专题:反比例函数与相似综合
中考反比例函数与几何综合
Oy xBAABxy O反比例函数与几何综合基本图形及常见结论 (1) 反比例函数)0(≠=k xky 图象上任一点,向两坐标轴作垂线,垂线与坐标轴;所围k S =矩形(2)反比例函数)0(≠=k xky 图象上任一点,向两坐标轴作垂线,垂线与坐标轴及原点连线;所围2k S =三角形(3)反比例函数与正比例函数图像交于A ,B 两点,AM 与x 轴垂直; 则:①A ,B 两点关于原点对称;②k S ABM =△(4)过反比例函数xk y 11=图像上任一点向坐标轴做垂线,与反比例函数)(2122k k xk y >=交于两点; 则:①BNBP AM AP =,即AB ∥MN②21k k S APNH -=矩形③)(△2121k k S OAP -=一次函数)0(≠+=kb b kx y 和反比例函数)0(≠=m xmy 图像交于A 、B 两点,AE ⊥x 轴,BF ⊥y 轴,则:①OAE OBF S S △△= ② OAB ABFE S S △梯形=③AC BD =④BFAEOE OF AE OE BF OF =⇒⋅=⋅ ⑤OACOBD S S △△=(一)巧用k 的几何意义解题y x ABO CDy xDC F EO B A例1.函数y=和y=在第一象限内的图象如图,点P 是y=的图象上一动点,PC ⊥x 轴于点C ,交y=的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=AP .其中所有正确结论的序号是________。
迁移练习1(1).如图,双曲线)0x (k>=xy 经过Rt △OAB 斜边OB 的中点D ,与AB 交于点C .若△OBC 面积为3,则k =_______迁移练习1(2)..双曲线)0x (k>=xy 经过矩形OABC 边AB 的中点F ,交BC 于点E ; 若梯形OEBA 的面积为9,则k=________。
反比例函数的图像和性质的综合应用
解析
根据题意,将点 A(-2 ,3)和点 B(3,-2 )分别代入两个函数中 ,得到关于 m、k、b 的方程组,解方程组求 得 m、k、b 的值,即 可得到两个函数的解析
式。
05
反比例函数在几何图形中应用
相似三角形判定定理推广
预备定理
平行于三角形的一边,并且和 其他两边相交的线段,所截得 的三角形的三边与原三角形三 边对应成比例。
反比例函数图像在平面直角坐标系中 ,沿y轴方向平移,函数表达式不变, 图像沿y轴平移。
伸缩变换规律
01
当k>0时,图像分别位于第一、三象限,每一个象限内,从 左往右,y随x的增大而减小;
02
当k<0时,图像分别位于第二、四象限,每一个象限内,从 左往右,y随x的增大而增大。
03
k>0时,函数在x<0上同为减函数、在x>0上同为减函数; k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3
平行四边形面积问题
通过已知相邻两边及其夹角求解面积,或已知面 积和一边长度及夹角求解另一边长度,应用反比 例函数进行求解。
速度、时间、距离关系分析
匀速直线运动问题
通过已知速度和时间求解距离,或已 知距离和时间求解速度,利用反比例 关系建立方程。
变速直线运动问题
曲线运动问题
通过已知速度和方向的变化规律,求 解某时刻的速度或某段时间内的平均 速度及运动轨迹,结合反比例函数进 行综合分析。
解析
根据题意,将点(-2, -1)代入两个函数中, 得到关于 k、m、n 的 方程组,解方程组求得 k、m、n 的值,即可 得到两个函数的解析式 。再将 x = 3 代入两个 函数中,得到关于 k、 m、n 的另一个方程, 与前面的方程组联立求 解,即可得到最终的解
(完整版)专题:反比例函数与相似综合
中考数学专题复习:反比例函数与相似的综合题【考点分析】近几年的中考数学题中,对于反比例函数与几何图形的结合的考查力度明显加大,主要考查:①平面直角坐标系中,如何把线段转化为坐标,坐标转化为含有字母的代数式, 进而进行代数计算;②反比例函数与相似图形的综合题;③反比例函数与几何图形的平移。
【专题攻略】在平面直角坐标系中,反比例函数与几何图形的综合题,最基本的解决方法是:由点的坐标求相关线段的长度,根据相关线段的长度表示点的坐标。
这类题在解答时要求我们要熟练运用数学基础知识,还要能灵活运用数形结合、转化、待定系数、分类讨论等基本数学思想和方法。
【课前训练】k1、如图,面积为3的矩形OABC勺一个顶点B在反比例函数y 的图象上,另三点在坐x标轴上,则k= .交于点0若厶OBA的面积为6,则k =k4、如图,已知双曲线y -(k>0)经过直角三角形OAB斜边X交于点0若厶OBC勺面积为3,贝y k = ______________3、如图,已知双曲线第3、4题X轴于B点,若S A AOB = 3,则k =ky (k>0)经过直角三角形OAB斜边xOB的中点D,与直角边AB相OB的中点D,与直角边AB相【典型例题】(2010年广州中考第23题)已知反比例函数y= m__ (m为常数)的图象经过点A (- 1, 6).x(1)求m的值;(2)如图9,过点与x轴交于点C,(2014南沙区一模)如图,已知直线y 4 x与反比例函数y m m>0, x > 0的图象x交于A、B两点,与x轴、y轴分别相交于C、D两点.(1)若点A的横坐标为1,求m的值并利用函数图象求关于x的不等式4 x< m的解集;x(2)是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,请说明理由.1、( 2013?宁波)如图,等腰直角三角形 / BCA=90 ° AC=BC=2 典,反比例函数与AB , BC 交于点D , E .连结。
专题九-反比例函数与几何的综合应用
在物理学中,一些物理量之间可能存在反比例关系,如电阻与电流、压力与面积等。通过运用反 比例函数的性质,可以更好地理解和解决这些物理问题。
反比例函数在经济学中的应用
在经济学中,一些经济指标之间可能存在反比例关系,如价格与需求量、成本与产量等。通过运 用反比例函数的性质,可以对这些经济指标进行更准确的预测和分析。
如长度、面积等。
利用反比例函数性质建立关系
02
根据反比例函数的性质,结合几何图形的特点,建立所求最值
与相关量之间的关系。
求解最值
03
通过求解反比例函数的最值,得到所求几何量的最值。
判定存在性问题
根据题意列出方程或不等式
01
根据题目条件,列出与几何图形相关的方程或不等式
。
利用反比例函数性质分析解的情况
反比例关系在圆中的应用
在圆中,当一个圆的半径增加时,其 面积会按平方比例增加,但其周长只 会按线性比例增加。这种关系虽然不 是严格的反比例关系,但也可以用于 解决一些与圆相关的问题。
解题技巧与实例分析
通过利用圆的性质和上述关系, 可以求解一些与圆相关的问题。 例如,已知一个圆的半径和另一 个圆的面积或周长,可以求解未 知圆的半径或面积等。
仔细阅读题目要求,明确题意 ,避免答非所问。
合理安排答题顺序
先做易做的题目,确保会做的 题目不丢分,再攻克难题。
控制答题时间
每道题目分配合理的时间,避 免时间不够用或浪费过多时间
。
检查答案
做完题目后要认真检查答案, 确保没有遗漏或错误。
THANKS FOR WATCHING
感谢您的观看
解题技巧与实例分析
对于其他几何图形中的反比例关系问题,可以通过设定未知数、利用几何图形的性质和反比例关系来求解。 需要注意的是,在解题过程中要仔细分析题目条件和数据特点,选择合适的解题方法和思路。
(完整版)专题:反比例函数与相似综合
中考数学专题复习:反比例函数与相似的综合题【考点分析】近几年的中考数学题中,对于反比例函数与几何图形的结合的考查力度明显加大,主要考查:①平面直角坐标系中,如何把线段转化为坐标,坐标转化为含有字母的代数式, 进而进行代数计算;②反比例函数与相似图形的综合题;③反比例函数与几何图形的平移。
【专题攻略】在平面直角坐标系中,反比例函数与几何图形的综合题,最基本的解决方法是:由点的坐标求相关线段的长度,根据相关线段的长度表示点的坐标。
这类题在解答时要求我们要熟练运用数学基础知识,还要能灵活运用数形结合、转化、待定系数、分类讨论等基本数学思想和方法。
【课前训练】k1、如图,面积为3的矩形OABC勺一个顶点B在反比例函数y 的图象上,另三点在坐x标轴上,则k= .交于点0若厶OBA的面积为6,则k =k4、如图,已知双曲线y -(k>0)经过直角三角形OAB斜边X交于点0若厶OBC勺面积为3,贝y k = ______________3、如图,已知双曲线第3、4题X轴于B点,若S A AOB = 3,则k =ky (k>0)经过直角三角形OAB斜边xOB的中点D,与直角边AB相OB的中点D,与直角边AB相【典型例题】(2010年广州中考第23题)已知反比例函数y= m__ (m为常数)的图象经过点A (- 1, 6).x(1)求m的值;(2)如图9,过点与x轴交于点C,(2014南沙区一模)如图,已知直线y 4 x与反比例函数y m m>0, x > 0的图象x交于A、B两点,与x轴、y轴分别相交于C、D两点.(1)若点A的横坐标为1,求m的值并利用函数图象求关于x的不等式4 x< m的解集;x(2)是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,请说明理由.1、( 2013?宁波)如图,等腰直角三角形 / BCA=90 ° AC=BC=2 典,反比例函数与AB , BC 交于点D , E .连结。
