四边形单元测试题(含答案)汇编
【三套打包】莆田市中山人教版八年级数学下册第十八章平行四边形单元试题含答案
人教版八年级下册数学第十八章平行四边形单元同步练习卷教版八年级数学下册第十八章平行四边形单元复习测试题一、填空题1.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是__________.2.如图,平行四边形ABCD中,AD=5,AB=3,若AE平分∠BAD交边BC于点E,则线段EC的长度为_________.3.如图,已知Y ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为__________.4.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为____________.二、选择题5.在Y ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则Y ABCD的面A.6 B.9 C.12 D.18 6.菱形的对角线长分别为3和4,则该菱形的面积是A.6 B.8 C.12 D.247.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的3 16,那么BC的长是A.6 B.8 C.10 D.16 8.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.3 9.已知Y ABCD的对角线AC,BD的长分别为10,6,则AB长的范围是A.AB>2 B.AB<8 C.2<AB<8 D.2≤AB≤8 10.在一个直角三角形中,已知两直角边分别为6 cm,8 cm,则下列结论不正确的是A.斜边长为10 cm B.周长为25 cmC.面积为24 cm2 D.斜边上的中线长为5 cm 11.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC–∠DCE;④S△EDF=S△BCF,其中正确的结论是A.①②③B.①②④C.①③④D.①②③④12.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF的长为13.如图在Y ABCD 中,已知AC =4 cm ,若△ACD 的周长为13 cm ,则Y ABCD 的周长为A .26 cmB .24 cmC .20 cmD .18 cm14.如图,在菱形ABCD 中,P 、Q 分别是AD 、AC 的中点,如果PQ =3,那么菱形ABCD 的周长是A .30B .24C .18D .615.下列选项中,不能判定四边形ABCD 是平行四边形的是A .AD BC ∥,AB CD ∥ B .AB CD ∥,AB CD =C .AD BC ∥,AB DC =D .AB DC =,AD BC =16.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE ∶EC =2∶1,则线段CH 的长是A .3B .4C .5D .6二、解答题17.如图,在△ABC 中,AD ⊥BC 于点D ,E ,F ,G 分别是BC ,AC ,AB 的中点.若AB =2118.已知菱形ABCD中,对角线AC=16 cm,BD=12 cm,BE⊥DC于点E,求菱形ABCD 的面积和BE的长.19.如图,在Y ABCD中,对角线AC,BD相交于点O,OA=5cm,E,F为直线BD上的两个动点(点E,F始终在Y ABCD的外面),且DE=12OD,BF=12OB,连接AE,CE,CF,AF.(1)求证:四边形AFCE为平行四边形.(2)若DE=13OD,BF=13OB,上述结论还成立吗?由此你能得出什么结论?(3)若CA平分∠BCD,∠AEC=60°,求四边形AECF的周长.20.如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)当AB∶AD=__________时,四边形MENF是正方形,并说明理由.21.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;参考答案1.【答案】△ADC和△BDC;△ADO和△BCO;△DAB和△CAB2.【答案】23.【答案】144.【答案】3.55-16:CACBC BDBDB CB17.【解析】∵AB=23BC=3DE=12,∴BC=18,DE=4,∴DG=12人教版八年级数学下册第十八章平行四边形单元测试题(有答案)一、选择题:(每小题3 分,共30 分)1 、下列对正方形的描述错误的是()A.正方形的四个角都是直角B.正方形的对角线互相垂直C.邻边相等的矩形是正方形D.对角线相等的平行四边形是正方形2 、菱形和矩形一定都具有的性质是()A 、对角线相等B 、对角线互相垂直C 、对角线互相平分D 、对角线互相平分且相等3 、平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以C .8cm 和10cmD .10cm 和12cm4 、四边形ABCD 的对角线AC 、BD 交于点O ,能判定它是正方形的是()A 、AO =OC ,OB =OD B 、AO =BO =CO =DO ,AC ⊥ BDC 、AO =OC ,OB =OD ,AC ⊥ BD D 、AO =OC =OB =OD5 、给出下列四个命题⑴一组对边平行的四边形是平行四边形⑵一条对角线平分一个内角的平行四边形是菱形⑶两条对角线互相垂直的矩形是正方形⑷顺次连接四边形四边中点所得的四边形是平行四边形。
人教版2019-2020学年初二数学下学期 第十八章 平行四边形 单元考试试题(含答案)
人教版八年级数学下册 第十八章 平行四边形 单元测试题时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分)1.如图,在平行四边形ABCD 中,AD =7,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A . 4B . 3C .25 D . 2 2.如图,▱ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12,BD =10,AB =m ,那么m 的取值范围是( )A . 1<m <11B . 2<m <22C . 10<m <12D . 5<m <6 3.如图,在▱ABCD 中,AD =8,点E ,F 分别是BD ,CD 的中点,则EF 等于( )A . 2B . 3C . 4D . 54.Rt △ABC 中,两直角边的长分别为6和8,则其斜边上的中线长为( )A . 10B . 3C . 4D . 55.如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )A . 2B . 2.2C . 2.4D . 2.56.如图,在菱形ABCD 中,AB =5,∠B ∶∠BCD =1∶2,则对角线AC 等于( )A. 5 B. 10 C. 15 D. 207.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A. 16 B. 15 C. 14 D. 138.正方形具有而矩形不具有的性质是()A.对角线互相平分 B.对角线相等 C.对角线互相平分且相等 D.对角线互相垂直9.小明在学习了正方形之后,给同桌小文出了错题,从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④10.如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()A. 40 B. 25 C. 26 D. 36二、填空题(共8小题,每小题3分,共24分)11.如图,在▱ABCD中,AB=2 cm,AD=4 cm,AC⊥BC,则△DBC比△ABC的周长长________ cm.12.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为________.13.如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于________.14.如图平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB,∠OAD=65°.则∠ODC=__________.15.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角α的度数应为____________.16.如图,平行四边形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,给出下列判断:①若△AEF是等边三角形,则∠B=60°,②若∠B=60°,则△AEF是等边三角形,③若AE=AF,则平行四边形ABCD是菱形,④若平行四边形ABCD是菱形,则AE=AF,其中,结论正确的是__________(只需填写正确结论的序号).17.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=____________.18.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8 cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是____________(填写图形的形状)(如图),它的一边长是____________ cm.三、解答题(共8小题,共66分)19.(6分)如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD 分别相交于点E、F,求证:AE=CF.20. (6分)如图,△ABC中,∠C=90°,CA=CB,E、F分别为CA、CB上一点,CE=CF,M、N分别为AF、BE的中点.求证:AE=MN.21. (6分)如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.22. (8分)如图,在矩形ABCD中,AB=24 cm,BC=8 cm,点P从A开始沿折线A-B-C-D 以4 cm/s的速度移动,点Q从C开始沿CD边以2 cm/s的速度移动,如果点P、Q分别从A、C 同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?23. (8分)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.24. (10分)如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.25. (10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.26. (12分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.(3)在(2)的条件下,若AB=AC=2,求正方形ADCE周长.答案解析1.【答案】B【解析】∵在ABCD 中,CE 平分∠BCD 交AD 于点E ,∴∠DEC =∠ECB ,∠DCE =∠BCE ,AB =DC ,∴∠DEC =∠DCE ,∴DE =DC =AB ,∵AD =7,AE =4,∴DE =DC =AB =3.故选B.2.【答案】A【解析】在平行四边形ABCD 中,则可得OA =21AC ,OB =21BD , 在△AOB 中,由三角形三边关系可得OA -OB <AB <OA +OB ,即6-5<m <6+5,1<m <11.故选A.3.【答案】C【解析】∵四边形ABCD 是平行四边形,∴BC =AD =8,∵点E 、F 分别是BD 、CD 的中点,∴EF =21BC =21×8=4. 故选C.4.【答案】D【解析】已知直角三角形的两直角边为6、8, 则斜边长为=10,故斜边的中线长为21×10=5, 故选D.5.【答案】C 【解析】连接AP ,∵∠A =90°,PE ⊥AB ,PF ⊥AC ,∴∠A =∠AEP =∠AFP =90°,∴四边形AFPE 是矩形,∴EF =AP ,要使EF 最小,只要AP 最小即可,过A 作AP ⊥BC 于P ,此时AP 最小,在Rt △BAC 中,∠A =90°,AC =4,AB =3,由勾股定理,得BC =5, 由三角形面积公式,得21×4×3=21×5×AP , ∴AP =2.4,即EF =2.4,故选C.6.【答案】A【解析】∵四边形ABCD 是菱形,∴∠B +∠BCD =180°,AB =BC ,∵∠B ∶∠BCD =1∶2,∴∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =5.故选A.7.【答案】A【解析】连接EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理,得OA===8,∴AE=2OA=16.故选A.8.【答案】D【解析】因为正方形的对角线相等、垂直、且互相平分,矩形的对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线好像垂直.故选D.9.【答案】B【解析】A.∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当②∠ABC =90°时,菱形ABCD 是正方形,故此选项正确,不合题意;B .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当③AC =BD 时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C .∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当③AC =BD 时,菱形ABCD 是正方形,故此选项正确,不合题意;D .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意.故选B.10.【答案】B【解析】设小正方形的边长为a ,大正方形的边长为b ,由这三张纸片盖住的总面积是24平方厘米,可得ab +a (b -a )=24,①由未盖住的面积比小正方形面积的四分之一还少3平方厘米,可得(b -a )2=41a 2-3,② 将①②联立解方程组可得:a =4,b =5,∴大正方形的边长为5,∴面积是25.故选B.11.【答案】4【解析】在▱ABCD 中,∵AB =CD =2cm ,AD =BC =4 cm ,AO =CO ,BO =DO , ∵AC ⊥BC ,∴AC==6 cm,∴OC=3 cm,∴BO==5 cm,∴BD=10 cm,∴△DBC的周长-△ABC的周长=BC+CD+BD-(AB+BC+AC)=BD-AC=10-6=4 cm,12.【答案】12【解析】∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.13.【答案】30°【解析】∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°-∠A=30°.14.【答案】25°【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AB=CD,∴四边形ABCD是矩形,∴∠ADC=90°,∵∠ODA=∠OAD=65°,∴∠ODC=∠ADC-∠ODA=25°.15.【答案】30°或60°【解析】∵四边形ABCD 是菱形,∴∠ABD =21∠ABC ,∠BAC =21∠BAD ,AD ∥BC , ∵∠BAC =60°,∴∠BAD =180°-∠ABC =180°-60°=120°,∴∠ABD =30°,∠BAC =60°. ∴剪口与折痕所成的角α的度数应为30°或60°.16.