2011-2012(A)概率论与数理统计期末试卷+答案

合集下载

2011-2012公共基础《概率论与数理统计》期末考试试卷答案-NEW

2011-2012公共基础《概率论与数理统计》期末考试试卷答案-NEW

1华南农业大学期末考试试卷A 答案2011-2012学年第 1 学期 考试科目: 概率论与数理统计 填空题(本大题共 5 小题,每小题 3 分,共 15分) 1、32;2、0.6;3、1;4、21θθD D ≤;5、(2.68963,2.72037)。

二、选择题(本大题共 6小题,每小题 3 分,共 18 分)1、D ;2、B ;3、C ;4、A ;5、C ;6、B 。

三、解答题(本题8分)解:设A 为事件“产品合格”,B 为事件“机器状态良好”.已知(|)0.98P A B =,(|)0.55P A B =,()0.95P B =,()1()0.05P B P B =-=. …………… 2分由全概率公式可知,9585.055.005.098.095.0)|()()|()()(=⨯+⨯=+=B A P B P B A P B P A P ……… 3分由贝叶斯公式,所求概率为97.09585.098.095.0)()|()()|(≈⨯==A PB A P B P A B P … 3分四、解答题(本题11分)解:(1) 由(2)01d (,)d d e d x y x f x y y x A y +∞+∞+∞+∞-+-∞-∞==⎰⎰⎰⎰20e d e d 2x y AAx y +∞+∞--==⎰⎰.得2A =. … 2分 (2) (,)d (,)d xyF x y x f x y y -∞-∞=⎰⎰2002e d e d ,0,0,0,x y x y x y x y --⎧>>⎪=⎨⎪⎩⎰⎰其它. 2(1e )(1e ),0,0,0,x y x y --⎧-->>=⎨⎩其它. … 4分 (3) X 与Y 的边沿密度分别为(2)02,0,0()()0,00,0x y x X edy x e x f x f x y dy x x +∞-+-+∞-∞⎧⎧>>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰, …… 2分 (2)202,02,0()()0,00,0x y y Y edx y e y f y f x y dx y y +∞-+-+∞-∞⎧⎧>>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰, …… 2分 显然, (,)()()X Y f x y f x f y =成立,故X 与Y 独立. ……………………1分 五、解答题(本题8分)解:由X 服从区间]2,1[上的均匀分布,即⎩⎨⎧≤≤=其他,,0211)(~x x f X 当Xe Y 2=时,)ln 21(}ln 21{}{}{)(2y F y X P y e P y Y P y F X X Y =<=<=<= … 3分其中)(x F X 是X 的分布函数。

概率论与数理统计期终考试试卷A及参考答案

概率论与数理统计期终考试试卷A及参考答案

上海应用技术学院2011—2012学年第一学期 《概率论与数理统计》期(末)(A )试卷课程代码: B2220073 学分: 3 考试时间: 100 分钟 课程序号: 112-7244、7246、7248、7249、7251、7254、7255、7257、7258等共9个教学班 班级: 学号: 姓名:我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。

试卷共6页,请先查看试卷有无缺页,然后答题。

一、填空题(每题3分,共计18分)1、有321,,R R R 三个电子元件,用321,,A A A 分别表示事件“元件i R 正常工作”)3,2,1(=i ,试用321,,A A A 表示事件“至少有一个元件正常工作”:_______________。

2、连续型随机变量X 的分布函数为20,0,(),01,1, 1.x F x x x x ⎧<⎪=≤<⎨⎪≥⎩则(0.5 1.5)P X <<=_____。

3、设随机变量X 服从(3,7)F 分布,则随机变量1~Y X=____________。

4、设()28,10~N X ,()=<<200X P (用()Φ表示)。

5、已知随机变量,X Y ,有cov(,)5X Y =,设31U X =+,24V Y =-,则cov(,)U V =____。

6、设随机变量,X Y 相互独立~(5,0.5)X N ,~(2,0.6)Y N ,则()E XY =___________。

二、选择题(每题3分,共计18分)1、设S 表示样本空间,下述说法中正确的是( )(A )若A 为一事件,且()0P A =,则A =∅(B )若B 为一事件,且()1P B =,则B S = (C )若C S =,则()1P C =(D )若,A B 相互独立,则()()()P AB P A P B =+2、设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ。

2011-2012学期期末考试《概率论与数理统计》A卷上海海事大学

2011-2012学期期末考试《概率论与数理统计》A卷上海海事大学

第 1 页 共 4 页上 海 海 事 大 学 试 卷2011 — 2012 学年第一学期期末考试 《概 率 论 与 数 理 统 计》(A 卷)(本次考试允许使用计算器)班级 学号 姓名 总分 可能用到的概率:()20.9537.81χ=,()20.97530.22χ=, ()20.952436.415χ=, ()20.9752440.646χ=, ()20.0252428.24χ=, ()0.02511 2.2010t =, ()0.0259 2.2622t =,0.025(5,4)9.36F =,0.025(4,5)7.39F =, ()20.9772Φ=,()00.5Φ=一、 填空题(共5题,每空4分,共20分)请将正确答案写在题目后面的横线上。

1. A 、B 二个事件互不相容,1.0)(,8.0)(==B P A P ,则=−)(B A P _________。

2. 某人连续向一目标射击,每次命中的概率为34,他连续射击直到命中为止,则射击次数为3的概率是_________。

3. 设随机变量Y X 与相互独立,且()1,()2,D X D Y ==则()D X Y -=_________。

4. 设随机变量(0,1),()X N x ∼F 为其分布函数,则()()x x F +F -= 。

5. 学校春季种植新树苗100棵,已知这批树苗至种植当年秋季的成活率为0.96,现秋季对树苗的成活情况检查,利用中心极限定理未成活树苗不少于4棵的概率近似为 。

二、 计算题(共7题,其中1,4,5题每题12分;2,3题每题15分;6,7题每题7分,共80分)请将正确答案写在题目下方。

1. (12分)某地区需进行化验的病人中患A 种病者占35%,患B 种病者占60%,患C 种病者占5%,又知患,,A B C 三种病的病人化验结果为阳性的可能性分别为80%,35%85%和。

假定每个病人只可能患其中的一种病。

概率统计A解答(1)

概率统计A解答(1)

湖州师范学院 2010 — 2011 学年第 一 学期 《概率论与数理统计》期末考试试卷(A 卷)适用班级 090126 090127 考试时间 120 分钟学院 班级 学号 姓名 成绩题号 一 二 三 四 五 六 七 八 九 总分 得分一、填空题 (本题共20分,每空格2分)1.设A 、B 、C 表示三个随机事件,则事件“A 、B 、C 中恰有一个发生”可表示为C B A C B A C B A ++,事件“A 、B 、C 中至少发生二个”可表示为AC BC AB ++。