初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)
备战2020年中考数学一轮专项复习——反比例函数综合问题一、反比例函数的概念:知识要点:1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A )y = xk (k ≠ 0) ; (B )xy = k (k ≠ 0); (C )y=kx -1(k ≠0) 二、反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。
2、位置:(1)当k>0时,双曲线分别位于第一、三象限内;(2)当k<0时, 双曲线分别位于第二、四象限内。
3、增减性:(1)当k>0时,y = xk (k ≠ 0)为减函数,y 随x 的增大而减小; (2)当k<0时,y = xk (k ≠ 0)为增函数,y 随x 的增大而增大。
4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点成中心对称;(2)对于k 取互为相反数的两个反比例函数(如:y =x 6 和y = x 6 )来说,它们是关于x 轴,y 轴成轴对称。
一、选择题:1.下列函数,①y =2x ,②y =x ,③y =x ﹣1,④y =是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个【分析】根据反比例函数的定义,反比例函数的一般式是(k ≠0)判定则可. 【解析】①y =2x 是正比例函数;②y =x 是正比例函数;③y =x ﹣1是反比例函数;④y=不是反比例函数,是反比例关系;所以共有1个.故选:B.2.(2019•济南)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解析】a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.3.如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,根据图象猜想线段MN的长的最小值是()A.B.2C.2 D.1【分析】设N的横坐标是a,则纵坐标是﹣,利用a即可表示出ON的长度,然后根据不等式的性质即可求解.【解析】设N的横坐标是a,则纵坐标是﹣.则OM=ON=≥.则MN的最小值是2.故选:B.4.(2019•阜新)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y 轴上,则△ABC的面积为()A.3 B.2 C.D.1【解析】连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选:C.5.(2019•遵义)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为()A.2 B.3 C.4 D.6【解析】过点A作x轴的垂线,交CB的延长线于点E,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为4,2,∴A(,4),B(,2),∴AE=2,BE=k﹣k=k,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE==1∴k=1,∴k=4.故选:C.6.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解析】过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.7.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y =(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6 C.4D.2【解析】过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y3=,y 4=,……∴y1+y2+…+y10=2+++……=,故选:A.8.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P 是AC的中点.若△ABP的面积为4,则k的值为().A.16 B.8 C.4 D.24【分析】由△ABP的面积为4,知BP•AP=8.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【解答】解:∵△ABP 的面积为•BP •AP =4,∴BP •AP =8,∵P 是AC 的中点,∴A 点的纵坐标是B 点纵坐标的2倍,又∵点A 、B 都在双曲线y =(x >0)上,∴B 点的横坐标是A 点横坐标的2倍,∴OC =DP =BP ,∴k =OC •AC =BP •2AP =16.故选A.二、填空题:9.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xk y 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD=5,∵四边形ABCD 为菱形,∴CD=5∴C (4,4),将C 代入x k y =得:44k =,∴16=k10.(2019遂宁中考 第15题 4分)如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将△OCG 沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数y =经过点B .二次函数y =ax 2+bx +c (a ≠0)的图象经过C (0,3)、G 、A 三点,则该二次函数的解析式为 .(填一般式)【解析】点C (0,3),反比例函数y =经过点B ,则点B (4,3),则OC =3,OA =4,∴AC =5,设OG =PG =x ,则GA =4﹣x ,PA =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2,解得:x =,故点G (,0),将点C 、G 、A 坐标代入二次函数表达式得:,解得:,故答案为:y =x 2﹣x +3. 11.如图,已知点(1,3)在函数y =kx (x >0)的图象上,正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数y =kx(x >0)的图象又经过A ,E 两点,则点E 的横坐标为____.【解析】 把(1,3)代入到y =kx,得k =3, 所以函数解析式为y =3x. 设A (a ,b ),根据图象和题意可知,点E ⎝ ⎛⎭⎪⎫a +b 2,b 2.因为y =3x 的图象经过A ,E ,所以分别把点A 和E 代入到函数解析式中得 ab =3,①b 2⎝ ⎛⎭⎪⎫a +b 2=3,② 由②得ab 2+b 24=3,把①代入得32+b 24=3, 即b 2=6,解得b =±6,因为A 在第一象限,所以b >0,所以b = 6.把b =6代入①求得a =62, 所以点E 的横坐标为a +b 2= 6.故答案为 6. 12.如图,Rt △AOB 中,∠OAB =90°,∠OBA =30°,顶点A 在反比例函数y =图象上,若Rt △AOB 的面积恰好被y 轴平分,则进过点B 的反比例函数的解析式为 .【分析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ),则ab =﹣4.根据两角对应相等的两三角形相似,得出△OAE ∽△ABF ,由相似三角形的对应边成比例,则BD 、OD 都可用含a 、b 的代数式表示,从而求出B 的坐标,进而得出结果.【解析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ).∵顶点A 在反比例函数y =图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.13.如图, △OAP ,△ABQ 是等腰直角三角形,点P ,Q 在反比例函数y =4x (x >0)上,直角顶点A ,B 均在x 轴上,则点Q 的坐标为 .【解析】 ∵△OAP 是等腰直角三角形,∴PA =OA .