【答案】①③④【解析】①∵△AEF 是等边三角形,∴∠EAF =60°,AE =AF ,又∵AE ⊥BC ,AF ⊥CD ,∴∠C =120°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∠C =∠BAD =120°,∴∠B =180°-∠C =60°,故①正确;②∵∠D =∠B =60°,∴∠BAE =∠DAF =90°-60°=30°,∴∠EAF =120°-30°-30°=60°,但是AE 不一定等于AF ,故②错误;③若AE =AF ,则21BC ·AE =21CD ·AF , ∴BC =CD ,∴平行四边形ABCD 是菱形,故③正确;④若平行四边形ABCD 是菱形,则BC =CD , ∴21BC ·AE =21CD ·AF , ∴AE =AF ,故④正确;故答案为①③④.17.【答案】2n +1【解析】∵∠MON =45°,∴△OA 1B 1是等腰直角三角形,∵OA 1=1,∴正方形A 1B 1C 1A 2的边长为1,∵B 1C 1∥OA 2,∴∠B 2B 1C 1=∠MON =45°,∴△B 1C 1B 2是等腰直角三角形,∴正方形A 2B 2C 2A 3的边长为1+1=2,同理,第3个正方形A 3B 3C 3A 4的边长为2+2=22,其周长为4×22=24, 第4个正方形A 4B 4C 4A 5的边长为4+4=23,其周长为4×23=25, 第5个正方形A 5B 5C 5A 6的边长为8+8=24,其周长为4×24=26, 则第n 个正方形的周长Cn =2n +1.18.【答案】正方形 8【解析】如图,作AB 平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B 点,∴△ABC 为直角边长为8 cm 的等腰直角三角形,∴AB =AC =8,∴阴影正方形的边长=AB =8cm.19.【答案】证明 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,OA =OC ,∴∠OAE =∠OCF ,在△OAE 和△OCF 中,∴△AOE ≌△COF (ASA),∴AE =CF .【解析】由四边形ABCD 是平行四边形,可得AB ∥CD ,OA =OC ,继而证得△AOE ≌△COF ,则可证得结论.20.【答案】证明 如图,取AB 的中点G ,连接MG 、NG ,∵M 、N 分别为AF 、BE 的中点,∴NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF , ∵CE =CF ,∠C =90°,∴AE =BF ,∠MGN =∠C =90°,∴MG =NG ,∴△MNG 是等腰直角三角形,∴NG =MN ,∴AE =2NG =×2MN =MN , 即AE =MN .【解析】取AB 的中点G ,连接MG 、NG ,根据三角形的中位线平行于第三边并且等于第三边的一半可得NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF ,再求出AE =BF ,∠MGN =90°,判断出△MNG 是等腰直角三角形,根据等腰直角三角形的性质可得NG =MN ,再表示出AE 即可得证.21.【答案】证明 ∵AB =AC ,∴∠B =∠C ,∵DE ⊥AB ,FD ⊥BC ,∴∠BED =∠FDC =90°,∴∠1+∠B =90°,∠3+∠C =90°,∴∠1=∠3,∵G 是直角三角形FDC 的斜边中点,∴GD =GF ,∴∠2=∠3,∴∠1=∠2,∵∠FDC =∠2+∠4=90°,∴∠1+∠4=90°,∴∠2+∠FDE =90°,∴GD ⊥DE .【解析】由∠1+∠EDF =90°可知,只要证明∠1=∠3,∠2=∠3,推出∠1=∠2即可解决问题.22.【答案】解 根据题意得:CQ =2t ,AP =4t ,则BP =24-4t ,∵四边形ABCD 是矩形,∴∠B =∠C =90°,CD ∥AB ,∴只有CQ =BP 时,四边形QPBC 是矩形,即2t =24-4t ,解得t =4,答:当t =4 s 时,四边形QPBC 是矩形.【解析】求出CQ =2t ,AP =4t ,BP =24-4t ,由已知推出∠B =∠C =90°,CD ∥AB ,推出CQ =BP 时,四边形QPBC 是矩形,得出方程2t =24-4t ,求出即可.23.【答案】证明 ∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,∴△ADE ≌△CDF (SAS).【解析】由菱形的性质得出AD =CD ,由中点的定义证出DE =DF ,由SAS 证明△ADE ≌△CDF 即可.24.【答案】(1)证明 ∵四边形ABCD 是平行四边形,∴AD =BC ,在Rt △ABC 中,∠BAC =90°,点E 是BC 边的中点,∴AE =21BC =CE ,同理,AF =21AD =CF , ∴AE =CE =AF =CF ,∴四边形AECF 是菱形;(2)解 连接EF 交AC 于点O ,如图所示:在Rt △ABC 中,∠BAC =90°,∠B =30°,BC =10,∴AC =21BC =5,AB =AC =5,∵四边形AECF 是菱形,∴AC ⊥EF ,OA =OC ,∴OE 是△ABC 的中位线,∴OE =21AB =,∴EF =5, ∴菱形AECF 的面积=21AC ·EF =21×5×5=.【解析】(1)由平行四边形的性质得出AD =BC ,由直角三角形斜边上的中线性质得出AE =21BC =CE ,AF =21AD =CF ,得出AE =CE =AF =CF ,即可得出结论; (2)连接EF 交AC 于点O ,解直角三角形求出AC 、AB ,由三角形中位线定理求出OE ,得出EF ,菱形AECF 的面积=21AC ·EF ,即可得出结果. 25.【答案】(1)证明 ∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABC =90°,而F 是CB 的延长线上的点,∴∠ABF =90°,在△ADE 和△ABF 中,∴△ADE ≌△ABF (SAS);(2)解 ∵BC =8,∴AD =8,在Rt △ADE 中,DE =6,AD =8,∴AE ==10, ∵△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到,∴AE =AF ,∠EAF =90°,∴△AEF 的面积=21AE 2=21×100=50. 【解析】(1)根据正方形的性质得AD =AB ,∠D =∠ABC =90°,然后利用“SAS”易证得△ADE ≌△ABF ;(2)先利用勾股定理可计算出AE =10,再根据△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到AE =AF ,∠EAF =90°,然后根据直角三角形的面积公式计算即可.26.【答案】(1)证明 ∵AB =AC ,AD ⊥BC ,垂足为点D ,∴∠CAD =21∠BAC . ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =21∠CAM . ∵∠BAC 与∠CAM 是邻补角,∴∠BAC +∠CAM =180°,∴∠CAD +∠CAE =21(∠BAC +∠CAM )=90°. ∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =90°,∴四边形ADCE 为矩形;(2)解 ∠BAC =90°且AB =AC 时,四边形ADCE 是一个正方形,证明:∵∠BAC =90°且AB =AC ,AD ⊥BC ,∴∠CAD =21∠BAC =45°,∠ADC =90°, ∴∠ACD =∠CAD =45°,∴AD =CD .∵四边形ADCE 为矩形,∴四边形ADCE 为正方形;(3)解 由勾股定理,得=AB ,AD =CD , 即AD =2,AD =2,正方形ADCE 周长4AD =4×2=8. 【解析】(1)根据等腰三角形的性质,可得∠CAD =21∠BAC ,根据等式的性质,可得∠CAD +∠CAE =21(∠BAC +∠CAM )=90°,根据垂线的定义,可得∠ADC =∠CEA ,根据矩形的判定,可得答案;(2)根据等腰直角三角形的性质,可得AD 与CD 的关系,根据正方形的判定,可得答案;(3)根据勾股定理,可得AD 的长,根据正方形周长公式,可得答案.。
四边形单元测试题及答案
四边形单元测试题及答案一、选择题1. 下列哪个图形不是四边形?A. 正方形B. 长方形C. 平行四边形D. 三角形答案:D2. 一个四边形的对角线数量是多少?A. 1B. 2C. 3D. 4答案:B3. 菱形具有以下哪些特性?A. 对角线相等B. 对角线互相垂直C. 四边相等D. 所有选项都正确答案:D二、填空题1. 一个平行四边形的对边_________。
答案:平行且相等2. 正方形是特殊的_________。
答案:平行四边形3. 菱形的对角线_________。
答案:互相垂直且平分三、简答题1. 请简述四边形的基本性质。
答案:四边形是一个平面图形,由四条直线段依次首尾相连组成。
其基本性质包括:对边平行且相等,对角线互相平分。
2. 什么是梯形?请简述其特点。
答案:梯形是一个四边形,其中一组对边平行,另一组对边不平行。
其特点是:非平行的两边称为腰,平行的两边称为底,两底之间的距离称为高。
四、计算题1. 已知一个平行四边形的两邻边长分别为3厘米和5厘米,求其对角线的长度。
答案:由于题目没有给出足够的信息,无法直接计算对角线的长度。
需要知道平行四边形的其他信息,如角度或对角线与边的关系。
2. 如果一个正方形的边长为4厘米,计算其面积。
答案:正方形的面积 = 边长× 边长 = 4厘米× 4厘米 = 16平方厘米。
五、解答题1. 如何证明一个四边形是平行四边形?答案:要证明一个四边形是平行四边形,可以采用以下方法之一:- 两组对边分别平行。
- 两组对边分别相等。
- 对角线互相平分。
2. 已知一个菱形的边长为6厘米,求其面积。
答案:菱形的面积可以通过以下公式计算:面积 = (对角线1 ×对角线2) / 2。
由于题目没有给出对角线的长度,我们可以使用菱形的边长和其特性来求解。
设对角线分别为d1和d2,根据菱形的性质,d1² + d2² = 4 × 边长² = 4 × 6² = 144。
2019中考数学数学第一轮《四边形》单元测试卷含答案(1).docx
单元测试卷 ( 五)(测试范围:第五单元 (四边形 )题号一二三考试时间 :90 分钟总分总分人试卷满分核分人:100 分 )得分一、选择题 (本题共 12 小题 ,每小题 3 分 ,共 36 分 )1.将一个 n 边形变成 (n+ 1) 边形 ,内角和将()A.减少180 °B.增加 180 °C.增加90°D.增加360 °2.如图 D5- 1,在矩形 ABCD 中,对角线 AC,BD 相交于点O,∠ AOB= 60°,AC= 6 cm,则 AB 的长是()图D5-1A.3 cm C.10 cm B .6 cm D .12 cm3.如图D5- 2,在矩形ABCD中 ,AD= 3AB,点 G,H分别在AD ,BC上 ,连接BG,DH ,且BG∥ DH ,当=时 ,四边形 BHDG是菱形()图D5-2A. B. C. D.4.如图D5- 3,在平行四边形ABCD中 ,点E 在边DC上 ,DE ∶EC= 3∶1,连接AE交BD于点F,则△ DEF的面积与△ BAF 的面积之比为()图D5-3A.3∶4 B .9∶16C.9∶1 D .3∶15.如图 D5 -4,O 是矩形 ABCD 的对角线AC 的中点 ,M 是 AD 的中点 ,若 AB= 5,AD= 12,则四边形ABOM 的周长为()图D5-4A.17B.18C.19D.206.下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形7.如图 D5- 5,在 ?ABCD 中 ,连接 AC,∠ ABC= ∠ CAD= 45°,AB= 2,则 BC 的长是()图 D5-5A. B .2C.2 D.48.如图 D5-6,在矩形 ABCD 中 ,BC= 8,CD= 6,将△ ABE 沿 BE 折叠 ,使点 A 恰好落在对角线BD 上的点 F 处,则 DE 的长是()图D5-6A.3B.C.5D.9.如图 D5 -7,四边形 ABCD 是平行四边形 ,点 E 是边 CD 上的一点 ,且 BC=EC ,CF ⊥ BE 交 AB 于点 F,P 是 EB 延长线上一点 ,下列结论 :① BE 平分∠ CBF ;②CF 平分∠ DCB ;③BC=FB ;④PF=PC.其中正确的结论个数为()图D5-7A.1B.2C.3D.410.如图 D5-8,把矩形 ABCD 沿 EF 翻折 ,点 B 恰好落在 AD 边上的点 B'处 .若 AE= 2,DE= 6,∠EFB= 60°,则矩形 ABCD的面积是()图D5-8A.12 B .24 C.12 D.1611.如图D5 -9,矩形ABCD中,AB= 8,BC= 4.点 E 在AB 上 ,点F 在 CD上 ,点 G,H在对角线AC上 ,若四边形EGFH是菱形 ,则AE的长是()图 D5-9A.2 B .3 C.5 D.612.如图 D5 -10,在正方形 ABCD 中 ,△ BPC 是等边三角形 ,BP ,CP 的延长线分别交AD 于点 E,F,连接 BD ,DP ,BD 与CF 相交于点H ,给出下列结论2:① BE= 2AE;②△ DFP ∽△ BPH;③△ PFD ∽△ PDB ;④ DP =PH ·PC. 其中正确的是()图D5 -10A.①②③④C.①②④B.②③D.①③④二、填空题(本题共 4 小题 ,每小题 5 分 ,共20 分)13.如图D5-11,在?ABCD中 ,点E 在AB 上 ,点F 在CD上,则S△ABF S△CDE (填“>”“<”或“= ”).图D5 -1114.如图 D5-12,在菱形 ABCD 中 ,AB= 10,AC= 12,则它的面积是.图D5 -1215.如图 D5-13,E 为正方形ABCD 外一点 ,若△ ADE 为等边三角形 ,则∠ AEB=.图 D5 -1316.如图 D5 -14,已知四边形ABCD 是矩形 ,把矩形 ABCD 沿直线 AC 折叠 ,点 B 落在点 E 处 ,连接 DE. 若 DE ∶∶AC= 3 5,则的值为.图D5 -14三、解答题 (共 44 分 )17.(5 分 )如图 D5-15,在△ ABC 中,M 是 AC 边上的一点 ,连接 BM.将△ ABC 沿 AC 翻折 ,使点 B 落在点 D 处,当 DM ∥ AB 时 ,求证 :四边形 ABMD 是菱形 .图D5 -1518.(6 分 )如图 D5 -16,在 ?ABCD 中 ,∠ ABC= 60°.E,F 分别在 CD 和 BC 的延长线上 ,AE∥ BD,EF⊥ BC,EF=,求 AB 的长 .图D5 -1619.(6 分 )如图 D5 -17,在菱形 ABCD 中 ,∠A = 110 °,点 E 是菱形 ABCD 内一点 ,连接 CE,将线段 CE 绕点 C 顺时针旋转 110°,得到线段CF ,连接 BE,DF.若∠ E= 86°,求∠ F 的度数 .图D5 -1720.(7 分) 如图 D5 -18,四边形 ABCD 中 ,AC,BD 相交于点 O,O 是 AC 的中点 ,AD∥BC ,AC= 8,BD= 6.(1)求证 :四边形 ABCD 是平行四边形 ;(2)若 AC⊥ BD ,求平行四边形ABCD 的面积 .图D5 -1821.(10 分 )如图 D5 -19,在正方形ABCD 中 ,点 G 在对角线 BD 上 (不与点 B,D 重合 ),GE⊥ DC 于点 E,GF ⊥ BC 于点F,连接 AG.