2.把5本书任意地放在书架上,其中指定的3本书放在一起的概率为103。

3.进行独立重复试验,每次试验成功的概率为p ,则在首次试验成功时共进行了m 次试验的概率为()11--m p p 。

4.若随机变量X 服从正态分布)21,1(N ,则X 的密度函数为=)(x ϕ2)1(1--x e π。

5.一批为产品共20个,其中3个次品,从中任取的3个中次品数不多于一个的概率为32013217317C C C C +。

6.设事件A 、B 、A ⋃B 的概率分别为p 、q 、r ,则=)(AB P r q p -+,=)(B A P q r -。

7.若随机变量X 服从泊松分布,)2()1(===X P X P ,则=≤)1(X P 23-e8.进行独立重复试验,每次试验事件A 发生的概率为p ,则在n 次试验中事得分件A 恰好发生()n k k ≤≤0次的概率为()kn kk np p C --1。

9.已知随机变量X 服从标准正态分布)1,0(N ,=≤)96.1(X P 0.975, 则=<)96.1(X P 0.95 。

10.加工在全产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是相互独立的,则经过三道工序生产出的产品是废品的概率是 0.316 。

11.设随机变量X 服从参数为p n ,的二项分布,则=EX np ,DX =()p np -1。

天津科技大学2011-2012学年第一学期《概率论与数理统计》(多概)期末考试试题(A卷)参考答案及评分标准

天津科技大学2011-2012学年第一学期《概率论与数理统计》(多概)期末考试试题(A卷)参考答案及评分标准

4
2011-2012 学年第一学期《概率论与数理统计》 (多概)期末考试试题(A 卷)参考答案及评分标准
查表得 1 / 2 ( n 1)
2 2 2 02..975 (8) 2.18, / 2 ( n 1) 0.025 (8) 17.53 , 7 分
而 0.975 (8) 2.18
九、某种虾的身长 X (单位:cm)服从正态分布 N ( , 2 ) ,现在随机抽取 9 只,算得平
均身长为 x 6 (cm) ,样本标准差 s 0.5745 (cm),求 的置信水平为 0.95 的置信区间. (本题 8 分) 解:由于 未知,故 的置信区间为 ( x
s t / 2 n
2
2
~(
(B) F ( n,n)
1) (C) F ( n,
(D) F (1,n)
三、某灯泡厂有甲、乙两条生产线,它们各自出产的灯泡中寿命大于 2500 小时的分别占有
80%和 90%,从它们出产的灯泡中各自随机地抽取一个, (1)求两个灯泡寿命都大于 2500 小 时的概率; (2)求两个灯泡中至少有一个寿命大于 2500 小时的概率. (本题 8 分)
8000 0.2 40 . 3 分
P(8100 X n 10000) P( X n np np (1 p )
8100 8000 40
X n np np (1 p )

10000 8000 )5分 40
P(2.5
50) (50) (2.5) 7 分 1 0.9938 0.0062 . 8 分
解:用 A, B 分别表示从甲、乙两个流水线上的产品中抽取的灯泡寿命大于 2500 小时,则 它们相互独立. 2 分 (1) P( AB) 3 分 P( A) P( B) 4 分 0.8 0.9 0.72 ; 5 分 (2) P( A

概率论与数理统计 期末试卷及答案 A

概率论与数理统计 期末试卷及答案 A

第 1 页 共 5 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷 参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。

1.设二项分布的随机变量,其数学期望与方差之比为4:3,则该分布的参数p =( ).A .0.5B .0.25C .0.75D .不能确定2.设随机变量X 与Y 的关系为21Y X =+,如果()D X =2,则()D Y =( ).A .4B .6C .8D .103.若X 服从区间[]2,6上的均匀分布,则{23}P x <<=( ).A .0.2B .0.75C .0.5D .0.254.若随机变量X 的期望EX 存在,则()E aX b +=( ).A .aEXB .2a EXC .aEX b +D .2a EX b +5.当随机变量X 的可能值充满( )时,则()cos f x x =可以成为随机变量X 的密度函数.A .π[0,]2B .π[,π]2C .[0,π]D .3π7π[,]226.矿砂中铜含量服从正态分布),(~2σμN X ,2μσ,未知,现从总体中抽取样本521,,,X X X ,5115i i X X ==∑,52211()5i i S X X ==-∑,在显著水平α下检验00:μμ=H ,则所取的统计量为( ).A .5/0σμ-X B .5/0S X μ- C .4/0σμ-X D .4/0S X μ-7.事件表达式A B +的表示( ).A .事件A 与事件B 同时发生 B .事件A 发生但事件B 不发生C .事件B 发生但事件A 不发生D .事件A 与事件B 至少有一个发生8.样本空间S 中的事件A 与B 相互独立的充要条件是( ). A .A B S += B .()()()P AB P A P B =C .AB =∅D .()()()P A B P A P B +=+9.设1X 、2X 是总体X 的样本,则下列统计量不是总体X 的期望的无偏估计量的是( ).A .1XB .121233X X + C .121()2X X + D .121()3X X +10.任何一个连续型随机变量X 的密度函数()f x 一定满足( ).A 卷第 2 页 共 5 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥A .0()1f x ≤≤B .() d 1f x x +∞-∞=⎰C .在定义域内单调不减D .lim ()1x f x →+∞= 11.袋中有5球,3新2旧,从中任取一球,无返回的取两次,A =第一次取新球,B =第二次取新球.求P (B|A )=( ).A .12B .23C .35D .1312.已知事件A 和B 互不相容,()0,()0P A P B >>,下式成立的是( ). A .()()()P A B P A P B =+ B .()()()P AB P A P B =C .()1P A B =D .()0P AB >13.若随机变量2(,),3,1,X N EX DX μσ==则11}P X ≤≤={-( ).A .2(1)1A Φ-、 B .(4)(2)B Φ-Φ、C .(4)(2)Φ--Φ-C 、 D .(2)(4)Φ-ΦD 、 14.参数为λ的指数分布的方差是( ).A .1λB .2λC .λD .21λ15.设X 为连续型随机变量,则{1}P X ==( ). A .1B .0C .不能确定D .以上都不对二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

《概率论与数理统计》试卷A(考试时间:90分钟; 考试形式:闭卷)(注意:请将答案填写在答题专用纸上,并注明题号。

答案填写在试卷和草稿纸上无效)一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。

浙江大学概率论2011-2012秋冬试卷

浙江大学概率论2011-2012秋冬试卷

E X _, P X 2 _。
答案:0.5; 1 1.5e0.5 0.09 3.有甲乙两只袋,甲袋里有 4 个红球,2 个白球;乙袋里有 2 个红球,2 个 白球。 现从甲袋中不放回抽取 2 个球放入乙袋,然后再从乙袋中不放回取出 2 球。以 X 表示从甲袋中取到的红球数,Y 表示从乙袋中取到的红球数,则

