三、2009-6-15线性代数A卷

合集下载

09-10线性代数下A卷

09-10线性代数下A卷

系别_______ ____ _ _ 专业__________ ___年级_________ ____姓名______ ______学号┈┈┈┈┈┈┈┈┈┈┈┈┈密┈┈┈┈┈┈┈┈┈┈┈┈┈封┈┈┈┈┈┈┈┈┈┈┈┈┈┈线┈┈┈┈┈┈┈┈┈┈┈┈┈┈安阳师范学院 理 工 科 专业 线性代数 课2009——2010学年度第二学期期末考试试卷(A 卷)填空题(每题2分,共20分)1.四阶行列式中的一项34124321a a a a 应取的符号是_______。

2.排列138492576的逆序数是_____________。

3. 设A 为3阶方阵,若3A =,则3________A -=。

4.设12113215631A λ-⎛⎫⎪=- ⎪ ⎪⎝⎭,且A 的秩等于2,则λ=________。

5.设m n ⨯矩阵A 的秩()R A r =,则n 元齐次线性方程组0Ax =的解集的秩S R =________。

6.三阶方阵A 的特征值为6,1,9-,则A 的行列式等于____________。

7.矩阵方程组AX B =有解的充分必要条件是_________________。

8.设向量(1,2,1)T a =-,则||||a =________。

9.若n 阶矩阵A 与B 相似,则存在可逆矩阵P ,使得__________________成立。

10.矩阵500031021A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -= 。

判断题(每题2分,共20分)( ) 1、如果行列式等于零,则行列式中必有两行完全相同。

( ) 2.若,A B 为同阶可逆矩阵,则111()A B A B ---+=+。

( ) 3.设A 的秩等于r ,则A 的r 阶子式全不等于零。

( ) 4.A 为m n ⨯矩阵,若线性方程组Ax b =有无穷多解,则0Ax =有非零解。

( ) 5.若向量组中有一部分线性无关,则该向量组必线性无关。

( ) 6.设A 为m n ⨯矩阵,若0Ax =只有零解,则A 的列向量组线性无关。

级线性代数试题和答案 A卷(1)

级线性代数试题和答案 A卷(1)

2007级线性代数期末试题答案一、填空题(每小题4分、本题共28分)1.设A *是n 阶方阵A 的伴随矩阵,行列式2A =,则*2A = .2n n n 12 2|=22222n -=⨯=n-1**n-1n-1解应填因为行列式|2A |A |=|A|2.设4阶方阵A 和B 的伴随矩阵为A *和B *,且它们的秩分别为3)(=A r ,4)(=B r ,则秩=)(**B A r . ()()()()****** 1.14 1.r A r B B r A B r A ====解应填由题设可知,,的可逆矩阵,故 3.设n 维向量(,0,,0,)T x x α=,其中0x <;又设矩阵T A E αα=-,且11T A E xαα-=+,则x = .()()()()()2-1-12 -12111- --111----21 -1-201111-22-12-11012T T T T T T TT T T T T T TT T x AA E E E x x x E E x x x x E x x AA E x x x x x x x x x x αααααααααααααααααααααααααααααααα=⎛⎫=+=+ ⎪⎝⎭=+=+⎛⎫=+ ⎪⎝⎭=≠+=+=+==解应填 因为,而 由及可知 故或-10-1x x =<=,又由可得4.已知n 阶方阵()ij n nA a ⨯=,12,,n ααα⋅⋅⋅,是A 的列向量组,行列式0A =,伴随矩阵*O A ≠,则齐次线性方程组*0A x =的通解为.解 应填α =111221...n i i n i k k k ααα--+++ ,其中 121n i i i ααα⋅⋅⋅- 是向量组 12n ααα⋅⋅⋅的极大线性无关组, 121n k k k ⋅⋅⋅- 是任意常数。

因为|A|=0,A *≠0 所以秩r(A)=n-1,因此,向量组12n ααα⋅⋅⋅的秩r(12n ααα⋅⋅⋅)=n-1,由此又可知线性方程组A *x=0的基础解系含n-1个解,12n ααα⋅⋅⋅的极大线性无关组含n-1个向量,而A *A= A *(12n ααα⋅⋅⋅)=|A|E=0即A *=0(j=1 n) ,亦即12n ααα 都是A *x=0 的解,故12n ααα的极大线性无关组可作为A *x=0 的基础解系。

《线性代数》-期终A卷

《线性代数》-期终A卷

杭州电子科技大学继续教育学院学生考试卷( A )卷A 表示方阵A 的行列式,r (A )表示矩阵A 的秩。

一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.3阶行列式011101110---=ij a 中元素a 21的代数余子式A 21=( ) A .-2 B .-1 C .-1D .22.若120231101λλ=0,则12λλ、必须满足( )A .1220λλ==,B 122λλ==C 122λλ=,可为任意数D 12λλ、均可为任意数 3.有矩阵3223,33,A B C ⨯⨯⨯,下列矩阵运算可行的是( ) A AC B ABC C BAC D AB BC -4.如果线性方程组12323331223(1)(3)(1)x x x x x x x λλλλλλ++=-⎧⎪-=-⎪⎨=-⎪⎪-=---⎩有唯一解,则λ=( )A 1或2B —1或3C 1或3D 1-或3- 5.设向量组α1, α2, α3, α4线性相关,则向量组中( ) A .必有一个向量可以表为其余向量的线性组合 B .必有两个向量可以表为其余向量的线性组合 C .必有三个向量可以表为其余向量的线性组合 D .每一个向量都可以表为其余向量的线性组合6.设A=1243⎛⎫⎪⎝⎭, B=12x y ⎛⎫ ⎪⎝⎭,则A 与B 可交换的充分必要条件是( ) A 1x y -= B 1x y -=- C x y = D 2x y = 7.下列矩阵不是初等矩阵的是( )A 100001010⎛⎫⎪⎪ ⎪⎝⎭ B001010100⎛⎫⎪- ⎪ ⎪⎝⎭ C 1001002001⎛⎫⎪⎪- ⎪ ⎪⎝⎭D100014001⎛⎫ ⎪- ⎪ ⎪⎝⎭8.已知向量组 123(1,2,1,1),(2,0,,0),(0,4,5,2)t ααα=-==--,的秩为2,则t =( ) A 3 B 3- C 2 D 2-9.四元线性方程组 1421400x x x x x ⎧+=⎪=⎨⎪-=⎩的基础解系是( )A (0,0,0,0)TB (0,0,2,0)TC (1,0,1)T- D (0,0,2,0)T和 (0,0,0,1)T10.三阶矩阵A 的特征值为 2,1,3.-则下列矩阵中非奇异矩阵是( ) A 2I -A B 2I+A C I -A D A -3I 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