(1)写出线段AG,GE,GF 长度之间的数量关系,并说明理由 ;(2)若正方形ABCD 的边长为1,∠ AGF= 105 °,求线段 BG 的长 .图D5 -1922.(10 分 )已知正方形ABCD ,点 M 为边 AB 的中点 .(1)如图 D5-20① ,点 G 为线段 CM 上的一点 ,且∠ AGB= 90°,延长 AG,BG 分别与边 BC ,CD 交于 E,F. ①求证 :BE=CF ;②求证 :BE 2=BC ·CE.2(2)如图 D5 -20②,在边 BC 上取一点 E,满足 BE =BC ·CE,连接 AE 交 CM 于点 G,连接 BG 并延长交 CD 于点 F,求 tan∠CBF 的值 .图D5 -20参考答案1.B2.A [ 解析 ] 根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠ AOB= 60°,判断出△AOB 是等边三角形 ,根据等边三角形的性质求出AB 的长即可 .3.C4.B5.D6.C[ 解析 ]对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;一条对角线平分一组对角的平行四边形是菱形 ;对角线互相垂直的矩形是正方形,所以其中错误的为 C,故选 C.7.C[ 解析 ]∵ ? ABCD ,∴ AD ∥ BC ,∴∠ DAC= ∠ ACB= 45°= ∠ ABC, ∴∠ BAC= 90°,AB=AC= 2 , 由勾股定理得BC== = 2 ,选 C.8.C[ 解析 ]由 AB= 6,BC= 8,应用勾股定理 AB2 +AD 2=BD 2 ,得 :BD= 10,由折叠可知 BF=AB ,故 BF= 6,则 DF= 4.(法一 )∵∠ A= ∠ EFD ,∠ EDF= ∠ADB ,∴ △DEF ∽△ DBA ,∴ = ,即= ,∴DE= 5.(法二 )在 Rt△DEF 中 ,设 DE=x ,则 EF=AE= 8-x,应用勾股定理DE 2=EF 2 +DF 2,∴ x2= (8-x) 2+ 42 ,解得 x= 5.9.D [ 解析 ] ∵AB ∥CD,∴∠ ABE= ∠ BEC.∵ CE=CB ,∴∠ CBE= ∠ BEC.∴∠ CBE= ∠ ABE.即 BE 平分∠ ABC. 故①正确 ;∵ CE=CB ,CF ⊥ BE,∴ CF 平分∠ DCB. 故②正确 ;∵ AB∥ CD,∴∠ DCF= ∠ CFB. ∵∠ BCF= ∠ FCD ,∴∠ BCF=∠CFB,∴ BC=BF. 故③正确 ;∵ BF=CB ,CF ⊥ BE,∴ BE 垂直平分 CF ,∴ PF=PC. 故④正确 .10.D11.C12.C [解析 ] 在正方形 ABCD 中,∠ A= 90°;由△BPC 是等边三角形 ,可得∠ CBP= 60°,∴∠ ABP= 30°,∴ BE= 2AE,即①正确 ;由 BD 是正方形 ABCD 的对角线 ,可得△BCD 是等腰直角三角形 ,∴∠ CBD= ∠CDB= 45°,可得∠ PBD= 15°,∵ CD=CP=CB , ∠ PCD= 30°, 可得∠ CPD= ∠ CDP= 75°, ∴ ∠ BPD= 75°+60°= 135°, ∠ FDP= 90°-75°= 15°, ∠PFD= 90°-∠ PCD= 90°-30°= 60°,∠ FPD= 180 °-∠ CPD= 180 °-75°= 105 °,∴∠ PBD= ∠ PDF ,∠ BPH= ∠ DFP ,∴ △DFP ∽△ BPH ,即②正确 ;∵∠ BPD≠∠ DPF ,∴③ △PFD ∽△ PDB 错误 ;由∠ PDH= ∠PDC- ∠ CDB= 75°-45°= 30°= ∠PCD ,∠CPD= ∠DPH ,可得△PDC∽△ PHD ,∴ DP 2=PH ·PC,即④正确 . 13.= 14.96 15.15°16.[解析 ] 由折叠的性质可知∠ BAC= ∠ EAC.∵四边形 ABCD 是矩形 ,∴ AB∥ CD ,∴∠ DCA= ∠BAC,∴∠ EAC= ∠ DCA.设AE 与 CD 交于点 F,则 AF=CF ,∴ DF=EF ,又∠ DFE= ∠ AFC ,∴△ACF ∽△ EDF .∴= = ,设DF= 3x,则 CF= 5x,AB=DC= 8x.在 Rt△ADF 中 ,由勾股定理知 ,AD= 4x,∴= .17.证明 :如图 ,由折叠得 :AB=AD ,BM=DM ,∠ 1= ∠ 2,∵DM ∥ AB,∴∠ 1= ∠ 3,∴∠ 2= ∠ 3,∴ AD=DM ,∴AB=AD=BM=DM ,∴四边形 ABMD 是菱形 .18.解: ∵四边形 ABCD 是平行四边形 ,∴AB=DC , AB∥ EC.∵ AE∥BD ,∴四边形 ABDE 是平行四边形 .∴AB=DE=CD ,即 D 为 CE 中点 .∵EF⊥BC ,∴∠ EFC= 90°.∵AB∥CD ,∴∠ DCF= ∠ ABC= 60°.∵ EF=,∴ CE= 2.∴AB= 1.19.解: ∵四边形 ABCD 是菱形 ,∴∠ BCD= ∠A= 110°,BC=DC.由旋转可得 :∠ ECF= 110°,EC=FC ,∵∠ BCD= ∠BCE+ ∠ECD= 110°,∠ECF= ∠DCF+ ∠ECD= 110°,∴∠ BCE= ∠ DCF.又∵ BC=DC ,EC=FC ,∴△BCE≌ △ DCF ,∴∠ F= ∠E= 86°.20.解:(1) 证明 :∵ O 是 AC 的中点 ,∴ OA=OC ,∵AD∥BC,∴∠ ADO= ∠ CBO.在△AOD 和△COB 中 ,∵∴ △AOD≌△ COB(AAS), ∴ OD=OB ,∴四边形 ABCD 是平行四边形 .(2)∵四边形ABCD 是平行四边形,AC⊥ BD,∴四边形 ABCD 是菱形 ,∴S 菱形ABCD = AC ·BD= 24.21.解:(1) AG2=GE 2+GF 2.理由如下 :连接 GC,由正方形的性质知AD=CD ,∠ ADG= ∠CDG ,在△ADG 和△CDG 中,∴ △ADG≌△ CDG ,∴AG=CG ,由题意知∠ GEC= ∠GFC= ∠ DCB= 90°,∴四边形 GFCE 是矩形 ,∴GF=EC.222222在 Rt△GEC 中 ,根据勾股定理 ,得 GC=GE +EC ,∴ AG =GE +GF .(2)作 AH ⊥ BD 于点 H,由题意知∠ AGB= 60°,∠ ABG= 45°,∴ △ABH 为等腰直角三角形,△AGH 为含 30°角的直角三角形,∵AB= 1,∴ AH=BH= ,HG= ,∴ BG= + =.22.解:(1) ①证明 : 在△ABG 中 ,∵∠ AGB= 90°,∴∠ GAB+ ∠ABG= 90°,∵正方形 ABCD ,∴ AB=BC ,∠ ABC= ∠BCD= 90°,∴∠ ABC= ∠ABG+ ∠GBC= 90°,∴∠ GAB= ∠GBC,∴Rt△EAB≌Rt△FBC ,∴ BE=CF .②证明 :∵∠ AGB= 90°,点 M 是 AB 的中点 ,∴GM=AM=BM ,∴∠ GAB= ∠ AGM ,∵∠ AGM= ∠CGE ,由①得∠ GAB= ∠ CBG,∴∠ CGE= ∠CBG,又∵∠ GCB= ∠ BCG,∴ △GCE∽△ BCG,∴=,∴CG2=BC ·CE,∵∠ MBG= ∠ MGB= ∠CGF= ∠ CFG ,∴CG=CF ,由①得 BE=CF ,2∴ CG=CF=BE ,∴ BE =BC ·CE.(2)解法 1:如图① ,延长 AE,DC 交于点 K,∵DC∥AB,∴ △ABE∽△ KCE ,∴= ,∵BE 2=BC ·CE,∴= ,∴=,∵AB=BC ,∴CK=BE ,∵ AB∥DC ,∴= = =,∵AM=BM ,∴CF=CK=BE.∵ BE2=BC ·CE,∴ E 是 BC 上的黄金分割点,-∴=,-∴ tan∠CBF= = =.解法 2:如图② ,延长 CM ,BF 分别交直线AD 于点 S,K,易证 AS=BC=AB ,∵BE2=BC ·CE,∴点 E 是 BC 上的黄金分割点,-∴=,∵AD∥ BC,∴ tan∠CBF= tanK=-= = =.7、我们各种习气中再没有一种象克服骄傲那麽难的了。
人教版小学四年级数学上册 第5单元 平行四边形和梯形 单元测试题(含答案)
人教版小学四年级数学上册《第5单元平行四边形和梯形》单元测试题一.选择题1.下列说法中正确的是()A.两个锐角的和一定比直角大B.长方形相邻的两条边互相垂直C.不相交的两条直线叫平行线D.射线无限长,没有端点2.同一平面上的三条直线,一条直线既垂直于直线a也垂直于直线b,那么直线a和直线b()A.相交B.平行C.垂直D.无法确定3.下面的图形中,属于平行四边形的共有()个.A.1 B.2 C.3 D.44.把一个四边形撕成了三部分,其中两部分如图,这个四边形可能是()A.长方形B.正方形C.平行四边形D.梯形5.用长为5cm、5cm、8cm、8cm的四根小棒搭不同形状的平行四边形,可以搭出()个。
A.1 B.2 C.4 D.无数6.下面的说法正确的是()A.有一组对边平行的四边形是梯形B.平行四边形和梯形都是四边形C.在梯形中,平行的一组对边叫做梯形的腰7.下面的图形中,属于梯形的是()A.①和②B.②和③C.①和④D.①8.过直线外一点画已知直线的垂线,可以画()条.A.1 B.2 C.3 D.无数二.填空题9.一个梯形中最多有个直角,最多有条边长度相等.10.因为平行四边形容易变形,所以生活中往往会把做成平行四边形的形状.11.如图.(1)如果把梯形记作:梯形ABDC,那么请你在图中再找一个梯形,用这种表达方式记作:梯形.(2)如果把梯形AEFC的上底记作:AE,那么下底记作,高记作.这是一个梯形.12.平行四边形的一个内角是直角,并且相邻的边不相等,这个平行四边形就是,若相邻的边相等,这个平行四边形就是.13.如图,春光小学的伸缩门应用了平行四边形的特点.14.当两条直线相交成直角时,这两条直线.15.如果两条直线都垂直于同一条直线,那么这两条直线.16.在同一平面内,可以画条已知直线的垂线.过直线外的一点可以画条已知直线的平行线.17.两条直线相交成直角,这两条直线的交点叫.18.下面的各组直线,属于互相平行的有,属于相交的有,属于互相垂直的有。
第一章 特殊平行四边形 单元测试(含答案)
第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。
九年级数学上册《第一章 特殊平行四边形》单元测试卷-附带答案(北师大版)
九年级数学上册《第一章特殊平行四边形》单元测试卷-附带答案(北师大版)一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.36.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.197.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm212.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.参考答案一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④【考点】矩形的定义及性质.【分析】已知梯形四边中点得到的四边形是矩形,则根据矩形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∵点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.∴AC⊥BD.①平行四边形的对角线不一定互相垂直,故①错误;②菱形的对角线互相垂直,故②正确;③对角线相等的四边形,故③错误;④对角线互相垂直的四边形,故④正确.综上所述,正确的结论是:②④.故选:D.【点评】此题主要考查矩形的性质及三角形中位线定理的综合运用,正确掌握矩形的判定方法是解题关键.4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形【考点】菱形的性质,矩形的定义及性质,正方形的定义及性质.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形∴OA=OC=3,OB=OD,AC⊥BD在Rt△AOB中,∠AOB=90°根据勾股定理,得:OB===4∴BD=2OB=8故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】正方形的性质.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图设正方形S1的边长为x∵△ABC和△CDE都为等腰直角三角形∴AB=BC,DE=DC,∠ABC=∠D=90°∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD∴AC=BC=2CD又∵AD=AC+CD=6∴CD==2∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°∴AM=MO∵MO=MN∴AM=MN∴M为AN的中点∴S2的边长为3∴S2的面积为3×3=9∴S1+S2=8+9=17.故选B.【点评】本题考查了正方形的性质,找到相等的量,再结合三角函数进行解答.7.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm【考点】直角三角形斜边上的中线.【专题】计算题.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半;已知了直角三角形的两条直角边,由勾股定理可求得斜边的长,由此得解【解答】解:∵Rt△ABC中,AC=cm,且∠ACB=90°,∠B=30°∴AB=2∴AB边上的中线CD=AB=cm.故选D.【点评】此题主要考查直角三角形斜边上的中线等于斜边的一半等知识点的理解和掌握,难度不大,属于基础题.8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°【考点】正方形的性质.【分析】根据正方形以及等边三角形的性质可得出AD=DE,∠ADF=45°,∠ADC=90°,∠CDE=60°,根据等腰三角形的性质即可得出∠DAE=∠DEA=15°,再结合三角形外角性质即可算出∠AFB的值.【解答】解:∵四边形ABCD为正方形,△CDE为等边三角形∴AD=CD=DE,∠ADF=∠ABF=45°,∠ADC=90°,∠CDE=60°∴∠ADE=150°.∵AD=DE∴∠DAE=∠DEA=15°∴∠AFB=∠ADF+∠DAF=45°+15°=60°.故选C.【点评】本题考查了正方形的性质、等边三角形的性质以及三角形外角的性质,解题的关键是求出∠ADF=45°、∠DAF=15°.本题属于基础题,解决该题型题目时,通过正方形、等边三角形以及等腰三角形的性质计算出角的度数是关键.9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm【考点】含30度角的直角三角形;多边形内角与外角;平行四边形的性质.【分析】根据四边形ABCD是平行四边形,得出AB∥CD,∠A=∠C,∠CDE=∠AED,根据DE⊥AB,得出∠AED和∠CDE是直角,求出∠CDF的度数,最后根据DF⊥BC,求出∠C、∠A的度数,最后根据∠ADE=30°,AE=2cm,即可求出答案.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,∠A=∠C∴∠CDE=∠AED∵DE⊥AB∴∠AED=90°∴∠CDE=90°∵∠EDF=60°∴∠CDF=30°∵DF⊥BC∴∠DFC=90°∴∠C=60°∴∠A=60°∴∠ADE=30°∴AD=2DE∵AE=2∴AD=2×2=4(cm);故选A.