五、 某电子监视器的屏幕为单位圆。 设目标出现的位置点 A x, y 服从单位圆 ( x2 y 2 1)上的均匀分布。求(1)点 A 与屏幕中心位置(0,0)的距离 小于 0.5 的概率; (2) f Y X y x ; (3)若在某个时间段陆续观测到了 108 个目标点,求其中至多有 36 个目标点出现在第一象限( x 0 , y 0 )的 概率近似值。 答案: (1) P X 2 Y 2 1 4 0.25
1.6 1.5 答案: (1) P X 1.6 1 1 1 0.16 0.1
15 30 30 0.5 1 (2) P X i X i 0.5 1 6 0.18 i 1 0.1 30 i 16
ˆ 2 2 ,求 的置信度为 95%的单侧置信下限。 (3)若 n
答案: (1)似然函数 L
1 i1 e 2n
X i n
2
n
, xi , i 1, 2,, n 是 的单调增
ˆ min X1,, X n 函数,所以 的极大似然估计量
15 2 S 或 B2 ; 1 16 ; X 0.4375S ; S 2 7.26 16 二、 为比较三个型号的汽车的油耗情况, 随即抽取 A 型汽车 6 辆, B 型汽车 5 辆, C 型汽车 7 辆,记录每辆汽车每公升汽油行驶的公里数,得如下数据: 12.9 11.3 12.6 14.1 13.2 12.1 A型

2011-2012年1月4月7月10月全国自考概率论与数理统计(经管类)试题及答案

2011-2012年1月4月7月10月全国自考概率论与数理统计(经管类)试题及答案

全国2011年4月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ,B ,C 为随机事件,则事件“A ,B ,C 都不发生”可表示为( ) A .B.BC C .ABC D.2.设随机事件A 与B 相互独立,且P(A)=,P(B)=,则P(A B)=( )A . B.C . D.3.设随机变量X ~B(3,0.4),则P{X≥1}=( ) A.0.352 B.0.432 C.0.784 D.0.9364.已知随机变量X 的分布律为 ,则P{-2<X≤4 }=( )A.0.2B.0.35C.0.55D.0.8 5.设随机变量X 的概率密度为f(x)=,则E(X),D(X)分别为 ( )A.-3,B.-3,2C.3,D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=( )X -1 2 5 P 0.2 0.35 0.45A. B.C.2D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X与Y相互独立,则X-Y~( )A.N(-3,-5)B.N(-3,13)C.N (1,)D.N(1,13)8.设X,Y为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则XY=( )A. B.C. D.9.设随机变量X~2(2),Y~2(3),且X与Y相互独立,则( )A.2(5)B.t(5)C.F(2,3)D.F(3,2)10.在假设检验中,H0为原假设,则显著性水平的意义是( )A.P{拒绝H0| H0为真}B. P {接受H0| H0为真}C.P {接受H0| H0不真}D. P {拒绝H0| H0不真}二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

概率论及数理统计期末试卷习题及标准答案.doc

概率论及数理统计期末试卷习题及标准答案.doc

概率论及数理统计期末试卷习题及标准答案.doc概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50 个球,其中20 个红球, 30 个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为3/5。

2、设 P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么P( A U B )2/3。

3、若随机变量X 的概率密度为 f ( x ) Ax 2 , 1 x 1, 那么A=3/2。

4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/,其它区域都是 0,那么P( X2Y 21 )1/2。

25、掷 n 枚骰子,记所得点数之和为X,则 EX = 。

6、若 X, Y, Z 两两不相关,且DX=DY=DZ=2,则 D(X+Y+Z) = 6 。

7、若随机变量X1 , X 2 ,L , X n相互独立且同分布于标准正态分布N(0,1) ,那么它们的平方和 X 12 X 22 L X n2 服从的分布是2 ( n) 。

8、设n A是 n 次相互独立的试验中事件A 发生的次数,p是事件 A 在每次试验中发生的概率,则对任意的n Ap | } =0 。

0 ,lim {|n n9 、设总体X : N ( , 2 ),其中 2 已知,样本为X 1 , X 2 ,L , X n,设 H 0 :0 ,H 1 :X 0z 。

0 ,则拒绝域为n10、设总体 X 服从区间 [1, a] 上的均匀分布,其中 a 是未知参数。

若有一个来自这个总体的样本 2, , , , , 那么参数 a 的极大似然估计值$2.7 。

a = max{ x1 , x2 ,L , x n }二、选择题1、设10 张奖券只有一张中奖,现有10 个人排队依次抽奖,则下列结论正确的是( A )(A)每个人中奖的概率相同;( B)第一个人比第十个人中奖的概率大;(C)第一个人没有中奖,而第二个人中奖的概率是1/9 ;(D)每个人是否中奖是相互独立的2、设随机变量 X 与 Y 相互独立,且X : N (1, 2 ) ,Y : N ( 2 ,2),则X Y 服从的分布是( B )(A)N ( 1 2 , 2 ) ;(B)N ( 1 2 ,2 2 ) ;(C)N ( 1 2 , 2 ) ;(D)N ( 1 2 , 2 2 ) 3、设事件A、 B 互斥,且P ( A) 0 , P( B ) 0 ,则下列式子成立的是( D )( A)P( A | B )P( A) ;(B)P( B | A)0 ;( C)P( A | B ) P( B) ;( D)P( B | A) 0 ;4、设随机变量 X 与 Y 独立同分布, P(X= -1) = P(Y= -1) =1/2 ,P(X= 1) = P(Y= 1) =1/2 ,则下列成立的是( A )( A)P( X Y ) 1 / 2 ;( B)P( X Y ) 1 ;( C)P( X Y 0) 1/ 4 ;( D)P( XY 1) 1/ 4 ;5、有 10 张奖券,其中8 张 2 元, 2 张 5 元。

概率论与数理统计期末考试试卷及答案

概率论与数理统计期末考试试卷及答案

概率论与数理统计期末考试试卷及答案专业概率论与数理统计课程期末试卷A卷1.设随机事件A、B互不相容,p(A)=0.4,p(B)=0.2,则p(AB)=0.A。

2B。

4C。

0D。

62.将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率为3/16.A。

2B。

2/3C。

3/16D。

13/163.填空题(每空2分,共30分)1)设A、B是两个随机变量,p(A)=0.8,p(B)=。

则p(AB)=0.3.2)甲、乙两门彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.3、0.4,则飞机至少被击中一次的概率为0.58.3)设随机变量X的分布列如右表,记X的分布函数为F(x),则F(2)=0.6.X。

