电力电子学--晶闸管及其基本电路
第1章 电力电子器件概述(第一部分)(2)
1.1.2 应用电力电子器件的系统组成
1.1.3 电力电子器件的分类 1.1.4 本章内容和学习要点
华东理工大学
1-3
1.1.1 电力电子器件的概念和特征
电力电子器件
1)概念:
电力电子器件(Power Electronic Device)
——可直接用于主电路中,实现电能的变换或控制的电 子器件。
主电路(Main Power Circuit)
和控制电 路中附加 一些电路, 以保证电 力电子器 件和整个 系统正常 可靠运行
V1 L R
V2
主电路
电气隔离 图1-1 电力电子器件在实际应用中的系统组成
华东理工大学
1-7
注重对器件的保护:通常采用吸收(缓冲) 保护电路( Snubber )来限制器件的 du/dt 和di/dt,减小由于大电流跃变在引线(寄 生)电感上形成的反电势尖峰,以防器件 过压击穿。 需要驱动与隔离:强、弱电系统之间电气 隔离,不共地,消除相互影响,减小干扰, 提高可靠性。
通态损耗是器件功率损耗的主要成因。 器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
华东理工大学
1-6
1.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路 和以电力电子器件为核心的主电路组成。 在主电路
控 制 控制电路 电 路 检测 电路 保护 电路 驱动 电路
额定电流 —— 在指定的管壳温度和散热条件下, 其允许流过的最大工频正弦半波电流的平均值。 IF(AV)是按照电流的发热效应来定义的,使用时应 按有效值相等的原则来选取电流定额,并应留 有一定的裕量。 在工频正弦半波的情况下:
平均值 IF(AV) 有效值 1.57 IF(AV)
电力电子器件晶闸管幻灯片PPT
稍大于两个晶体管漏电流之和。
开通状态:注入触发电流使晶体管的发射极电流增大
以致1+2趋近于1的话,流过晶闸管的电流IA,将趋 近于无穷大,实现饱和导通。IA实际由外电路决定。
4.2.2 晶闸管的根本特性
晶闸管正常工作时的特性总结如下:
✓ 承受反向电压时,不管门极是否有触发电流,晶 闸管都不会导通。
trr URRM tgr
关断时间tq以上两者之和 tq=trr+tgr 〔1-7)
图1-9 晶闸管的开通和关断过程波形
4.2.3 晶闸管的主要参数
1〕电压定额
断态重复峰值电压UDRM
—— 在 门 极 断 路 而 结 温 为 额 定值时,允许重复加在器件上的 正向峰值电压。
反向重复峰值电压URRM
使用注意:
电力电子器件晶闸管幻灯 片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
4.1 电力电子器件的概念
2〕同处理信息的电子器件相比的一般特征:
4.2 半控型器件—晶闸管
4.2.1 晶闸管的构造与工作原理 4.2.2 晶闸管的根本特性 4.2.3 晶闸管的主要参数 4.2.4 晶闸管的派生器件
4.2.1 晶闸管的构造与工作原理
晶闸管〔Thyristor〕:晶体闸流管,可控硅整 流器〔Silicon Controlled Rectifier——SCR〕
G KK
A A G
a)Biblioteka AGP1 N1 P2 N2
电力电子实验报告
电力电子实验报告————————————————————————————————作者:————————————————————————————————日期:实验一SCR(单向和双向)特性与触发实验一、实验目的1、了解晶闸管的基本特性。
2、熟悉晶闸管的触发与吸收电路。
二、实验内容1、晶闸管的导通与关断条件的验证。
2、晶闸管的触发与吸收电路。
三、实验设备与仪器1、典型器件及驱动挂箱(DSE01)—DE01单元2、触发电路挂箱Ⅰ(DST01)—DT02单元3、触发电路挂箱Ⅰ(DST01)—DT03单元(也可用DG01取代)4、电源及负载挂箱Ⅰ(DSP01)或“电力电子变换技术挂箱Ⅱa(DSE03)”—DP01单元5、逆变变压器配件挂箱(DSM08)—电阻负载单元6、慢扫描双踪示波器、数字万用表等测试仪器四、实验电路的组成及实验操作图1-1 晶闸管及其驱动电路1、晶闸管的导通与关断条件的验证:晶闸管电路面板布置见图1-1,实验单元提供了一个脉冲变压器作为脉冲隔离及功率驱动,脉冲变压器的二次侧有相同的两组输出,使用时可以任选其一;单元中还提供了一个单向晶闸管和一个双向晶闸管供实验时测试,此外还有一个阻容吸收电路,作为实验附件。
打开系统总电源,将系统工作模式设置为“高级应用”。
