电气照明第五章 线性系统的频域分析与校正 习题与解答
第五章 线性系统的频域分析法习题
501第五章 线性系统的频域分析法5-1 设闭环系统稳定,闭环传递函数为)(s Φ,试根据频率特性的定义证明:系统输入信号为余弦函数)cos()(φω+=t A t r 时,系统的稳态输出为)](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。
证明:根据三角定理,输入信号可表示为 )90sin()( ++=φωt A t r ,根据频率特性的定义,有 ]90)(sin[|)(|)( +Φ∠++Φ=ωφωωj t j A t c ss , 根据三角定理,得证: )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。
5-2 若系统的单位阶跃响应t t e e t c 948.08.11)(--+-=,试确定系统的频率特性。
解:s s s s C 1361336)(2++=,361336)(2++=s s s G ,)9)(4(36)(ωωωj j j G ++=;2/122/12)81()16(36|)(|ωωω++=j G ,9arctan 4arctan )(ωωω--=∠j G 。
或:)(2.7)()(94t t e e t ct g ---== ;361336)]([)(2++==s s t g L s G ; 5-3 设系统如下图所示,试确定输入信号)452cos()30sin()(--+=t t t r作用下,系统的稳态误差)(t e ss 。
解:21)(++=Φs s s e ; )452sin()30sin()(+-+=t t t r6325.0|)(|=Φj e , 4.186.2645)(=-=Φ∠j ;7906.0|)2(|=Φj e , 4.18454.63)2(=-=Φ∠j ; 答案:)4.632sin(7906.0)4.48sin(6325.0)( +-+=t t t e ss 。
5-4 典型二阶系统的开环传递函数)2()(2n ns s s G ωζω+=, 当取t t r sin 2)(=时,系统的稳态输出为)45sin(2)( -=t t c ss ,试确定系统参数n ω和ζ。
第五章 线性系统的频域分析法 单元测试题(
第五章 线性系统的频域分析法单元测试题(C )一、填空题:1、频率特性仅适用于 系统及元件2、 Bode 图的低频段特性完全由系统开环传递函数中的积分环节数和 决定。
3、二阶振荡环节的对数幅频渐进特性的高频段的斜率为 (db/dec )。
4、当w 为增益的截止频率c w 时,幅值特性20lg|G (j c w )|= 。
5、频率特性可以由微分方程或传递函数求得,还可以用____ _____方法测定。
6、一般来说,系统的相位裕量愈大,则超调量__ _;穿越频率愈大,则调节时间__ ______。
7、一个稳定的闭环系统,若它开环右半平面极点数为P ,则它的开环传递函数的Nyquist 曲线必 时针绕(-1, j0)点 周。
8、对于最小相位系统,其开环幅相特性曲线G(j w )在w ®∞时,总是以确定的角度收敛于复平面的 。
9、设系统的频率特性G(j w )=R(w ) +jI(w ),则相频特性Ð G(j w )= 。
10、频率特性可以由微分方程或传递函数求得,还可以 方法测定。
11、闭环频率特性的性能指标有零频值 、谐振峰值 和频带宽度 。
二、单项选择题 (在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。
)1、当ω从−∞→+∞变化时,惯性环节的极坐标图为一个( )。
A 位于第一象限的半圆B 位于第四象限的半圆C 整圆D 不规则曲线2、w 从0变化到+ ∝时,一阶不稳定环节频率特性的幅相特性极坐标图为( )A .半圆B .椭圆C .圆D .双曲线3、利用奈奎斯特图可以分析闭环控制系统的( )A .稳态性能B .稳态和动态性能C .动态性能D .抗扰性能4、下列频域性能指标中,反映闭环频域指标的是( )。
A .谐振峰值MrB .相位裕量gC .模(或增益)裕量h (或G M )D .截止频率c w5、某系统开环频率特性G (j w )=2)1(2+w j ,当w =1 rad/s 时,其频率特性幅值A(1)=( ) A .2 B .2 C .1 D .1/26、 ω从0变化到+∞时,延迟环节频率特性极坐标图为( )A .圆B .半圆C .椭圆D .双曲线7、设有一个单位反馈系统的开环传递函数为G (S )=)1(+TS S K ,若要求带宽增加a 倍,相位裕量保持不变,则K 应变为( )A . 3K aB . K aC .aKD . 2aK 8、设开环系统频率特性3)1(4)(w w j j G +=,当w =1rad/s 时,其频率特性幅值 M (1)=( )A .42 B .24 C .2 D .22 9、设开环系统频率特性G (j w )=3)1(10w j +,则其频率特性相位移j (w )=-180o 时,对应频率w 为( )。
线性系统的频域分析法试题答案
线性系统的频域分析法【课后自测】5-1 频率特性有哪几种分类方法?解:幅频特性,相频特性,实频特性和虚频特性。
5-2 采用半对数坐标纸有哪些优点?解:可以简化频率特性的绘制过程,利用对数运算可以将幅值的乘除运算化为加减运算,并可以用简单的方法绘制近似的对数幅频特性曲线。
5-3 从伯德图上看,一个比例加微分的环节与一个比例加积分的环节串联,两者是否有可能相抵消。
若系统中有一个惯性环节使系统性能变差,那再添加一个怎样的环节(串联)可以完全消除这种影响,它的条件是什么?解:一个比例加微分的环节与一个比例加积分的环节串联,两者是有可能相抵消;。
若系统中有一个惯性环节使系统性能变差,那再添加一个一阶微分环节(串联)可以完全消除这种影响,两个环节的时间常数相同即可。
5-5 为什么要求在ωc 附近L (ω)的斜率为-20dB/dec ?解:目的是保证系统稳定性,若为-40 dB/dec ,则所占频率区间不能过宽,否则系统平稳性将难以满足;若该频率更负,闭环系统将难以稳定,因而通常取-20dB/dec 。