【点评】此题考查了平行四边形的性质和含30°角的直角三角形,用到的知识点是平行四边形的性质和垂直的定义30°角的直角三角形的性质,关键是求出∠ADE=30°.10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm【考点】矩形的定义及性质.【分析】在折叠的过程中,BE=DE,从而设BE=DE=x,即可表示AE,在直角三角形ADE中,根据勾股定理列方程即可求解.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x在Rt△ADE中,DE2=AE2+AD2即x2=(10﹣x)2+16.解得:x=5.8.故选C.【点评】此题主要考查了翻折变换的问题,解答本题的关键是掌握翻折前后对应线段相等,另外要熟练运用勾股定理解直角三角形.11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm2【考点】菱形的性质.【分析】利用折叠的方式得出AC,BD的长,再利用菱形面积公式求出面积即可.【解答】解:由题意可得:图1中矩形的长为5cm,宽为4cm∵虚线的端点为矩形两邻边中点∴AC=4cm,BD=5cm∴如图(2)所示的小菱形的面积为:×4×5=10(cm2).故选:A.【点评】此题主要考查了菱形的性质以及剪纸问题,得出菱形对角线的长是解题关键.翻折变换(折叠问题)实质上就是轴对称变换.12.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【考点】KQ:勾股定理;LB:矩形的性质.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P∵四边形ABCD和四边形CEFG都是矩形∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1∴AD∥GF∴∠GFH=∠P AH又∵H是AF的中点∴AH=FH在△APH和△FGH中∵∴△APH≌△FGH(ASA)∴AP=GF=1,GH=PH=PG∴PD=AD﹣AP=1∵CG=2、CD=1∴DG=1则GH=PG=×=故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为3.【考点】L8:菱形的性质.【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD是菱形∴BO=DO=4,AO=CO,S菱形ABCD==24∴AC=6∵AH⊥BC,AO=CO=3∴OH=AC=3.【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7)∴OA=BC=8,OC=AB=7∵D(5,0)∴OD=5∵点P是边AB或边BC上的一点∴当点P在AB边时,OD=DP=5∵AD=3∴P A==4∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形∴AB=BC=1,∠B=90°∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.【考点】正方形的性质.【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG 中,利用勾股定理即可求出E′F的长.【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求过F作FG⊥CD于G在Rt△E′FG中GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4所以E′F==.故答案为:.【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.【考点】菱形的性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABE≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:∵ABCD是菱形∴AB=AD,∠B=∠D.又∵EB=DF∴△ABE≌△ADF∴AE=AF∴∠AEF=∠AFE.【点评】本题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.【考点】矩形的性质.【专题】计算题.【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【解答】解:∵对角线相等且互相平分∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=ADBD=2DO,AB=AD∴AD=2∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1答:OE的长度为1.【点评】本题考查了勾股定理在直角三角形中的运用,考查了等边三角形的判定和等腰三角形三线合一的性质,本题中求得E为OD的中点是解题的关键.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形∴BE∥AD,BE=AD∴BE=CD∴四边形BECD是平行四边形.∵BD⊥AC∴∠BDC=90°∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.【考点】菱形的判定.【专题】证明题.【分析】(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.【解答】证明:(1)∵DE∥AC,∠ADE=∠DAF同理∠DAE=∠FDA∵AD=DA∴△ADE≌△DAF∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.【点评】考查了全等三角形的判定方法及菱形的判定的掌握情况.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【考点】矩形的性质.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD∴∠BAC=∠FCO在△AOE和△COF中∴△AOE≌△COF(AAS)∴OE=OF;(2)解:如图,连接OB∵BE=BF,OE=OF∴BO⊥EF∴在Rt△BEO中,∠BEF+∠ABO=90°由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC∴∠BAC=∠ABO又∵∠BEF=2∠BAC即2∠BAC+∠BAC=90°解得∠BAC=30°∵BC=2∴AC=2BC=4∴AB===6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【考点】正方形的性质.【专题】计算题.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM∴∠FCM=∠FCD+∠DCM=180°∴F、C、M三点共线∴DE=DM,∠EDM=90°∴∠EDF+∠FDM=90°∵∠EDF=45°∴∠FDM=∠EDF=45°在△DEF和△DMF中∴△DEF≌△DMF(SAS)∴EF=MF;(2)设EF=MF=x∵AE=CM=1,且BC=3∴BM=BC+CM=3+1=4∴BF=BM﹣MF=BM﹣EF=4﹣x∵EB=AB﹣AE=3﹣1=2在Rt△EBF中,由勾股定理得EB2+BF2=EF2即22+(4﹣x)2=x2解得:x=则EF=.【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.【考点】正方形的性质.【分析】(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)通过△DBG≌△FBG的对应边相等知BD=BF=;然后由CF=BF﹣BC=即可求得;(3)分三种情况分别讨论即可求得.【解答】(1)证明:如图1在△BCE和△DCF中∴△BCE≌△DCF(SAS);(2)证明:如图1∵BE平分∠DBC,OD是正方形ABCD的对角线∴∠EBC=∠DBC=22.5°由(1)知△BCE≌△DCF∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理)∴∠BGF=90°;在△DBG和△FBG中∴△DBG≌△FBG(ASA)∴BD=BF,DG=FG(全等三角形的对应边相等)∵BD==∴BF=∴CF=BF﹣BC=﹣1;(3)解:如图2,∵CF=﹣1,BH=CF∴BH=﹣1①当BH=BP时,则BP=﹣1∵∠PBC=45°设P(x,x)∴2x2=(﹣1)2解得x=1﹣或﹣1+∴P(1﹣,1﹣)或(﹣1+,﹣1+);②当BH=HP时,则HP=PB=﹣1∵∠ABD=45°∴△PBH是等腰直角三角形∴P(﹣1,﹣1);③当PH=PB时,∵∠ABD=45°∴△PBH是等腰直角三角形∴P(,)综上,在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为(1﹣,1﹣)、(﹣1+,﹣1+)、(﹣1,﹣1)、(,).【点评】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.。
小学数学第五单元平行四边形和梯形 单元测试(含答案解析)
小学数学第五单元平行四边形和梯形单元测试(含答案解析)一、选择题1.如图,直线a、b互相平行,图中一共有()个梯形.A. 1B. 2C. 3D. 42.一个等边三角形的周长是36厘米,用两个这样的等边三角形可以拼成的平行四边形的周长是()厘米。
A. 12B. 48C. 1443.下列各句话中有()句是错误的。
⑴两条直线相交,这两条直线互相垂直。
⑵两条直线的交点,叫做这两条直线的垂足。
⑶平行线之间的线段处处相等。
⑷两条直线都与另一条直线相交,这两条直线一定平行。
A. 1B. 2C. 3D. 44.有两条直线都和第三条直线平行,那么这两条直线()。
A. 互相垂直B. 互相平行C. 相交5.两个完全一样的直角梯形,一定不能拼成()。
A. 长方形B. 梯形C. 三角形D. 平行四边形6.一张长方形纸,对折两次,折痕会()A. 互相平行B. 互相垂直C. 两种情况都有可能7.军军家通往一条大道有3条不同的路,这3条路的长度分别为56米、87米、54米,其中有一条小路与大道是垂直的,那么这条路的长度应是()米。
A. 54米B. 56米C. 87米8.下图里,AB、AC、AD、AE四条线段中,它们的长度为4厘米、5厘米、6厘米、7厘米。
线段()一定长4厘米。
A. ABB. ACC. AD9.在同一平面内,a∥b,b⊥c,那么直线a与直线c()。
A. 相交但不互相垂直B. 互相平行C. 互相垂直D. 不确定10.下列图形中,线段PQ的长表示点P到直线MN的距离是()A. B.C. D.11.过直线外一点,可以画( )条与己知直线垂直的直线。
A. 无数B. 1C. 2D. 0 12.下面数学书挡住的是一张四边形彩纸,则这张彩纸可能是()形的。
A. 正方B. 平行四边C. 长方D. 三角二、填空题13.两条直线相交成________度时,这两条直线互相垂直。
14.如图中,a∥b,量一量∠1=________°,∠2=________°,∠1和∠2是一组同位角.猜想:在平行线中,________.验证:画一条直线d与直线a、b相交,标出一组同位角∠3和∠4,∠3=________°,∠4=________°.结论:猜想正确.15.从直线外一点可以画________条已知直线的平行线,平行线间的垂直线段有________条,每条垂线段的长度都________;在同一个平面内,若两条直线都和同一条直线平行,那么这两条直线________.16.如图中与直线b互相平行的是直线________,与直线b互相垂直的是直线________。
第一章《特殊平行四边形》单元测试卷(含答案解析)
第一章《特殊平行四边形》单元测试卷班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补2.矩形具有而菱形不一定具有的性质是()A.内角和等于3600B.对角互补C.对边平行且相等D.对角线互相平分3.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形4.如图所示,四边形ABCD的对角线互相平分,要使四边形ABCD成为矩形,需要添加的条件是()A.AB=CD B.AD=BD C.AB=BC D.AC=BD(第4题) (第5题) (第6题)5.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm6.如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形;B.当AB=BC时,四边形ABCD是菱形;C.当AC⊥BD时,四边形ABCD是菱形;D.当∠DAB=90°时,四边形ABCD是正方形7.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等N分别是边AB、BC的中点,则PM+PN的最小值是()A.5 B.10 C.14 D.不确定(第8题) (第9题) (第10题)9.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=4,则菱形ABCD的周长是()A.8 B.16 C.24 D.3210.如图,AC、BD是矩形ABCD的对角线,过点D作DE∥AC,交BC的延长线于E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个11.如图,在菱形ABCD中,∠BAD=82°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.67°B.57°C.60°D.87°(第11题) (第12题)12.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、A n分别是正方形的中心,则n个这样的正方形重叠部分的面积和为()A2B 2 C 2 D cm2二.填空题:(每小题3分,共12分13.如图,四边形ABCD中,点E、F、G、H分别为边AB、BC、CD、DA的中点,请你(第13题) (第14题) (第15题)14.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α= 度.15.如图,E是边长为1的正方形ABCD对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BD于点R,则PQ+PR的值为。
四边形经典测试题含答案
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】C
【解析】
A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C
8.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是( )
四边形经典测试题含答案
一、选择题
1.如图,在平行四边形ABCD中,将 沿AC折叠后,点D恰好落在DC的延长线上的点E处.若 ,AB=3,则 的周长为()
A.12B.15C.18D.2
【答案】C
【解析】
【分析】
依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.
∴∠OHD=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,
A.5B.2C. D.2
【答案】C
【解析】
【分析】
过点 作 于点 由图象可知,点 由点 到点 用时为 , 的面积为 .求出DE=2,再由图像得 ,进而求出BE=1,再在 根据勾股定理构造方程,即可求解.