将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;将“DT03”单元的钮子开关“S1”拨向上,用导线连接模拟给定输出端子“K”和信号地与“DE01”单元的晶闸管T1的门极和阴极;取主电源“DSM00”单元的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”,交流主电源输出端“AC15V”和“O”分别接至整流桥输入端“AC1”和“AC2”,整流桥输出接滤波电容(“DC+”、“DC-”端分别接“C1”、“C2”端);“DP01”单元直流主电源输出正端“DC+”接“DSM08”单元R1的一端,R1的另一端接“DE01”单元单向可控硅T1的阳极,T1的阴极接“DP01”单元直流主电源输出负端“DC-”。
《电力电子技术》第2章 电力电子器件
2/89
上节课内容回顾
• 二、电力电子器件
1、概念:是指可直接用于处理电能的主电路中,实现 电能的变换或控制的电子器件。
2、特性:大功率、开关特性、驱动电路、损耗大,加散热
3、组成:主电路、控制电路、检测电路。。。。
4、分类:
1)控制程度:不控器件、半控器件、全控器件
12/89
2.1.3 电力电子器件的分类
■按照载流子参与导电的情况 ◆单极型器件 ☞由一种载流子参与导电。 ◆双极型器件 ☞由电子和空穴两种载流子参与导电。 ◆复合型器件 ☞由单极型器件和双极型器件集成混合而成, 也称混合型器件。
13/89
2.1.4 本章内容和学习要点
■本章内容 ◆按照不可控器件、半控型器件、典型全控型器件和其 它新型器件的顺序,分别介绍各种电力电子器件的工作 原理、基本特性、主要参数以及选择和使用中应注意的 一些问题。
检测
控
电路
制
保护
电
电路
路
驱动ቤተ መጻሕፍቲ ባይዱ
电路
V1 LR
V2
主电路
电气隔离
图2-1 电力电子器件在实际应用中的系统组成
10/89
2.1.3 电力电子器件的分类
■按照能够被控制电路信号所控制的程度 ◆半控型器件 ☞主要是指晶闸管(Thyristor)及其大部分派生器件。 ☞器件的关断完全是由其在主电路中承受的电压和电 流决定的。 ◆全控型器件 ☞目前最常用的是 IGBT和Power MOSFET。 ☞通过控制信号既可以控制其导通,又可以控制其关 断。 ◆不可控器件 ☞电力二极管(Power Diode) ☞不能用控制信号来控制其通断。
■学习要点 ◆最重要的是掌握其基本特性。 ◆掌握电力电子器件的型号命名法,以及其参数和特性 曲线的使用方法。 ◆了解电力电子器件的半导体物理结构和基本工作原理。 ◆了解某些主电路中对其它电路元件的特殊要求。
电工电子应用技术 晶闸管可控整流电路教案
单元十三电力电子技术基础(教案)注:表格内黑体字格式为(黑体,小四号,1.25倍行距,居中)13.2晶闸管可控整流电路【教学过程】组织教学:1.检查出勤情况。
2.检查学生教材,习题册是否符合要求。
3.宣布上课。
引入新课:1.可控整流电路的作用是将交流电变换为电压大小可以调节的直流电,以供给直流用电设备,如直流电动机的转速控制、同步发电机的励磁调节、电镀和电解电源等,它主要利用晶闸管的单向导电性和可控性构成。
2.通过实物演示及列举实例,让学生了解桥式整流电路的原理及应用,从而激发他们的学习兴趣。
讲授新课:13.2晶闸管可控整流电路13.2.1整流电路可控整流电路的作用是将交流电变换为电压大小可以调节的直流电,以供给直流用电设备,如直流电动机的转速控制、同步发电机的励磁调节、电镀和电解电源等,它主要利用晶闸管的单向导电性和可控性构成。
13.2.1整流电路单相半波可控整流电路虽然具有电路简单、调整方便、使用元件少的优点,但却有整流电压脉动大、输出整流电流小的缺点。
比较常用的是半控桥式整流电路,简称半控桥,其电路如图13-2-1所示。
在变压器副边电压u的正半周(a端为正)时,T1和D2承受正向电压。
这时如对晶闸管T1引入触发信号,则T1和D2导通,电流的通路为a→T1→R L→D2→b图13-2-1 电阻性负载的单相半控桥式整流电路这时T2和D1都因承受反向电压而截止。
同样,在电压u的负半周时,T2和D1(讲解)(讲解)观看PPT:整流电路)承受正向电压。
这时,如对晶闸管T 2引入触发信号,则T 2和D 1导通,电流的通路为: b→T 2→R L →D 1→a图13-2-2 电阻性负载时单相半控桥式整流电路的电压与电流的波形这时T 1和D 2处于截止状态。
电压与电流的波形如图13-2-2所示。
桥式整流电路的输出电压的平均值为2cos 219.00a U U +⋅= (13-2-1)输出电流的平均值为2cos 19.000aR U R U I L L +⋅==(13-2-2) 13.2.2晶闸管的过电流、过电压保护1.晶闸管的过电流保护由于晶闸管的热容量很小,一旦发生过电流时,温度就会急剧上升而可能把PN 结烧坏,造成元件内部短路或开路。