5-6 已知放大器的传递函数为()1K G s Ts =+ 并测得ω=1 rad/s、幅频A =φ=-π/4。
试问放大系数K 及时间常数T 各为多少?解:频率特性为:G (jω)=KjωT +1幅频和相频分别为:{|G (j1)|=√1+T2=12√2⁄φ(1)=−arctanT =−π4⁄ 得到:K =12,T =15-7 当频率ω1=2 rad/s 、ω2=20 rad/s 时, 试确定下列传递函数的幅值和相角: 1210(1)1(2)(0.11)G s G s s ==+解:(1)G 1(jω)=10jω=-j 10ω|G 1(jω)|=10ωφ1(ω)=−90°ω1=2 rad/s 时,|G 1(jω)|=102=5 ,φ1(ω)=−90° ω1=20 rad/s 时,|G 1(jω)|=1020=0.5 ,φ1(ω)=−90° (2)G 2(jω)=1jω(0.1jω+1)=1jω-0.1ω2|G 2(jω)|=ω√1+0.01ω2φ2(ω)=arctan 10ωω1=2 rad/s 时,|G 2(jω)|=12√1+0.01×22=0.49φ2(ω)=arctan 102=78.7°ω1=20 rad/s 时,|G 2(jω)|=120√1+0.01×202=0.02φ2(ω)=arctan 1020=26.6°5-8 设单位反馈系统的传递函数为10()1G s s =+ 当把下列信号作用在系统输入端时,求系统的稳态输出。
自控习题课1
总结和习题
内蒙古工业大学信息工程学院自动化系
☝ 第五章 线性系统的频域分析法
习题
绘制开环幅相曲线
总结和习题
内蒙古工业大学信息工程学院自动化系
☝ 第五章 线性系统的频域分析法
习题
绘制对数幅频渐近特性曲线
开环系统Bode图的绘制步骤 开环系统Bode图的绘制步骤 Bode
将开环传递函数表示为典型环节的串联(相乘的形式) 将开环传递函数表示为典型环节的串联(相乘的形式); 确定各一、二阶环节的交接频率并由小到大标示在对数频率轴上; 确定各一、二阶环节的交接频率并由小到大标示在对数频率轴上; 交接频率并由小到大标示在对数频率轴上 绘制低频段的渐近线。渐近线的斜率取决于积分的个数ν 绘制低频段的渐近线。渐近线的斜率取决于积分的个数ν,等于 20νdB/dec。 处纵坐标等于20lgK 的点, 20νdB/dec。在ω=1处纵坐标等于20lgK 的点, ω = ν K 时, 纵坐标为0 纵坐标为0。 向右延长最低频段渐近线, 向右延长最低频段渐近线,每遇到一个转折频率改变一次渐近线 斜率;改变的频率取决于该转折频率对应的典型环节的种类。 斜率;改变的频率取决于该转折频率对应的典型环节的种类。 惯性环节,-20dB/dec 振荡环节, 惯性环节, 振荡环节, -40dB/dec 一阶微分环节, 一阶微分环节,+20dB/dec 二阶微分环节,+40dB/dec 二阶微分环节,
总结和习题
内蒙古工业大学信息工程学院自动化系
☝ 第五章 线性系统的频域分析法
习题
绘制开环幅相曲线 解:频率特性为
2 2[1 − 16ω 2 − j10ω ] G ( jω ) = = (2 jω + 1)(8 jω + 1) (1 + 4ω 2 )(1 + 64ω 2 )
线性系统的时域分析与校正习题及答案
当
h(t ) = 0.9 = 1 −
T − τ −t 2 / T ; e T T − τ −t1 / T ; e T
t2 = T [ln(
T−τ ) − ln 0.1] T T−τ ) − ln 0. 9] T
当
h(t ) = 0.1 = 1 −
t1 = T [ln(
则
t r = t2 − t1 = T ln
T1 = 4, T2
3-7
⎛ ts ⎞ ∴ ts = ⎜ ⎜T ⎟ ⎟ T1 = 3.3T1 = 3.3 。 ⎝ 1⎠
设角速度指示随动系统结构图如图 3-48 所示。若要求系统单位阶跃响应无超调,
且调节时间尽可能短,问开环增益 K 应取何值,调节时间 t s 是多少? 解 依题意应取
ξ =1 , 这 时 可 设 闭 环 极 点 为
10 101
h(T ) = 0.632
(b)系统达到稳态温度值的 63.2%需要 0.099 个单位时间。
(2)对(a)系统:
Gn (s) =
C ( s) =1 N (s)
n(t ) = 0.1 时,该扰动影响将一直保持。
对(b)系统:
Φ n ( s) =
C ( s) = N (s)
1 10s + 1 = 100 10s + 101 1+ 10s + 1
(1) 若 ξ = 0.5 对应最佳响应,问起博器增益 K 应取多大? (2) 若期望心速为 60 次/min,并突然接通起博器,问 1s 钟后实际心速为多少?瞬时最大 心速多大? 解 依题,系统传递函数为
K 2 ωn 0.05 Φ( s) = = 2 2 K 1 s + 2ξω n s + ω n s2 + s+ 0.05 0.05
第五章 线性系统的频域分析法 单元测试题(A)
第五章 线性系统的频域分析法单元测试题(A )一、填空题:1、用频域法分析控制系统时,最常用的典型输入信号是_ __。
2、控制系统中的频率特性反映了 信号作用下系统响应的性能。
3、已知传递函数ss G 10)(=,其对应的幅频特性A(ω)=_ _,相频特性φ(ω)=___ ___。
4、常用的频率特性图示方法有极坐标图示法和_ _图示法。
5、对数频率特性曲线由对数 曲线和对数 曲线组成,是工程中广泛使用的一组曲线。
6、0型系统Bode 图幅频特性的低频段是一条斜率为 的直线。
7、I 型系统Bode 图幅频特性的低频段是一条斜率为 的直线。
8、Ⅱ型系统Bode 图幅频特性的低频段是一条斜率为 的直线。
9、除了比例环节外,非最小相位环节和与之相对应的最小相位环节的区别在于 。
10、传递函数互为倒数的典型环节,对数幅频曲线关于 0dB 线对称,对数相频曲线关于 线对称。
11、惯性环节的对数幅频渐进特性曲线在交接频率处误差最大,约为 。