1.2.3p(X) 0.2.0.4.0.44)把三个不同的球随机地放入三个不同的盒中,则出现两个空盒的概率为3/5.5)设X为连续型随机变量,c是一个常数,则p(X=c)=0.6)设随机变量X~N(μ,1),Φ(x)为其分布函数,则Φ(x)+Φ(-x)=1.7)设随机变量X、Y相互独立,且p(X≤1)=1/2,p(Y≤1)=1/3,则p(X≤1,Y≤1)=1/6.8)已知P(X=0)=1/2,P(X=1)=1/4,P(X=2)=1/8,则E(X^2)=1/2.9)设随机变量X~U[0,1],由切比雪夫不等式可得P(|X-1/2|≥1/4)≤1/4.4.答案解析1)p(B)=0.375由乘法公式p(AB)=p(A)p(B)可得,0.3=0.8p(B),解得p(B)=0.375.2)P(未击中)=0.3×0.6+0.4×0.7=0.58由概率加法公式可得,P(未击中)=P(甲未击中且乙未击中)=P(甲未击中)×P(乙未击中)=0.3×0.6+0.4×0.7=0.58.3)F(2)=P(X≤2)=0.2+0.4=0.6由分布函数的定义可得,F(2)=P(X≤2)=P(X=1)+P(X=2)=0.2+0.4=0.6.4)P(两个空盒)=3/5将三个球分别放入三个盒子中,共有3×2×1=6种方案。

2011-2012《概率论》试卷答案

2011-2012《概率论》试卷答案

华南农业大学期末考试试卷(A 卷)2011-2012学年第 1 学期 考试科目: 概率论 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、 填空题(本大题共 8 小题,每小题 3 分,共 24 分) 1、一位运动员投篮四次,已知四次中至少投中一次的概率为0.9984,则该运动员投篮的命中率为________ 0.8_________ .2、若事件,,A B C 相互独立,且()0.25,()0.5,()0.4,P A P B P C ===,则()P A B C = _____0.775________________.3、设随机变量X 的分布函数0,0.4,()0.8,1,F x ⎧⎪⎪=⎨⎪⎪⎩ 111133x x x x <--≤<≤<≥,则{13}P X ≤≤=__0.6__. 4、袋中有50个乒乓球,其中20个是黄球,30个是白球.今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取到黄球的概率是______0.4______. 5、设随机变量X 服从参数为λ的泊松分布,且已知[(1)(2)]1E X X --=,则参数λ=____1__________.6、若随机变量ξ在[0,5]上服从均匀分布,则方程210X X ξ++=有实根的概率为_3/5___.7、已知()0.5,(\)0.3,P B P A B ==则()P AB =________0.2__________.8、设随机变量X 的密度函数23,02()80,x x f x ⎧<<⎪=⎨⎪⎩其他,则21E X ⎛⎫= ⎪⎝⎭____3/4____.二、选择题(本大题共 5 小题,每小题 3 分,共 15 分)1、对于事件,A B ,不正确的命题是( D ) (A) 若,A B 相容,则,A B 也相容 (B) 若,A B 独立,则,A B 也独立 (C) 若,A B 对立,则,A B 也对立 (D) 若,A B 对立,则,A B 独立2、下列函数可以作为某随机变量的密度函数的为:( B )(A) sin ,[0,]()0,x x f x π∈⎧=⎨⎩其他 (B) 1,0()00,0xe xf x x θθθ-⎧≥⎪=>⎨⎪<⎩()(C) 22()2,0()0,0x x f x x μσ--⎧≥=<⎩(D) ⎪⎩⎪⎨⎧<=其他,02,21)(x x f3、设随机变量2(,)X N μσ ,则随着σ的增大,概率(||)P X μσ-<( C ) (A) 单调增大 (B) 单调减少 (C) 保持不变 (D) 增减不定4、已知1,(1,2,)!kPX k c k k λ-=== ()为随机变量X 的概率分布列,其中0λ>为常数,则c =( D ).(A) e λ- (B) e λ (C) 1e λ-- (D) 1e λ-5、已知随机变量X 的分布函数为30,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩,则()E X =( A )(A) 1303x dx ⎰ (B)1401x dx xdx +∞+⎰⎰(C) 123x dx ⎰(D)40x dx +∞⎰三、解答题(本大题共 6 小题,共 61 分)1、测量某一目标的距离,测量误差X (cm)服从正态分布250,100N (),求:(1)测量误差的绝对值不超过150cm 的概率;(5分) (2)测得的距离不少于真实距离的概率.(5分) (已知(0.5)=0.6915(1)=0.8412(2)0.9772ΦΦΦ=;;)解:(1)由题设可得:1505015050{150}{150150}()()100100(1)(2)10.84120.977210.8184P X P X ---<=-<<=Φ-Φ=Φ+Φ-=+-=…………5分(2)由题设可得:50{0}1{0}1()(0.5)0.6915100P X P X ≥=-<=-Φ-=Φ=.…5分 2、已知玻璃杯成箱出售,每箱20只,假设各箱含0、1、2只残次品的概率分别为0.8、0.1、0.1. 一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,顾客开箱随机地察看四只,若无残次品,则买下该箱玻璃杯,否则退回. 求:(1)顾客买下该箱的概率α?(2)在顾客买下一箱中,确实没有残次品的概率β?(10分)解:设B={顾客买下该箱玻璃杯},012A A A 、、分别表示该箱中含有0、1、2件残次品,则由题可知 …………………………………………………………1分012()0.8;()0.1,()0.1.P A P A P A ===4200420(|)1;C P B A C ==41914204(|);5C P B A C ==418042012(|).19C P B A C == ……………4分(1) 由全概率公式有001122()()(|)()(|)()(|)4124480.810.10.10.94.519475P B P A P B A P A P B A P A P B A α==++=⨯+⨯+⨯=≈ …………7分(2) 由贝叶斯公式有 000()(|)0.8(|)0.85.()0.94P A P B A P A B P B β==== …………………10分3、设随机变量X 服从标准正态分布,求2Y X =的概率密度函数().Y f y (10分) 解:22(0,1),(),.x X N x x ϕ-=-∞<<∞ Y 的分布函数为 2()()()Y F y P Y y P X y =≤=≤ ……………………3分当0y ≤时,()()0Y F y P Y y =≤=,从而()0.Y f y = ……………………5分 当0y >时,2()(){(((Y F y P X y P X P X P X =≤=≤≤=≤-≤=Φ-Φ ………………7分从而2()()(((Y Y y f y F y ϕϕϕϕ-'''==Φ-Φ=-=+=……………9分所以20()0,0yY y f y y -⎧≥=<⎩……………………………………………10分 4、设一只昆虫所生的虫卵数X 服从参数为λ的泊松分布,而每个虫卵发育为幼虫的概率为p ,且各个虫卵是否发育为幼虫相互独立,试求一只昆虫所生的幼虫数Y 的数学期望和方差.(6分) 解:由题可知(),0,1,2,!n e P X n n n λλ-===(|)(1),0,1,2,,.k k n k n P Y k X n C p p k n -===-= ……1分由全概率公式,得0()()(|).n P Y k P X n P Y k X n ∞======∑…………2分因为当n k <时,()(|)0,P X n P Y k X n ====所以(1)()()(|)!(1)!!()!()[(1)]!()!()!(),0,1,2,!n k n k n k n kk n k n kk p k p P Y k P X n P Y k X n e n p p n k n k p e p k n k p e ek p e k k λλλλλλλλλλ∞=-∞-=--∞=---======---=-===∑∑∑………………4分即,一只昆虫所生的幼虫数Y 服从参数为p λ的泊松分布,故(),().E Y p D Y p λλ==…………………………………………6分5、设X 与Y 的联合概率密度函数为(2)e ,0,0,(,)0,x y A x y f x y -+⎧>>=⎨⎩其它.求:(1)常数A ;(2分) (2)分布函数(,)F x y ;(3分) (3){}P X Y <;(5分) (4)判断X 与Y 是否独立.(5分) 解 (1) 由(2)01d (,)d d e d x y x f x y y x A y +∞+∞+∞+∞-+-∞-∞==⎰⎰⎰⎰20e d e d 2xy AAx y +∞+∞--==⎰⎰. 得2A =. …………………………………………………………………………2分(2) (,)d (,)d xy F x y x f x y y -∞-∞=⎰⎰2002e d e d ,0,0,0,x yx y x y x y --⎧>>⎪=⎨⎪⎩⎰⎰其它.2(1e )(1e ),0,0,0,x y x y --⎧-->>=⎨⎩其它.………………………………5分图1 图2(3)如图1所示,{(,)|0}G x y x y =<<,故{}{}(,)(,)d d GP X Y P X Y G f x y x y <=∈=⎰⎰220230d 2e ed 2e (1e )d 2ed 2e d 211.33yx yy y yy y x yy y+∞+∞----+∞+∞--==-=-=-=⎰⎰⎰⎰⎰……………………10分(4) X 与Y 的边沿密度分别为(2)02,0,0()()0,00,0x y x X edy x e x f x f x y dy x x +∞-+-+∞-∞⎧⎧>>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰,(2)202,02,0()()0,00,0x y y Y edx y e y f y f x y dx y y +∞-+-+∞-∞⎧⎧>>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰,显然, (,)()()X Y f x y f x f y =成立,故X 与Y 独立. ……………………15分 6、计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差相互独立且在(0.5,0.5)-上服从均匀分布,问:(1)将1500个数相加,问误差总和的绝对值超过15的概率是多少?(5分) (2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90?(5分)(已知0.9099,(1.645)0.95Φ=Φ=) 解: 假设i X 表示每i 次计算时,所得到的误差,则~(0.5,0.5)i X U -,1,2,,1500i = ,……………………1分15001i i X X ==∑表示1500个数相加,所得到误差总和,则15000,12512EX DX ===,根据中心极限定理, X 近似服从标准正态分布.………………3分 (1){}{}1511515222(10.9099)0.1802.P X P X >=--<<≈-Φ=-=……………………5分(2)假设最多可有n 个数相加使得误差总和的绝对值小于10的概率不小于0.90,则1100.90n i i P X =⎧⎫<>⇒⎨⎬⎩⎭∑11010nin i i XP X P =⎧⎫⎪⎪⎧⎫-<<=<<⎨⎬⎩⎭⎪⎪⎩⎭∑∑210.9=Φ->……………………………………9分解得443n =.…………………………………………………10分。