中南大学电力电子课程设计(晶闸管整流)
3.2变压器的参数计算
3.3闸管电路对电网及系统功率因数的影响
四、整流电路原理及设计
4.1整流元件的选择
4.2电流定额(INVT)的计算
五、触发电路的选择、原理及设计
5.1相控触发芯片的选择
5.2相控触发工作原理及电路原理图
六、保护电路的工作原理及元器件的选择
6.1保护电路的工作原理
6. 2保护电路元器件的选择
电力电子技术
课程设计报告
任课老师:杨建老师
课题名称:单相双半波晶闸管整流电路的设计(反电势、电阻负载)
设计者:程壹涛
班级:电气试验1301
学号:**********
时间:2015-12-05
一、课题选择
1.1课题名称
1.2设计条件
1.3任务要求
二、方案设计
2.1原理框图
三、主电路原理设计
3.1主电路中各元件参数的计算
结构比较简单。一方面是方便我们对设计电路中变压器型号。
第1章 晶闸管
有效值与平均值之比称为波形系数Kf则: Kf=I/Id或I= KfId 。 例:设晶闸管承受的电压有效值为220V,流过的电流平 均为157A,波形系数为1.11,考虑安全裕量,求晶 闸管电压、电流定额。 i 解:UN=(2~3)1.414×220 IM =622 ~933V(取800V)
I K f Id I IT ( AV ) = (1.5 2) = (1.5 2) 1.57 1.57 1.11´ 157 0 (取 200 A) = (1.5 2) = 166 222 A 图1-11 1.57
学习重点:
晶闸管的工作原理、基本特性、主要参数以 及选择和使用中应注意的一些问题。
1.1
引言
晶闸管(Thyristor):晶体闸流管,可控硅整流 器(Silicon Controlled Rectifier——SCR)
1956年美国贝尔实验室发明了晶闸管。 1957年美国通用电气公司开发出第一只晶闸管产品。 1958年商业化。
第1章
1.1 引言
晶闸管
1.2 晶闸管的结构与工作原理 1.3 晶闸管的基本特性 1.4 晶闸管的主要参数 1.5 晶闸管的派生器件
1.6 电力二极管(整流二极管)
本章学习内容与重点
本章内容:
介绍晶闸管的工作原理、基本特性、主要参 数以及选择和使用中应注意的一些问题。 介绍电力二极管、晶闸管派生器件的基本特 性和使用中应注意的一些问题。
仿真实验
1.2 晶闸管的结构与工作原理
晶闸管的工作原理
⊕工作原理(从其内部四层结构来 A 分析) P1 ①定性分析 J1 N1 a. UG≤0,IG=0 G J2 P2 UAK<0时,J1,J3反偏,J2正 J 3 偏,反向阻断,晶闸管不导通, N2 解释①。 K UAK>0时,J1,J3正偏,J2反 偏,晶闸管不导通,解释⑤。图1-2 晶闸管的内部结构图
电力电子技术学习指导及习题
电力电子技术学习指导及习题课题一调光灯调光灯在日常生活中的应用非常广泛,本课题通过对与调光灯电路相关的知识:晶闸管、单相半波可控整流电路、单结晶体管触发电路等内容的介绍和分析。
使学生能够理解电路的工作原理,掌握分析电路的方法。
一、本课题学习目标与要求1.掌握晶闸管的结构、外形及符号;晶闸管的导通、关断条件;理解晶闸管可控单向导电的含义。
2.了解晶闸管的工作原理及阳极伏安特性。
3.理解并记住晶闸管主要参数的定义;晶闸管型号及其含义;能根据电路参数选择晶闸管。
4.会分析单相半波可控整流电路(电阻性、电感性负载)输出电压u d、电流i d和晶闸管两端电压u T的波形。
5.熟悉续流二极管的作用。
6.能计算单相半波可控整流电路(电阻性、电感性负载)下晶闸管可能承受的最大电压与流过晶闸管的电流有效值,正确选择晶闸管。
7.掌握主电路对触发电路的要求。
8.熟悉单结晶体管出发电路的工作原理、各环节组成及作用,并能通过实验进行调试,使之正常工作。
二、主要概念提示及难点释疑1.晶闸管导通、关断条件1)晶闸管导通条件:阳极加正向电压、门极加适当正向电压。
注意:阳极加正向电压是指阳极电位高于阴极电位,阳极电位可以是正也可以是负。
门极正向电压是指门极电位高于阴极电位。
2)关断条件:流过晶闸管的阳极电流小于维持电流。
可以通过降低晶闸管阳极-阴极间电压或增大主电路中的电阻。
2.晶闸管主要参数1)额定电压:用等级表示,选用管子时额定电压常常时实际工作时可能承受的最大电压的2~3倍。
2)额定电流注意:不同于通常电气元件以有效值来定义额定电流,而是以平均值来定义的。
选择管子时要用有效值相等原则即流过晶闸管实际电流的有效值等于(小于更好)管子的额定电流有效值。
3.单相半波可控整流电路工作原理及参数计算1)几个名词术语和概念控制角α:控制角α也叫触发角或触发延迟角,是指晶闸管从承受正向电压开始到触发脉冲出现之间的电角度。
导通角θ:是指晶闸管在一周期内处于导通的电角度。
第9章 晶闸管电路及其应用..