∴设P 点的坐标是(a ,a ),把(a ,a )代入解析式y =4x,解得a =2(a =-2舍去), ∴P 的坐标是(2,2),∴OA =2,∵△ABQ 是等腰直角三角形,∴BQ =AB ,∴可以设Q 的纵坐标是b ,∴横坐标是b +2,把Q 的坐标代入解析式y =4x, 得b =4b +2,∴b =5-1(b =-5-1舍去),∴点Q 的坐标为(5+1,5-1).14.(2019•毕节市)如图,在平面直角坐标中,一次函数y =﹣4x +4的图象与x 轴、y 轴分别交于A 、B 两点.正方形ABCD 的顶点C 、D 在第一象限,顶点D 在反比例函数y =(k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是 .【解析】过点D 作DE ⊥x 轴,过点C 作CF ⊥y 轴,∵AB ⊥AD ,∴∠BAO =∠DAE ,∵AB =AD ,∠BOA =∠DEA ,∴△ABO ≌△DAE (AAS ),∴AE =BO ,DE =OA ,易求A (1,0),B (0,4),∴D (5,1),∵顶点D 在反比例函数y =上,∴k =5,∴y =,易证△CBF ≌△BAO (AAS ),∴CF =4,BF =1,∴C (4,5),∵C 向左移动n 个单位后为(4﹣n ,5),∴5(4﹣n )=5,∴n =3,故答案为3;三、解答题15.如图,一次函数y =kx +2的图象与反比例函数y =m x的图象在第一象限的交点为P .PA 垂直x 轴于点A .PB 垂直y 轴于点B .函数y =kx +2的图象分别交x 轴,y 轴于点C ,D .已知DB =2OD ,△PBD 的面积S △PBD =4.(1)求点D 的坐标;(2)求k ,m 的值;(3)写出当x >0时,使一次函数y =kx +2的值大于反比例函数y =m x的值的x 的取值范围.【解析】(1)在y =kx +2中,令x =0,得y =2,所以点D (0,2).(2)因为OD =2,DB =2OD =4,由S △PBD =4,可得BP =2,而OB =OD +DB =6,所以点P (2,6).将P (2,6)分别代入y =kx +2与y =mx,可得 k =2,m =12.(3) 由图象可知,当x >0时,使一次函数y =kx +2的值大于反比例函数y =mx的值的x 的取值范围是x >2.16.(2019遂宁中考 第23题 10分)如图,一次函数y =x ﹣3的图象与反比例函数y ═(k ≠0)的图象交于点A 与点B (a ,﹣4).(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【解析】(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═(k≠0)中得:k=4∴反比例函数的表达式为y=;(2)如图:设点P的坐标为(m,)(m>0),则C(m,m﹣3)∴PC=|﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=m×|﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,)或(1,4)或(2,2).17.(2019•河池)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.【解析】(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.18.“六一”儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度)如图,它与两面互相垂直的围墙OP,OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任意一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等.比如:A,B,C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI 的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1,S2,S3,并测得S2=6(单位:平方米),OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数解析式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?【解析】(1)∵矩形ADOG 、矩形BEOH 、矩形CFOI 的面积相等,∴弯道为反比例函数图象的一部分.设反比例函数的解析式为y =k x (k ≠0),OG =GH =HI =a ,则AG =k a ,BH =k 2a ,CI =k 3a .所以S 2=k 2a •a -k 3a•a =6,解得k =36.所以S 1=k a •a -k 2a •a =12k =12×36=18,S 3=k 3a •a =13k =13×36=12;(2)由(1)得,弯道的函数解析式为y =36x .∵T(x ,y)是弯道MN 上的任一点,∴y =36x ;(3)∵MP =2,NQ =3,∴GM =362=18,OQ =363=12.∵在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),∴当x =2时,y =18,可以种8棵;当x =4时,y =9,可以种4棵;当x =6时,y =6,可以种2棵;当x =8时,y =4.5,可以种2棵;当x =10时,y =3.6,可以种1棵.故一共可以种8+4+2+2+1=17(棵)花木.19、如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【解析】(1)∵已知反比例函数k y x =经过点(1,4)A k -+,∴41k k-+=,即4k k -+= ∴2k =∴A(1,2) ∵一次函数y x b =+的图象经过点A(1,2),∴21b =+∴1b =∴反比例函数的表达式为2y x=, 一次函数的表达式为1y x =+。
反比例函数和相似三角形综合题(教师版)
反比例函数和相似三角形综合题1.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n与k的值;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y>﹣2时,请直接写出自变量x的取值范围.2.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A.B两点,与反比例函数y2=的图象分别交于C.D两点,点D(2,﹣3),OA=2.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)直接写出k1x+b﹣≥0时自变量x的取值范围.(3)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,直接写出P点的坐标.3.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交雨点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数解析式;(2)直接写出当>kx+b时x的取值范围;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;若不存在,请说明理由.4.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD 的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M 是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.5.如图1,直线y=﹣x+4与x轴交于点B,与y轴交于点C,交双曲线y=(x <0)于点N,S=10.△OBN(1)求双曲线的解析式.=,求点H的坐标.(2)已知点H是双曲线上一动点,若S△HON(3)如图2,平移直线BC交双曲线于点P,交直线y=﹣6于点Q,连接PC,QB,并延长PC,QB交于第一象限内一点G,若PG=GQ,求平移后的直线PQ的解析式.6.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.7.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)8.如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.9.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.一.解答题(共9小题)1.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n与k的值;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y>﹣2时,请直接写出自变量x的取值范围.