【详解】
解:过点 作 于点
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。
【3套试卷】人教版数学八年级下册 第18章 平行四边形 培优单元卷
人教版数学八年级下册第18章平行四边形培优单元卷一.选择题(共10小题)1.下列命题正确的是()A.平行四边形的对角线一定相等B.三角形任意一条边上的高线、中线和角平分线三线合一C.三角形的中位线平行于第三边并且等于它的一半D.三角形的两边之和小于第三边2.已知?ABCD的周长是22,△ABC的周长是17,则AC的长为()A.5 B.6 C.7 D.83.在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD 是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD4.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6 B.8 C.10 D.125.用两块完全相同的直角三角形拼下列图形:①等腰三角形;②等边三角形;③平行四边形;④菱形;⑤矩形;⑥正方形.一定能拼成的图形是( )A.①②⑤B.①③⑤C.③⑤⑥D.①③④6.若菱形的两条对角线分别长8、6,则菱形的面积为()A.48 B.24 C.14 D.127.在直角坐标系中,正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),则另一条对角线的端点坐标为()A.(3,0),(-1,2) B.(1,1),(-1,2)C.(1,1),(3,0) D.(2,0),(0,2)8.如图,矩形ABCD的周长是28,点O是线段AC的中点,点P是AD的中点,△AOD的周长与△COD的周长差是2(且AD>CD),则△AOP的周长为()A.12 B.14 C.16 D.189.下列说法中正确的是()A.两条对角线互相垂直的四边形是菱形B.两条对角线互相平分的四边形是平行四边形C.两条对角线相等的四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.D.二.填空题(共6小题)11.如图,在?ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为.12.如图,在平行四边形ABCD中,E是BC边上的一点,且AB=AE,若AE平分∠DAB,∠EAC=27°,则∠ACD= .13.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD=20,则平行四边形ABCD的面积为.14.如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E 和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为.15.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒1个单位长度的速度移动,移动到第2019秒时,点P的坐标为.16.如图,矩形ABCD的周长为36,点O为对角线BD的中点,点E是线段BA延长线上的一点,且满足AE=5,3AB连接OA,OE,若∠AOD=120°,则线段OE的长为.三.解答题(共7小题)17.已知:如图,平行四边形ABCD中,AC,BD交于点O,AE⊥BD于点E,CF⊥BD于点F.求证:OE=OF.18.如图,分别延长?ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.19.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10.(1)求证:四边形ABCD是平行四边形.(2)求四边形ABCD的面积.20.如图,矩形ABCD的对角线AC的中点为O,过点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=6,BC=8,请直接写出EF的长为.21.已知E、F分别是?ABCD的边BC、AD上的点,且BE=DF.(1)求证:△ABE≌△CDF;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.22.如图,点A,B,C,D依次在同一条直线上,点E,F分别在直线AD的两侧,已知BE∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形.(2)若AD=10,EC=3,∠EBD=60°,当四边形BFCE是菱形时,求AB的长.23.如图1,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB.图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为▱ABCD内一点,过点P分别作AD、AB的平行线分别交▱ABCD的四边于点E、F、G、H.已知S▱BHPE=3,S▱PFDG=5,求S△PAC;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,求菱形EFGH的周长.答案:1-5 CBCDB6-10 BAABD11. 40°12. 87°13.4814.415.16.717. 证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEO=∠CFO=90°,在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF.18. 证明:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ADC=∠ABC∴∠ADF=∠CBE,且∠E=∠F,AD=BC∴△ADF≌△CBE(AAS)∴AF=CE,DF=BE∴AB+BE=CD+DF∴AE=CF,且AF=CE∴四边形AECF是平行四边形19. (1)证明:∵∠DBC=90°,BE=3,BC=4,∴又∵AE=AC-CE,且AC=10∴AE=10-5=5∴AE=EC,又∵DE=EB,∴四边形ABCD是平行四边形.(2)解:S平行四边形ABCD=BC·BD=4×6=24.20. 证明:(1)∵四边形ABCD是矩形∴AD∥BC∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO∴四边形AECF是平行四边形又∵EF⊥AC,∴四边形AECF是菱形(2)∵四边形AECF是菱形∴AE=EC,AO=CO,EO=FO∵AB2+BE2=AE2,∴36+(8-CE)2=CE2,∴CE=∵AB=6,BC=8,∴AC==10∴AO=CO=5∵EO==∴EF=2EO=21. (1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF(SAS).(2)∵四边形AECF是菱形,∴EA=EC,∴∠EAC=∠ECA,∵∠BAC=90°,∴∠BAE+∠EAC=90°,∠B+∠ECA=90°,∴∠B=∠EAB,∴EA=EB,∴BE=CE=5.22. (1)证明:∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD,∵∠A=∠D,AE=DF,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)解:∵四边形BFCE是菱形,∠EBD=60°,∴△CBE是等边三角形,∴BC=EC=3,∵AD=10,AB=DC,∴AB=(10-3)=.23.解:(1)∵▱ABCD中,EF∥BC,HG∥AB,∴S△ABD=S△BCD,S△PBE=S△PBG,S△PDH=S△PDF,∴S▱AEPH=S▱PGCF,S▱ABGH=S▱EBCF,S▱AEFD=S▱HGCD,故答案为:▱AEPH和▱PGCF或▱ABGH和▱EBCF或▱AEFD和▱HGCD;(2)易得S△ABC=S△ADC,S△PAE=S△PAG,S△PCH=S△PCF,∵S▱BHPE=3,S▱PFDG=5,∴S△PAC=S△PAG+S△PCF+S▱PFDG-S△ACD=S△PAG+S△PCF+S▱PFDG-S▱ABCD=S△PAG+S△PCF+S▱PFDG-(2S△PAG+2S△PCF+S▱BHPE+S▱PFDG)=S▱PFDG-(S▱BHPE+S▱PFDG)=1;(3)∵①②③④四个平行四边形面积的和为14,∴S△ABE+S△BCF+S△CDG+S△ADH=7,∵四边形ABCD的面积为11,∴S菱形EFGH=11+7=18,∵菱形EFGH的一个内角为30°,∴设菱形EFGH的边长为x,则高为x,∴x•x=18,解得x=6,∴菱形EFGH的周长为24.人教版八年级数学下册第十八章平行四边形单元测试题(含答案)一、选择题。
(典型题)小学数学四年级上册第五单元平行四边形和梯形 单元测试题(包含答案解析)(1)
(典型题)小学数学四年级上册第五单元平行四边形和梯形单元测试题(包含答案解析)(1)一、选择题1.过平行四边形的一个顶点画高,最多能画()A. 1条B. 2条C. 无数条2.下图中直线m和n互相平行,线段AB和CD的关系是()。
A. 互相平行B. 互相垂直C. 相交3.上午9时,钟面上的时针和分针()。
A. 互相平行B. 互相垂直C. 互相平行或相交D. 不能确定4.平行四边形的一组对边间最多可以画()条垂线。
A. 0B. 1C. 2D. 无数5.将一张正方形的纸片,先上下对折,再左右对折,展开后的折痕()。
A. 相互平行B. 相互垂直C. 相互平行或垂直6.用长3cm,3cm,5cm,5cm的四根小棒可以搭成()个形状不同的平行四边形。
A. 1 B. 2 C. 3 D. 无数个7.在同一平面内,a∥b,b⊥c,那么直线a与直线c()。
A. 相交但不互相垂直B. 互相平行C. 互相垂直D. 不确定8.在图上找一点D,使ABCD形成一个平行四边形,有()种选法。
A. 1B. 2C. 3D. 49.从直线外一点到这条直线所画的线段中,垂直线段()。
A. 最短B. 最长C. 不能确定10.下图中,点A到线段BE的所有线段中( )最短。
A. ABB. ACC. ADD. AE11.把一个长方形框架拉成一个平行四边形,这个平行四边形的周长比原长方形的周长()。
A. 大B. 小C. 一样大12.下面数学书挡住的是一张四边形彩纸,则这张彩纸可能是()形的。
A. 正方B. 平行四边C. 长方D. 三角二、填空题13.一个平行四边形的一条边长是18厘米,比它的邻边长4厘米,这个平行四边形的周长是________厘米.14.如图中,a∥b,量一量∠1=________°,∠2=________°,∠1和∠2是一组同位角.猜想:在平行线中,________.验证:画一条直线d与直线a、b相交,标出一组同位角∠3和∠4,∠3=________°,∠4=________°.结论:猜想正确.15.一个平行四边形两条邻边的长分别是8厘米和9厘米,这个平行四边形的周长是________厘米.16.两个完全一样的梯形可以拼成一个________.17.如图中的线段,________和________是互相平行,________和________是互相垂直,________和________也是互相垂直的.18.这张试卷的两条对边互相________,相邻的两条边互相________.19.________、________都有无数条高。
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。
第18章 平行四边形单元测试题1(全)
第18章平行四边形单元测试题(1)一、单选题1.“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D′,B之间的距离为()A.1cm B.2cm C.(2√2+1)cm D.(2√2−1)cm2题图3题图6题图7题图2.满足下列条件的四边形是正方形的是()A.对角线互相垂直且相等的平行四边形B.对角线互相垂直的菱形C.对角线相等的矩形D.对角线互相垂直平分的四边形3.如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E和F,若PE=PF,下列说法不正确的是()A.点P一定在菱形ABCD的对角线AC上B.可用HL证明Rt△AEP≌Rt△AFPC.AP平分∠BAD D.点P一定是菱形ABCD的两条对角线的交点4.在▱ABCD中,若∠A=60°,则∠D的度数是()A.60∘B.90∘C.120∘D.30∘5.平行四边形的两条对角线将它分成4个小三角形,则这4个小三角形的面积()A.都不相等B.不都相等C.都相等D.结论不确定6.在平行四边形ABCD中,AC,BD相交于O,AC=10,BD=8,则AD的长度的取值范围是()A.AD>1B.1<AD<9C.AD<9D.AD>97.如图,矩形ABCD 的对角线AC与BD相交于点O,∠AOB=60°,AB=3,则OC等于()A.3 B.3.5 C.4 D.58.如图,M、N分别是△ABC的边AB、AC的中点,若∠A=55°,∠ANM=45°,则∠B=().A.20°B.45°C.80°D.70°8题图9题图10题图15题图9.如图,在▱ABCD中,∠A=45°,AD=2,点M、N分别是边AB、BC上的动点,连接DN、MN,点E、F分别为DN、MN的中点,连接EF,则EF的最小值为( )D.2√2A.1 B.√2C.√22BD的长为半径作弧,两弧相交于两点,过这两点10.如图,BD为▱ABCD的对角线,分别以B,D为圆心,大于12的直线分别交AD,BC于点E,F,交BD于点O,连接BE,DF.根据以上尺规作图过程,下列结论不一定正确的是() A.点O为▱ABCD的对称中心B.BE平分∠ABDC.S△ABE:S△BDF=AE:ED D.四边形BEDF为菱形11.在▱ABCD中,AC、BD是两条对角线,如果添加一个条件,可推出在▱ABCD中是菱形,那么这个条件可以是()A.AB=CD B.AC=BD C.AC⊥BD D.AB⊥BD12.给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线相等的四边形是矩形;③有一条对角线平分一个内角的平行四边形为菱形.其中不正确的有( )A.3个B.2个C.1个D.0个1至12题答案:二、填空题13.已知平行四边形的周长是30,相邻两边的长相差3,则两条邻边中较长的边长为.14.一个直角三角形斜边上的中线和高分别是6和5,它的面积=.15.如图,在△ABC中,D,E分别是边AB,BC的中点,若DE的长是2√2,则AC的长为.16.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=8,EF=1,则BC长为.16题图19题图20题图21题图17.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为 . 18.若顺次连接对角线长分别为10和16的菱形ABCD四边中点形成新的四边形,则该新四边形的周长为.19.如图已知正方形ABCD的边长为16,M在DC上,且DM=4,N是AC上的一动点,则DN+MN的最小值是 . 20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E为边BC的中点,连接OE,已知OE=a,则菱形ABCD 的周长为(用含a的式子表示).21.如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB 上,将△ABC沿DE对折,恰好能使点A和点C重合.若x轴上有一点P,使△AEP为等腰三角形,则点P的坐标为.22.如图,在同一平面内,直线l同侧有三个正方形,A,B,C,若A,C的面积分别为9和4,则阴影部分的总面积为22题图23题图13至22题答案:三、解答题23.已知,如图所示,折叠长方形OABC的一边BC,使点B落在AO边的点D处,已知B(10,8),求:(1)求D的坐标;(2)求E的坐标.)×√624.(1)计算:(2√12−√13(2)直角三角形ABC中,∠ACB=90°,D是斜边AB的中点,两直角边AC=6,BC=8,求CD的长.24题图25题图25.如图,在△ABC中.【实践与操作】请利用尺规作图完成以下操作:(1)作△ABC的角平分线AD,交边BC于点D;(2)作线段AD的垂直平分线,分别交边AB,AC于点E,F;(3)连接DE,连接DF.(要求:不写作法,标明字母);【猜想与证明】试猜想四边形AEDF的形状,并加以证明.26.如图,已知A(2,3)和直线y=x.(1)分别写出点A关于直线y=x的对称点B和关于原点的对称点C的坐标;(2)若点D是点B关于原点的对称点,判断四边形ABCD的形状,并说明理由.27.在四边形ABCD中,AB、BC、CD、DA的中点分别为P、Q、M、N.(1)如图1,试判断四边形PQMN怎样的四边形,并证明你的结论;(2)若在AB上取一点E,连接DE,CE,恰好△ADE和△BCE都是等边三角形(如图2),判断此时四边形PQMN 的形状,并证明你的结论.28.