二、晶闸管的主要参数
1. 晶闸管的电压参数
(1)正向转折电压UBO(Forward break over voltage)
在额定结温(100A以上为115℃,50A以下为100℃)和门 极开路的条件下,阳极和阴极间加正弦半波正向电压使器件由 阻断状态发生正向转折变成导通状态所对应的电压峰值。
(2)断态重复峰值电压UDRM(Blocking recurrence peak voltage) 指门极开路,晶闸管结温为额定值,允许重复施加在晶 闸管上的正向峰值电压。重复频率为每秒50次,每次持续时 间不大于10ms,其值为 UDRM = UBO—100V
(3)反向转折电压UBR 就是反向击穿电压。 (4)反向重复峰值电压URRM 指门极开路,晶闸管结温为额定值,允许重复施加在晶 闸管上的反向峰值电压。
U M和URRM中较小者,再取相应于标准电压等级 中偏小的电压值作为晶闸管的标称额定电压。在1000V以下, 每100V一个等级;在1000~3000V,则是每200V一个等级。为 了防止工作中的晶闸管遭受瞬态过电压的损害,通常取电压安 全系数为2~3,例如器件在工作电路中可能承受到的最大瞬时 值电压为UTM,则取额定电压UT=(2~3)UTM。 (6)通态正向平均电压UF
流),在不同的门极触发电流IG作用下经不同的转折电压UBO
和负阻区(电流增加,电压减小),到达正向导通状态(低 电压,大电流)。
正向导通特性和一般二要管的正向导通特性一样,门极
触发电流IG越大,转折电压UBO越低。
当IG=0时,晶闸管正向电压UAK增大到转折电压UBO前,器 件处于正向阻断状态,其正向漏电流随UAK电压增高而逐渐增 大,当UAK达到UBO时管子将突然从阻断状态转为导通状态, 导通后器件的特性与整流二极管正向伏安特性相似。 当通入门极电流IG且足够大时,正向转折电压降至极小, 使晶闸管像整流二极管一样,一加上正向阳极电压就导通,这
电力电子技术-期末考试复习要点
电⼒电⼦技术-期末考试复习要点课程学习的基本要求及重点难点内容分析第⼀章电⼒电⼦器件的原理与特性1、本章学习要求1.1 电⼒电⼦器件概述,要求达到“熟悉”层次。
1)电⼒电⼦器件的发展概况及其发展趋势。
2)电⼒电⼦器件的分类及其各⾃的特点。
1.2 功率⼆极管,要求达到“熟悉”层次。
1)功率⼆极管的⼯作原理、基本特性、主要参数和主要类型。
2)功率⼆极管额定电流的定义。
1.3 晶闸管,要求达到“掌握”层次。
1)晶闸管的结构、⼯作原理及伏安特性。
2)晶闸管主要参数的定义及其含义。
3)电流波形系数k f的定义及计算⽅法。
4)晶闸管导通和关断条件5)能够根据要求选⽤晶闸管。
1.4 门极可关断晶闸管(GTO),要求达到“熟悉”层次。
1)GTO的⼯作原理、特点及主要参数。
1.5 功率场效应管,要求达到“熟悉”层次。
1)功率场效应管的特点,基本特性及安全⼯作区。
1.6 绝缘栅双极型晶体管(IGBT),要求达到“熟悉”层次。
1)IGBT的⼯作原理、特点、擎住效应及安全⼯作区。
1.7 新型电⼒电⼦器件简介,要求达到“熟悉”层次。
2、本章重点难点分析有关晶闸管电流计算的问题:晶闸管是整流电路中⽤得⽐较多的⼀种电⼒电⼦器件,在进⾏有关晶闸管的电流计算时,针对实际流过晶闸管的不同电流波形,应根据电流有效值相等的原则选择计算公式,即允许流过晶闸管的实际电流有效值应等于额定电流I T对应的电流有效值。
利⽤公式I = k f×I d = 1.57I T进⾏晶闸管电流计算时,⼀般可解决两个⽅⾯的问题:⼀是已知晶闸管的实际⼯作条件(包括流过的电流波形、幅值等),确定所要选⽤的晶闸管额定电流值;⼆是已知晶闸管的额定电流,根据实际⼯作情况,计算晶闸管的通流能⼒。
前者属于选⽤晶闸管的问题,后者属于校核晶闸管的问题。
1)计算与选择晶闸管的额定电流解决这类问题的⽅法是:⾸先从题⽬的已知条件中,找出实际通过晶闸管的电流波形或有关参数(如电流幅值、触发⾓等),据此算出通过晶闸管的实际电流有效值I,考虑(1.5~2)倍的安全裕量,算得额定电流为I T = (1.5~2) I /1.57,再根据I T值选择相近电流系列的晶闸管。
晶闸管工作原理.