【分析】(1)把A点坐标代入一次函数解析式可求得n,则可求得A点坐标,代入反比例函数解析式则可求得k的值;(2)由一次函数解析式可先求得B点坐标,从而可求得AB的长,则可求得C 点坐标,利用平移即可求得D点坐标;(3)在y=中,当y>﹣2时可求得对应的x的值,结合图象即可求得x的取值范围.【解答】解:(1)把A点坐标代入一次函数解析式可得n=×4﹣3=3,∴A(4,3),∵A点在反比例函数图象上,∴k=3×4=12;(2)在y=x﹣3中,令y=0可得x=2,∴B(2,0),∵A(4,3),∴AB==,∵四边形ABCD为菱形,且点C在x轴正半轴上,点D在第一象限,∴BC=AB=,∴点C由点B向右平移个单位得到,∴点D由点A向右平移个单位得到,∴D(4+,3);(3)由(1)可知反比例函数解析式为y=,令y=﹣2可得x=﹣6,结合图象可知当y>﹣2时,x的取值范围为x<﹣6或x>0.2.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A.B两点,与反比例函数y2=的图象分别交于C.D两点,点D(2,﹣3),OA=2.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)直接写出k1x+b﹣≥0时自变量x的取值范围.(3)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,直接写出P点的坐标.【分析】(1)把点D的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作DE⊥x轴于E,根据题意求得A的坐标,然后利用待定系数法求得一次函数的解析式;(2)根据图象即可求得k1x+b﹣≥0时,自变量x的取值范围;(3)作C(﹣4,)关于y轴的对称点C'(4,),延长C'D交y轴于点P,由C'和D的坐标可得,直线C'D为y=x﹣,进而得到点P的坐标.【解答】解:(1)∵点D(2,﹣3)在反比例函数y2=的图象上,∴k2=2×(﹣3)=﹣6,∴y2=﹣;如图,作DE⊥x轴于E∵OA=2∴A(﹣2,0),∵A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,,解得k1=﹣,b=﹣,∴y=﹣x﹣;(2)由图可得,当k1x+b﹣≥0时,x≤﹣4或0<x≤2.(3)由,解得或,∴C(﹣4,),作C(﹣4,)关于y轴的对称点C'(4,),延长C'D交y轴于点P,∴由C'和D的坐标可得,直线C'D为y=x﹣,令x=0,则y=﹣,∴当|PC﹣PD|的值最大时,点P的坐标为(0,﹣).3.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交雨点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数解析式;(2)直接写出当>kx+b时x的取值范围;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;若不存在,请说明理由.【分析】(1)先根据题意得出P点坐标,再将A、P两点的坐标代入y=kx+b求出kb的值,故可得出一次函数的解析式,把点P(4,2)代入反比例函数y=即可得出m的值,进而得出结论;(2)利用图象法,写出反比例函数图象想一次函数图象的上方的自变量的取值范围即可;(3)根据PB为菱形的对角线与PC为菱形的对角线两种情况进行讨论即可.【解答】解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),∴O为AB的中点,即OA=OB=4,∴P(4,2),B(4,0),将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:,∴一次函数解析式为y=x+1,将P(4,2)代入反比例解析式得:m=8,即反比例解析式为y=.(2)观察图象可知:>kx+b时x的取值范围0<x<4.(3)如图所示,∵点C(0,1),B(4,0)∴BC==,PC=,∴以BC、PC为边构造菱形,当四边形BCPD为菱形时,∴PB垂直且平分CD,∵PB⊥x轴,P(4,2),∴点D(8,1).把点D(8,1)代入y=,得左边=右边,∴点D在反比例函数图象上.,∵BC≠PB,∴以BC、PB为边不可能构造菱形,同理,以PC、PB为边也不可能构造菱形.综上所述,点D(8,1).4.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M 是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.【分析】(1)先根据非负数的性质求出a、b的值,故可得出A、B两点的坐标,设D(1,t),由DC∥AB,可知C(2,t﹣2),再根据反比例函数的性质求出t的值即可;(2)由(1)知k=4可知反比例函数的解析式为y=,再由点P在双曲线y=上,点Q在y轴上,设Q(0,y),P(x,),再分以AB为边和以AB为对角线两种情况求出x的值,故可得出P、Q的坐标;(3)连NH、NT、NF,易证NF=NH=NT,故∠NTF=∠NFT=∠AHN,∠TNH=∠TAH=90°,MN=HT由此即可得出结论.【解答】解:(1)∵+(a+b+3)2=0,∴,解得:,∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵DC∥AB,∴C(2,t﹣2),∴t=2t﹣4,∴t=4,∴k=4;(2)∵由(1)知k=4,∴反比例函数的解析式为y=,∵点P在双曲线上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1,若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2,若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3,当AB为对角线时,AP=BQ,且AP∥BQ;∴,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2);(3)的值不发生改变,理由:如图4,连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN,∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°﹣180°﹣90°=90°.∴MN=HT,∴.5.如图1,直线y=﹣x+4与x轴交于点B,与y轴交于点C,交双曲线y=(x <0)于点N,S=10.△OBN(1)求双曲线的解析式.=,求点H的坐标.(2)已知点H是双曲线上一动点,若S△HON(3)如图2,平移直线BC交双曲线于点P,交直线y=﹣6于点Q,连接PC,QB,并延长PC,QB交于第一象限内一点G,若PG=GQ,求平移后的直线PQ的解析式.【分析】(1)如图1中,作NG⊥x轴于H.由S=•OB•NG,可得×4×NG=10,△NOB推出NG=5,推出N(﹣1,5),由此即可解决问题;(2)如图2中,作NM⊥x轴于M,HE⊥x轴于E.设H(m,﹣).首先证明S△OHN=S梯形NMHE,由此构建方程即可解决问题;(3)首先证明OG垂直平分BC,推出P、Q关于直线OG对称,由点P在y=﹣上,推出点Q也在y=﹣上,又点Q在直线y=﹣6上,可得Q(,﹣6),由此即可解决问题;【解答】解:(1)如图1中,作NG⊥x轴于H.∵直线y=﹣x+4与x轴交于点B,与y轴交于点C,∴B(4,0),C(0,4),=•OB•NG,∵S△NOB∴×4×NG=10,∴NG=5,∴N(﹣1,5),∵反比例函数y=经过点N(﹣1,5),∴k=﹣5,(2)如图2中,作NM ⊥x 轴于M ,HE ⊥x 轴于E .设H (m ,﹣).∵S △HEO =S △NMO ,又∵S 四边形HEON =S △HNO +S △HEO =S △NMO +S 梯形MNHE ,∴S △OHN =S 梯形NMHE , ∴•(5﹣)•|m +1|=,当m <﹣1时,整理得3m 2+8m ﹣3=0,解得m=﹣3或(舍弃),当0>m >﹣1时,整理得3m 2﹣8m ﹣3=0,解得m=﹣或3(舍弃).综上所述,满足条件的点H 的坐标为(﹣3,)或(﹣,15);(3)如图3中,∴∠GPQ=∠GQP,∵BC∥PQ,∴∠GCB=∠GPQ,∠GBC=GQP,∴∠GCB=∠GBC,∴GC=GB,∵OC=OB,∴OG垂直平分BC,∴P、Q关于直线OG对称,∵点P在y=﹣上,∴点Q也在y=﹣上,又∵点Q在直线y=﹣6上,∴Q(,﹣6),设直线PQ的解析式为y=﹣x+b,∴﹣6=﹣+b,∴b=﹣,∴直线PQ的解析式为y=﹣x﹣.6.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.