(完整版)线性代数测试试卷及答案

(完整版)线性代数测试试卷及答案

线性代数(A 卷)一、选择题(每小题3分,共15分)1 .设A 、B 是任意n 阶方阵,那么下列等式必成立的是() (A) AB BA (B) (AB)2 A 2B 2 (C) (A B)2 A 2AB B 2 (D) A B B A2 .如果n 元齐次线性方程组 AX 0有基础解系并且基础解系含有 s(s n)个解向量,那1 0 0210, A *是A 的伴随矩阵,则(A*)4 .设向量 (1, 1,1)T 与向量 (2,5, t)T 正交,则t5 .设A 为正交矩阵,则A1 11 6 .设a,b,c 是互不相同的三个数,则行列式ab c2,22a b c7 .要使向量组 1 (1, ,1)T , 2 (1,2,3)T, 3 (1,0,1)T 线性相关,则8 .三阶可逆矩阵A 的特征值分别为1, 2, 3,那么A 1的特征值分别为么矩阵A 的秩为((A) n (B) )s (C)n s (D)以上答案都不正确 3 .如果三阶方阵A (a j )3 3的特征值为1,2,5 ,那么ana 22a 33 及A 分别等于()(A) 10, 8(B)8, 10(C)10,8(D)10,4 .设实二次型f(x 1,x 2)2 (X ,X 2)4X 1 X 2的矩阵为A, 那么()2 3(A) A3 1 ⑻(C)1 1(D)5.若方阵A 的行列式A0, 则((A) A 的行向量组和列向量组均线性相关 (C) A 的行向量组和列向量组均线性无关 二、填空题(每小题3分,共30分)(B)A (D)A 的行向量组线性相关,列向量组线性无关 的列向量组线性相关,行向量组线性无关1如果行列式D 有两列的元对应成比例,那么该行列式等于2.设A3.设,是非齐次线性方程组AX b 的解若也是它的解,那么关组和秩. 四、(10分)设有齐次线性方程组X 1 ( 1)X 2 X 3 0, (1)X 1 X 2 X 3 0, X 1 X 2 ( 1)X 3 0.问当 取何值时,上述方程组(1)有唯一的零解;(2)有无穷多个解,并求出这些解. 五、(12分)求一个正交变换X PY ,把下列二次型化成标准形:、222f (X 1,X 2, X 3) X 1 X 2 X 3 4X 1X 2 4X 1X 3 4X 2X 3.六、(6分)已知平■面上三条不同直线的方程分别为11 : ax 2by 3c 0, 12 : bx 2cy 3a 0, 13 : cx 2ay 3b 0.试证:这三条直线交于一点的充分必要条件为a b c 0.线性代数(A 卷)答案1. D2. C3. B4. A5. A■-4*11.02. (A ) A3. 14. 35. 16. (c a)(c b)(b a)7. 08. 1,9.411 t 0 10. A I 5 42、1.解由AX(A I ) 1B . (2分)9 .若二次型 f(X i ,X 2,X 3)X 21 x 22 5x 23 2tX i X 2-2X 1X 3 4X 2X 3 是正定的,则 t 的取值范围10 .设A 为n 阶方阵,且满足A 2 2A 4I 0,这里I 为n 阶单位矩阵,那么A 1三、计算题(每小题9分,共27分)1 .已知A 1 00 1 ,求矩阵X 使之满足AX 0 0X B.2 .求行列式的值.3求向量组 (1,0,1,0), 2 ( 2,1,3, 7), 3 (3, 1,0,3,), 4 (4, 3,1, 3,)的一个最大无或-1由于1 23 4 1 2 3 41 2 3 4 0 1 1 3 r r 0 1 1 3 「3 5r 2 0 1 1 3 1 3 01 UUuLu 0 5 3 3 LuiuiUj2 0 0 2 12 0 73 3 0 733424四、解 方程组的系数行列式卜面求 (A I ) 由于(4分)(A I)所以 (A I) (7分)2.解 10 10 10 1010(9 分)10(4 分)(8160 (9 分)3.解 故向量组的秩是UjuniUr31 2 03 12 0(6分)3是它的一个最大无关组。

继续教育学院线性代数A卷及答案

继续教育学院线性代数A卷及答案
1. =5.
2.若 ,则 有零解,则 应满足 。
4.设 为4阶方阵,且 ,则 __81______
5.设A= ,B= .则A+2B=
三、判断题:(每题3分,共30分)
1. 若行列式 中每个元素都大于零,则 ( 错 )
2.A,B皆为n阶矩阵,则AB=BA ( 错 )