晶闸管工作原理晶闸管是一种电子器件,它在电子学和电力控制领域有着广泛的应用。
晶闸管能够控制大电流和高电压,因此在电力传输和电动机控制等方面扮演着重要角色。
本文将详细介绍晶闸管的工作原理,以及它在不同应用领域中的工作方式。
晶闸管的基本结构由四个层组成:N型区域,P型区域,P型区域和N型区域。
晶闸管一般是通过控制一个电极上的电流来实现对另一个电极上电流的控制。
这个电极被称为“控制电极”或“闸极”,而另外两个电极分别是“阳极”和“阴极”。
当闸电流被施加在晶闸管的闸极上时,晶闸管处于关断状态,此时正向电压施加在阳极上,而阴极则是负电压。
在关断状态下,晶闸管会阻断正向电流,类似于电子开关。
当闸电流被去除或减小到一个可忽略的水平时,晶闸管的工作状态将发生变化。
当前向电流施加在阳极上时,P型的区域成为一个PN结,此时称为“在态”或“导通态”。
在导通状态下,晶闸管将允许正向电流流动。
晶闸管的转换过程是通过两种方式实现的:转流和转向。
转流是指将电流从晶闸管的阳极转移到阴极,而转向则是指将电流从阳极转移到阴极。
当闸电流被去除时,转流是通过重新注入电流来实现的。
当闸电流被减小到可忽略的水平时,转向是通过向晶闸管施加反向电压来实现的。
晶闸管通常在交流电路中被广泛应用。
在交流电路中,晶闸管可以控制电流的相位,以实现电压和电流的控制。
这使得晶闸管成为一种重要的电力控制器件。
晶闸管还可用于直流电路中,尤其是在工业自动化和电动机控制领域。
尽管晶闸管在许多应用领域中具有广泛的应用,但是在实际应用中仍然存在一些问题。
其中之一是晶闸管的损耗问题。
晶闸管在导通过程中会有一定的导通压降,从而产生额外的损耗。
此外,晶闸管还需要适当的散热措施,以确保其正常工作。
综上所述,晶闸管是一种重要的电力控制器件,它通过控制闸电流来实现电流的控制。
晶闸管的工作原理涉及其基本结构以及电流的转流和转向过程。
晶闸管在交流电路和直流电路中都有着广泛的应用,尤其在电力传输和电动机控制领域。
晶闸管及其触发电路简介
C3
12
13
14 15
R1 2
16
(1~ 6脚为6路单脉冲输入)
16
1
15
2
14
3
4
5
6
7
8
13
12
KJ0 4 1
11
10
9
(1 5 ~1 0脚为6路双脉冲输出)
至VT1 至VT2 至VT3 至VT4 至VT5 至VT6
电力电子技术 第5章
晶闸管的触发电路
交流开关及其应用电路
常规的电磁式开关在断开负载时往往有电弧产生, 触头易烧损、开断时间长;在运行过程中会产生噪音 污染环境等等。由电力电子器件组成的交、直流开关 具有无触头、开关速度快、使用寿命长等优点,因而 获得广泛的应用。
A
P1
N1
G
P2
N2
K
A
IA α1
P1N1P2
IC1
IC2
G
α2
N1P2N2
IK
K
A
G K
电力电子技术 第5章 晶闸管的触发电路
门极关断(GTO)晶闸管
2. 导通关断条件
A
G K
A
R
IA
P1N1P2
IG
α1
IC1
IC2
EA
G N1P2N2 α2
EG
IK
K
导通过程等效电路
导 通 与晶闸管相同,AK正偏,GK正偏。
电力电子技术 第5章 晶闸管的触发电路
第一节 单结晶体管触发电路
b2
e
VD Rb2 A
UD Rb1
UA
Rb2U bb Rb1 Rb2
Ubb
机电传动控制10-晶闸管
晶闸管的外形:螺栓形和平板形两种
螺栓形带有螺栓的那一端是阳极A,它 可与散热器固定,
另一端的粗引线是阴极K, 细线是控制极(又称门极)G, 这种结构更换元件很方便,用于电流 较小(100A以下)的元件。
平板形,中间的金属环是控制极G,离控制极远的一面是阳 极A,近的一面是阴极K,这种结构散热效果比较好,用于电 流较大的元件(200A以上)
1.若只加UAK正向电压,控制极不加 触发电压,两三极管均不能导通,
即晶闸管不通。
A
ic2
i b2
2.当UAK > 0且UGK>0 时,晶闸 管迅速导通。 UGK开始加入时, T1首先导通,
ib1 = ig、 iC1 = ib1 ; 然后T2导
通, ib2= iC1 = ib1、
G
ig i b1
ic2 =ßib2 = ib1,此后T1进一步导通,
“-”接 K
逆向电压:“-” 接G
10-100Ω 50-500Ω
22
10.1.2其它功率器件
1.双向晶闸管 NPNPN
