势函数
有旋流动
无旋流动
判别的唯一标准是看流速场的旋度是否为零

涡量、涡线、涡管和涡通量 对于有旋流动,将流速场的旋度 称为涡量,它是流体微团旋转角速 度矢量的两倍。涡量场是矢量场。
涡量
Ω u 2ω
涡线
涡线是涡瞬时位于涡线上各点对应的涡量都沿着涡线的切向。与流线 一样,涡线是与欧拉观点相对应的概念。
A A A
A 关于 x 轴对称

旋涡随空间的变化规律 n A u
奥—高定理
u d V u n d A
V A
dA
V
矢量场通过一封闭曲面的通量 (流出为正)等于矢量场的散度 在封闭曲面所围空间域上的积分。 根据不可压缩 流体连续方程 u 0
奥—高定理可解释为:不可 压缩流体通过任一封闭曲面的 体积流量为零。
udl
M0

第14讲势流理论1

第14讲势流理论1
解:(1)以大球壳中心为原点,建立 静止坐标系,速度势满足的基本方程:
∇2ϕ = 0
z y
o V (t)
x
x0
(2)边界面有大球表面(外边界)和小球表面(内边界)。内边界 就是小球的表面,其方程为:
F = (x − x0 )2 + y2 + z 2 − a2
t
∫ (x0 =
V (t)dt)
t0
由内边界方程可得:
y (2) 平面点源和点汇
设从源注入流场的体积流量为m,称m 为平面点源的强度。m>0,是点源;m<0, 是点汇。
r
x
如图取极坐标系,点源位于原点,则
流场中只有径向速度vr。
ψ = 常数
ϕ = 常数
由质量守恒定律,单位时间内流过半径为r的单位厚度柱面的流体体
积等于源强:
m = 2π rvr
则平面点源的速度场为:
第14讲 势流理论(1)
(Potential Flow Theory)
主要内容: 1.势流问题的基本方程和边界条件 2.复势 3.平面势流的基本解
1 势流问题的基本方程和边界条件
(1) 势流问题
势流:不可压、理想流体的无旋流动称为势流。势流即无源、无旋的 流动,其势函数满足拉普拉斯方程
势流问题:势流流场对物体的作用力 势流问题的求解思路:
① 物体表面(船体表面,鱼身体表面); ② 互不渗透的两种流体边界(海面); ③ 无穷远边界面。
物面边界条件
理想流体中不存在剪应力,流体质点可以沿物面滑动,但不能穿越物 面,即理想流体在物面上满足不可穿透条件:
v ⋅n = vb ⋅n
∂ϕ
∂n
=
vb ⋅n
也就是说,流体和物面在物面法向的速度相同。根据梯度的概念,物面的 单位外法向量可用物面方程表示:

流体力学-势流理论

流体力学-势流理论

第六章势流理论本章内容:1.势流问题求解的思路2.库塔----儒可夫斯基条件3. 势流的迭加法绕圆柱的无环绕流,绕圆柱的有环绕流4.布拉休斯公式5.库塔----儒可夫斯基定理学习这部分内容的目的有二:其一,获得解决势流问题的入门知识,即关键问题是求解速度势。

求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。

其二,明确两点重要结论:1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。

2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。

本章重点:1、平面势流问题求解的基本思想。

2、势流迭加法3、物面条件,无穷远处条件4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。

5、四个简单势流的速度势函数,流函数及其流线图谱。

6、麦马格鲁斯效应的概念7、计算任意形状柱体受流体作用力的卜拉修斯定理8、附加惯性力,附加质量的概念本章难点:1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。

2.任意形状柱体受流体作用力的卜拉修斯定理3.附加惯性力,附加质量的概念§6-1 几种简单的平面势流平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。

例如:1)绕一个无穷长机翼的流动,2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。

如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按平面问题处理。

这一近似方法在船舶流体力学领域内称为切片理论。

一、均匀流流体质点沿x轴平行的均匀速度Vo ,如图6-5所示,V x=V o , V y =0平面流动速度势的全微分为dx V dy V dx V dy ydx x d y x 0=+=∂∂+∂∂=ϕϕϕ 积分:φ=V ox (6-4) 如图6-3流函数的全微分为,dy V dy V dx V dy ydx x d o x y =+-=∂∂+∂∂=ψψψ 积分:ψ=V o y (6-5) 如图6-4由(6-4)和(6-5)可得: 流线:y=const ,一组平行于x轴的直线,如图6-3中的实线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V0
cos (1
r02 r2
)
V
1 r
V0 sin (1
r02 r2
)
二、圆柱表面的速度分布
流场速度分布
Vr
V0
cos (1
r02 r2
)
圆柱表面的速度分布
r r0 Vr 0 V 2V0 sin
V
V0 sin (1
r02 r2
)
A、C: 0,
A,C为驻点!
Vr 0
V 0
B、D:
边界条件的验证
近场边界条件
1
2
V0rcos
Mcos 2 r
1
2
V0rsin
Msin 2 r