《概率论与数理统计》期末考试答案

《概率论与数理统计》期末考试答案

1单选(2分)同时掷2颗均匀骰子,X表示点数大于4出现的个数,则以下结果正确的是得分/总分∙A.P(X<2)=5/9∙B.P(X=0)=P(X=1)∙C.P(X=2)=4/9∙D.P(X>0)=1正确答案:B你没选择任何选项2单选(2分)设随机变量(X,Y)的联合概率密度为则以下结果正确的是得分/总分∙A.∙B.P(X<0.5)=0.5∙C.E(Y)=E(X)∙D.正确答案:D你没选择任何选项3单选(2分)设总体,是来自X的简单随机样本,表示中出现的个数。

以下结果正确的是得分/总分∙A.,其中“”表示近似服从。

∙B.∙C.∙D.正确答案:C你没选择任何选项4单选(2分)研究某企业生产某种产品的产量和单位成本,数据资料如下:用Excel计算得下面两张表:设一元线性回归模型为,则以下结果不正确的是得分/总分∙A.∙B.在显著水平为0.05下回归方程的检验是不显著的∙C.的置信水平为95%的置信区间为(-4.83596,-3.07806)∙D.在显著水平为0.05下回归方程的检验是显著的正确答案:B你没选择任何选项5单选(2分)设总体具有概率密度是待估未知参数。

设是简单随机样本,是样本均值,以下说法正确的是得分/总分∙A.的极大似然估计量是∙B.的矩估计量是∙C.似然函数∙D.的极大似然估计量是正确答案:B你没选择任何选项6单选(2分)有两个独立正态总体均未知,从总体X与Y中分别取得容量均为8的独立样本,计算得样本均值分别为和,样本方差分别为和,记,取显著水平为0.05,对于假设,以下哪个结果是正确的?(备用数据:.)得分/总分∙A.p_值=0.009∙B.拒绝域为T≥1.7531∙C.拒绝域为|T|≥2.1448∙D.拒绝域为T≥1.7613正确答案:C你没选择任何选项7单选(2分)设随机变量X服从参数为2的泊松分布,则以下结果正确的是得分/总分∙A.P(X≤1)=P(X=2)∙B.P(X≥2︱X≥1)=P(X≥1)∙C.E(X)=D(X)∙D.E(X)>D(X)正确答案:C你没选择任何选项8单选(2分)在区间(0,2)中随机取一数X,X的分布函数记为F(x),数学期望为E(X),方差为D(X),则以下结果正确的是得分/总分∙A.∙B.F(0.5)=0.5∙C.D(X)=1/3∙D.F(2.2)=0正确答案:C你没选择任何选项9单选(2分)设总体X的分布律为,其中0<θ<1为待估未知参数。