特点:控制极对于电源的两个半周 都有触发控制作用,即双方向均可 由控制极触发导通,相当于两只普 通的晶闸管反并联
23
2.可关断晶闸管(GTO)
PNPN
A
特点:
P1
A
1.GTO的控制极可以控制元件的导通
电流(称为正向漏电流)流过,
晶闸管阳极与阴极间表现出很
大的电阻,处于截止状态(称 为正向阻断状态),简称断态。
图中第一象限红色段曲线。
A G
K
(2)正向击穿:在控制极开路的情况下,当阳极 电压上升到某一数值时,晶闸管突然由阻断状
晶闸管及其工作原理
晶闸管及其工作原理晶闸管(Thyristor),又称为大功率半导体开关,是一种可以控制电流的半导体器件。
它具有单向导电性和可控性的特点,被广泛应用于各种电力电子设备中。
它的工作原理基于PN结和二极管的导通和截止特性。
晶闸管由四层PNPN结构构成,具有一个控制电极(G)和两个主电极(A和K),其中A为阳型主电极,K为阴型主电极。
晶闸管的工作原理主要包括初始化、触发和保持三个过程。
首先,晶闸管进行初始化。
当无控制信号作用在控制电极上时,晶闸管处于截止状态,即无法导电。
此时整个晶闸管的结的退火和电场分布是非均匀的。
然后,进行触发过程。
当控制电极加上一个足够的正脉冲电压时,电压将穿透绝缘氧化膜(SiO2)并通过PNP结,这将使得PNP结逆偏,从而导致PNP结发生击穿。
当前作用的触发电流会加热PNP结,并形成大量的少数载流子,此时电压会下降到击穿电压以下,而且正在形成的NPN区域由于二极管效应会传导从而支持自身。
最后,进行保持过程。
当触发电流通过PNP结时,将会形成一个NPN区域,此时PNP和NPN是串联的。
在触发电流消失的时候,由于NPN的存在,整个电流依然能继续流动,这种状态被称为保持态,晶闸管被触发并继续导通。
总结来说,晶闸管的工作原理是通过控制电极的信号来触发晶闸管的导通,当晶闸管被触发后可以持续导通,直到电流被切断或者控制信号消失。
晶闸管的应用非常广泛。
在交流电控制中,晶闸管可以用来实现调光、变频、逆变等功能。
它适用于高电压、大电流、双向导通等需求场合。
此外,晶闸管还常用于电力系统中的保护和控制设备,如电动机控制、电力输电线路的变电站、电力电容消耗器等。
总之,晶闸管作为一种具有单向导电性和可控性的半导体器件,通过控制电极的信号来控制电流的导通。
它的工作原理基于PN结和二极管的导通和截止特性。
由于其可靠性高、性能稳定等优点,晶闸管在电力电子领域有着广泛的应用。
晶闸管单相桥式可控整流电路
电路简图如下:
图2.1
此电路对每个导电回路进行控制,与单相桥式半控整流电路相比,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。
在电路中,过电保护部分我们分别选择的快速熔断器做过流保护,而过压保护则采用RC电路。这部分的选择主要考虑到电路的简单性,所以才这样的保护电路部分。整流部分电路则是根据题目的要求,选择的我们学过的单相桥式整流电路。该电路的结构和工作原理是利用晶闸管的开关特性实现将交流变为直流的功能。触发电路是由设计题目而定的,题目要求了用单结晶体管直接触发电路。单结晶体管直接触发电路的移相范围变化较大,而且由于是直接触发电路它的结构比较简单。一方面是方便我们对设计电路中变压器型号的选择。
晶闸管单相桥式可控整流电路
说明书
摘要
本设计是以matlab编程软件下进行的,首先安装matlab软件,在根据设计任务说明说上要求的设计出单相桥式可控整流电路,用晶闸管的可控性能组成,设计具有高效,精度高等,而在这之前必须要学会使用MATLAB软件。电阻电感性负载单相桥式可控整流电路的各个波形要有一定的了解和熟悉.并且参考个资料进行设计。
图12触发角为60,L=0.001,R=100
图13触发角为60,L=0.01,R=10
图14触发角为60,L=0.001,R=10
5.5
图15触发角为90,L=0.01,R=100
图16触发角为90,L=0.001,R=100
图17触发角为90,L=0.01,R=10
图18触发角为90,L=0.001,R=10
电力电子第一章
0
I m d (ωt ) =
3
当考虑2倍的安全余量时, 当考虑2倍的安全余量时,Im的允许值为
《电力电子技术》
Im =
3 × 78.5 A = 68A 2
4.晶闸管的其他参数 .