如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点,求证:BD=2EF.参考答案:1.D【分析】先求出BD,再根据平移性质得BB′=1cm,然后由DB′=BD−BB′求解即可.【详解】解:由题意,BD=√22+22=2√2(cm),由平移性质得BB′=1cm,∴点D,B′之间的距离为DB′=BD−BB′=(2√2−1)cm,故选:D.【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.2.A【分析】根据正方形的判定方法即可求解.【详解】解:A选项,对角线互相垂直且相等的平行四边形是正方形,故A选项正确,符合题意;B选项,对角线互相垂直的菱形还是菱形,故B选项错误,不符合题意;C选项,对角线相等的菱形是正方形,故C选项错误,不符合题意;D选项,对角线互相垂直平分的长方形是正方形,故D选项错误,不符合题意;故选:A.【点睛】本题主要考查正方形的判定,掌握“对角线相互垂直的矩形是正方形”,“对角线相等的菱形是正方形”,“对角线互相垂直且相等的平行四边形是正方形”的知识是解题的关键.3.D【详解】试题分析:根据到角的两边距离相等的点在角的平分线上判断出AP平分∠BAD,根据菱形的对角线平分一组对角线可得AC平分∠BAD,然后对各选项分析判断利用排除法求解.∵PE⊥AB,PF⊥AD,PE=PF,∴AP平分∠BAD,∵四边形ABCD是菱形,∴对角线AC平分∠BAD,故A、C选项结论正确;可以利用“HL”证明Rt△AEP≌Rt△AFP,故B选项正确;点P在AC上,但不一定在BD上,所以,点P一定是菱形ABCD的两条对角线的交点不一定正确.考点:菱形的性质;全等三角形的判定;角平分线的性质4.C【分析】本题主要考查了平行四边形的性质,掌握平行四边形的邻角互补成为解题的关键.如图:由平行四边形的性质得出∠A+∠D=180°,据此即可解答.【详解】解:如图:∵▱ABCD中,AB∥CD,∴∠A+∠D=180°,∵∠A=60°,∴∠D=180°−∠A=120°.故选:C.5.C【分析】根据平行四边形的性质,对角线互相平分,则可知,两条对角线将它分成4个小三角形都是等底等高的,因此面积相等.【详解】如图,作DQ⊥AC,BP⊥AC∵▱ABCD中,CE=EA,DE=EB,AD=BC∴△ADE≌△CBE(SSS),∴DQ=PBCE⋅DQ,∴4个小三角形的面积都可表示为12∴4个小三角形的面积相等.故选:C【点睛】此题考查平行四边形的性质,解题关键是三角形面积公式为底乘以高的一半,三角形等底等高即可证明面积相等.6.B【分析】根据平行四边形性质可知,平行四边形的对角线互相平分,则AO,DO,与AD三边组成三角形,然后再利用三角形三边关系解题即可.【详解】解:设AC,BD交于点O,平行四边形对角线平分,则有AO=CO=5,BO=DO=4,再根据三角形两边之和大于第三边,两边之差小于第三边,可得:1<AD<9.故选:B .【点睛】本题结合三角形的三边关系,考查了平行四边形的对角线互相平分这一性质,解题时注意数形结合. 7.A【分析】由矩形的性质得出OA =OB ,由已知条件证出△AOB 是等边三角形,得出OA =AB =3,得出OA =OC =3即可.【详解】解:∵四边形ABCD 是矩形, ∴OA =12AC ,OB =12BD ,AC =BD ,∴OA =OB , ∵∠AOB =60°,∴△AOB 是等边三角形, ∴OA =AB =3, ∴OA =OC =3; 故选:A .【点睛】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理论证是解题的关键. 8.C【分析】根据三角形中位线定理得出MN //BC ,进而利用平行线的性质解答即可. 【详解】解:∵M 、N 分别是△ABC 的边AB 、AC 的中点,∠A =55°,∠ANM =45°, ∴MN //BC ,∴∠C =∠ANM =45°,∴∠B =180°−∠A −∠C =180°−55°−45°=80°, 故选:C .【点睛】此题考查三角形中位线定理,关键是根据三角形中位线定理得出MN //BC 解答. 9.C【分析】连接DM ,根据中位线的性质得出EF =12DM ,当DM ⊥AB 时,DM 最小,根据等腰直角三角形的性质,勾股定理即可求解.【详解】解:如图,连接DM ,∵E、F分别为DN、MN的中点,∴EF=12DM,∴EF的最小值,就是DM的最小值,当DM⊥AB时,DM最小,∴DM=√22AD=√2∴EF=12DM=√22,故选:C.【点睛】本题考查了中位线的性质,垂线段最短,勾股定理,等腰直角三角形的性质,掌握中位线的性质是解题的关键.10.B【分析】由作图知,EF是线段BD的垂直平分线,利用平行四边形的性质可判断选项A;根据菱形的判定定理可判断选项C;根据菱形的性质得到S△BDF=S△BDE,可判断选项D;BE不一定平分∠ABD,选项B不正确.【详解】解:由作图知,EF是线段BD的垂直平分线,即点O为▱ABCD的对称中心,故选项A正确,不符合题意;∵四边形ABCD是平行四边形,∴DE∥BF,∴∠DEF=∠BFE,∵EF是线段BD的垂直平分线,∴BE=ED,BF=FD,∠BFE=∠EFD,∴∠DEF=∠EFD,∴DE=DF,∴DE=DF=BE=BF,∴四边形BEDF为菱形,故选项D正确,不符合题意;∴S△BDF=S△BDE,∴S△ABE:S△BDF=S△ABE:S△BDE=AE:ED,故选项C正确,不符合题意;BE不一定平分∠ABD,故选项B不正确,符合题意;故选:B.【点睛】本题考查平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.C【分析】根据菱形的定义和判定定理逐项作出判断即可.【详解】解:A. AB=CD,无法判断四边形ABCD是菱形,不合题意;B. AC=BD,根据对角线相等的平行四边形是矩形可以判断□ABCD是矩形,不合题意;C. AC⊥BD,根据对角线互相垂直的平行四边形是菱形可以判断□ABCD是菱形,符合题意;D. AB⊥BD,可以得到∠B=90°,根据有一个角是直角的平行四边形叫矩形可以判断□ABCD是矩形,不合题意.故选:C【点睛】本题考查了菱形的判定,熟知菱形的定义和判定定理是解题的关键.12.B【分析】根据平行四边形、矩形以及菱形的判定定理进行逐一分析判断,从而得出答案即可.【详解】一组对边平行且相等的四边形是平行四边形,故①错误;对角线相等的平行四边形是矩形,故②错误;有一条对角线平分一个内角的平行四边形为菱形,故③正确;综上所述,不正确的有2个,故选:B.【点睛】本题主要考查了平行四边形、矩形以及菱形的判定,熟练掌握相关概念是解题关键.13.9【分析】根据平行四边形的对边相等,设较长的边长为x,则较短的边长为(x−3),根据周长是30,建立一元一次方程解方程求解即可.【详解】解:设较长的边长为x,则较短的边长为(x−3),2(x+x−3)=30解得x=9故答案为:9【点睛】本题考查了平行四边形的性质,平行四边形的性质是解题的关键.14.30【分析】根据直角三角形斜边上的中线先求出斜边长,再利用三角形的面积进行计算即可解答.【详解】解:∵直角三角形斜边上的中线是6,∴斜边长=2×6=12,∵直角三角形斜边上的高是5,×12×5=30,∴直角三角形的面积=12故答案为:30.【点睛】本题考查了直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线是解题的关键.15.4√2【分析】根据三角形中位线定理,即可求解.【详解】解:∵D,E分别是边AB,BC的中点,∴AC=2DE,∵DE的长是2√2,∴AC=4√2.故答案为:4√2【点睛】本题主要考查了三角形中位线定理,熟练掌握三角形的中位线等于第三边的一半,并且平行于第三边是解题的关键.16.15.【分析】根据平行四边形的性质和角平分线的定义得∠ABF=∠AFB,∠DCE=∠CED,从而得AB=AF,DC=DE,进而即可求解.【详解】∵四边形ABCD为平行四边形,AB=8,∴CD=AB=8,AD//BC,∴∠AFB=∠CBF,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∴AF=AB=8,同理DE=DC=8,∵EF=1,∴AE=AF−EF=8−1=7,∴AD=AE+DE=7+8=15,故答案为15.【点睛】本题主要考查平行四边形的性质,角平分线的定义,等腰三角形的判定和性质,综合应用平行四边形的性质,角平分线的定义,等腰三角形的判定和性质,是解题的关键.17.21cm【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵平行四边形的周长等于56cm,∴AB+CD+AD+BC=56cm,∴AB+BC=28cm.∵BC:AB=3:1,∴BC=21cm,AB=7cm,∴这个平行四边形较长的边长为21cm.故答案为21cm.18.26【分析】根据三角形的中位线得出EH=12BD,GF=12BD,EF=12AC,HG=12AC,求出EH、GF、EF、HG的长度,再求出周长即可.【详解】解:如图,∵E、F、G、H分别是边AB、BC、CD、AD的中点,∴EH=12BD,GF=12BD,EF=12AC,HG=12AC,∵AC=10,BD=16,∴EH=8,FG=8,EF=5,HG=5,∴四边形EFGH的周长是EF+FG+HG+EH=5+8+5+8=26,故答案为:26.【点睛】本题考查了菱形的性质,三角形的中位线性质等知识点,能熟记三角形的中位线平行于第三边,并且等于第三边的一半是解此题的关键.19.20.【详解】试题解析:连接BN.∵四边形ABCD是正方形,∴NB="ND."∴DN+MN="BN+MN."当点B、N、M在同一条直线上时,ND+MN有最小值.由勾股定理得:BM=√MC2+BC2=20考点:轴对称-最短路线问题.20.8a【分析】根据菱形性质和直角三角形斜边上中线等于斜边一半,可以求出BC=2OE,进而可以求出菱形周长.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∵点E为边BC的中点,∴BC=2OE=2a,∴菱形ABCD周长为8a.故答案为:8a.【点睛】本题也可以根据菱形性质得到O为AC中点,利用三角形中位线性质求出AB,亦可求解.21.(8,0)或(-2,0)/(-2,0)或(8,0)【分析】由矩形的性质可得BC=OA =3,AB=OC=9,∠B=90°=∠OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解.【详解】解:∵四边形OABC矩形,且点A(3,0),点C(0,9),∴BC=OA =3,AB=OC=9,∠B=90°=∠OAE,∵将△ABC沿DE对折,恰好能使点A与点C重合.∴AE=CE,∵CE2=BC2+BE2,∴CE2=9+(9-CE)2,∴CE=5,∴AE=5,∵△AEP为等腰三角形,且∠EAP=90°,∴AE=AP=5,∴点E坐标(8,0)或(-2,0)故答案为:(8,0)或(-2,0)【点睛】本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE的长是本题的关键.22.6【分析】如图,先标注各顶点,作PD⊥PG,NE⊥NK,QE⊥NE,垂足分别为P,N,E,PD于QE交于点D,则PD⊥QE,证明△GPF≌△DPQ,可得:DQ=GF,PD=PG=3,同理利用三角形全等的性质可得:QD=2,QE=3,从而可得答案.【详解】解:如图,先标注各顶点,作PD⊥PG,NE⊥NK,QE⊥NE,垂足分别为P,N,E,PD于QE交于点D,则PD⊥QE,∵A,C的面积分别为9和4,∴PG=3,NK=2,∵正方形,A,B,C,∴PQ=PF,∠QPF=90°,∠PDQ=∠PGF=90°,∴∠GPF+∠DPF=90°,∠DPF+∠DPQ=90°,∴∠GPF=∠DPQ,∴△GPF≌△DPQ,∴DQ=GF,PD=PG=3,同理可得:GF=NK=2,PG=FK=3,EN=NK=2,QE=FK=3,∴DQ=2,∴S=12×3×2+12×2×3=6.故答案为:6.【点睛】本题考查的是全等三角形的判定与性质,作出适当的辅助线构建全等三角形是解题的关键. 23.(1)(6,0)(2)(10,3)【分析】本题主要考查了折叠变换的性质、勾股定理等几何知识点及其应用问题.(1)根据折叠性质得,CD=AB=10,由勾股定理得OD=6,可得点D坐标;(2)在Rt△ADE中,根据勾股定理即可求点E坐标.【详解】(1)解:由折叠可知:CD=CB,∵B(10,8),∴CD=CB=10,OC=8,在Rt△ODC中,由勾股定理得OD=6,∴点D坐标为(6,0);(2)∵OA=BC=10,OD=6,∴AD=OA−OD=10−6=4由折叠可知:BE=DE,设AE=x,则DE=BE=8−x,在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,解得:x=3,∴点E坐标为(10,3).24.(1)11√2;(2)5【分析】(1)原式利用乘法分配律计算即可得到结果.(2)首先利用勾股定理求出AB=10.再利用直角三角形斜边上中线的性质可得答案.×6【详解】解:(1)原式=2√12×6−√13=12√2−√2=11√2;(2)在Rt△ABC中,由勾股定理得,AB=√AC2+BC2=√62+82=10,∵D是斜边AB的中点,AB=5.∴CD=12【点睛】本题主要考查了勾股定理,二次根式的混合运算,直角三角形斜边上中线的性质等知识,熟练掌握性质是解题的关键.25.实践与操作:见解析;猜想与证明:菱形,见解析【分析】[实践与操作]根据角平分线,垂直平分线的作法作图即可;[猜想与证明]根据垂直平分线的性质得到FA=FD,EA=ED,∠EOA=∠FOA=90°,证明△AEO≌△AFO(ASA),得到AE=AF,再根据四边相等的四边形是菱形证明即可.【详解】解:[实践与操作]如图,即为所求;[猜想与证明]四边形AEDF为菱形,理由如下:∵EF垂直平分AD,交点为O,∴FA=FD,EA=ED,∠EOA=∠FOA=90°,∵AD平分∠BAC,∴∠EAO=∠CAO,∵AO=AO,∴△AEO≌△AFO(ASA),∴AE=AF,∴AE=ED=DF=FA,∴四边形AEDF是菱形.【点睛】本题考查了尺规作图,角平分线和垂直平分线的作法,垂直平分线的性质,菱形的判定,解题的关键是掌握基本尺规作图的方法,菱形的判定方法.26.(1)B(3,2),C(−2,−3)(2)矩形,见解析【分析】本题考查矩形,点关于直线对称的知识,解题的关键是掌握点关于直线对称的性质,矩形的判定,即可.(1)根据点A关于直线y=x对称,则x,y互换即为对称点坐标求出点B,根据点关于原点对称横纵坐标互为相反数,即可;(2)根据点关于原点对称横纵坐标互为相反数,求出点D,再根据矩形的判定,即可.【详解】(1)∵A(2,3),∴点A关于直线y=x的对称点B(3,2);∵关于原点对称横纵坐标互为相反数,∴A(2,3)关于原点的对称点C的坐标为:C(−2,−3).(2)∵点B(3,2),∴点B(3,2)原点的对称点D的坐标为:D(−3,−2),∵点B与点D关于原点对称,点A与点C关于原点对称,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵点A关于直线y=x的对称点为B,点A关于原点的对称点为C,点B关于原点的对称点为D,∴AC=DB,∴平行四边形ABCD是矩形.27.(1)平行四边形,证明见解析;(2)菱形,证明见解析【分析】(1)根据平行四边形的判定,对边平行且相等的四边形是平行四边形即可求解.(2)根据题意列出方程,数形结合证明平行四边形PQMN 的临边相等,根据一组临边相等的平行四边形是菱形即可求解.【详解】解:(1)四边形PQMN 为平行四边形;连接AC 、BD .∵PQ 为△ABC 的中位线,∴PQ ∥AC ,PQ =12AC , 同理MN ∥AC .MN =12AC . ∴MN =PQ ,MN ∥PQ ,∴四边形PQMN 为平行四边形;(2)四边形PQMN 是菱形;理由如下:设△ADE 的边长是x ,△BCE 的边长是y ,∴DB 2=(12x +y )2+(√32x )2=x 2+xy +y 2,AC 2=(x +12y )2+(√32y )2=x 2+xy +y 2, 由(1)得MN =12AC 与(1)同理可证MP =12BD∴MN =MP ,∴平行四边形PQMN 是菱形;【点睛】本题考查中位线的性质、平行四边形的性质、等边三角形的性质、菱形的判定等知识点,熟练掌握几何图形的性质,进行等量代换、数形结合即可求解.28.见解析.【分析】先证明CE =DE, 再证明EF 是△CDB 的中位线,从而可得结论.【详解】证明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中点∴EF是△CDB的中位线∴BD=2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.。
平行四边形单元测试卷(5套题)