概率论及数理统计期末考试试题及解答

概率论及数理统计期末考试试题及解答

WORD格式.《概率论与数理统计》期末试题一、填空题(每题 3 分,共 15 分)1.设事件 A,B 仅发生一个的概率为0.3 ,且 P(A)P(B)0.5,则A,B起码有一个不发生的概率为 __________.答案: 0.9解:P(ABAB)0.3即0.3P(AB)P(AB)P(A)P(AB)P(B)P(AB)0.52P(AB)因此P(AB)0.1P(AB ) P(AB)1P(AB)0.9.2.设随机变量 X 听从泊松散布,且 P( X1)4P(X2),则P(X3)______.答案:1 e 16解答:P( X1)P ( X0)P(X1)ee,P(X2)e由 P(X1)4P(X2) 知 ee2e2即 210解得 1,故P(X3)e 3.设随机变量 X 在区间 (0,2)上听从平均散布,则随机变量密度为 f Y(y)_________.答案:2 221162YX在区间 (0,4)内的概率114,0y4,f( y) F(y)f(y)YYX2y解答:设 Y 的散布函数为 F Y(y),X的散布函数为F X(x) ,密度为2F(y)P(Yy)P(Xy)P(yXy ) F(y ) F(y )YXX由于 X~U(0,2) ,因此 F(y ) 0 ,即 F Y(y)F X(y )Xy0,.其余f X(x) 则专业资料整理WORD格式教育资料专业资料整理WORD 格式.故11,0y4,f( y) F(y)f(y )4yYYX2y0,其余.另解在 (0,2) 上函数2yx 严格单一,反函数为h(y)y因此11f(y)f(y)4,0y4,yYX2 y0,其余.4.设随机变量 X,Y 互相独立,且均听从参数为的指数散布,2P(X1)e ,则_________, P{min(X,Y)1}=_________.答案: 2,- 4P{min(X,Y)1}1e解答:2P(X1)1P(X1)ee ,故 2P{min(X,Y)1 }1P{min(X,Y)1 }1P(X1)P(Y1)41e.5.设整体 X 的概率密度为(1)x,0x1,f(x)1.0,其余X 1,X 2,,X 是来自 X 的样本,则未知参数的极大似然预计量为_________.n答案:$11n1xlnn i 1i解答:似然函数为nnL ( x ,L,x;)(1)x(1)(x,L,x)1ni1ni1nlnLnln(1)lnxii1dlnLn nlnx@0d1ii1专业资料整理WORD格式解似然方程得的极大似然预计为教育资料专业资料整理WORD格式.$11.n1ln xni 1i二、单项选择题(每题 3 分,共 15 分)1.设 A,B,C为三个事件,且A,B 互相独立,则以下结论中不正确的选项是(A)若 P(C)1 ,则 AC与 BC也独立 .(B)若 P(C)1 ,则 AUC 与 B 也独立 .(C)若 P(C)0 ,则 AUC 与 B 也独立 .(D)若 CB,则 A 与 C也独立 . ()答案:( D) .解答:由于概率为 1 的事件和概率为0 的事件与任何事件独立,因此(A),(B),(C)都是正确的,只好选(D) .事实上由图可见A与C不独立.SABC2.设随机变量X~N(0,1),X的散布函数为(x),则P(|X|2)的值为(A) 2[1(2)]. ( B) 2(2)1.(C) 2(2). ( D) 12(2). ()答案:( A)解答: X~N(0,1) 因此 P(|X|2)1P(|X|2)1P(2X2)1(2)(2)1[2(2)1]2[1(2)]应选(A).3.设随机变量 X 和 Y 不有关,则以下结论中正确的选项是(A)X 与 Y 独立 . ( B)D( XY)DXDY.(C)D(XY)DXDY. ( D) D(XY)DXDY.()教育资料专业资料整理WORD 格式.答案:( B )解答:由不有关的等价条件知,xy0cov ( x , y )0D( XY) DXDY+2cov ( x , y )应选( B ) .4.设失散型随机变量 X 和 Y 的结合概率散布为( X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)P1111 69183若 X,Y 独立,则 , 的值为( A )21.( )12.,A,9999 . ()( C )11( D )51,,661818答案:( A )解答:若 X,Y 独立则有P(X2,Y2)P(X2)P(Y2)Y123X1111 1121 169183()()() 11 3939233 21 111, 291899故应选( A ) .5.设整体 X 的数学希望为 ,X 1,X 2,L,X n为来自 X 的样本,则以下结论中正确的选项是(A)X1是的无偏预计量 . ( B)X1是的极大似然预计量 .(C)X1是的相合(一致)预计量 . ( D) X1不是的预计量 . ()答案:( A)解答:EX,因此 X1是的无偏预计,应选(A) .1三、( 7 分)已知一批产品中90%是合格品,检查时,一个合格品被误以为是次品的概率为0.5 ,一个次品被误以为是合格品的概率为0.02 ,专业资料整理WORD格式教育资料专业资料整理WORD格式.求( 1)一个产品经检查后被以为是合格品的概率;( 2)一个经检查后被以为是合格品的产品确是合格品的概率.解:设 A‘任取一产品,经查验以为是合格品’B‘任取一产品确是合格品’则( 1) P(A)P(B)P(A|B)P(B)P(A| B)0.9 0.950.10.020.857.P( B|A)0.9977( 2).P(A)0.857四、( 12 分)从学校乘汽车到火车站的途中有 3 个交通岗,假定在各个交通岗碰到红灯的事件是互相独立的,而且概率都是2/5. 设 X 为途中碰到红灯的次数,求 X 的散布列、散布函数、数学希望和方差 .解: X 的概率散布为23kk3kP(Xk ) C()()k0,1,2,3.355X0123即2754368PX 的散布函数为0,x0,27,0x1,12581F(x),1x2,125117,2x3, 1251,x3.EX26 3,55 2318DX3.5525五、( 10 分)设二维随机变量(X, Y) 在地区 D{(x,y)|x0,y0,xy1}上听从平均散布 . 求( 1) ( X,Y) 对于 X 的边沿概率密度;( 2) ZXY 的散布函数与概率密度 .专业资料整理WORD格式教育资料专业资料整理WORD格式.解:( 1) (X,Y)的概率密度为y2,(x,y)D1f(x,y)0,.x+y=1其余DD122x,0x1 x f(x)f(x,y)dy0z1x+y=zX0,其余(2)利用公式 f Z(z)f(x,zx)dx2,0x1,0zx1x2,0x1,xz1.此中 f(x,zx)0,0,其余其余 .当 z0或 z1时 f Z(z)0zzzz=x0z1时f(z)2dx2x2zZ故 Z 的概率密度为x f(z)2z,0z1,Z0,其余 .Z 的散布函数为0,z00,z0,zz2f(z)f(y)dy2ydy,0z1z,0z1,ZZ1,z1.1,z1或利用散布函数法0,z0,F(z)P(Zz)P(XYz)2dxdy,0z1,ZD11,z1.0,z0,2z,0z1,1,z1.2z,0z1,f(z)F(z)ZZ0,其余 .专业资料整理WORD格式六、( 10 分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标 Y 相222互独立,且均听从N(0,2)散布.求(1)命中环形地区D{(x,y)|1xy2}的教育资料专业资料整理.概率;( 2)命中点到目标中心距离WORD格式22ZXY的数学希望 .解:( 1)P{X,Y)D}f(x,y)dxdyyDx D01212221rr 2r11ed ( )eee ;88828124821( 2)222218EZE(XY)xyedxdy22xy 822rr 112882 rerdrderdr84000222 rrr21888reedredr2.0 022七、(11 分)设某机器生产的部件长度(单位:cm )2X~N( ,) ,今抽取容量为 16 的样20.16 本,测得样本均值x10 ,样本方差0.95 的置信区s. ( 1)求的置信度为间;(2)查验假定2H 0:0.1 (明显性水平为 0.05 ) .专业资料整理WORD格式(附注) t 0.05 (16)1.746,t 0.05 (15)1.753,t0.025 (15)2.132,2220.4 (16)26.296,0.05 (15)24.996,0.025 (15)27.488.解:(1)的置信度为 1 下的置信区间为ss( Xt(n1),Xt(n 1))/2/2nnX10,s0.4,n16,0.05,t(15)2.1320.25因此的置信度为0.95 的置信区间为(9.7868 , 10.2132 )(2)H0:0.1222(n1).的拒绝域为教育资料专业资料整理WORD格式.2215S2151.624 0.05 (15)24.996由于,0.5222424.996(15),因此接受H.0.26 0专业资料整理WORD格式教育资料专业资料整理。