维持电流I 在室温和门极断开时, (1)维持电流 H 在室温和门极断开时,器件从较大的通态电流 最小电流称为维持电流。 降至维持通态所必需的 最小电流称为维持电流 。 它一般为 几毫安到几百毫安。 几毫安到几百毫安。 擎住电流I 晶闸管刚从断态转入通态就去掉触发信号, (2)擎住电流 L 晶闸管刚从断态转入通态就去掉触发信号,能 使器件保持导通所需要的最小阳极电流。 使器件保持导通所需要的最小阳极电流。 断态电压临界上升率du/ 在额定结温和门极开路情况下, (3)断态电压临界上升率 /dt 在额定结温和门极开路情况下, 不使器件从断态到通态转换的阳极电压最大上升率称为断态 电压临界上升率。 电压临界上升率。 通态电流临界上升率d / 在规定条件下, ( 4 ) 通态电流临界上升率 di/dt 在规定条件下 , 晶闸管在门极 触发开通时所能承受不导致损坏的通态电流最大上升率称为 通态电流临界上升率。 通态电流临界上升率。
《电力电子技术》
六、晶闸管的门极伏安特性及主要参数
和门极不触发电流I 1.门极不触发电压UGD和门极不触发电流 GD 门极不触发电压 不能使晶闸管从断态转入通态的最大门极电压称为门极 不触发电压U 相应的最大电流称为门极不触发电流I 不触发电压 GD,相应的最大电流称为门极不触发电流 GD。 门极触发电压U 和门极触发电流I 2.门极触发电压 GT和门极触发电流 GT 在室温下,对晶闸管加上6V 正向阳极电压时, 使器件由 在室温下, 对晶闸管加上 6 正向阳极电压时, 极电流称为门极触发电流I 断态转入通态所必须的最小门 极电流称为门极触发电流 GT, 相应的门极电压称为门极触发电压U 相应的门极电压称为门极触发电压 GT。 门极正向峰值电压U 门极正向峰值电流I 3.门极正向峰值电压 GM、门极正向峰值电流 GM和门极峰值功 率PGM 在晶闸管触发过程中, 在晶闸管触发过程中 , 不致造成门极损坏的最大门极电 压 、 最大门极电流和最大瞬时功率分别称为门极正向峰值电 门极正向峰值电流I 和门极峰值功率P 压 UGM、 门极正向峰值电流 GM 和门极峰值功率 GM。 使用时 晶闸管的门极触发脉冲不应超过以上数值。 晶闸管的门极触发脉冲不应超过以上数值。
晶闸管结构及工作原理_
晶闸管结构及工作原理_晶闸管的结构主要由四个区域组成:N区,P区,N+区和P+区。
其中N区和P区之间形成PN结,N+区和P+区之间形成P+N结。
在N区和P区之间加上一个外接电压,当向PN结端施加一个正向电压时,PN结处的电子和空穴被迁移到PN结的另一侧,形成一个导电通路。
这个导电通路就是晶闸管的主要通道。
晶闸管的工作原理是基于PNPN结构。
当晶闸管处于关断状态时,PN 结处有一个薄的绝缘层,没有电流通过。
一旦向PN结端施加一个正向电压,PN结附近的电子被迁移到P区,形成电子空穴对。
这些电子空穴对再漂移到PN结另一侧,继续形成更多的电子空穴对,这样就形成了一个电导通道。
当晶闸管接通时,通过PNPN结的电流增加,PN结的电场增强,进一步促进了电流的传输。
晶闸管内部的电导通道逐渐扩大,形成一个低阻通道,从而允许更大的电流通过。
晶闸管处于导通状态时,仅需一个较小的控制电流即可控制整个晶闸管的电流。
通过控制晶闸管的触发脉冲,可以实现开关功能。
当有一个触发脉冲施加在PNPN结上时,PNPN结的电流迅速增加,晶闸管从导通状态转换为关断状态。
同样地,当再次施加一个触发脉冲时,晶闸管又从关断状态转换为导通状态。
晶闸管的工作原理主要涉及到PNPN结的电流迁移和电导特性。
其关键在于控制电路和触发脉冲的施加。
正是通过对触发脉冲进行控制,以及对晶闸管的电流和电压进行有效的监控,才能实现对晶闸管的精确控制。
晶闸管的结构和工作原理的理解对于实际应用非常重要。
晶闸管可以在电力控制、变换和调制等领域中发挥重要作用,如交流电变直流电、电能调节和传输等。
通过深入了解晶闸管的特性和工作原理,可以更好地应用晶闸管,提高电力系统的效率和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成电路方面 — —微电子学(弱电子学) 电力半导体器件方面 — —电力电子学(强电子学)
A. 电力电子学的任务
利用电力半导体器件(如:晶闸管)和线路来实现电 功率的变换和控制。
晶闸管(Silicon Controlled Rectifier简称SCR, 1957年)在弱电控制与之间起桥梁作用。
4) I H(维持电流)——在规定的环境温度和控制极断路时, 维持元件继续导通的最小电流。
一般为几十mA ~ 一百多mA,其数值与温度成反比,如:
I H1 120 C
1 2
I
H
2
25 C
5. 型号及其含义(国产晶闸管)
3 CT
/
U DRM
IT 可控整流元件 N型硅材料 三个电极
例如:
3CT50/500( IT 为50A, U DRM 为500V);
——新型大功率半导体器件,也称可控硅。 1. 基本结构
1) 外形
• 螺栓形 螺栓一端是阳极A,另一端粗线是阴极K,细线是控制极(门极)G。
• 平板形 中间金属环是控制极G,远的一面是阳极A,近的一面是阴极K。