第18章平行四边形一、选择题1.如图4-161所示,沿虚线EF将ABCD剪开(BF≠AE),得到的四边形ABFE是( )A.梯形 B.平行四边形C.矩形 D.菱形2.下列说法中正确的有 ( )①平行四边形的对角线互相平分;②菱形的对角线互相平分且相等;③矩形的对角线相等;④正方形的对角线互相平分且相等;⑤等腰梯形的对角线相等.A.2个 B.3个 C.4个 D.5个3.五边形的内角和与外角和之比是 ( )A.5∶2 B.2∶3 C.3∶2 D.2∶54.下列图形中,既是中心对称图形,又是轴对称图形的是 ( )A.等腰三角形 B.正三角形C.等腰梯形 D.菱形5.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为 ( )A.190 B.96 C.47 D.406.一个多边形截去一个角(不过顶点)后,所成的一个多边形的内角和是2520°,那么原多边形的边数是( )A.13 B.15 C.17 D.197.平面图形的密铺是指在一定范围的平面内,这些图形间 ( )A.没有空隙,可以重叠 B.既有空隙,又可重叠C.可有空隙,但无重叠 D.既无空隙,也不重叠8.若四边形的两条对角线互相垂直,则这个四边形 ( )A.一定是矩形 B.一定是菱形C.一定是正方形 D.形状不确定9.如图4-162所示,设F为正方形ABCD中AD边上一点,CE⊥CF交AB的延长线于E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为 ( )A.20 B.24 C.25 D.2610.如图4-163所示,正方形ABCD中,点E,F分别在CD,BC上,且CF=DE,连接BE,AF相交于点G,则下列结论不正确的是 ( )A.∠DAF=∠BE C B.∠AF B+∠BE C=90°C.BE=AF D.AF⊥BE二、填空题11.在四边形ABCD中,∠A∶∠B∶∠D=1∶2∶4,∠C=108°,则∠A= .12.边长为10 cm的正方形的对角线长是 cm,这条对角线和正方形一边的夹角是,这个正方形的面积是 cm2.13.在梯形ABCD中,AB∥CD,AB>CD,CE∥DA交AB于E,且△BCE的周长为10 cm,CD=5 cm,则梯形ABCD 的周长是.14.若矩形的一条短边的长为5 cm,两条对角线的夹角为60°,则它的一条较长的边为 cm.15.如图4-164所示,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为 .16.菱形的周长为40 cm,如果把它的高增加4 cm,周长不变,那么面积变为原来倍,则菱形的原面积是.的11217.在四边形ABCD中,AB=CD,要使其变为平行四边形,需要增加的条件是.(只需填一个你认为正确的条件即可)18.如图4-165所示;折叠矩形纸片ABCD,先折出折痕BD,再折叠,使AD落在对角线BD上,A对应A′,得折痕DG,若AB=2,BC=1,则AG= .三、解答题19.如图4-166所示,在ABCD中,E,F在平行四边形的外部,且AE=CF,BE=DF,试指出AC和EF的关系,并说明理由.20.如图4-167所示,在△ABC中,O是AC边上的一个动点,过O作直线MN∥BC,交∠BCA的平分线于点正,交∠BCA的外角平分线于点F.(1)试说明OE=OF;(2)当点O运动到何处时,四边形A ECF是矩形?说明理由.21.(1)如图4-168(1)所示,你能设法将左图的平行四边形变成与它面积相等的右边的矩形吗?画一画;(2)任意剪一张梯形纸片(如图4-168(2)所示),与同学们交流、讨论、研究,怎样通过平移、旋转、轴对称以及折纸等方法将梯形剪拼成一个面积与它相等的矩形?并在图(2)中画出设计方案,简述设计的过程.22.矩形的长和宽如图4-169所示,当矩形周长为12时,求a的值.23.如图4-170所示,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)试说明∠MAE=∠NCF.参考答案1. A 2.C 3.C 4.D 5.B 6.B 7.D 8.D9.B[提示:由全等可知△CEF是等腰直角三角形,又其面积为50,则CF=CE=10,因为正方形ABCD的面积为64,所以边长BC=8,由勾股定理,得BE=6,所以S△CBE=12BE·BC=12×6×8=24.]10.B 11.36°12.102 45° 100 13.20 cm14.3515.1016.80 cm 217.AB ∥CD ,或AD =BC (答案不唯一)18.12-5[提示:A 对应点A ′,则△A ′DG 和△A ′BG 均为直角三角形,设AG =x ,则A ′G =x ,A ′B =BD-A ′D =5-l ,BG =AB -AG =2-x ,由勾股定理,得A ′G 2+A ′B 2=GB 2,所以x 2+(5-1)2=(2-x )2,解得x =12-5.] 19.提示:连接AF ,EC ,可由AE =CF ,且AE ∥CF ,得四边形A ECF 是平行四边形,故AC 与EF 互相平分.20.提示:(1)先说明OE =OC ,再说明OF =OC . (2)当点O 运动到AC 的中点时,四边形A ECF 是矩形(理由略).21.解:(1)如图4-171所示。
沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)
密学校 班级姓名 学号密 封 线 内 不 得 答 题沪科版8年级数学(下)第19章《四边形》单元测试卷满分:150分,一、单选题(共10题;共40分)1.下列给出的条件中,能识别一个四边形是菱形的是( )A. 有一组对边平行且相等,有一个角是直角B. 两组对边分别相等,且有一组邻角相等C. 有一组对边平行,另一组对边相等,且对角线互相垂直D. 有一组对边平行且相等,且有一条对角线平分一个内角2.下列条件不能判定四边形ABCD 为平行四边形的是( )A. AB=CD,AD=BC B. AB ∥CD ,AB=CD C. AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC 3.如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件中不一定能判定这个四边形是平行四边形的是( )A. AB ∥DC ,AD=BCB. AD ∥BC ,AB ∥DCC. AB=DC ,AD=BCD. OA=OC ,OB=OD 4.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =120°,AD =2,点E 是BC 的中点,连结OE ,则OE 的长是( )A.B. 2C. 2D. 45.已知一个多边形的内角和是900°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形 6.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ∠A=∠C ,∠B=∠DB. AB ∥CD ,AB=CD C. AB ∥CD ,AD ∥BC D. AB=CD ,AD ∥BC 7.菱形ABCD 中,已知AC=6,BD=8,则此菱形的周长为( )A. 5B. 10C. 20D. 408.如图,过平行四边形ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的过平行四边形AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 不能确定 9.下列图中不是凸多边形的是( )A. B. C. D.10.一个多边形的内角和与外角和为540°,则它是( )边形。
【三套打包】成都树德实验中学东区人教版八年级数学下册第十八章平行四边形单元试题含答案
八年级数学下册第18章小专题平行四边形的证明思路小专题(三)平行四边形的证明思路类型1若已知条件出现在四边形的边上,则应考虑:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形1.如图,在▱ABCD中,点E在AB的延长线上,且EC∥BD.求证:四边形BECD是平行四边形.2.如图,在▱ABCD中,点E,F分别在边AB,CD上,BE=DF.求证:四边形AECF是平行四边形.3.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.4.(钦州中考)如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF.(1)求证:BF=DC;(2)求证:四边形ABFD是平行四边形.类型2若已知条件出现在四边形的角上,则应考虑利用“两组对角分别相等的四边形是平行四边形”来证明.5.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.类型3若已知条件出现在对角线上,则应考虑利用“对角线互相平分的四边形是平行四边形”来证明6.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.求证:四边形ABFC为平行四边形.7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,▱ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点,求证:四边形AECF是平行四边形.人教版八年级数学下单元测试题:第十八章平行四边形一、填空题(每题3分,共24分)1.如图,▱ABCD中,AC,BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.2.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件____________,使四边形ABCD成为菱形(只需添加一个即可).3.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.4.如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C点的坐标为________.5.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到F,使CF=CE,连接DF.若CE=1 cm,则BF=__________.6.矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为________.7.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是__________.8.如图,在边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠F AC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°……按此规律所作的第n个菱形的边长是________.二、选择题(每题3分,共30分)9.如图,在▱ABCD中,已知AC=4 cm,若△ACD的周长为13 cm,则▱ABCD的周长为()A.26 cm B.24 cm C.20 cm D.18 cm10.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为()A.12 cm B.9 cm C.6 cm D.3 cm11.下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BCC.AB∥DC,AD=BC D.AB∥DC,AB=DC12.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为()A.4 cm B.5 cm C.6 cm D.8 cm13.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为一边的正方形ACEF的周长为()A.14 B.15 C.16 D.1714.下列说法中,正确的个数有( )①对顶角相等;②两直线平行,同旁内角相等; ③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A .1个B .2个C .3个D .4个15.如图,已知在菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4,则该菱形的面积是( )A .16 3B .16C .8 3D .816.用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是( )17.如图,在矩形ABCD 中,AD =3AB ,点G ,H 分别在AD ,BC 上,连接BG ,DH ,且BG ∥DH ,当AGAD=( )时,四边形BHDG 为菱形.A.45B.35C.49D.3818.如图,在▱ABCD 中,CD =2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连接EF ,BF ,下列结论:①∠ABC =2∠ABF ;②EF =BF ;③S 四边形DEBC =2S △EFB ;④∠CFE =3∠DEF ,其中正确的结论有( )A .1个B .2个C .3个D .4个三、解答题(19题8分,20~22题每题10分,其余每题14分,共66分)19.如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.求证AG=CH.20.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.21.如图,矩形ABCD中,E是AD的中点,连接CE并延长与BA的延长线交于点F,连接AC、DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.22.在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.(1)试确定四边形ADCE的形状,并说明理由.(2)若AB=16,AC=12,求四边形ADCE的面积.(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.24.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图①,在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,判断中点四边形EFGH的形状,并说明理由;(3)若改变(2)中的条件,使∠人教版八年级下册第十八章平行四边形复习练习一、选择题1、下列判断错误的是( )A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形2、如图,“回”字形的道路宽为1米,整个“回”字形的长为8米,宽为7米,从入口点A沿着道路中央走到终点B,他共走了()米A.55B.56C.55.5D.56.53、如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P 是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为( )A.1 B.2 C.3 D.44、如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm5、如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )A.8 B.10 C.12 D.146、如图,□ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是()A.20 B.22 C.29 D.317、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB 于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③∠GDE=45°;④DG=DE在以上4个结论中,正确的共有()个A.1个 B.2 个 C.3 个 D.4个8、如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC9、如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠DHO=20°,则∠CAD的度数是( )A.20°B.25°C.30°D.40°10、如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.4 B.3 C.2 D.1二、填空题11、如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S▱AEPH=___.12、如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3 cm,则BF=______cm.13、如图,在▱ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为10,AB=4,那么对角线AC+BD= .14、如图,在边长为4的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=4,则线段EF长的最小值是.15、如图,在矩形ABCD中,BC=20 cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3 cm/s和2 cm/s,则最快___s后,四边形ABPQ 成为矩形.16、如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ= 度.