《概率论与数理统计》期末考试试题及解答

《概率论与数理统计》期末考试试题及解答

P( X 2, Y 2) P(X 2)P(Y 2)
1
1
21
(
)( ) ( )
3
9
39
2
1

9
9
故应选( A ) .
5.设总体 X 的数学期望为
正确的是
, X1 , X 2 , , X n 为来自 X 的样本,则下列结论中
( A ) X1 是 的无偏估计量 .
( B) X1 是 的极大似然估计量 .
( C) X1 是 的相合(一致)估计量 . ( D) X1 不是 的估计量 . ( )
的指数分布, P( X 1) e 2 ,则
_________ , P{min( X ,Y ) 1} =_________.
答案:
2 , P{min( X ,Y ) 1} 1 e-4
解答:
P(X 1) 1 P( X 1) e e 2 ,故
2
P{min( X ,Y ) 1} 1 P{min( X ,Y ) 1}
事实上由图
S AB
C
可见 A 与 C 不独立 .
A ),( B),(C)
2.设随机变量 X ~ N (0,1), X 的分布函数为 ( x) ,则 P (| X | 2) 的值为
( A ) 2[1 (2)] .
( B) 2 (2) 1 .
( C) 2 (2) .
( D ) 1 2 (2) .
()
答案:( A )
( C) P( A) P( A1 A2 )
( D) P( A) P( A1 ) P( A2 ) 1
( 4)
设随机变量 X ~ N ( 3 , 1), Y ~ N ( 2, 1), 且 X 与 Y 相互独 立 , 令 Z X 2 Y 7 , 则 Z ~ ( ). (A) N (0, 5); (B) N ( 0, 3); (C) N ( 0 , 46 ); (D) N ( 0 , 54).

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答
答案:
解答:
似然函数为
解似然方程得 的极大似然估计为
.
2、单项选择题(每小题3分,共15分)
1.设 为三个事件,且 相互独立,则以下结论中不正确的是
(A)若 ,则 与 也独立.
(B)若 ,则 与 也独立.
(C)若 ,则 与 也独立.
(D)若 ,则 与 也独立.()
答案:(D).
解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D).
九、(10分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 , 的边缘密度;(3)判断 与 是否相互独立
十、(8分).设随机变量( )的联合密度函数为
求 ,进一步判别 与 是否不相关。
十一、(7分).设 是来自总体 的一个简单随机样本,总体 的密度函数为
求 的矩估计量。
十二、(5分)总体 测得样本容量为100的样本均值 ,求 的
数学期望 的置信度等于的置信区间。(
一、单项选择题:(15分)
1、D
2、D
3、B
4、A
5、C
二、填空题:(12分)
1、 ;
2、-1
3、 更
4、 , ;
三、(7分)
解:
四、(9分)
解:(1)由

(2)
(3)
五、(6分)
六、(8分)
解:设用 表示乙箱中次品件数,则 的分布律为
的分布函பைடு நூலகம் 为
七、(7分)
解:
‘任取一产品确是合格品’
则(1)
(2) .
4、(12分)
从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设 为途中遇到红灯的次数,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010-2011(1)概率论与数理统计期末试卷专业班级 姓名 得分一、单项选择题(每题2分,共20分)1.设A 、B 是相互独立的事件,且()0.7,()0.4,P A B P A ⋃==则()P B = ( A ) A. 0.5 B. 0.3C. 0.75D. 0.422、设X 是一个离散型随机变量,则下列可以成为X 的分布律的是 ( D )A.101p p ⎛⎫ ⎪-⎝⎭(p 为任意实数) B.123450.10.30.30.20.2x x x x x ⎛⎫ ⎪⎝⎭C. 33()(1,2,...)!ne P X n n n -=== D. 33()(0,1,2,...)!ne P X n n n -===3.下列命题不正确的是 ( D ) (A)设X 的密度为)(x f ,则一定有⎰+∞∞-=1)(dx x f ;(B)设X 为连续型随机变量,则P (X =任一确定值)=0; (C)随机变量X 的分布函数()F x 必有01)(≤≤x F ; (D)随机变量X 的分布函数是事件“X =x ”的概率;4.若()()()E XY E X E Y =,则下列命题不正确的是 ( B ) (A)(,)0Cov X Y =; (B)X 与Y 相互独立 ; (C)0=XY ρ; (D)()()D X Y D X Y -=+;5. 已知两随机变量X 与Y 有关系0.80.7Y X =+,则X 与Y 间的相关系数为 ( B ) (A)-1 ( B)1 (C)-0.8 (D)0.7 6.设X 与Y 相互独立且都服从标准正态分布,则( B ) (A)(0)0.25P X Y -≥= (B)(min(,)0)0.25P X Y ≥= (C)(0)0.25P X Y +≥= (D)(max(,)0)0.25P X Y ≥=7. 设随机变量X 服从正态分布),2(2σN ,其分布函数为()F x ,则对任意实数x ,有( B ) (A)()()1F x F x +-= (B)1)2()2(=-++x F x F (C)1)2()2(=-++x F x F (D)1)2()2(=-+-x F x F8.设(,)X Y 的联合分布律如下,且已知随机事件(0X =)与(1X Y +=)相互独立, 则b a ,的值为 ( A )(A) 1.0,4.0==b a ,(B) 3.0,2.0==b a ,(C) 4.0,1.0==b a ,(D) 2.0,3.0==b a 9.设袋中有编号为1,2,…,n 的n 张卡片,采用有放回地随机抽取k ()n k ≤张卡片, 记X 表示k 张卡片的号码之和,则()E X 为 ( A )(A) (+1)2k n (B) (+1)2n (C)(+1)2n k (D) (-1)2n k10.设X ~12)-1)(X -E(X )(=且λπ,则λ= ( C ) (A)3; (B)4 ; (C)1; (D)2; 二、填充题(每格2分,共32分)1、已知P(A)=P(B)=P(C)=25.0,P(AC)=0,P(AB)=P(BC)=15.0,则A 、B 、C 中至少有一个发生的概率为 0.45 。