前者用于100A以下的元件,后者用于200A以上的元件 (散热效果好)。
2) 内部结构 ——它是PNPN四层三端元件。
KP5-7(K—晶闸管,P—普通型,额定电流5A,额定 电压700V)。
6. 判别管子的好坏 用万用表的欧姆档来判别管子的好坏。
表10.1 用万用表测试晶闸管各管脚之间的电阻
测试点 A—K
A—G
表内电池极性 顺向或逆向
同上
测量范围 R×1000
同上
测试结果
高电阻 (表针不动)
同上
K—G
顺向:G “+”,K “-” 逆向:G -”,K “+”
R×1 R×1
10 ~ 100 50 ~ 500
注意:当A—K间为高阻值,而K—G间逆向电阻大于顺向电 阻时,管子良好。
10.1.2 其它电力半导体器件
➢ 双向晶闸管 ➢ 可关断晶闸管 ➢ 功率晶体管 ➢ 整流二极管
1. 双向晶闸管(TRIAC)
l 特点 1) 三端子NPNPN元件; 2) 采用交流电源; 3) 相当于两只普通晶闸管反并联; 4) 双向控制,简化触发电路; 5) 成本低,可靠性好; 6) 主要应用于家用电器控制,调节交流电压。
5)晶闸管导通后(情况2),如果控制极 电压加反向电压,不论阳极电压是正或负, 电灯均不亮,晶闸管关断(阻断)。
说明:可用灯泡 代替电阻RL。
l 结论
1)晶闸管导通条件:阳极加正向电压,控制极也加正向 电压。
2)控制极只需加正触发脉冲电压。 3)具有可控单向导电性(正、反向阻断能力)。
l 导通原因
l 符号(如图所示)
l 工作原理 1) 门极无信号时, MT1、 MT2不导电。 2) 导通条件:① MT2"+" , MT1"-",G "+" ② MT2 "-", MT1"+",G "-"
1) 等效为PNP型和NPN型两个晶体管的组合。
2) 阳极和控制极均加正向电压时,I g 经 VT2 放大,集
电极电流为 2I g( VT1 基极电流),又经 VT1放大, VT1 集电
极电流为g
VT2
基极电流),再次放大,循环往复,
直至导通为止(“触发导通过程”——微秒级)。
3) 晶闸管导通后, VT2 基极电流
“多少安的晶闸管”
➢ 正弦半波电流的平均值
IT
1
2
0
Im
sintd (
t)
Im
➢ 正弦半波电流的有效值
Ie
1
2
0
I
2 m
sin 2 td (t)
Im 2
➢ 波形系数
K Ie 1.57
IT 2
即
Ie 1.57IT
一般按
IT
(1.5 ~ 2) Ie 选晶闸管(
1.57
I
' e
——实际电流有效值)
维持电流
I
(
H
保
证
晶
闸
管
导
通
的
最
小
阳
极
电
流)——当电流小于 IH 时,从导通状态转化正向阻断
状态。
4) 反向阻断状态——阳极加反向电压时,反向漏
电流很小。当反向阳极电压增加到某一数值时,反向漏
电流
,这时对应的电压值称为
U
(反向不重复峰
RSM
值电压)或
U
(反向转折电压,反向击穿电压)。
BR
注:晶闸管的反向伏安特性与二极管反向特性类似。
3) 符号(如图所示)
2. 工作原理
l 实验情况
1)晶闸管承受正向电压,开关S(控制极) 断开,此时电灯不亮,晶闸管关断。
2)在控制极与阴极之间再加上正向电压 (S接通),电灯发亮,晶闸管导通。
3)晶闸管承受反向电压,不论S是否接通, 电灯均不亮,晶闸管关断(阻断)。
4)晶闸管导通后(情况2),断开控制极 电压(控制极失去作用),电灯仍发亮,晶 闸管仍导通。
B. 晶闸管的优缺点
l 优点: 1) 功率放大倍数可达几十万倍; 2) 控制灵敏,反应快; 3) 损耗小,效率高; 4) 体积小,重量轻; 5) 改善了工作条件,维护方便。
l 缺点: 1) 过载能力弱; 2) 抗干扰能力差; 3) 导致电网电压波形畸变; 4) 控制电路比较复杂。
10.1 电力半导体器件 10.1.1 晶闸管(SCR)
4. 主要参数
1) UDRM(断态重复峰值电压)——在控制极断路和晶 闸管正向阻断时,可以重复加在晶闸管两端的正向峰值电 压,它比 U BO 小100V。
“多少伏的晶闸管”
2) U RRM(反向重复峰值电压)——在控制极断路时, 可以重复加在晶闸管两端的反向峰值电压,它比 UBR 小 100V。
3) IT(额定通态或正向平均电流,简称额定电流)— —在环境温度不大于40℃和标准散热及全导通时,晶闸管 可以连续通过的工频正弦半波电流(在一个周期内)的平 均值。
比
I
(控制电流)大得多,故去掉
g
ug ,
晶闸管仍导通。
4) 阳极加反向电压,无放大作用,
晶闸管不导通;控制电压反向或未加
入,不产生起始
I
,
g
晶
闸
管也不导通
。
3.伏安特性
晶闸管的伏安特性——晶闸管的阳极电压与阳极电流 的关系。
1) 截止状态(正向阻断状态)——阳极加正向电压,门
极开路( I g =0),电流很小,电阻很大,称为正向漏电流。
2) 导通状态——正向阳极电压上升到某一定值, I g , 晶闸管突然变为导通状态。这时阳极电压称为断态不重复峰值
电压(
U
DSM
)或正向转折电压(
U
)。
BO
I
↑,
g
U
↓,晶闸管容易导通。
BO
注:在晶闸管的阳极与阴极之间加上6V直流电压,使元件导通
的控制极最小电流(电压)称为触发电流(电压)。
3)