【分析】(1)根据菱形的性质得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△APB≌△APD;(2)①首先证明△DFP≌△BEP,进而得出=,=,进而得出=,即=,即可得出答案;②根据①中所求得出PF=PE=4,DP=PB=6,进而得出==,求出即可.【解答】(1)证明:∵点P是菱形ABCD对角线AC上的一点,∴∠DAP=∠PAB,AD=AB,∵在△APB和△APD中,∴△APB≌△APD(SAS);(2)解:①∵△APB≌△APD,∴DP=PB,∠ADP=∠ABP,∵在△DFP和△BEP中,,∴△DFP≌△BEP(ASA),∴PF=PE,DF=BE,∵四边形ABCD是菱形,∴GD∥AB,∴=,∵DF:FA=1:2,∴=,=,∴=,∵=,即=,∴y=x;②当x=6时,y=×6=4,∴PF=PE=4,DP=PB=6,∵==,∴=,解得:FG=5,故线段FG的长为5.7.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)【分析】(1)首先过点D作DF⊥BC,交AB于点F,得出∠BDE=∠ADF,以及∠EBD=∠AFD,再得出△BDE≌△FDA(ASA),求出即可;(2)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE ∽△GDA即可得出答案;(3)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE ∽△GDA即可得出答案.【解答】(1)证明:如图1,过点D作DF⊥BC,交AB于点F,则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠BFD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∴△BDE≌△FDA(ASA),∴AD=DE;(2)解:DE=AD,理由:如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴=,在Rt△BDG中,=tan30°=,∴DE=AD;(3)AD=DE•tanα;理由:如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴=,在Rt△BDG中,=tanα,则=tanα,∴AD=DE•tanα.8.如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.【分析】(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC的关系,根据同角的余角相等,可得∠CBD与∠NMF 的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.【解答】(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,∠EBN=∠ABN.∵AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.9.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.【分析】(1)△ABC是等腰直角三角形,四边形ADEF是正方形,易证得△BAD ≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF;(2)①由△BAD≌△CAF,可得∠ABM=∠GCM,又由对顶角相等,易证得△BMA ∽△CMG,根据相似三角形的对应角相等,可得BGC=∠BAC=90°,即可证得BD⊥CF;②首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN的长,又由等角的三角函数值相等,可求得AM=AB=,然后利用△BMA∽△CMG,求得CG的长,再由勾股定理即可求得线段BG的长.【解答】解(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS).∴BD=CF.(2)①证明:设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°.∴BD⊥CF.②过点F作FN⊥AC于点N.∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC 中,AB=4,∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN中,tan∠FCN==.∴在Rt△ABM中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM===.∵△BMA∽△CMG,∴.∴.∴CG=.∴在Rt△BGC中,BG==.。
反比例函数与相似的综合
反比例函数与相似的综合题型一利用平行线构造A型或X型相似1.(2020•鞍山一模)如图,点A在双曲线y=3x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=32CD,则k的值为152.【解析】解:设点A的坐标为(a,3a ),则点B的坐标为(ak3,3a),∵AB∥x轴,∴∠BAC=∠ODC,∠ACB=∠DCO,∴ABOD =ACDC,∵AC=32CD,∴ABDO=32,∵OD=a,∴AB=1.5a,∴点B的横坐标是2.5a,∴2.5a=ak3,解得,k=152,故答案为:152.2.(220•黔东南州)如图,已知点A,B分别在反比例函数y1=−2x和y2=kx的图象上,若点A是线段OB的中点,则k的值为﹣8.【解析】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=−2x的图象上,∴ab=﹣2;∵B点在反比例函数y2=kx的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.题型二 利用平行线构造相似3.(2020•柯桥区一模)如图,已知B 、A 分别在反比例函数y =−9x,y =k x上,当AO ⊥BO 时,BO :AO =3:4,则k = 16 .【解析】解:设点A 的坐标为(a ,ka),点B 的坐标为(b ,−9b ),作BC ⊥x 轴于点C ,作AD ⊥x 轴于点D ,∵∠AOB =90°,∠BOC +∠OBC =90°,∴∠BOC +∠AOD =90°,∴∠BOC =∠OAD ,∵∠BCO =∠ODA =90°,BO :AO =3:4,∴△BOC ∽△OAD ,∴OCAD=BC OD=OB AO,即−bk a=−9ba=34,解得,k =16,故答案为:16.4.(2020•历下区期中)如图,在平面直角坐标系中,等边三角形OAB 的顶点A 的坐标为(5,0),顶点B 在第一象限,函数y =kx (x >0)的图象分别交边OA 、AB 于点C 、D .若OC =2AD ,则k = 4√3【解析】解:如图,过C 作CE ⊥x 轴于E ,过D 作DF ⊥x 轴于F ,则∠CEO =∠DF A =90°,又∵∠COE =∠DAF =60°,∴△COE ∽△DAF ,又∵OC =2AD ,∴DF =12CE ,AF =12OE ,设OE =a ,则CE =√3a ,∴AF =12a ,DF =√32a ,∴C (a ,√3a ),D (5−12a ,√32a ), ∵函数y =k x(x >0)的图象分别交边OA 、AB 于点C 、D ,∴a •√3a =(5−12a )•√32a ,解得a =2, ∴C (2,2√3),∴k =2×2√3=4√3,故答案为4√3.5.(2020•如东县一模)如图,点A (1,n )和点B 都在反比例函数y =kx (x >0)的图象上,若∠OAB =90°,OA AB=23,则k 的值是 2 .【解析】解:如图,过A 作AC ⊥x 轴,过B 作BD ⊥AC 于D ,则∠ACO =∠BDA =90°,OC =1,AC =n ,∵∠BAO =90°,∴∠CAO +∠BAC =∠ABD +∠BAC =90°,∴∠CAO =∠DBA ,∴△AOC ∽△BAD ,∴AD OC=BD AC=AB OA,即AD 1=BD n=32,∴AD =32,BD =32n ,∴B (1+32n ,n −32),∵k =1×n =(1+32n )(n −32),解得n =2或n =﹣0.5(舍去),∴k =1×2=2故答案为:2.6.(2020•泗阳县一模)如图,点A在反比例函数y=3x(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PB:P A=2:1,则正方形OABC的边长AB=√10.