=
=
A.–6B.6
C.2D.–2
4.设A是方阵,如有矩阵关系式AB=AC,则必有(D)
A.A=0B.B C时A=0
C.A 0时B=CD.|A| 0时B=C
5.A、B (D)
A、B=EB、A=EC、A=B D、AB=BA
6.若 (A)
A、12B、-12C、18D、0
7.设A、B都是 (C)
A、A=0或B=0B、A、B都不可逆
继续教育学院线性代数A卷及答案
成绩
(A卷)
学校名称(全称)学习形式(业余、函授、脱产)
学号姓名年级专业
一、单项选择题:(每题3分,共30分)
1.设行列式 =m, =n,则行列式 等于(D)
A.m+nB.-(m+n)
C. n-mD. m-n
2.设矩阵A= ,则A-1等于(B)
A. B.
C. D.
3.设矩阵A= ,A*是A的伴随矩阵,则A*中位于(1,2)的元素是(B)
3.已知n阶方阵A,若存在n阶方阵B,使得AB=BA=I,则称n阶方阵A可逆(对)
4.若r( )<r(A),则此线性方程组有唯一解(错)
5.A为n阶方阵, (对)
6.已知方阵A,则行列式 (对)
7.如果方阵A可逆,则它的转置矩阵 也可逆,且 (错)
8.如果方阵A,B为同阶方阵,则行列式 (对)

全校各专业《线性代数》课程试卷及答案A卷

全校各专业《线性代数》课程试卷及答案A卷

全校各专业《线性代数》课程试卷及答案A 卷试卷 A 考试方式 闭卷 考试时间(120分钟)一、选择题(本题共4小题,每小题4分,满分16分。

每小题给出的四个选项中,只有一项符合题目要求) 1、设A ,B 为n 阶方阵,满足等式0=AB,则必有( ) (A)0=A 或0=B ; (B)0=+B A ; (C )0=A 或0=B ; (D)0=+B A 。

2、A 和B 均为n 阶矩阵,且222()2A B A AB B +=++,则必有( ) (A) A E =; (B)B E =; (C ) A B =. (D) AB BA =。

3、设A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是( )(A) A 的列向量线性无关; (B) A 的列向量线性相关; (C ) A 的行向量线性无关; (D) A 的行向量线性相关. 4、 n 阶矩阵A 为奇异矩阵的充要条件是( ) (A) A 的秩小于n ; (B) 0A ≠;(C) A 的特征值都等于零; (D) A 的特征值都不等于零; 二、填空题(本题共4小题,每题4分,满分16分)5、若4阶矩阵A 的行列式5A =-,A *是A 的伴随矩阵,则*A = 。

6、A 为n n ⨯阶矩阵,且220A A E --=,则1(2)A E -+= 。

7、已知方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+43121232121321x x x a a 无解,则a = 。

8、二次型2221231231213(,,)2322f x x x x x tx x x x x =++++是正定的,则t 的取值范围是 。

三、计算题(本题共2小题,每题8分,满分16分)9、计算行列式1111111111111111x x D y y+-=+-10、计算n 阶行列式121212333n n n n x x x x x x D x x x ++=+四、证明题(本题共2小题,每小题8分,满分16分。

线性代数-统考试题(A)试题(答案)

线性代数-统考试题(A)试题(答案)

1 1 0 记 P 0 1 0 ,则(
0 0 1
)。【A】
(A) C PAP 1 ; (B) C P 1AP ; (C) C P T AP ; (D) C PAP T 。
3.设 m n 阶矩阵 A 的秩等于 n ,则下面结论错误的是( )。【D】
(A) AT A 是对称矩阵;
诚信关乎个人一生,公平竞争赢得尊重。
以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分:1.替他人考试或由他人替考;2.通讯工具作弊;3.团伙作弊。
中国矿业大学 2017~2018 学年第 1 学期
《线性代数》试卷(A)卷
答题时间:100 分钟
考试方式:闭卷
学院____________班级_______________姓名__________________学号_____________
2
与向量组 α1, α2 等价,则向量 β2 _____________。【 1 [1, 2, 1]T 或 1 [1, 2, 1]T 】
6
6
a a a a

4.已知矩阵 A
1
1
1

(a

0)
,则
A
的所有代数余子式之和等于________。【1】
1 1



1
5.设二次型 f (x1, x2 , x3 ) t x12 x22 2x32 2x1x2 2x1x3 2x2 x3 为正定二次型,则 t 的取值范围
k11 k22 k33 0
式(1)两边左乘 A 得
k11 k22 k3 2 3 0
式(1)减式(2)
2k11 k32 0

线性代数A试卷答案(无框版)

线性代数A试卷答案(无框版)
A、 A − 1 + B
−1
B、 A + B
C、 ( A + B ) − 1
D、 A( A + B) B
−1
)5 设 α1 ,α 2 ,… ,α m 是 n 维向量组, 下列命题中正确的是( B )
A、如 α m 不能由 α1 ,α 2 ,… ,α m −1 线性表示 , 则 α 1 ,α 2 ,… ,α m 线性相关; B、如 α1 ,… ,α m 线性相关 , α m 不能由 α 1 ,… , α m −1 线性表示 , 则 α1 ,α 2 ,… ,α m −1 线性相关 ; C、如 α 1 ,α 2 ,… ,α m 中, 任意 m − 1 个向量都线性无关 , 则 α 1 ,α 2 ,… ,α m 线性无关; D、零向量不能由 α 1 ,α 2 ,… ,α m 线性表示 .
得分
评阅人
三、计算题(每题 9 分, 共 45 分. )
⋯ 0 ⋯ 0 ⋱ ⋮ ⋯ x ⋯ a2 0 0 ⋮ 的值. −1 a1 + x
10
x −1 0 0 x −1 计算 n 阶行列式 D = ⋮ ⋮ ⋮ 0 0 0 an an−1 an−2
解:采用按最后一行展开计算,可得结果 D = a n ( − 1) n + 1 ( − 1) n − 1 + a n − 1 ( − 1) n + 2 ( − 1) n − 2 x + ⋯
四、证明题(每题 10 分, 共 20 分)
n-1
15
设 A 为 n(n ≥ 2) 阶方阵, 证明 : A* = A
n
.
证:因为 AA* = A E. ,所以 A A* = A . 分两种情况证明
(1) A ≠ 0. 由上式可知 A* = A