三、简答题17、如图,延长▱ABCD的边AD到点F,使DF=DC,延长CB到点E,使BE=BA,分别连接点A,E 和C,F.求证:AE=CF.18、如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E,F分别是AB,CD上的点,且BE=DF,连接EF交BD于点O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求AE的长.19、如图,在▱ABCD中,AB=DB,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:四边形DFBE是矩形.20、已知在□ABCD中,AE BC于E,DF ADC 交线段AE于F.(1)如图1,若AE=AD ADC=60, 请直接写出线段CD与AF+BE之间所满足的等量关系;(2)如图2, 若AE=AD,你在(1)中得到的结论是否仍然成立, 若成立,对你的结论加以证明, 若不成立, 请说明理由;图1 图221、如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B 重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A的度数.22、如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.23、如图,在矩形ABCD中,AB=2,BC=5,E,P分别在AD,BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形?并证明你的判断.24、如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP 于点Q,连接MQ.设运动时间为t秒.(1)AM= ,AP= .(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC= .参考答案一、选择题1、D2、B3、D4、B【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=25、B6、.C7、C8、D【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵BD=DE,∴四边形DBFE是菱形.其余选项均无法判断四边形DBFE是菱形,故选:D.9、A 10、A二、填空题11、4_12、613、12 .【解答】解:因为△AOB的周长为10,AB=4,所以OA+OB=6;又因为平行四边形的对角线互相平分,所以AC+BD=12.14、2 ;15、4_16、30三、简答题17、证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC.∵DF=DC,BE=BA,∴BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.18、解:(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠OBE=∠ODF.又∵∠BOE=∠DOF,BE=DF,∴△OBE≌△ODF,∴BO=DO.(2)∵EF⊥AB,AB∥DC,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°,∴AE=EG.∵BD⊥AD,∴∠ADB=∠GDO=90°,∠GOD=∠G=45°,∴DG=DO,∴OF=FG=1.由(1)可知OE =OF=1,∴GE=OE+OF+FG=3,∴AE=3.19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,CD∥AB.∴∠CDB=∠ABD.∵BE平分∠ABD,DF平分∠CDB,∴∠FDB=∠CDB,∠EBD=∠ABD.∴∠FDB=∠EBD.∴DF∥EB.又∵AD∥BC,∴四边形DFBE是平行四边形.∵AB=DB,BE平分∠ABD,∴BE⊥AD.∴∠DEB=90°.∴四边形DFBE是矩形.20、(1)CD=AF+BE.(2)解:(1)中的结论仍然成立.证明:延长EA到G,使得AG=BE,连结DG.∵四边形ABCD是平行四边形,∴AB=CD, AB∥CD,AD=BC.∵AE⊥BC于点E,∴∠AEB=∠AEC=90.∴∠AEB=∠DAG=90.∴∠DAG=90.∵AE=AD,∴△ABE≌△DAG.∴∠1=∠2, DG=AB.∴∠GFD=90-∠3.∵DF平分∠ADC,∴∠3=∠4.∴∠GDF=∠2+∠3=∠1+∠4=180-∠FAD-∠3=90-∠3.∴∠GDF=∠GFD. ∴DG=GF.∴CD=GF=AF+AG= AF + BE. 即CD = AF +BE.21、解:(1)在Rt△AEB中,∵AC=BC,∴,∴CB=CE,∴∠CEB=∠CBE.∵∠CEF=∠CBF=90°,∴∠BEF=∠EBF,∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,∴∠FED=∠EDF,∵EF=FD.∴BF=FD.(2)能.理由如下:若四边形ACFE为平行四边形,则AC∥EF,AC=EF,又∵AC=BC,BF=EF∴BC=BF,……3分∴∠BCA=45°∵四边形ACFE为平行四边形∴ CF//AD ∴∠A=45°∴当∠A=45°时四边形ACFE为平行四边形.22、解:(1)四边形CEGF为菱形.证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC.∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE.∵图形翻折后EC与GE,FC与FG完全重合,∴GE=EC,GF=FC,∴GF=GE=EC=FC,∴四边形CEGF 为菱形.(2)当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是正方形,根据正方形的性质即可得到CE=CD=AB=3;当G与A重合时,CE取最大值,由折叠的性质得AE=CE.∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9-CE)2,∴CE=5.∴线段CE的取值范围是3≤CE≤5.23、解:(1)△BEC是直角三角形.理由:∵四边形ABCD为矩形,∴∠ADC=∠BAD=90°,AD=BC=5,AB=CD=2.∴CE2+BE2=5+20=25.∵BC2=52=25,∴BE2+CE2=BC2.∴∠BEC=90°.∴△BEC是直角三角形.(2)四边形EFPH为矩形.证明:∵四边形ABCD为矩形,∴AD=BC,AD∥BC.又∵DE=BP,∴四边形DEBP是平行四边形.∴BE∥DP.∵AD=BC,DE=BP,∴AE=CP.∴四边形AECP是平行四边形.∴AP∥CE.又∵BE∥DP,∴四边形EFPH是平行四边形.又∵∠BEC=90°,∴四边形EFPH是矩形.24、解:(1)8-2t;2+t (2分)(2)∵四边形ANCP为平行四边形时,CN=AP,∴6﹣t=8﹣(6﹣t),解得t=2,(5分)(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6﹣t﹣2t=8﹣(6﹣t),解得t=1,(9分)(4)(或8)(12分。
2023-2024学年小学数学北师大版四年级下第2章 认识三角形和四边形单元测试(含答案解析)
2023-2024学年北师大版小学数学单元测试学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;一、填空题(本大题共计8小题,每题3分,共计24分)1.至少用(________)个完全一样的三角形能拼成一个梯形。
.【答案】3【解析】2.三角形按角来分可以分成________、________、________;如果按边来边分可以分为________、________,其中等腰三角形又分为________和________.【答案】锐角三角形, 直角三角形, 钝角三角形, 不等腰三角形, 等腰三角形, 一般等腰三角形, 等边三角形【解析】解:三角形按角来分可以分成锐角三角形、直角三角形、钝角三角形;如果按边来边分可以分为不等腰三角形、等腰三角形,其中等腰三角形又分为一般等腰三角形和等边三角形。
故答案为:锐角三角形、直角三角形、钝角三角形、不等腰三角形、等腰三角形、一般等腰三角形、等边三角形。
3.当梯形的其中一个底缩小到一点时,它就变成了________,当其中一个底缩小到和另一个底相等时,它就变成了________.【答案】三角形, 平行四边形【解析】解:由图可知:当梯形的上底逐渐缩小到一点时,梯形就转化成三角形;当梯形的一个底缩小到和另一个底相等时,它就变成了平行四边形。
故答案为:三角形,平行四边形。
4.按要求分一分。
锐角三角形有________ 钝角三角形有________直角三角形有________ 等腰三角形有________.【答案】①④⑦⑨, ③⑥⑧, ②⑤⑩, ⑦④【解析】解:锐角三角形有①④⑦⑨;钝角三角形有③⑥⑧;直角三角形有②⑤⑦;等腰三角形有⑦④.故答案为:①④⑦⑨;③⑥⑧;②⑤⑦;⑦④.5.建筑工地上吊车的横梁上有许多三角形,这是利用了________.【答案】三角形具有稳定性【解析】解:建筑工地上吊车的横梁上有许多三角形,这是利用了三角形的稳定性.故答案为:三角形的稳定性.6.三角形的一个内角是30^\circ ,另一个内角的度数是它的2倍,第3个内角的度数是(________),这个三角形是(________)三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形测试题
一、选择题(24分)
1.下面几组条件中,能判定一个四边形是平行四边形的是( ). A .一组对边相等; B .两条对角线互相平分 C .一组对边平行; D .两条对角线互相垂直 2.下列命题中正确的是( ).
A .对角线互相垂直的四边形是菱形;
B .对角线相等的四边形是矩形
C .对角线相等且互相垂直的四边形是菱形;
D .对角线相等的平行四边形是矩形 3.如图所示,四边形ABCD 和CEFG 都是平行四边形,下面等式中错误的是( ). A .18180O ∠+∠= B .28180O ∠+∠= C .46180O ∠+∠= D .15180O ∠+∠=
G
F
87654321
C
B
A E
D
2y
y
x
x
2x
4y
卫
生间
厨房
客厅卧室
第3题图 第8题图
4.在正方形ABCD 所在的平面上,到正方形三边所在直线距离相等的点有( ). A .3个 B .4个 C .5个 D .6个
5.菱形的两条对角线长分别为3和4,那么这个菱形的面积为(平方单位)( ). A .12 B .6 C .5 D .7
6.矩形两条对角线的夹角为60O ,一条对角线与短边的和为15cm ,则矩形较短边长为( ) A .4cm B .2cm C .3cm D .5cm 7.下列结论中正确的有( )
①等边三角形既是中心对称图形,又是轴对称图形,且有三条对称轴; ②矩形既是中心对称,又是轴对称图形,且有四条对称轴; ③对角线相等的梯形是等腰梯形; ④菱形的对角线互相垂直平分.
A .①③;
B .①②③;
C .②③④;
D .③④
8.小李家住房的结构如图所示,小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少要买
木地板( )
A .12xy
B .10xy
C .8xy
D .6xy 二、填空题:(20分)
9.用正三角形和正方形组合能够铺满地面,每个顶点周围有______•个正三角形和______个正方形. 10.平行四边形的一组对角和为300O ,则另一组对角的度数均为______. 11.已知P 为平行四边形ABCD 的边AB 上一点,则PCD S ∆=____ABCD
S
.
12.已知平行四边形ABCD 中,A ∠比B ∠小20O ,那么C ∠的度数是________.
13.在平行四边形ABCD 中,若一条对角线平分一个内角,则四边形ABCD 为_______形. 14.一个正方形要绕它的中心至少旋转______,才能和原来的图形重合;若绕它的一个顶点至少旋转________,才能和原来的图形重合.
15.如图所示,在等腰梯形ABCD 中,共有_____对相等的线段.
O
C
D
B
A
16.梯形的上底长为a cm ,下底长为b cm (a b <),•它的一条对角线把它分成的两部分的面积比为_______. 三、解答题.
17.在四边形ABCD 中,A B C D ,2D B ∠=∠,AD 与CD 的长度分别为a 和b . (1)求AB 的长.(2)若A D A B ⊥于点A ,求梯形的面积.(10分)
18.梯形ABCD 中,AB CD ,DC AB <,过D 点作D E A B ,交AB 于点E ,若梯形周长为30cm ,
4cm CD =,则A D E ∆的周长比梯形的周长少多少厘米?(8分)
19.如图所示,已知四边形ABCD 为正方形,M 为BC 边中点,将正方形折起,使点M •与A 重合,
N
Q
P
M
D
C
B A
M
F
E
C
D
B
A
设折痕为EF ,则23
ME AB =,求AEM ∆的面积与正方形ABCD 面积的比.(12分)
20.如图所示,已知平行四边形ABCD 中,AC 的平行线MN 分别交,DA DC 的延长线于,M N ,交,AB BC 于,P Q ,求证:QM NP =.(8分)
21.已知AD 是ABC ∆中A ∠的平分线,DE AC 交AB 于E 点,D F A B 交AC 于F 点.求证:,E F 关于直线AD 对称.(8分)
22.(1)证明:在直角三角形中,若一条直角边等于斜边的一半,那么这条直角边所对的角为30O . (2)利用这个结论解决下列问题:如图所示,在梯形ABCD 中,,AB CD AD AC ⊥,AD AC ⊥,
AD AC =,DB DC =,,AC BD 交于点E ,•试问CE 与CB 相等吗,为什么?(10分)
参考答案 一、选择
1.B 2.D 3.A 4.C 5.B 6.D 7.D 8.A 二、填空 9.3 2 10.30°
11.1
2
12.80°13.菱 14.90° 360°15. 40 16.:a b
三、17.解:(1)过C 点作C E D A . ∵AB CD
∴四边形AECD 是平行四边形(两组对边分别平行的四边形是平行四边形), ∴AEC D ∠=∠.
∵2D B ∠=∠,
∴2AEC B ECB B ∠=∠=∠+∠ ∴ECB B ∠=∠, ∴EC EB = ∵,DC b AD a == ∴,AE b CE EB a === ∴AB a b =+ (2)22222
ABCD DC AB b a b a ab
S AB a ++++=⨯=⨯=梯形
18.解:∵,DC AB DE CB ∴四边形DEBC 是平行四边形, ∴,DC EB DE CB ==,
∴-2ADE ABCD L L DC AD AB BC AD AE DE DC ∆-=
+++++=梯形()() ∵4cm CD =
∴ADE ∆的周长比梯形的周长少8cm .
19.解:依题意可知EM EA = ∵2
2,33
EM AB EA AB ==
∵M 是BC 边中点, ∴12
MB BC =
∵正方形ABCD ∴90,B AB BC CD DA O ∠====
∴2221321622
AEM ABCD
AB AB
AE MB S S AB AB ∆⨯⨯===正方形::::
20.解:∵四边形ABCD 是平行四边形, ∴,AD BC AB ND . ∵AC MN ,
∴四边形,ACQM APNC 是平行四边形(两组对边分别平行的四边形是平行四边形)
∴AC PN MQ ==(平行四边形对边相等).
21.解:∵,DE AC DF AB ,
∴四边形AEDF 是平行四边形. ∵AD 是ABC ∆中A ∠的平分线, ∴12∠=∠,
∴四边形AEDF 是菱形(对角线平分一组对角的平行四边形是菱形).
∴EF 关于直线AD 对称.
22.解:过,A B 点分别作AM DC ⊥于M 点,B N D C ⊥于N 点. ∵AB DC ,∴A M B N =,
∵AD AC =,∴12
DM MC DC ==. ∵AD AC ⊥,∴45ACD O ∠= 12
AM MC MD DC ===
∵DB DC =
∴12
BN AM DB == ∴30BDC O ∠=
∴453075CEB ACD BDC O O O ∠=∠+∠=+=
11
(180)(18030)7522
DCB DBC BDC O O O O ∠=∠=-∠=-=
∴DBC CEB ∠=∠
∴CE CB =。