12、开环幅相曲线的起点,取决于 和系统积分或微分环节的个数。
13、开环幅相曲线的终点,取决于开环传递函数分子、分母多项式中 和 的阶次和。
14、当系统的多个环节具有相同交接频率时,该交接频率点处斜率的变化应为各个环节对应的斜率变化值的 。
15、复变函数F(s)的零点为闭环传递函数的 ,F(s)的极点为开环传递函数的 。
16、系统开环频率特性上幅值为1时所对应的角频率称为 。
17、系统开环频率特性上相位等于-1800时所对应的角频率称为 。
18、延时环节的奈氏曲线为一个 。
19、w 从0变化到+¥时,惯性环节的频率特性极坐标图在__ _象限,形状为___ ___。
20、比例环节的对数幅频特性L(w )= dB二、单项选择题 (在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。
)1、用频域法分析控制系统时,最常用的典型输入信号是( )。
自动控制原理卢京潮主编课后习题答案西北工业大学出版社
自动控制原理卢京潮主编课后习题答案西北工业大学出版社SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。
(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sC R sC R R R s U s U r c ττ (b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sC R s U s U r c)(1111)()(2122222212ττ 5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s(1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5-3 若系统单位阶跃响应 试求系统频率特性。
大学电工电子基础习题参考答案:第5章习题习题参考答案
第五章习题参考答案5.1 题5.1的图所示的是三相四线制电路,电源线电压l U =380V 。
三个电阻性负载接成星形,其电阻为1R =11Ω,2R =3R =22Ω。
(1)试求负载相电压、相电流及中性线电流,并作出它们的相量图;(2)如无中性线,求负载相电压及中性点电压;(3)如无中性线,当L1相短路时求各相电压和电流,并作出它们的相量图;(4)如无中性线,当L3相断路时求另外两相的电压和电流;(5)在(3),(4)中如有中性线,则又如何?1L 2L 3L N题5.1的图解: ○1各相负载两端电压都等于电源相电压,其值为:V V U U l P22033803===。
各负载相电流分别为:()()AI I I I I I A R UI A R U I A R U I N P P P 1030cos 30cos 30sin 30sin 10,10,202232132332211=︒-︒++︒-︒-=======相量图如图(b )所示。
○2因为三相电源对称,而三相负载不对称时,由于无中性线,将使电源和负载中点之间的电位差不为零,而产生中性点位移。
设 V U U ︒∠=011 ()()()V V U U U V V U U U VV U U U V V R R R R U R U R U U NN N N N N N N ︒∠=︒∠-︒∠=-=︒-∠=︒∠-︒-∠=-=︒∠=︒∠-︒∠=-=︒∠=++︒∠+︒-∠+︒∠=++++=131252055120220131252055120220016505502200552212211112212022022120220110220111''''3'32'21'1321332211○3若无中性线,1L 相短路,此时电路如图(c )所示,此时1L 相的相电压01=U ,2L 相、3L 相的相电压分别等于2L 、1L 之间、3L 、1L 之间的线电压,所以有:V U U V U U ︒∠==︒-∠=-=150380,150380313122 各相电流为:()()A A I I IV R U I VR U I ︒∠=︒∠+︒-∠-=+-=︒∠==︒-∠==0301503.171503.171503.171503.17321333222 相量图如图(d )所示○4若无中线,3L 相断路,电路如图(e )所示,1L ,2L 两相成了串联电路: V V R I UV V R I U AA R R U I I ︒∠=⨯︒∠=∙=︒∠=⨯︒∠=∙=︒∠=+︒∠=+==3025322305.113012711305.11305.11221130380222111211221 ○5当有中性线,1L 相短路或3L 相断路,其他相电压、电流均保持不变。
第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】
)2
A(0) 1 (0) 0
G(jn )
A() 0 () 180
j
G(j0)
●
0
G(jn )
共振点
G( jn ) (n ) 0 G( jn ) (n ) 180
变化趋势 0 n () 0 , A() :1
n () 180 , A() : 0
零阻尼振荡环节在自然振荡频率处,相角突变180°。
A()
谐振现象是振荡系统的 特性,谐振频率 r 与系 统固有频率 n 和阻尼比
有关。当谐振频率等于
频率响应峰值
Mr 1/ (2 1 2 )
阶跃响应超调
p exp( / 1 2 )
固有频率时,则发生共振。
共振的危害巨大。
当阻尼比较小,且系统谐振频率处于输入信号的
频率范围时,系统输出会出现很大的振荡,影响系
5.2 典型环节与开环系统的频率特性
环节是系统的基本组成单元。將环节进行分类形成 典型环节。典型环节的频率特性是开环系统频率特性 的分解,而开环系统频率特性是闭环系统分析与设计 的基础。
一、典型环节的频率特性
1.典型环节的分类
环节:系统增益、零点或极点对应的因式
分类:按照增益的正负性、零点或极点的位置(实数 或复数、位于左半平面或右半平面)进行划分,共分 为最小相位、非最小相位两大类、12种典型环节。
设互为倒数的典型环节频率特性为