2、A 、B 互斥且A=B ,则P(A)= 0 。

3、设A 、B 为二事件,P(A)=0.8,P(B)=0.7,P(A ∣B )=0.6,则P(A ∪B)= 0.88 。

4、设X 、Y 相互独立,X ~)3,0(U ,Y 的概率密度为⎪⎩⎪⎨⎧>=-其它,00,41)(41x e x f x ,则(253)E X Y -+= -14 ,(234)D XY -+=147 。

5、设某试验成功的概率为0.5,现独立地进行该试验3次,则至少有一次成功的概率为 0.8756、已知()3E X =,()D X =2,由切比雪夫不等式估计概率 (34)P X -≥≤ 0.125 。

7、设(100,0.2)X B ,则概率(P 20-X )4≤≈ 0.68 ()84.0)1(=Φ。

8.设X 的分布函数⎪⎩⎪⎨⎧≥-<=1,111,0)(2x x x x F ,则=)(X E 29.已知随机变量X ~),(2σμN ,且)1()5(,5.0)2(-Φ=≥=≥X P X P ,则=μ 2 ,=2σ9 。

10.设Y X 与相互独立,X ~),(2σμN ,Y 在[]4,0上服从均匀分布,则Y X 与的联合概率密度为(,)f x y=22()2,,040,x x y μσ--⎧-∞<<+∞≤≤⎩其它11.把9本书任意地放在书架上,其中指定3本书放在一起的概率为11212. 已知()0.6P A =,()0.8P B =,则()P AB 的最大值为 0.6 ,最小值为 0.4 。

13.已知()0.5,()0.6,()0.2P A P B P A B ===,则()P AB = 0.3 。

三、(4分)一袋中有4个白球,4个红球,2个黑球,现作有放回抽取3次,每次从中取一个,求下列事件的概率。

(1)第三次才取到白球 (2)3个颜色不全相同解:设A为“第三次才取到白球”的事件;B为“3个颜色不全相同”的事件 (1) 664()0.144101010P A =⋅⋅= (2) 333()1(0.40.40.2)0.864P B =-++=四、(6分)设随机变量X 的概率密度为0.2,01()0.4,460,x f x x ≤≤⎧⎪=≤≤⎨⎪⎩其它又知()0.8P X k ≥=,求(1)k 的取值范围,(2)X 的分布函数()F x 解:(1) 显然646414(4)0.40.8,(1)00.40.8P X dx P X dx dx ≥==≥=+=⎰⎰⎰故满足()0.8P X k ≥=的k 的取值范围是[]1,4 (2) X 的分布函数()F x =0,00.2,010.2,140.4 1.4,461,6x x x x x x x <⎧⎪≤<⎪⎪≤<⎨⎪-≤<⎪≥⎪⎩ 五、(9分)设连续型随机变量X 的分布函数为,1()ln ,1,a x F x bx x cx d x e d x e<⎧⎪=++≤≤⎨⎪>⎩求(1)常数,,,a b c d ;(2)密度函数()f x ;(3)()E X解: (1) 由()0()1(10)(10),(0)(0)0,1,1,1F a F d c d F F a d F e F e be ce d a b c d -∞==+∞==+=+=-==+=-=++===-=解得(2) X 的密度函数ln ,1()0,x x ef x <<⎧=⎨⎩其它(3) 22111()()ln ln 24eexe E X xf x dx x xdx xd+∞∞+===⎰⎰⎰-=六、(13分) 设离散型随机变量X 具有分布律X 1- 0 1 2 k p 0.25 2a a a 8.02+ 0.15 (1) 求常数a ;(2)求X 的分布函数)(x F ;(3)计算)23(≤X P ;(4) 求26X Y -=的分布律;(5)计算()D X . 解:(1) 由分布律的性质2220.2520.80.15 2.80.412.80.600.2,3(k kp a a a a a a a a a =++++=++=∴+-=∴==-∑舍去)(2) X 的分布函数010.25,10()0.65,010.85,121,2x x F x x x x <-⎧⎪-≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩,(3) 33()()0.8522P X F ≤== (4) 26X Y -=的分布律为Y 2 5 6 k p 0.15 0.45 0.4 (5)222()0.25,() 1.05,()()[()]0.9875E X E X D X E X E X ===-=七.(10分)设(,)X Y 的联合密度函数(1) 求常数k ; (2)求关于X 及关于Y 的边缘密度函数; (3) X 与Y 是否独立?说明理由。

解:(1) 由联合密度函数的性质12(,)188k f x y dxdy dxdy k +∞+∞-∞-∞===∴=⎰⎰⎰⎰(2) X 的边缘密度函数21728(),018,01()(,)30,0,x X x x x xy dy x f x f x y dy +∞-∞⎧⎧-≤≤≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰⎰=其它其它 Y 的边缘密度函数3204,01,01()(,)0,0,Y y y xy dx y f y f x y dx +∞-∞⎧⎧≤≤≤≤⎪==⎨⎨⎩⎪⎩⎰=其它其它(3) 由于(,)()()X Y f x y f x f y ≠,故X 与Y 不相互独立八.(6分)设X 与Y 相互独立,其中X 的分布律如下,而Y 的概率密度)(y f Y 为已知,求XY U =的概率密度)(u g .解:()()(2)(2)(3)(3)0.2()0.8()230.2()0.8()23U Y Y F u P X Y u P X P X Y u X P X P X Y u X u u P Y P Y u uF F =≤==≤=+=≤==≤+≤=+()()110.2().0.8().22330.80.1()()233U Y Y Y Y g u F u u u f f u uf f '==+=+2,01(,)0,kxy x f x y ⎧<<<⎪=⎨⎪⎩其它。

相关文档
最新文档