【解析】解:由题意可得,OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,3m),作AE⊥x轴于点E,∵∠P AO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴APAO =OEEA,即a3a=m3m,解得,m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=√10,故答案为:√10.巩固练习1.(2020•滨州模拟)如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为12.【解析】解:设点A的坐标为(a,4a ),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴ABOD =ACDC,∴ABOD=21,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得,k=12,故答案为:12.2.(2020•岳麓区校级模拟)如图,已知第一象限内的点A在反比例函数y=4x上,第二象限的点B在反比例函数y=kx上,且OA⊥OB,OBOA=34,则k的值为−94.【解析】解:作AC⊥x轴于C,BD⊥x轴于D,如图,∵OA⊥OB,∴∠BOD+∠AOC=90°,∵∠BOD+∠OBD=90°,∴∠AOC=∠OBD,∴Rt△OBD∽Rt△AOC,∴S△OBDS△AOC=(OBOA)2=(34)2=916,∵S△OBD=12|k|,S△AOC=12×4=2,∴12|k|2=916,而k<0,∴k=−94.故答案为−94.3.(2020•洛宁县期中)已知反比例函数y=kx(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是y1<y2.【解析】解:∵反比例函数y=kx(k<0)的k<0,可见函数位于二、四象限,∵x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,由于在二四象限内,y随x的增大而增大,∴y1<y2.故答案为y1<y2.4.(2020•渝中区校级月考)如图,△ABC 是等边三角形,顶点C 在y 轴的负半轴上,点A (1,5√32),点B 在第一象限,经过点A 的反比例函数y =kx(x >0)的图象恰好经过顶点B ,则△ABC 的边长为 2√7 .【解析】如图延长AB 到D ,使得AB =BD ,连接CD ,作AH ⊥y 轴于H ,DE ⊥y 轴于E .设C (0,c ). ∵△ABC 是等边三角形,∴AB =AC =BC ,∵AB =BD ,∴BA =BC =BD ,∴△ACD 是直角三角形, ∵∠CAD =60°,∴DC =√3AC ,∵∠ACD =∠AHC =∠DEC =90°,∴∠ACH +∠DCE =90°,∵∠ECD +∠CDE =90°,∴∠ACH =∠CDE ,∴△ACH ∽△CDE ,∴AH EC=HC DE=AC CD=√33, ∵A (1,5√32),∴AH =1,CH =5√32−c ,∴EC =√3,DE =152−√3c ,∴D (152−√3c ,c −√3), ∵BA =BD ,∴B (17−2√3c4,3√3−2√3c4), ∵A 、B 在y =kx上,∴5√32=17−2√3c 4×3√3−2√3c4, 整理得:4√3c 2﹣16c ﹣11√3=0,解得c =−√32或11√36(舍弃),∴C (0,−√32), ∴AC =2+CH 2=√12+(3√3)2=2√7,故答案为2√7.5.(2020•碑林区校级一模)如图,反比例函数y=kx,(k>0)经过正方形ABCD的顶点C,D,若正方形的边长为4,则k的值为16.【解析】解:作CE⊥x轴于E,DF⊥y轴于F,如图,设A(0,m),B(n,0),∵四边形ABCD为正方形,∴BC=BA,∠ABC=90°,∵∠ABO+∠CBE=90°,∠ABO+∠OAB=90°,∴∠CBE=∠OAB,而∠AOB=∠BEC,∴△AOB≌△BEC(AAS),∴OA=BE=m,OB=CE=n,∴C(m+n,n),同理方法可证明△AOB≌△DF A(AAS),∴OA=DF=m,OB=AF=n,∴D(m,m+n),∵反比例函数y=kx,(k>0)经过正方形ABCD的顶点C,D,∴m(m+n)=(m+n)n,∴m=n,∵OA2+OB2=AB2,∴m2+n2=42,即m2+m2=16,解得m=2√2,∴C(4√2,2√2),∴k=4√2×2√2=16.故答案为16.6.(2020•深圳)如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=kx图象上,且y轴平分∠ACB,求k=4√77.【解析】解:过A作AE⊥x轴,垂足为E,∵C(0,﹣3),∴OC=3,∵∠AED =∠COD =90°,∠ADE =∠CDO ∴△ADE ∽△CDO ,∴AE CO=DE OD=AD CD=13,∴AE =1;又∵y 轴平分∠ACB ,CO ⊥BD ,∴BO =OD ,∵∠ABC =90°,∴∠OCD =∠DAE =∠ABE ,∴△ABE ~△COD ,∴AEOD=BE OC设DE =n ,则BO =OD =3n ,BE =7n ,∴13n=7n3,∴n =√77∴OE =4n =4√77∴A (4√77,1)∴k =4√77×1=4√77.故答案为:4√77.。
反比例函数与几何的综合应用(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数与几何的综合应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要根据面积或比例来求解问题的情况?”比如,我们如何根据已知的长和宽来求解矩形的面积。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数在几何问题中的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的性质和图像,以及它在几何问题中的应用这两个重点。对于难点部分,比如反比例函数与一次函数的交点求解,我会通过具体例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数在几何问题中应用相关的实际问题。
三、教学难点与重点
1.教学重点
(1)反比例函数的定义及其性质:反比例函数的定义,图像特点,以及其在实际中的应用。
举例:y = k/x(k≠0),解释k的取值对函数图像的影响,如k>0时图像位于一、三象限,k<0时图像位于二、四象限。
(2)反比例函数与其他函数的交点问题:分析反比例函数与一次函数、二次函数的交点情况,掌握求解方法。
(二)新课讲授(用时10形如y = k/x(k≠0)的函数,它的图像是一条经过原点的曲线。反比例函数在解决与比例相关的问题时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何利用反比例函数来求解矩形的面积,以及它如何帮助我们解决实际问题。
此外,我在课堂上尝试引导同学们提出问题、分析问题并解决问题,目的是培养他们的独立思考能力。但从实际情况来看,同学们在这一方面的表现还不够理想。因此,我计划在接下来的教学中,进一步加强这方面的训练,鼓励同学们敢于提问、善于提问。
人教版九年级数学下册第07讲反比例函数与相似阶段复习教案讲义及练习
反比例函数和相似阶段复习2、相似【教学建议】“反比例函数”从具有反比例关系的实例出发,从函数的角度加以刻画,引导学生认识反比例函数;类比已学函数的经验展开反比例函数图像与性质的研究,最后建立反比例函数模型解决实际问题.“相似”由生活实例认识相似图形,再重点研究相似三角形的判定、性质及其实际应用,最后研究特殊的相似即位似的特征,强调从特殊(全等)到一般(相似)的方法.【知识导图】反比例函数的定义反比例函数■ ■ 图像与性质反比例函数的应用[I教学过程.一、复习1.反比例函数的图像与性质2.反比例函数与一次函数的综合应用3.相似三角形的性质和判定4.相似三角形的应用Q二、知识讲解(1)反比例函数k1.定义:一般地,如果两个变量x,y的关系式可以表示成y=x(k为常数且k=0),那么称y是x的反比例函数.k ( k为常数且k:0)2.图像:反比例函数y=x 的图像是关于原点对称的双曲线,当k>0时,图像位于第一,三象限;当k<0时,图像位于第二,四象限,画反比例函数图像的三个步骤是:列表,描点,连线.3.性质:当k>0时,变量x.y同号,双曲线位于第一,三象限,在每个分支上,y随x的增大而解小.当k<0时,变量x,y异号,双曲线位于第二,四象限,在每个分支上,y随x的增大而增大.4.k的几何意义:过反比例函数图形上任意一点向x轴、y轴作垂线,与两坐标轴围成的矩形的面积等于k.5.应用:解决生活中存在的反比例函数的问题^⑵相似1.图形的相似:(1)相似图形:我们把形状相同的图形叫做相似图形(2)相似多边形:边数相同,角分别相等,边成比例(3)相似多边形的性质:对应角相等,对应边成比例(4)相似比:① 把相似多边形的对应边的比例叫做多边形的相似比② 相似比是1:1的相似图形是全等形2.