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]第一篇:线性代数试题A答案2006-2007学年第二学期线性代数试题A卷参考答案及评分标准一.填空题(本题满分12分,每小题3分)⎛1-20 0 -25 -111、1;2、-3;3、A=00 3 1 00-3⎝0⎫⎪0⎪2⎪;4、2 ⎪3⎪1⎪⎪3⎭二、选择题(本题满分12分,每小题3分,.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.C;2.C;3.A;4、B 三.计算行列式(本题满分6分)解 1 10Dn=001-110010Λ00-111000-11=100010100200Λ03ΛΛ1Λ00Λ0100Λ00n3-1ΛΛ011ΛΛΛΛΛΛΛΛΛΛΛΛ分Λn-1=n3分解2 10Dn=001-110010Λ00-111000=Dn-1+13分-1ΛΛ011ΛΛΛΛΛΛΛΛ-11=n3分四.(本题满分12分)解:⑴ 由等式A+B=AB,得A+B-AB+E=E,即(A-E)(B-E)=E3分因此矩阵A-E可逆,而且(A-E)=B-E.2分-1⑵ 由⑴知,A-E=(B-E),即A=(B-E)+E-1-1A=(B-E)+E或A=B(B-E)-12分-1⎛0-10-30100⎛⎫⎛⎫⎪⎪1=200⎪+010⎪=-3 001⎪001⎪0⎝⎭⎝⎭⎝⎛1 1=-3 0 ⎝1210⎫0⎪⎪0⎪ 2分⎪2⎪⎪⎭1200⎫0⎪100⎫⎪⎛⎪0⎪+010⎪3分⎪⎪1⎪⎝001⎭⎪⎭五.(本题满分14分)解:110⎤⎡1⎡11⎢01⎥⎢0221⎥→⎢A=⎢⎢0-1a-3-2b⎥⎢0⎢⎥⎢321a-1⎣⎦⎣01110⎤1221⎥⎥4分0a-10b+1⎥⎥00a-10⎦所以,⑴ 当a≠1时,rA=r(A)=4,此时线性方程组有唯一解.2分⑵ 当a=1,b≠-1时,r(A)=2,rA=3,此时线性方程组无解.2分⑶ 当a=1,b=-1时,rA=r(A)=2,此时线性方程组有无穷多组解.2分此时,原线性方程组化为()()()⎧x1+x2+x3+x4=0 ⎨⎩x2+2x3+2x4=1因此,原线性方程组的通解为⎧x1=x3+x4-1⎪x=-2x-2x+1⎪234 ⎨x=x3⎪3⎪x4⎩x4=或者写为⎡x1⎤⎡1⎤⎡1⎤⎡-1⎤⎢x⎥⎢-2⎥⎢-2⎥⎢1⎥2⎢⎥=k⎢⎥+k⎢⎥+⎢⎥4分⎢x3⎥1⎢1⎥2⎢0⎥⎢0⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣0⎦⎣1⎦⎣0⎦⎣x3⎦六.(本题满分12分)3-λ解 A-λE=-101202-λ1=(2-λ)(3-λ),2分03-λ所以得特征值λ1=2,λ2=λ3=32分⎛101⎫⎪对λ1=2,解方程组(A-2E)x=0,由A-2E=-101⎪,得特征向量001⎪⎝⎭⎛0⎫⎪ξ1=1⎪0⎪⎝⎭⎛0⎫⎪所以对应λ1=2的全部特征向量为c1 1⎪,c1≠03分0⎪⎝⎭⎛0 1对λ2=λ3=3,解方程组(A-3E)x=0,由A-3E=-0⎝01⎫1⎛10⎪r 1-1⎪−−→0 0100⎪0 ⎭⎝00⎫⎪⎪,⎪⎭⎛1⎫⎛1⎫⎪⎪得特征向量ξ2=-1⎪,全部特征向量为c2 -1⎪,c2≠03分0⎪0⎪⎝⎭⎝⎭A没有三个线性无关的特征向量,所以不能对角化.2分七.(本题满分12分)⎛1λ解:f的矩阵为A=λ4 -12⎝-1⎫⎪2⎪.…………2分 4⎪⎭因此,二次型f为正定二次型.⇔矩阵A为正定矩阵.⇔矩阵A的各阶顺序主子式全大于零.…………2分而矩阵A的各阶顺序主子式分别为D1=1>0,D2=1λ=4-λ2,…………2分λ41D3=A=λλ-12=-4(λ-1)(λ+2).…………2分 44-12所以,二次型f 为正定二次型.⇔D2=4-λ2>0,且D3=-4(λ-1)(λ+2)>0由 D2=4-λ2>0,得-2<λ<2 .由 D3=-4(λ-1)(λ+2)>0,得-2<λ<1 .因此,得-2<λ<1 .即,二次型f为正定二次型.⇔-2<λ<1…………4分八.(本题满分8分)已知三维向量空间的一组基为α1=(1,1,0),α2=(1,0,1),α3=(0,1,1)求向量β=(2,0,0)在上述基下的坐标.解:设向量β在基(α1,α2,α3)下的坐标为(x1,x2,x3),则有x1α1+x2α2+x3α3=β,2分写成线性方程组的形式,有⎛1⎫⎛1⎫⎛0⎫⎛2⎫⎪⎪⎪⎪x1 1⎪+x2 0⎪+x3 1⎪=0⎪2分 0⎪1⎪1⎪0⎪⎝⎭⎝⎭⎝⎭⎝⎭即⎧x1+x2=2⎪⎨x1+x3=0,⎪x+x=03⎩2得唯一解x1=1,x2=1,x3=-1,3分,1,-1).1分因此所求坐标为(1九.(本题满分12分)证法1:记A=(α1,α2,Λ,αm),B=(α1,α2,Λ,αm,β),显然r(A)≤r(B).1°因为α1,α2,Λ,αm线性无关,知r(A)=m1分2°因为α1,α2,Λ,αm,β线性相关,知r(B)<m+1 1分因此r(B)=m,1分Ax=(α1,α2,Λ,αm)x=b有解且唯一。