G1(j)=A1()e j1() G2 (j) =A2 ()e j2 ()
则由 G1(s) 1/ G2 (s) 得
A1()e j1 ( ) =A21()e j2 ( )
L1() L2 ()
互为倒数典型环节的对数相频曲线关于0°线对称, 对数幅频曲线关于0dB线对称。
自动控制原理的MATLAB仿真与实践第5章 线性系统的频域分析
7
【例5-1】 试绘制惯性环节G(jω)=1/(2s+1)的Nyquist曲线 和Bode图。
解:程序如下:
>>clear
G=tf(1,[2,1]); %建立模型
nyquist (G); %绘制Nyquist图
figure(2); bode (G); %绘制Bode图
4
ngrid;ngrid(‘new’):绘制尼科尔斯坐标网格即等 20lgM圆和等角曲线组成的网格。‘new’代表清除以前 的图形,与后一个nichols()一起绘制网格。
semilogx(w,20*log10(mag)):绘制半对数坐标下的幅 频特性曲线。
semilogx(w,phase*180/pi):绘制半对数坐标下的相频 特性曲线。
MATLAB提供了许多用于线性系统频率分析 的函数命令,可用于系统频域的响应曲线、参数分析 和系统设计等。常用的频率特性函数命令格式及其功 能见表5-1。 bode (G):绘制传递函数的伯德图。其中:G为传递
函数模型,如:tf(), zpk(), ss()。 bode(num,den):num,den分别为传递函数的分子与
本节分别介绍利用MATLAB进行频域绘图和频 率分析的基本方法。
6
5.2.1 Nyquist曲线和Bode图
MATLAB频率特性包括幅频特性和相频特性。 当用极坐标图描述系统的幅相频特性时,通常称为 奈奎斯特(Nyquist)曲线;用半对数坐标描述系 统的幅频特性和相频特性时,称为伯德(Bode) 图;在对数幅值-相角坐标系上绘制等闭环参数( M和N)轨迹图,称为尼克尔斯(Nichols)图。
运行结果如图5-2所示。
自动控制原理第五章
第五章 频域分析法目的:①直观,对高频干扰的抑制能力。
对快(高频)、慢(低频)信号的跟踪能力。
②便于系统的分析与设计。
③易于用实验法定传函。
§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。
其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。
《信号与系统》第五章知识要点+典型例题
是双边拉氏变换收敛域的一种特殊情况。 3、 常用函数单边拉氏变换对 表 5.1 列出了最常使用函数的单边拉氏变换对。 4、单边拉氏变换的主要性质 掌握拉氏变换的性质如图掌握傅里叶变换性质一样重要,应用性质并结合常用函数的 拉氏变换对就可以简便地求复杂信号的拉氏变换,或由复杂象函数求原函数。表 5.2 列出了 最常用的单边拉氏变换的性质。
n
(5.3)
式中, s = pi 为 F ( s ) 的第 i 个单阶实极点,系数 K i 由下式确定
K i = (s - pi ) F (s )
b.
s =p i
(5.4)
F ( s ) 有单阶共轭极点
设 s = -a ± jb 为 F ( s ) 的一对共轭极点。 求逆变换时把 F ( s ) 首先凑成类似余弦函数
2
掌握拉氏变换的重要性质,也应从性质的基本形式、应用该性质的基本思路及应用中 应注意的问题这样三个方面来掌握。许多性质的应用思路及注意的问题都类同傅里叶变换, 这里不再赘述。 表 5.1 编号 1 2 3 4 5 时域函数 f (t ) 常用信号的单边拉氏变换对 (t ³0 ) 象函数 F ( s ) 1
s
¥ s
f ( )d
F ( s ) 为真分式
f ( ) lim sF ( s ),
s0
s 0 在sF ( s )的收敛域内
5、常用的拉氏逆变换的求解方法 逆变换积分公式并不常用于求解拉氏逆变换,而经常使用的有以下几种。 (1) 查表法 若提供拉氏变换对表,可“对号入座” ,一一查找。但应试时,一不提供表, 二不准翻书查看。我们需要记住一些常用信号的拉氏变换对,结合拉氏变换的重要性质,加 以套用,求得拉氏逆变换。 (2) 部分分式展开法 该方法要求 F ( s ) 为有理真分式。若 F ( s ) 为假分式,应先利用多项式相除, 把 F ( s ) 表示成一个多项式加真分式的形式。对于多项式部分,对应的逆变换是非常容易求 得的,它们是冲激函数 (t ) 及其各阶导数项之和。例如
第五章1 控制系统的频域分析(频率特性与BODE图)
自动控制原理
幅相频率特性画法举例
画出二阶系统 G ( s ) = 112
的幅相频率特性
s (1 + 0 .02 s )
自动控制原理
2. 伯德图(Bode图)
如将系统频率特性G(jω ) 的幅值和相角分别绘在半对数坐
标图上,分别得到对数幅频特性曲线(纵轴:对幅值取分贝数
自动控制原理
极坐标图(Polar plot),幅相频率特性曲线,幅相曲线 当ω在0~∞变化时,相量G(jω) 的幅值和相角随ω而变化,与 此对应的相量G(jω) 的端点在复平面 G(jω) 上的运动轨迹 就称为幅相频率特性曲线或 Nyqusit曲线。画有 Nyqusit曲 线的坐标图称为极坐标图或Nyqusit图。( ω在0~-∞变化 对称于实轴) 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述了反馈系统 稳定性
这些幅频特性曲线将通过点
自动控制原理
0dB,ω = 1
L(ω ) = 20 lg 1 = −20 lg ω (dB ) jω
ϕ (ω ) = −90°
Magnitude (dB)
Phas e (deg)
20 10
0 -10 -20 -30 -40 -89
-89.5
-90
-90.5
-91
-1
10
Bode Diagram of G(jw )=1/(jw )
(a) 幅频特性
自动控制原理
ϕ(ω) = −arctgTω
自动控制原理
输出与输入的相位之差
(b)相频特性
Uo (s) = G(s) = 1