三角形相似的判定方法:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似^(2)三边成比例的两个三角形相似(3)两边成比例且夹角相等的两个三角形相似^(4)两角分别相等的两个三角形相似3.相似三角形及相似多边形的性质:(1)相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比(2)相似三角形及相似多边形的周长比等于相似比(3)相似三角形及相似多边形的面积比等于相似比的平方4.相似三角形的应用:(1)在测量河宽,物高及零件的内径等方面都有重要的应用.(2)同一时刻的物体的高度与它的影长的比都相等5.位似:(1)位似图形:两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个叫做位似图形,这个点叫做位似中心^(2)位似变换:在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么与原上的点(x,y)对应的位似图形上的点坐标为( kx,ky)或(-kx,-ky)三、例题精析类型一反比例函数例题1已知如图,过反比例函数y=£ (x>0)的图象上一点A作AB,x轴于点B,连接AQ若S;A AOB=2,则k的值为?y*k【解析】解:,一点A是反比例函数y=H图象上一点,且AB,x轴于点B,世S AAOB=2 |k|=2 ,解得:k= ± 4.• • •反比例函数在第一象限有图象,1. k=4.【总结与反思】根据点A在反比例函数图象上结合反比例函数系数k的几何意义,即可得出关于k的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图象即可确定k值.例题222 2【解析】解:函数丫=父十1是反比例y=£的图象向左移动一个单位,[2 \2\即函数y=乂44是图象是反比例y=H的图象双曲线向左移动一个单位.故选C2 2.【总结与反思】函数丫="工是反比例v=£的图象向左移动一个单位,根据反比例函数的图象特点判断即可.此题是反比例函数的图象,主要考查了反比例函数的图象是双曲线,掌握函数图象的平移是解本题的关键类型二相似例题3如图,P是RSABC斜边AB上任意一点(A, B两点除外),过P点作一直线,使截得的三角形与RtAABC相似,这样的直线可以作【解析】解:过点P可彳PE// BC或P曰AC,可得相似三角形;过点P 还可作PE± AB,可得:/ EPA=Z C=90° , Z A=Z A,. AP&△ ACB;所以共有3条.四、课堂运用基础A. X l>X2>X3B. X l>X3>X2C. X3>X l>X2D. X2>X3>X l3.在如图所示的相似四边形中,未知边X =4.已知a: b: c=2: 3: 4,且2a+3b-2c=10,求a, b, c 的值.答案与解析1.【答案】A.【解析】解:A 由函数y=K 的图象可知k>0与y=kx+3的图象k>0一致,故A 选项正确;B>因为y=kx+3的图象交y 轴于正半轴,故 B 选项错误; C 因为y=kx+3的图象交y 轴于正半轴,故 C 选项错误;D 由函数y=k 的图象可知 卜>0与丫=卜*+3的图象k<0矛盾,故D 选项错误.故选:A. 支 2.【答案】B.【解析】解:二.一次函数 y=ax+卷的图象过一、二、四象限,••.a<0,• ・ a - 1 v 0,・♦•反比例函数y=反二L 图象位于第二、四象限,其大致图象如图所示:4.【答案】a=4, b=6, c=8.【解析】解:设 a=2k, b=3k, c=4k, 又 「 2a+3b- 2c=10, •.4k+9k — 8k=10,5k=10, 解得k=2. a=4, b=6, c=8 .巩固1 .复印纸的型号有 A o 、A i 、A 2、A 3、A 4等,它们之间存在着这样一种关系:将其中某一型号(如A3)的复印纸较长边的中点对折后,就能得到两张下一型号(A4)的复印纸,且得到3.【答案】27.【解析】解:根据题意18 A - = --解得x=27. 根据图象知,Xi>X3>X2;故选:B.的两个矩形都和原来的矩形相似(如图),那么这些型号的复印纸的长宽之比为()A. 2: 1B.e:1C. V3: 1D. 3: 1k2.函数丫尸工和y2=kx- k在同一坐标系中的图象大致是()23.已知点A在双曲线y=—£上,点B在直线y=x-4上,且A, B两点关于y轴对称,设点A 的坐标为(m, n),则马+旦的值是.n m4.如图,已知函数y寺(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC //y轴,AC=1 (点C位于点A的下方),过点C作CD// x轴,与函数的图象交于点D,过点B作B已CD垂足E在线段CD上,连接OC OD(1)求^ OC曲面积;(2)当BE二AC时,求CE的长.答案与解析1.【答案】B.【解析】解:设这些型号的复印纸的长、宽分别为b、a,•.•得到的矩形都和原来的矩形相似,..且=匕,则b2=2a2,这些型号的复印纸的长宽之比为V2:1,故选:B.2.【答案】解:当kv 0时,反比例函数过二、四象限,一次函数过一、二、四象限;当k>0时,反比例函数过一、三象限,一次函数过一、三、四象限.故选D.【解析】根据反比例函数的性质和一次函数的性质,分k>0和k<0两种情况讨论, 同一符号时,两函数图象能共存于同一坐标系的为正确答案.3.【答案】-10.【解析】解:: A, B两点关于y轴对称,点A的坐标为(m, n),• . B ( - m, n).I 9•・•点A在双曲线y=」■上,xmn=- 2.丁点B在直线y=x-4上,n= — m- 4.2-2nn JC-4)=CnHn)故答案为:-10.] 1 d 14.【答案】(1)SaQE*XlXl=*; (2) CE二—L4.jg" Z Z 3 J【解析】解;(1) y上(x>0)的图象经过点A (1, 2),•. AC// y 轴,AC=1,•••点C的坐标为(1, 1) .. CD// x轴,点D在函数图象上,•••点D的坐标为(2, 1).,■S AOCD).父1/⑵,・"春纪,BE*•.BEX CD点B的纵坐标=2-L3,由反比例函数y=点B的横坐标x=2 -^―=—, 2 \3\一4 一,点B的横坐标是—,纵坐标是拔高k1.如图,在平面直角坐标系中,点P (1, 4)、Q (m, n)在函数y==(x>0)的图象上, 当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A, B;过点Q分别作x轴、y轴的垂线,垂足为点C D. QD交PA于点E,随着m的增大,四边形ACQE的面积(A.减小B.增大C.先减小后增大D.先增大后减小2.有这样一个问题:探究函数y」7+x的图象与性质.小东根据学习函数的经验,对函数y=^-p+x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=——+x的自变量x的取值范围是;(2)下表是y与x的几组对应值.求的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是( 2, 3),结合函数的图象,写出该函数的其它性质 (一条即可):.I K L・■ ■ ■4_ * * 寸• 2-I i i j L J t■ 1 1 jhr7 -3 -2 -1。
反比例函数相似综合讲义
反比例知识点一:反比例函数的概念 1、解析式:()0≠=k xky 其他形式:①k xy = ②1-=kx y例1.当m 取什么值时,函数23)2(m x m y --=是反比例函数?例2.若函数22)12(--=mx m y 是反比例函数,且它的图像在第二、四象限,则m 的值是___________2.反比例函数图像上的点的坐标满足:k xy =例1.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 例2.下列函数中,图像过点M (-2,1)的反比例函数解析式是( )x y A 2.=2.B y x =- x y C 21.= xy D 21.-=知识点二:反比例函数的图像与性质 1、基础知识0>k 时,图像在一、三象限,在每一个象限内,y 随着x 的增大而减小; 0<k 时,图像在二、四象限,在每一个象限内,y 随着x 的增大而增大; 例1.已知反比例函数y a x a =--()226,当x >0时,y 随x 的增大而增大,求函数关系式2、面积问题(1)三角形面积:k S AOB 21=∆ 例1.如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定例2.如图,点P 是反比例函数x y 1=的图象上任一点,PA 垂直在x 轴,垂足为A ,设OAP ∆的面积为S ,则S 的值为 (2)矩形面积:k=OBACS 矩形例1.如图,P 是反比例函数(0)ky k x=<图象上的一点,由P 分别向x 轴和y轴引垂线,阴影部分面积为3,则k= 。