线性代数2009试题A答案

线性代数2009试题A答案

2009年《线性代数》统考试题参考答案一.填空题(每个小题3分,共15分)二.选择题(每小题3分,共15分)三.(8分)解: 9644129644129644129644122222++++++++++++=d d d d c c c cb b b b a a a a D 062126212621262122222=++++=d d c cb b a a四.(12分)解:由B A AB +=2知B A AB =-2,即B E B A =-)2(,又⎪⎪⎪⎭⎫ ⎝⎛=-0020202002E B ,显然082≠=-E B ,故⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--002102102100)2(1E B 而⎪⎪⎪⎭⎫ ⎝⎛=-=-101020101)2(1E B B A 。

所以⎪⎪⎪⎭⎫ ⎝⎛=--001010100)(1E A 。

五.(12分)解: 对增广矩阵作初等变换,⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛------=0000061000802103010133707101133110143412),(b A取3x 为自由未知数,1x 、2x 和4x 为非自由未知数,则⎪⎪⎩⎪⎪⎨⎧==-=+-=68234333231x x x x x x x ,所以方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛608301214321c x x x x 。

六.(10分)证明:A A An T)1(-=-=,由n 是奇数和A A T =得A A -=,整理得02=A ,故0=A 。

七.(10分)解:21ηη-和31ηη-是齐次线性方程组的解,)(23213121ηηηηηηη+-=-+-是齐次线性方程组的解。

齐次方程组的基础解系中含解向量的个数为4-3=1.所以方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54326543k x ,其中k 可取任意常数。

八.(10分)证明:按题设,有111p Ap λ=,212p Ap λ=,故.)(221121p p p p A λλ+=+用反证法,假设21p p +是A 的特征向量,则应存在数λ,使),()(2121p p p p A +=+λ于是221121)(p p p p λλλ+=+,即,0)()(2211=-+-p p λλλλ因21λλ≠,所以1p ,2p 线性无关,故由上式得,021=-=-λλλλ即21λλ=,与题设矛盾。

2009-2010学年第一学期线性代数A期末试卷A卷及参考答案

2009-2010学年第一学期线性代数A期末试卷A卷及参考答案

2.(6 分)设 n 阶方阵 A 满足 A2 + 9 A + 7 E = 0, ,求证 A − 2 E 可逆且求其逆.
⎛ 0 1 0 ⎞ ⎛ 1 0 0 ⎞ ⎛ 1 −4 3 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 3、 (8 分)解矩阵方程 ⎜ 1 0 0 ⎟ X ⎜ 0 0 1 ⎟ = ⎜ 2 0 −1 ⎟ . ⎜ 0 0 1 ⎟ ⎜ 0 1 0 ⎟ ⎜ 1 −2 0 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
浙江科技学院 2009-2010 学年第一学期线性代数A考试试卷A卷 一、填空题(每小题 4 分,共 20 分)
1. 已知 4 阶行列式 D 的第二行元素分别为 1、2、3、4,与它们对应的余子式依次 为 4、 −3 、2、 −1 ,则 D =__________ . 2. 设 A 是三阶方阵, A* 是其伴随矩阵, | A |=
第 3 页
⎛1 0 0 ⎞ ⎛ 1 2 1⎞ ⎜ ⎟ ⎟ −1 5.(8 分)解: A= (α 1 , α 2 , α 3 )= ⎜ 1 2 3 ⎟ , B= ( β1 , β 2 , β 3 )= ⎜ ⎜- 1 1 3 ⎟, P = A B , ⎜1 3 4 ⎟ ⎜ 0 1 - 1⎟ ⎝ ⎠ ⎝ ⎠ 2 1 ⎞ ⎛ 1 ⎜ ⎟ 由 ( A, B ) ⎯⎯ →( E , A B ), 求得P = A B = ⎜ 5 1 −14 ⎟ ⎜ −4 −1 10 ⎟ ⎝ ⎠
第 4 页
⎛ 1 0 5 ⎜ ⎜ 令 P = ( p1 , p2 , p3 ) = ⎜ −2 0 5 ⎜ 1 ⎜ 0 ⎝ 2 ⎞ 5⎟ 1 ⎟ ,则 P 为正交矩阵, 5⎟ ⎟ 0 ⎟ ⎠
从而 x = Py 为正交变换,使 f = − y12 + 2 y2 2 + 4 y32 四、证明题(6 分) 证:设 k1α1 + k 2α 2 + k3α 3 + k 4 (α 5 − α 4 ) = 0, 由 R(I)=R(II)=3, 得 α 4 可由 α 1 ,α 2 ,α 3 惟一线性表示, 设为 α 4 = l1α1 + l2α 2 + l3α 3 , 代入得 (k1 − l1 k 4 )α 1 + (k 2 − l 2 k 4 )α 2 + (k 3 − l3 k 4 )α 3 + k 4α 5 = 0, 因为 α1 , α 2 , α 3 , α 5 线性无关, 所以 k1 − l1 k 4 = k 2 − l 2 k 4 = k 3 − l 3 k 4 = k 4 = 0, 从而 k1 = k 2 = k 3 = k 4 = 0 ,得证。