Uo ( jω) = G( jω) = 1 = 1
自动控制原理考试试题第五章习题及答案-2
第五章 线性系统的频域分析与校正练习题及答案—-25—12 已知)(1s G 、)(2s G 和)(3s G 均为最小相角传递函数,其近似对数幅频特性曲线如图5—79所示。
试概略绘制传递函数 G s G s G s G s G s 412231()()()()()=+的对数幅频、对数相频和幅相特性曲线.解:(1) L K 11204511()lg .ω== ∴=K 1180则: G s K 11()=(2) G s K s s 22081()(.)=+20201022lg /lg K K ω== , K 21= (3)L K K 333202001110()lg lg .ωω===s s K s G K 9)(,9111.01333====∴(4) G s G G G G 412231()=+ 将G G G 123,,代入得:G s s s 41801251()(.)=+对数频率特性曲线如图解5—12(a )所示,幅相特性曲线如图解5—12(b)所示:图解5—12 (a) Bode图 (b) Nyquist图5-13试根据奈氏判据,判断题5—80图(1)~(10)所示曲线对应闭环系统的稳定性。
已知曲线(1)~(10)对应的开环传递函数如下(按自左至右顺序)。
题号开环传递函数P N NPZ2-=闭环稳定性备注1 G sKT s T s T s()()()()=+++1231110 -1 2 不稳定2 G sKs T s T s()()()=++12110 0 0 稳定3 G sKs Ts()()=+210 —1 2 不稳定4 G s K T s s T s T T ()()()()=++>12212110 0 0 稳定 5 G s K s ()=30 -1 2 不稳定 6 G s K T s T s s ()()()=++123110 0 0 稳定 7 G s K T s T s s T s T s T s T s ()()()()()()()=++++++5612341111110 0 0 稳定 8 G s KT s K ()()=->1111 1/2 0 稳定 9 G s KT s K ()()=-<1111 0 1 不稳定 10G s Ks Ts ()()=-11—1/22不稳定5-14 已知系统开环传递函数,试根据奈氏判据,确定其闭环稳定的条件:)1)(1()(++=s Ts s Ks G ; )0,(>T K(1)2=T 时,K 值的范围; (2)10=K 时,T 值的范围; (3)T K ,值的范围.解 [])()()1)(1()1()1()1)(1()(2222ωωωωωωωωωωωY X T T j T K jT j j K j G +=++-++-=++=令 0)(=ωY ,解出T1=ω,代入)(ωX 表达式并令其绝对值小于111)1(<+=T KTT X得出: T T K +<<10 或 110-<<K T(1)2=T 时,230<<K ;(2)10=K 时,910<<T ;(3)T K ,值的范围如图解5—14中阴影部分所示。
(完整版)5.高频电子线路第五章习题
习题解答5-1 电路中存在有正反馈,且AF >1,是否一定会发生自激振荡?说明理由。
解答:不一定。
因为AF>1仅满足了自激振荡的振幅起振条件,此时,只有当πϕϕn F A 2=+即同时满足相位起振条件时才会发生自激振荡。
5-2 为什么晶体管LC 振荡器总是采用固定偏置与自生偏置混合的偏置电路?解答:晶体管LC 振荡器采用固定的正向偏置是为了使振荡器起振时为软激励状态,无须再外加强的激励下能起振,也不致停振。
而采用自生反向偏置则可以稳幅。
若两者不结合,则两个优点不可兼而有之。
5-3 什么是间歇振荡现象?试分析间歇振荡产生的原因?简述如何防止和消除间歇振荡。
解答:间歇振荡是指振荡器工作时,时而振荡,时而停振的现象。
原因是振荡器的自偏压电路参数选择不当。
防止和消除间歇振荡的方法是正确选择工作点以及ReCe 的数值。
5-4 反馈式自激振荡器由哪几部分组成?各自的功能是什么? 解答:反馈型自激振荡器的电路由三部分组成:(1) 包含两个或两个以上储能元件的振荡回路,完成能量交换。
(2) 直流电源,补充振荡回路电阻产生的损耗,维持等幅振荡。
(3) 有源器件和正反馈电路,控制能量在正确的时间内补充到电路中。
5-5 LC 振荡器的工作频率是严格等于调谐回路的谐振频率吗?为什么?解答:LC 振荡器的工作频率近似等于调谐回路的谐振频率,严格说,它的工作频率还应该与管子的参数有关,如0h 、i h 等。
5-6 LC 振荡器的静态工作点应如何选择?根据是什么?解答:振荡器静态工作点设计在甲类工作状态,采用自给偏压电路,如下图所示:随着振荡幅度的增加,振荡管便由线性状态很快地过渡到甲乙类乃至丙类的非线性状态,这时放大器的增益会下降,最终达到平衡状态。
5-7 一个振荡器,因为某种原因,使反馈电压v f 比输入信号v s 滞后于340︒,试问该振荡器还能否振荡?若能振荡,则振荡频率比原来相比是升高了,还是降低了? 解答:若此时反馈电压分量,使得反馈系数F>A1时,即可振荡,因v f 滞后v s 340︒,即产生一个负相角ϕ∆,频率与相位的关系为dtd ϕω=,因此频率降低了。
《电路原理导论》第五章习题解答
∆acb与∆bda相似。又因为阻抗三角形与电压三角形相似,且R2=80Ω,则
;
的幅角
所以
5-32图5-32电路中A3表读数为0,试求A4表的读数,并画出各电压、电流的相量图。
解:因为 所以L2、C2处于并联谐振
设 ,则
R2=10Ω,R1=10Ω, , ,试用结点法求电压 。答
解:
5-20试用网孔法求图5-19电路中各网孔电流,并求电压源供给的复功率。
答: ; ;
解:已知 , , ,R1=10Ω,R2=10Ω
;
;
验:
5-21一个7.5Ω的电阻与31.8mH的电感并联接在220V的工频电源上,试求①负载的复功率、有功功率,无功功率、功率因数;②如果输电线路允许的最大电流是50A,问还能并联多大的电阻?此时的功率因数是多少?
