2021年北京市高考数学压轴题总复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年北京市高考数学压轴题总复习
1.若方程f (x )=x 有实数根x 0,则称x 0为函数f (x )的一个不动点.已知函数f (x )=
e x ﹣lnx +(a +1)x ﹣alnx (e 为自然对数的底数)a ∈R .
(1)当a ≥0时f (x )是否存在不动点?并证明你的结论;
(2)若a =﹣e ,求证f (x )有唯一不动点.
【解答】解:(1)当a ≥0时f (x )不存在不动点,
证明:由f (x )=x 可得,
e x x +ax −alnx =0, 令F (x )=e x x +ax −alnx ,x >0,
则F ′(x )=xe x −e x x 2+a −a x =(x−1)(e x +ax)x 2
, 当x ∈(0,1)时,F ′(x )<0,函数单调递减,当x ∈(1,+∞)时,F ′(x )>0,函数单调递增,
故当x =1时,函数取得最小值F (1)=a +e >0
故方程,e x x +ax −alnx =0没有实数根,即f (x )不存在不动点;
(2)当a =﹣e 时,F (x )=e x x
−ex +elnx , 则F′(x)=(x−1)(e x −ex)x 2
, 令g (x )=e x ﹣ex 则g ′(x )=e x ﹣e ,
当x ∈(0,1)时,g ′(x )<0,函数单调递减,当x ∈(1,+∞)时,g ′(x )>0,函数单调递增,
故g (x )≥g (1)=0,
当x ∈(0,1)时,F ′(x )<0,函数单调递减,当x ∈(1,+∞)时,F ′(x )>0,函数单调递增,
故当x =1时,函数取得最小值F (1)=a +e =0,
所以e x x −ex +elnx =0有唯一的实数根1,
故f (x )有唯一的不动点.
2.已知抛物线y 2=2px (p >0)经过点(3,2√3),点A ,B ,C 为抛物线上不同的三点,F
为抛物线的焦点,且满足FA →+FB →+FC →=0→
,过点C 作y 轴的垂线且垂足为M . (Ⅰ)若直线AB ,FM 的斜率都存在,求证:k AB •k FM 为定值;
(Ⅱ)已知直线AB 过点(﹣1,0),抛物线上任意一点N (异于点A ,B ),直线NA ,NB 分别交直线x =1交于P ,Q 两点,O 为坐标原点,求证:OP →•OQ →
为定值.
【解答】解:(Ⅰ)依题意有(2√3)2=6p ,解得p =2,
所以抛物线的方程为y 2=4x ,
所以焦点F (1,0),
设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),M (0,y 3),
由FA →+FB →+FC →=0→,得x 1+x 2=3﹣x 3,y 1+y 2=﹣y 3,
又因为{y 12=4x 1y 22=4x 2
, 两式相减得,(y 1+y 2)(y 1+y 2)=4(x 1﹣x 2),
k AB =
y 1−y 2x 1−x 2=4y 1+y 2=−4y 3, k FM =0−y 31−0=−y 3, 所以k AB •k FM =4,
即k AB •k FM 为定值.
(Ⅱ)证明:设点N (x 0,y 0),A (x 1,y 1),B (x 2,y 2),
由{y 02=4x 0y 12=4x 1
,得y 0−y 1x 0−x 1=4y 0+y 1, 则直线l NA :y ﹣y 0=4y 0+y 1
(x ﹣x 0), 即(y 0+y 1)y =4x +y 0y 1,
其与x =1的交点P (1,y 0y 1+4
y 0+y 1),
同理直线l NB 与直线x =1的交点Q (1,
y 0y 2+4
y 0+y 2), 所以OP →⋅OQ →=1+y 0y 1+4y 0+y 1+y 0y 2+4y 0+y 2
=1+y 02y 1y 2+4y 0(y 1+y 2)+16y 02+y 0(y 1+y 2)+y 1y 2① 设直线AB 的方程为y =k (x +1),
联立{y 2=4x y =k(x +1)
,消y 整理得k 2x 2+(2k 2﹣4)x +k 2=0, 则x 1x 2=1,y 1y 2=√16x 1x 2=4,
代入①得1+4y 02+4y 0(y 1+y 2)+16y 02+y 0(y 1+y 2)+4
=1+4=5, 所以OP →•OQ →为定值.