线性代数A习题册答案

线性代数A习题册答案
解: ,同理可得 ,故 .故应选(C).
2.设 为 阶对称矩阵, 为 阶反对称矩阵,则下列矩阵中为反对称矩阵的是[]
(A) ;(B) ;(C) ;(D) .
解: ,故应选(A).
3.设 为 阶方阵, 为正整数,则下列结论中不正确的是[]
(A)若 可交换,则 ;(B)若 可交换,则 和 可交换;
(C)若 和 可交换,则 可交换;(D)若 和 可交换,则 可交换.
5.设 为 阶方阵,则下列结论正确的是[]
(A) 且 ;(B)若 ;
(C) 或 ;(D) .
解: 或 ,故(C)成立;若 ,则 ,但 ,故(A)不成立; ,但 ,故(B)不成立; ,但 ,故(D)不成立.故应选(C).
三、设 , 求
解:
, .
四、设 ,计算 .
解:
当 时, ,所以 ;
当 时, ,所以 .
.由于 线性无关, 所以 ,因 不全为零,所以方程组有非零解,因此 ,得 或 .故应填 或 .
3.设 维向量 满足条件 是任意的 维向量,若 线性相关,则 .
解: 线性相关,由定义,存在不全为零的数 ,使得 ,即 .由于 是任意的 维向量,故只需取 ,且令 ,由此可得 ,得 ,故应填 .
二、选择题:
解:由 得 ,即 ,因 , 可逆,上式两边左乘 ,得 ,故应填 .
4.设 均为三阶方阵,将 的第一行的 倍加到第三行得 ,将 的第一,二列互换得 .已知 ,则 .
解:由题设 ,所以 ,因而 ,故应填 .
二、选择题:
1.设 是同阶方阵,且 可逆, 不可逆,则下列矩阵中一定可逆的矩阵是[]
(A) ;(B) ;(C) ;(D) .
1.向量组 线性无关的充分必要条件是[]
(A)有一组全不为零的数 ,使得 ;

线性代数A三套模拟试题及答案

线性代数A三套模拟试题及答案

线性代数A 模拟试卷一参考答案一、(15分)填空题:1.设123456110A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,则 |A|= -9 , A*=63276318113-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦,A -1=6327163189113-⎡⎤-⎢⎥--⎢⎥⎢⎥--⎣⎦.2.设4维向量α=(1,2,0,-3)T , β=(2,-1,5,0)T ,则α与β的内积(α,β)= 0 ,夹角<α,β>= 90o . 3.设矩阵123456A ⎡⎤=⎢⎥-⎣⎦,1224510B ⎡⎤=⎢⎥-⎣⎦,初等矩阵P 满足:AP=B,则P=101010001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦.(A 的第3列-第1列得B ,所以P 为E 的第3列-第1列所得初等阵) 4. α1,α2,α3,α4均为3维向量,则向量组α1,α2,α3,α4必线性 相 关. (ch3/Th7/推论2)5.[]2R x 中的基222142,3,15x x x x x -++-+到基21,,x x 的过渡矩阵为1131516114102034672152713---⎡⎤⎡⎤⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦. 二、(15分)选择题: 1.设3阶行列式112233112233112233a x a x a x Db y b y b yc z c z c z +++=++++++则( B ). (A )123123123123123123a a a x x x D b b b y y y c c c z z z =+; (B )122331223312233122331223312233a a x a x x a x a x D b b y b y y b y b y c c z c z z c z c z ++++=+++++++++ (C )123123123123123123123123123a a x a x a x a a Db b y b y b y b bc c z c z c z c c =++.(ch1/行列式性质5)2.设矩阵A 的秩R(A)=r,则( B ).(A)A 中只有一个r 阶子式不为零,其余的r 阶子式全为零;(B) A 中存在一个r 阶子式不为零,所有的r+1阶子式(若有)全为零; (C) A 中所有的r 阶子式均不为零,而高阶子式全为零. 3. 设线性方程组12312321231ax x x x ax x a x x ax a ++=⎧⎪++=⎨⎪++=⎩有唯一解,则( C ). (A)a=1;(B)a=-2;(C)a ≠1且a ≠-2.4.设 向量组α1,α2,…,αs 线性相关,则( C ).(A) α1一定可由α2,α3,…,αs 线性表示; (B) α1一定不可由α2,α3,…,αs 线性表示;(C) 其中至少有一个向量可由其余s-1个向量线性表示. 5.n 阶方阵A 与对角阵相似,则( C ).(A)A 有n 个不同的特征值;(B) A 有n 个相同的特征值;(C) A 有n 个线性无关的特征向量. 三、(14分)设n 维向量αT =(1/2,0,…,0,1/2),又A=E-ααT , B=E+2ααT ,其中E 为n 阶单位矩阵,求AB,A -1,B -1,并写出A -1与B -1的具体形式. 解:AB=( E-ααT )(E+2ααT )= E-ααT +2ααT -2ααT ααT= E+ααT -2α(αT α)αTαT α=120111110...0 (2)2442012⎛⎫ ⎪ ⎪ ⎪⎛⎫ ⎪=+= ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭∴AB= E+ααT -ααT =E.A -1=B=11/40...01/42000...001120...02..................22000...0011/40...01/42E E ⎛⎫ ⎪⎡⎤ ⎪⎢⎥ ⎪⎢⎥⎛⎫ ⎪⎢⎥+=+ ⎪ ⎪⎝⎭⎢⎥⎪⎢⎥ ⎪⎢⎥⎣⎦⎪⎝⎭=1/20...01/23/20...01/200...0001...00..............................00...0000...101/20...01/21/20...03/2E ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦B -1= A =11/40...01/42000...00110...0..................22000...0011/40...01/42E E ⎛⎫ ⎪⎡⎤⎪⎢⎥ ⎪⎢⎥⎛⎫ ⎪⎢⎥-=- ⎪ ⎪⎝⎭⎢⎥⎪⎢⎥ ⎪⎢⎥⎣⎦⎪⎝⎭=3/40...01/401...00...............00...101/40...03/4-⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎣⎦.四、(16分)设向量组α1=(1,2,3,4)T , α2=(2,3,4,5)T , α3=(3,4,5,6)T , α4=(4,5,6,7)T ,求由该向量组生成的向量空间L=L (α1, α2, α3, α4)的维数及一组基,并求其余向量在这组基下的坐标.解:A=【α1, α2, α3, α4】14,3,21234234534564567i i r r i --=⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎣⎦4232211234*********111r r r r r r ---⎡⎤⎢⎥⎢⎥→⎢⎥⎢⎥⎣⎦1222(1)1234012300000000r r r +⨯-⎡⎤⎢⎥---⎢⎥→⎢⎥⎢⎥⎣⎦1012012300000000--⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,dimL=R (A )=2,α1, α2为L 的一组基, ∵α3= -α1+2α2,α4= -2α1+3α 2.∴α3在这组基下的坐标为-1,2;α4在这组基下的坐标为-2,3. 五、(14分)λ为何值时,下列线性方程组有唯一解?无解?无穷多解?若有无穷多解,求出全部解.123123123(2)2212(5)4224(5)1x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩解:3223222222||254254245011r r c c A λλλλλλλ+-----=--=--=--+-- 242294001λλλ----- = -(λ-1)2(λ-10).1)当1λ≠且10λ≠,|A|≠0,方程组有唯一解2)当λ=1,增广阵B=122112212442000024420000r⎡-⎤⎡-⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦, x 1=1-2x 2+2x 3,令2132x c x c ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得通解1122132122x c c x c x c -+⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=12122010001c c -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 3)当λ=10,增广阵B=82218041201725422017011124511011100027r r ⎡--⎤⎡---⎤⎡⎤⎢⎥⎢⎥⎢⎥--→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦,.R (A )=2,R (B )=3,系数阵与增广阵秩不相等,无解。