第五章习题解答
5-1按图形写出下列正弦量的表达式并给出它的周期、频率、角频率、幅值、初相位和初始值。
解(a): ; ;
; ;
(b)
; ;
5-2已知 , , 与 的相位差是多少,记时起点推后 ,它们的相位差是否变化?并求 。
解:
5-3工频正弦电源已知 ,设瞬时值 分别在±150V时开始作用于电路,试写出该电压的4个瞬时表达式,并画出波形图。
,试求网路N0的并联等效电路的元件值。
解:
5-14图5-14电路中欲使电感和电容上电压有效值相等,试求R值及各支路电流。
解:
; ;
;
5-15图5-15的电路中 超前 90°,且知 ,
, , ,试作:
画出相量图并求R、L、C。
解:设
所以 导前 45°,从相量图中可知
自动控制原理 第五章-2
Determine the stability of the system for two cases (1)K is small(2) K is large
G ( j ) H ( j )
K (1 jT1 )(1 jT2 )( j ) (1 T12 2 )(1 T22 2 ) K ((T1 T2 ) j (1 T 1T2 2 ) (1 T12 2 )(1 T22 2 )
0 ~ 90
K ( j 3) G ( j ) H ( j ) j ( j 1) K [4 j (3 2 )] (1 2 )
Im[G( j ) H ( j )] 0
c 3
G ( j ) H ( j )
K ( j 3) j ( j 1)
越(-∞,-1)区间一次。 开环频率特性曲线逆时针穿越(-∞,-1)区间时,随ω增加,频 率特性的相角值增大,称为一次正穿越N’+。 反之,开环频率特性曲线顺时针穿越(-∞,-1)区间时,随ω增 加,频率特性的相角值减小,则称为一次负穿越N’-。 频率特性曲线包围(-1,j0)点的情况,就可以利用频率特性曲线 在负实轴(-∞,-1)区间的正、负穿越来表达。
除劳斯判据外,分析系统稳定性的另一种常用判据 为奈奎斯特(Nyquist)判据。Nyquist稳定判据是奈奎斯 特于1932年提出的,是频率法的重要内容,简称奈氏判 据。奈氏判据的主要特点有
1.根据系统的开环频率特性,来研究闭环系统稳定性,而 不必求闭环特征根;
2.能够确定系统的稳定程度(相对稳定性)。 3.可分析系统的瞬态性能,利于对系统的分析与设计; 4.基于系统的开环奈氏图,是一种图解法。
N(s)=0 的根为开环传递函数的极点。
第5章线性系统的频域分析法重点与难点一、基本概念1.频率特性的
·145·第5章 线性系统的频域分析法重点与难点一、基本概念 1. 频率特性的定义设某稳定的线性定常系统,在正弦信号作用下,系统输出的稳态分量为同频率的正弦函数,其振幅与输入正弦信号的振幅之比)(ωA 称为幅频特性,其相位与输入正弦信号的相位之差)(ωϕ称为相频特性。
系统频率特性与传递函数之间有着以下重要关系:ωωj s s G j G ==|)()(2. 频率特性的几何表示用曲线来表示系统的频率特性,常使用以下几种方法:(1)幅相频率特性曲线:又称奈奎斯特(Nyquist )曲线或极坐标图。
它是以ω为参变量,以复平面上的矢量表示)(ωj G 的一种方法。
(2)对数频率特性曲线:又称伯德(Bode )图。
这种方法用两条曲线分别表示幅频特性和相频特性。
横坐标为ω,按常用对数lg ω分度。
对数相频特性的纵坐标表示)(ωϕ,单位为“°”(度)。
而对数幅频特性的纵坐标为)(lg 20)(ωωA L =,单位为dB 。
(3)对数幅相频率特性曲线:又称尼柯尔斯曲线。
该方法以ω为参变量,)(ωϕ为横坐标,)(ωL 为纵坐标。
3. 典型环节的频率特性及最小相位系统 (1)惯性环节:惯性环节的传递函数为11)(+=Ts s G 其频率特性 11)()(+===j T s G j G j s ωωω·146·对数幅频特性 2211lg20)(ωωT L +=(5.1)其渐近线为⎩⎨⎧≥-<=1 )lg(2010)(ωωωωT T T L a (5.2) 在ωT =1处,渐近线与实际幅频特性曲线相差最大,为3dB 。
对数相频特性)(arctg )(ωωϕT -= (5.3)其渐近线为⎪⎩⎪⎨⎧≥︒-<≤+<=10 90101.0 )lg(1.0 0)(ωωωωωϕT T T b a T a (5.4)当ωT =0.1时,有b a b a -=+=1.0lg 0 (5.5)当ωT =10时,有b a b a +=+=︒-10lg 90 (5.6)由式(5.5)、式(5.6)得︒=︒-=45 45b a因此:⎪⎩⎪⎨⎧≥︒-<≤︒-<=10 90101.0 )10lg(451.0 0)(ωωωωωϕT T T T a (5.7)(2)振荡环节:振荡环节的传递函数为10 121)(22<<++=ξξTs S T s G·147·其频率特性)1(21|)()(22ωωξωωT j Ts s G j G j s -+=== 对数幅频特性2222224)1(lg 20)(ωξωωT T L +--= (5.8)其渐近线为⎩⎨⎧≥-<=1)lg(4010)(ωωωωT T T L a (5.9) 当707.0<ξ时,在221ξω-=T 处渐近线与实际幅频特性曲线相差最大,为2121lg20ξξ-。
电气工程学概论答案(第五章)
题 5.2 图L第五章习题参考解答5.1 图示电路中的mH L 10=,pF C 100=。
请分别绘出该电路 阻抗的模和辐角随激励信号频率变化的曲线。
解:θωωωω∠=-=+=Z CL j Cj L j Z )1(1,C L Z ωω1-=,︒±=90θ,612301010100101011=⨯⨯⨯==--LCω;5.2 图示电路中的Ω=k R 1,H L 1.0=。
请分别绘出该电路阻抗的模和辐角随激励信号频率变化的曲线。
解:θωωωω∠=+=+=Z RLjL j Lj R L jR Z 1,2421011.01⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+=ωωωωR L L Z ,⎪⎭⎫ ⎝⎛-︒=⎪⎭⎫ ⎝⎛-︒=--311101.09090ωωθtg R L tg ,0=ω, 0=Z ,︒=90θ;410=ω,70710223=⨯=Z ,︒=45θ;∞=ω,310=Z , ︒=0θ;ω-ωωZ22103ω15.3图示电路中的Ω=100R ,mH L 1=,F C μ1=。
请分别绘出该电路阻抗的模和辐角随激励信号频率变化的曲线。