0 sin (V0r
M )0
2 r
sin 0 0或
ψ=0的流线中有一部分是x轴
V0MΒιβλιοθήκη V0r 2 r 0圆周 r r0
M 2 v0
也是流线 0 的一部分
Vr
V
远场边界条件
c1
x2
(y
1 )2 2c1
1 4c12
图6-8(b)
流线:圆心在y轴上,与x轴相切的一组圆, 等势线:圆心在x轴上,与y轴相切的一组圆。
注意: 偶极子和轴线的方向
轴线:源和汇所在的直线
方向:由汇指向源的方向
图6-8(b)
偶极子的方向
为x轴负向
四、点涡(环流)
点涡:无界流场中坐标原点处一无穷长直线涡, 方向垂直于xoy平面,与xoy平面的交点
当Q>0,则 Vr>0为点源,反之为点汇。
对于扩大(收缩)流道中理想流体的流动, 可以用源(汇)的速度势来描述。
A o
C
B
v
Q ln r 2
v
D
三、偶极子
定义 无界流场中等流量的源和汇 无限靠近,当间距δx→0时,流 量Q→∞,使得两者之积趋于一
y
个有限数值,即:
x Qδx→M (δx→0)
r2
x sin1
x sin 1
r2
Q x sin 2 r2
y A(r, )
r1
r r2
x 0 Q x M 1 r2 r
M sin 2 r
r2
1
2
Q B x C Q x
M y
2 x2 y2
令ψ=C得流线族:
M
2
x2
y
y2
c

y x2 y2 c1

x2 y2 y 0
vs 2 r
vr 0
涡索旋涡强 度的两倍
所求速度的点到 点涡的距离
势函数
d
vr dr
vsrd
2
d
流函数
d
vsdr
vr rd
2 r
dr
2
ln r 2
流线:ψ=const 同心圆 Γ>0对应于反时针的转动 Γ<0对应于顺时针的涡旋
§6-3 绕圆柱体的无环量流动,达朗贝尔谬理 绕圆柱体的无环量流动:无界流场中均匀流和偶
x
y
Vy
y
x
极坐标:
Vr
r
s
1 r
Vs
s
1 r
r
d
(
r
dr
d )
Vr dr rVsd
Q
2 r
dr
d
(
r
dr
d )
VsdrrVrd
Q
2
d
Q 2
ln
r
Q 2
y
s( )
r d
x
Q 2
ln
r
Q 2
流线为θ=const,为原点引出的一组射线
等势线为r=const,为同心圆。
流线和等势线相互正交。
V0rcos
Mcos 2 r
M 2V0r02
V0
cos (r
r02 r
)
Vr
r
V0
cos (1
r02 ) r2
V
1 r
V0 sin (1
r02 r2
)
V0
r→∞
Vr V0 cos V V0 sin
Vr
V
结论:
均匀流动 + 偶极子 = 绕圆柱体的无环量流动
V0
cos (r
r02 r
)
Vr
r
极子迭加形成的流动。
均匀流动 + 偶极子 = 绕圆柱体的无环量流动
一、圆柱绕流的边界条件:
1. 无穷远条件(远场边界条件) 在无穷远处为均匀流
r ∞
Vx V0 Vy 0

2.物面条件(近场边界条件)
VVr
V0 cos V0 sin
圆柱表面不可穿透
V0
r = r0,Vn= Vr=0
Vr
V
或r = r0 的圆周是一条流线 r = r0,ψ=0(零流线)
圆柱面上的压力分布
压力分布既对称于x轴 也对称于y轴。
Cp 1 4sin42
在A,C两点压力最大 在B,D两点压力最小
?讨论: 零流线上的压力变化
?讨论: 零流线上的压力变化
p
V 2
2
p0
V02
2
A, 速度减小,A B(D), 速度增加 B(D) C, 速度减小, C ,速度增加
• 与该平面相平行的所有其它平面上的流动 情况完全相同。
图 6-1
一、均匀流
Vx=Vo, Vy=0
(1)势函数
d
x
dx
y
dy
Vxdx
Vy dy
V0dx
V0 x C
V0 x
(2)流函数
d
x
dx
y
dy
Vydx
Vx dy
Vody
V0 y
令 V0 y c y const. 令 V0 x c x const.
r1
这一流动的极限状态称为偶极子,
A(r, )
r r2
M为偶极矩。
r2
1
2
Q B x C Q x
用迭加法求势函数φ
1
2
Q
2
(ln
r1
ln
r2 )
M cos 2 r
M 2
x x2 y2
y A(r, )
r1
r r2
r2
1
2
Q B x C Q x
流函数
1 2
Q
2
(1
2)
Q
2
( )
B(D) C, 速度减小, C ,速度增加
三 柱面上的压力分布:
定常,不计质量力的拉格朗日积分式为:
p
V 2
2
p0
V02
2
Vr 0
V 2V0 sin
V 2V0 sin
无穷远均匀流中压力
p
p0
V02
2
(1
4 sin 2
)
压力系数:
Cp
p p0
1 2
V02
圆柱体上:Cp 1 4sin42
y=const,流函数等值 线(流线)
x=const,等势线 两组等值线相互正交
v0 v0 y
v0
v0
v0 y
v0
平板
平行平壁间的流动 薄平板的均匀纵向绕流
二、源或汇
流体由平面上坐标原点沿径向流出叫做源,
Vr=f(r), V = 0 2πrVr =Q
∴ Vr=Q/2πr
直角坐标系:
Vx
第六章 势流理论
本章主要研究内容:
1.理想流体平面绕流问题(平面势流) 2.几种最简单的势流 3.绕圆柱体的无环流流动 4.绕圆柱体的有环流流动
5.附加惯性力与附加质量
§6-1 几种简单的平面势流 平面流动(或称二元流动)应满足的条件: • 平面上任何一点的速度和加速度都平行于所
在平面,无垂直于该平面的分量;
,
2
V
2V0
速度达到最大值,
且与圆柱体半径无关。
?讨论:零流线上的速度变化
?讨论:零流线上的速度变化
Vr
V0
cos (1
r02 r2
)
V
V0
sin (1
r02 ) r2
零流线上的速度大小
X轴: V
Vr2
V2
V0
(1
r02 r2
)
圆周:V 2V0 sin
A, 速度减小,A B(D), 速度增加
相关文档
最新文档