线性代数A,B试卷及答案

线性代数A,B试卷及答案

(试卷A )一、填空题(本题总计 20 分,每小题 2 分)1. 排列6573412的逆序数是.2.函数中的系数是.()f x =21112x x x x x---3x 3.设三阶方阵A 的行列式,则=A/33A =*1()A -.4.n 元齐次线性方程组AX=0有非零解的充要条件是.5.设向量,=正交,则(1,2,1)Tα=--β⎪⎪⎪⎭⎫⎝⎛-22λλ=.6.三阶方阵A 的特征值为1,,2,则1-A =.7.设,则.1121021003A --⎛⎫⎪=- ⎪⎪⎝⎭_________A *=8.设为的矩阵,已知它的秩为4,则以为系A 86⨯A 数矩阵的齐次线性方程组的解空间维数为_____________.9.设A 为n 阶方阵,且 2则A =1*1()3A A --+=.10.已知相似于,则20022311A x -⎛⎫ ⎪= ⎪ ⎪⎝⎭12B y -⎛⎫⎪=⎪ ⎪⎝⎭=x ,.=y 二、选择题(本题总计 10 分,每小题 2 分)1.设n 阶矩阵A 的行列式等于,则等于D A -5.(A) (B)-5 (C) 5(D)(5)nD -D D 1(5)n D--2. 阶方阵与对角矩阵相似的充分必要条件是.n A (A) 矩阵有个线性无关的特征向量A n (B) 矩阵有个特征值A n (C) 矩阵的行列式A 0A ≠ (D) 矩阵的特征方程没有重根A 3.A 为矩阵,则非齐次线性方程组有唯一m n ⨯AX b =解的充要条件是 .(A) (B)(,)R A b m <()R A m <(C) (D)()(,)R A R A b n ==()(,)R A R A b n =<4.设向量组A 能由向量组B 线性表示,则( )(A). (B).)()(A R B R ≤)()(A R B R <(C). (D).)()(A R B R =)()(A R B R ≥5. 向量组线性相关且秩为r ,则 .12,,,s ααα(A)(B)(C)r s =r s <r s >(D) s r≤三、计算题(本题总计 60 分,每小题 10 分)1. 计算n阶行列式:.22221 =D 22222 2232221222-n n 22222.已知矩阵方程,求矩阵,其中.AX A X =+X 220213010A ⎛⎫⎪= ⎪ ⎪⎝⎭3. 设阶方阵满足,证明可逆,并n A 0422=--E A A3A E -求.1(3)A E --4.求下列非齐次线性方程组的通解及所对应的齐次线性方程组的基础解系:1234123412342342323883295234x x x x x x x x x x x x x x x +++=⎧⎪-++=⎪⎨-+--=-⎪⎪--=-⎩5.求下列向量组的秩和一个最大无关组,并将其余向量用最大无关组线性表示.123421234,1,3,5.2012αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6.已知二次型:,323121232221321844552),,(x x x x x x x x x x x x f --+++= 用正交变换化为标准形,并求出其正交),,(321x xx f 变换矩阵Q .四、证明题(本题总计 10 分,每小题 10 分)设,,, ,且向量组11ba =212b a a =+ 12r r b a a a =+++ 线性无关,证明向量组线性无关.r a a a ,,,21 r b b b ,,,21 (答案二)一、填空题(本题总计 20 分,每小题2 分)1. 172. -23.4.5.6.-27.或13A ()R A n <2λ=-116A -8. 29、10、12110216003-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦21n)(-2,0-==y x 二、选择题(本题总计 10 分,每小题 2 分)1. A 2. A3.C4.D5. B三、计算题(本题总计 60 分,每小题 10分)1、解: ------D),,4,3(2n i r r i =-00021 00022 001223022-n 20022-n 4分-------7分122r r -00001 00022 -00122 -3022--n20022--n---------10分(此题的)!2(2)2()3(21)2(1--=-⨯-⨯⨯⨯⨯-⨯=n n n 方法不唯一,可以酌情给分。

线性代数课程期末考试试卷(A卷)1

线性代数课程期末考试试卷(A卷)1

信息学院本科生2009-2010学年第一学期线性代数课程期末考试试卷(A 卷)专业: 年级: 学号: 姓名: 成绩:说明:A T 表示矩阵A 的转置,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,O 是零矩阵, A −1表示可逆矩阵A 的逆矩阵, |A |表示方阵A 的行列式, 〈α, β〉表示向量α, β的内积.一、 客观题:1−3小题为判断题,在对的后面括号中填“√”,错的后面括号中填“⨯”,4−8为单选题,将正确选项前的字母填在括号中. (每小题2分,共16分)1. 方阵,A B 满足,则必有)AB BA =22()(A B A B A B -=+-。