解:θωω∠=-+=Z CL j R Z )1(,2634221010101⎪⎪⎭⎫⎝⎛-+=⎪⎭⎫ ⎝⎛-+=ωωωωC L R Z , ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫⎝⎛-=-----ωωωωωωθ45163111010*********tg tg R CL tg , 4463010162.31010101011⨯==⨯==--LCω;0=ω, ∞=Z , ︒-=90θ;10104=ω,100==R Z ,︒=0θ;∞=ω,∞=Z , ︒=90θ;5.4 以 |)(|ωj H ∠)(ωθj 的形式写出下列电路的传递函数。
解:(1) ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-︒∠+=+==∠-∙∙R L tgL R LLj R L j U Uj j H ωωωωωωθω1221290)()()(; 题 5.3 图L题 5.4 图22ω-2(2) ⎪⎭⎫ ⎝⎛-∠+=+==∠-∙∙R L tgL R R RL j R U Uj j H ωωωωθω12212)()()(;5.5 在图示的无线电接收电路中,Ω=10R 。
【精品】电气照明答案
第一章照明技术的基本知识1。
3试述下列常用光度量的定义及其单位(1)光通量;(2)光强(发光强度);(3)照度;(4)亮度.答:(1)单位时间内光辐射能量的大小单位:流明(lm)(2)发光体在给定方向的发光强度是该发光体在该方向的立体角元dω内传输的光通量dφ与该立体角元之比,即单位立体角的光通量。
单位:坎德拉(cd),1cd=1lm/sr(3)被照物体表面上每单位面积所接收到的光通量.单位:勒克斯(lx)(4)单位投影面积上的发光强度。
单位:坎德拉/平方米(cd/m2)1.8什么是明视觉?什么是暗视觉?答:明视觉(或锥状视觉),视场亮度超过10cd/m2时,锥状细胞工作为主的视觉状态。
暗视觉(或杆状视觉),当视场亮度在10-6~10-2cd/m2时,杆状细胞工作,锥状细胞不工作的视觉状态。
1。
9什么是明适应?什么是暗适应?答:(1)明适应是指视野亮度由低向高变化时的视觉适应过程它是杆状细胞工作(暗)→锥状细胞工作(明),适应时间大约需要1min。
(2)暗适应是指视野亮度由高向低变化时的视觉适应过程,它是锥状细胞工作(明)→杆状细胞工作(暗),适应时间大约需要7min.1。
13什么是色温和相关色温?答:色温(度)是指当某一种光源的色品与某一温度下的完全辐射体(黑体)的色品完全相同时,完全辐射体(黑体)的温度即为这种光源的色温度,简称色温。
符号为Tc,单位为开(K)。
相关色温是指当某一种光源的色品与某一温度下的完全辐射体(黑体)的色品最接近时,完全辐射体(黑体)的温度即为这种光源的相关色温。
符号为Tcp,单位为开。
1.14如何表示光源的色表?答:光源的色表是指光源的表观颜色,与光源的色温有关。
1。
15什么是光源的显色性?如何表示?答:光源的显色性与参考标准光源相比较时,光源显现物体颜色的特性;它是照明光源对物体色表的影响,该影响是由于观察者有意识或无意识地将它与标准光源下的色表相比较而产生的;主要取决于光谱能量分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。
u rR 1u cR 2CCR 2R 1u ru c(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sCR sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++==(b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sCR s U s U r c)(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s (1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj ο45)22arctan()2(-=-=j ϕο4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2(οο-=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(ο+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωωο5.26)21arctan()1(45.055)1(-=-===Φj j ϕ ο4.18)31arctan()1(63.0510)1(====Φj j e e ϕ )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m s ϕϕ+-⋅Φ-++⋅Φ=οο)902cos(7.0)4.3sin(4.0οο--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m s ϕϕ+-⋅Φ-++⋅Φ=οο )6.262cos(58.1)4.48sin(63.0οο--+=t t5-3 若系统单位阶跃响应 )0(8.08.11)(94≥+-=--t e e t h tt试求系统频率特性。
解 ss R s s s s s s s C 1)(,)9)(4(3698.048.11)(=++=+++-=则 )9)(4(36)()()(++=Φ=s s s s R s C 频率特性为 )9)(4(36)(++=Φωωωj j j5-4 绘制下列传递函数的幅相曲线: ()()/1G s K s = ()()/22G s K s = ()()/33G s K s = 解 ()()()12G j K j K e j ==-+ωωπω=→∞00,()G j ω→∞∞=,()G j 0 ϕωπ()=-2幅频特性如图解5-4(a)。
()()()()222G j Kj Ke j ωωωπ==-ω=→∞00,()G j ω→∞∞=,()G j 0 ϕωπ()=-幅频特性如图解5-4(b)。
()()()()33332G j K j K e j ωωωπ==- 图解5-4ω=→∞00,()G j ω→∞∞=,()G j 0 ϕωπ()=-32幅频特性如图解5-4(c)。
5-5 已知系统开环传递函数)15.0)(12(10)()(2+++=s s s s s H s G试分别计算 5.0=ω 和2=ω 时开环频率特性的幅值)(ωA 和相角)(ωϕ。
解 )5.01)((21(10)()(2ωωωωωωj j j j H j G +-+=2222)5.0()1()2(110)(ωωωωω+-+=A215.0arctan 2arctan 90)(ωωωωϕ---︒-= 计算可得 ⎩⎨⎧︒-==435.153)5.0(8885.17)5.0(ϕA ⎩⎨⎧︒-==53.327)2(3835.0)2(ϕA5-6 试绘制下列传递函数的幅相曲线。
(1) G s s s ()()()=++52181(2) G s s s ()()=+1012解 (1) G j ()()()ωωω=-+511610222∠=--=-----G j tg tg tg ()ωωωωω11122810116取ω为不同值进行计算并描点画图,可以作出准确图形 三个特殊点: ① ω=0时, 00)(,5)(=∠=ωωj G j G ② ω=0.25时, ︒-=∠=90)(,2)(ωωj G j G③ ω=∞时, 0180)(,0)(-=∠=ωωj G j G幅相特性曲线如图解5-6(1)所示。
图解5-6(1)Nyquist 图 图解5-6(2) Nyquist 图(2) G j ()ωωω=+10122∠=--G j tg ()ωω10180两个特殊点: ① ω=0时, G j G j (),()ωω=∞∠=-1800② ω=∞时, G j G j (),()ωω=∠=-0900幅相特性曲线如图解5-6(2)所示。
5-7 已知系统开环传递函数 )1()1()(12++-=s T s s T K s G ; 0,,21>T T K当1=ω时,︒-=∠180)(ωj G ,5.0)(=ωj G ;当输入为单位速度信号时,系统的稳态误差1。
试写出系统开环频率特性表达式)(ωj G 。
解 )1()1()(12+--=s T s s T K s G先绘制)1()1()(120+-=s T s s T K s G 的幅相曲线,然后顺时针转180°即可得到)(ωj G 幅相曲线。
)(0s G 的零极点分布图及幅相曲线分别如图解5-7(a)、(b)所示。
)(s G 的幅相曲线如图解5-7(c)所示。
依题意有: K s sG K s v==→)(lim 0, 11==K e ssv ,因此1=K 。
︒-=-︒--=∠180arctan 90arctan )1(12T T j G︒=-+=+901arctan arctan arctan 212121T T TT T T121=T T另有: 5.01)(1)(11)1)(1()1(22212221212112=++=++--=+--=T T T T T T j T T T jT jT j G 021221222221222=-+-=-+-T T T T T T0)2)(1(2222222232=-+=-+-T T T T T可得: 22=T ,5.0121==T ,1=K 。
所以: )5.01(21)(ωωωωj j j j G +-=5-8 已知系统开环传递函数 )1)(1(10)(2++=s s s s G 试概略绘制系统开环幅相频率特性曲线。
解 )(ωj G 的零极点分布图如图解5 -8(a)所示。
∞→=0ω变化时,有︒-∞∠=+90)0(j G ︒-∞∠=-135)1(j G ︒∞∠=+315)1(G︒-∠=∞3600)(j G分析s 平面各零极点矢量随∞→=0ω的变化趋势,可以绘出开环幅相曲线如图解5-8(b)所示。
5-9 绘制下列传递函数的渐近对数幅频特性曲线。
(1) G s s s ()()()=++22181;(2) G s s s s ()()()=++20011012;(3) G s s s s s s ()(.)(.)()=++++40050212(4) G s s s s s s s ()()()()()=+++++20316142510122(5) G s s s s s s s ()(.)()()=+++++801142522解 (1) G ss s()()()=++22181图解5-9(1) Bode 图 Nyquist 图(2) G s s s s ()()()=++20011012图解5-9(2) Bode 图 Nyquist 图(3) )1)(12.0()12(100)1)(2.0()5.0(40)(22++++=++++=s s s s s s s s s s s G图解5-9(3) Bode图 Nyquist图(4) G ss s s ss s()()()()()=+++++20316142510122)110(12545)16()13(2520)(22+⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎭⎫⎝⎛++=sssssssG图解5-9(4) Bode图 Nyquist图(5) ⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+=+++++125451)1(11.01258.0)254)(1()1.0(8)(2222s s s s s s s s s s s s s G图解5-9(5) Bode 图 Nyquist 图5-10 若传递函数G s Ks G s v()()=0 式中,)(0s G 为)(s G 中,除比例和积分两种环节外的部分。
试证 ω11=K v式中,1ω为近似对数幅频特性曲线最左端直线(或其延长线)与0dB 线交点的频率,如图5-77所示。
证 依题意,G(s)近似对数频率曲线最左端直线(或其延长线)对应的传递函数为v sK 。
题意即要证明v sK的对数幅频曲线与0db 交点处的频率值ω11=K v 。
因此,令)(lg20=vj K ω,可得Kv ω11=, 故 ωω111v vK K =∴=,,证毕。
5-11 三个最小相角系统传递函数的近似对数幅频特性曲线分别如图5-78(a)、(b)和(c)所示。
要求:(1)写出对应的传递函数;(2)概略绘制对应的对数相频特性曲线。
图 5-78 5-11题图解 (a) 依图可写出:G s K ss()()()=++ωω1211其中参数:db L K 40)(lg 20==ω,100=K则: G s s s ()()()=++100111112ωω图解5-11(a) Bode图 Nyquist图(b) 依图可写出G sKss s()()()=++ωω12211KC==ωωω21图解5-11(b) Bode图 Nyquist图 (c) G sK ss s()()()=⋅++ωω2311200111lg,K Kωω==图解5-11(c) Bode图 Nyquist图5-12 已知)(1s G 、)(2s G 和)(3s G 均为最小相角传递函数,其近似对数幅频特性曲线如图5-79所示。