( )2. 若方阵A 有0k A =(0k >为整数), 则必有||0A =。

( )3. ,A B 为同型矩阵,且秩(A)=秩(B),则0AX = 与0是同解方程组。

( )BX =4. n 阶实对称矩阵A 正定,则以下结论错误的是( ) (A) 可以找到一个正交矩阵F ,使T F AF 为对角矩阵。

(B) 的所有的特征值均为正值。

A (C) 是不可逆矩阵。

A (D) 对某个12(,,,)0T n X x x x =≠ ,必有。

0T X AX >5. n 维向量,αβ正交,则内积,β=( ) (A) 1 (B) 2 (C) 1- (D) 0 6. 下列说法不正确的是 ( )(A) 存在满足的两个非零阶矩阵和。

0PQ =(1n n >)P Q (B) 维实线性空间V 中任何个线性无关的向量都构成V 的一个基底。

(1)n n >n (C) 设V 是一个任意的维欧式空间,T 是V 中一个任意的线性变换,则V 中的零向量在T 作用下的象一定也是零向量。

n (D) 是线性空间V 中线性变换,向量组T 12,,,m ααα 线性无关,则12,,,T m T T αα α线性无关。

)7. 下列说法不正确的是 ( )(A) 相似矩阵有完全相同的特征多项式。

青岛理工线性代数试题A解答2009

青岛理工线性代数试题A解答2009

线性代数试题A-2009解答一 、填空题(每小题3分,共30分)1.n 阶行列式ij a D =,则展开式中项11342312n n n a a a a a - 的符号为1)1(--n 。

2.设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--=200123411,131021,1210121C B A 则C B A T)(+ =⎪⎪⎭⎫⎝⎛--30221046。

3.设A 为三阶方阵,且 21=A , *12)3(A A --=2716-。

4.设⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,则k = 1 时, 1)(=A R 。

5.若线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+=+-=+414343232121a x x a x x a x x a x x 有解, 则常数4321,,,a a a a 应满足条件04321=+++a a a a 。

6. 设n 维向量组s ααα,,,21 的秩为r ,则当s 和r 满足s r =时该向量组线性无关;当s r <时该向量组线性相关。

7.设n m ⨯矩阵A 的秩r A R =)(,则齐次线性方程组0=AX 基础解系的向量个数为 n-r 。

8.设方阵A 相似于对角形矩阵⎪⎪⎪⎭⎫ ⎝⎛=Λ300020001,相似变换阵为⎪⎪⎪⎭⎫⎝⎛=100110111P ,则A =⎪⎪⎪⎭⎫⎝⎛300120111。

9.当方阵A 满足EA A T =时,A 为正交矩阵。

10.三阶方阵A 的三个特征值分别为1、2、3,则方阵E A A ++2的三个特征值分别为3,7,13 。

二、求解下列各题(每小题5分,共10分)1. 设行列式 4521011130112101--=D , 计算 44434241A A A A +++,其中44434241,,,A A A A 为该行列式第4行元素对应的代数余子式。

解:44434241A A A A +++=161007100511021011102010511021011111011130112101-=----=--=------------------5分2.计算n 阶行列式xyy x x y x y x D n 00000000000000=解: n n n n n y x yxx y xy y xy x x y x x D 11)1(00000000)1(00000000++-+=-+=。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东工业大学试卷用纸,共3页,第1页
广东工业大学试卷用纸,共3页,第2页
2、设行列式
1
53478031
1113152−−−=
=A D ,则2=+−+4443424135A A A A .
(A )0(B )1(C )-1(D )-16
3、设A 、B 是n 阶方阵,下列等式正确的是.
(A )AB=BA (B )))((22B A B A B A −+=−(C )2
2A
A =(D )1
11)(−−−+=+B A B A 4、设0α是非齐次方程组b AX =的一个解,r ααα,,,21⋯是0=AX 的基础解系,则
.
(A)01,,,r ααα⋯线性相关。

(B )01,,,r ααα⋯线性无关。

(C )01,,,r ααα⋯的线性组合是b AX =的解。

(D )01,,,r ααα⋯的线性组合是0=AX 的解。

5、n 阶方阵A 与对角阵相似的充要条件是
.
(A)A 是实对称阵;(B)A 有n 个互异特征值;(C)A 的特征向量两两正交.
(D)A 有n 个线性无关的特征向量;
三、(10分)设n
a a a A +++=
111
1
11
1
11||21
⋯⋯⋯⋯⋯⋯⋯,021≠n a a a ⋯其中.求A .
四、(10分)设4阶方阵C B A ,,满足方程11)2(−−=−C A B C E T ,试求矩阵A ,其中
1
2321
2
010*******,001200120001000
1B C −−⎛⎞⎛⎞
⎜⎟⎜⎟−⎜
⎟⎜⎟==⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝

五、(10分)讨论λ为何值时,方程组⎪⎩⎪
⎨⎧=+++=+++=+++λλλλ3
21321321)1(3
)1(0)1(x x x x x x x x x
广东工业大学试卷用纸,共3页,第3页
(1)有唯一解?(2)无解?(3)有无穷多解?并在此时求出其通解。

六、(10分)已知R 3中的向量组321,,ααα线性无关,向量组112223,b k b αααα=−=+,
331b k αα=+线性相关,求k 值。

七、(11分)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−=020212022A ,求一个正交矩阵P ,使AP P AP P T =−1为一个对角矩阵。

八、证明题(每小题7分,共14分)
1、设321,,ααα是n 阶方阵
A 的3个特征向量,它们的特征值不相等,记123βααα=++,
证明β不是A 的特征向量。

2、设,A B 为n 阶方阵,若0AB =,则r ()A +r ()B n ≤。

相关文档
最新文档