知识点三:利用图像比较大小问题 (1)比较点的坐标大小例1.已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线xk y 12+-=上,则下列关系式正确的是( )(A )y 1>y 2>y 3 (B )y 1>y 3>y 2 (C )y 2>y 1>y 3 (D )y 3>y 1>y 2知识点四:反比例函数与一次函数的综合题 (1) 在同一坐标系中的图像问题 例1. 一次函数y kx k =-与反比例函数ky x=在同一直角坐标系内的大致图象是( )知识点五:反比例函数的应用例1.已知甲、乙两地相s (千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a (升),那么从甲地到乙地汽车的总耗油量y (升)与汽车的行驶速度v (千米/时)的函数图象大致是( )例1图BACD E例2.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若210x≤≤,则y与x的函数图象是()相似1、定理:“平行”出相似平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 几何表达式举例:∵DE∥BC∴ΔADE∽ΔABC2、定理:“AA”出相似如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.几何表达式举例:∵∠A=∠A又∵∠AED=∠ACB∴ΔADE∽ΔABC3、定理:“SAS”出相似如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.几何表达式举例:∵ACABAEAD又∵∠A=∠A∴ΔADE∽ΔABC4、“双垂”出相似及射影定理:AB CDEACDEBACDEB一、选择题1.矩形面积为4,它的长与宽之间的函数关系用图象大致可表示为 ( )2.如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )A .21B .31C .32D . 413.如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )4.如图,在△ABC 中,090=∠BAC ,AD ⊥BC 与D ,DE ⊥AB 与E ,若AD=3,DE=2,则AC=( ) A .221B .215C . 29D .155.如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形1∆,2∆,3∆(图中阴影部分)的面积分别是4,9和49,则△ABC 的面积是( )A .81B .121C .124D .144 二、填空题6.反比例函数22)12(--=m x m y ,在每个象限内,y 随x 的增大而增大,则m 的值是 .7.如图,已知双曲线)0k (xky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若 △OBC 的面积为3,则k =____________.8.如图,将△ABC 沿EF 折叠,使点B 落在边AC 上的点B ’处,已知AB=AC=3,BC=4,若以点 B ’, F, C 为顶点的三角形与△ABC 相似,那么BF 的长是 .9、A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当它们行驶了7小时时,两车相遇,求乙车速度. (1)①当0≤x ≤6时,x y 100=;②当6<x ≤14时, 设b kx y +=,∵图象过(6,600),(14,0)两点, ∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k∴105075+-=x y . ∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y(2) 当7=x 时,5251050775=+⨯-=y ,757525==乙v (千米/小时).CABEB'Fx/小y /千600146 OFEC DOADBCE4、如图,在梯形ABCD 中,AD ∥BC ,对角线AC 与BD 相交于点O ,过点O 作OE ∥AD 交AB 于点E ,若AD=6cm ,BC=12cm ,△AOD 的面积为6cm 2, (1)求△BOC 和△DOC 的面积; (2)求OE 的长. (1) BC AD //Θ∴△AOD ∽△COB2⎪⎭⎫⎝⎛=∴∆∆BC AD S S BOC AOD)(2 246412112,622分cm S cm S S S BC AD cmBC cm AD BOC AOD BOC AOD =∴==∴=∴==∆∆∆∆ΘΘΘ△AOD ∽△COB)(2 1221212分cm S S S BC AD OC OA DOC DOC AOD =∴=∴==∴∆∆∆(2)Θ△AOD ∽△COBADOE BD OB AD BCDO OB //322Θ=∴==∴(1分) ∴△BOE ∽△BDA (1分))(1 4632分cm OE cmAD OD OB AD OE =∴===∴Θ5、如图,已知A(-4,2)、B(n ,-4)是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点.(1)求此反比例函数和一次函数的解析式; (2)求△AOB 的面积;(3)根据图象写出使一次函数的值小于反比 例函数的值的x 的取值范围. (1)(2)(3)224><<-x x 或选择题:1、 如图,在矩形ABCD 中,AB =4,BC=3,点P 从起点B 出发, 沿BC 、CD 逆时针方向向终点D 匀速运动.设点P 所走过 路程为x ,则线段AP 、AD 与矩形的边所围成的图形面积为y , 则下列图象中能大致反映y 与x 函数关系的是( ))(2 8842)2,4(分得代入把xy m m xm y A -=∴-=∴-==-)(2 )4,2(2848)4,(分得代入把-∴=∴-=--=-B n nxy n B )(2 2212442)4,2(),2,4(分解得得代入把--=∴⎩⎨⎧-=-=⎩⎨⎧+=-+-=+=--x y b k bk b k b kx y B A )(2 642202分),(,则轴交于点与设=∴==∴=∴-∆∆∆AOB BOC AOC S S S OC C C x AB2、 如图,一次函数y x b =+与反比例函数ky x =在第一象限的图象交于点B ,且点B 的横坐标为1,过点B 作y 轴的垂线,C 为垂足,若32BCOS ∆=,求一次函数和反比例函数的解析式. 解:∵一次函数y x b =+过点B ,且点B 的横坐标为1, ∴1y b =+,即11B b +(,)BC y ⊥Q 轴,且32BCO S ∆=,1131(1)222OC BC b ∴⨯⨯=⨯⨯+=,解得2b =, ∴()13B ,∴一次函数的解析式为2y x =+. 又∵ky x=过点B , 3 3.1kk ∴==,∴反比例函数的解析式为3.y x=3、如图,一次函数2y kx =+的图象与反比例函数my x=的图象交于点P ,点P 在第一象限.PA ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △PBD =4,12OC OA=. (1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当0x >时,一次函数的值大于反比例函数的值的x 的取值范围. 解:(1)在2y kx =+中,令0x =得2y =∴点D 的坐标为(0,2)………2分 (2)∵ AP ∥OD∴Rt △PAC ∽ Rt △DOC ……………………1分 ∵ 12OC OA= ∴13OD OC APAC==y xPBD A O C。
“反比例函数与相似三角形问题”的复习课课例分析
“反比例函数与相似三角形问题”的复习课课例分析作者:吴博思来源:《课程教育研究》2020年第52期【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2020)52-0085-02一、教学背景分析笔者吴博思老师在深圳市九年级数学教研会上为全市初中数学老师上了一节中考专题复习示范课。
反比例函数是在学生学习了一次函数、二次函数的基础上开始学习的,反比例函数的教学一方面丰富了用函数思想分析问题、解决问题的经验,也为学生构建数学模型奠定了基础,在中学数学体系中占有重要的地位。
作为九年级第一轮复习课,学生已经学过了《反比例函数》和《相似三角形》全章的知识,掌握了反比例函数的概念、图像、性质,初步具有对反比例函数的有关问题进行合作探究的意识与能力,会用反比例函数的知识解决一些简单问题。
为了与时下的中考热点相结合,为大家提供一节有价值的复习课,笔者所在的备课组全体老师全力以赴、共同研究,经过反复几轮的备课、上课、评课等磨课活动,最终成功地展示了一节“反比例函数与相似三角形”的高效复习课。
下面笔者谈谈这节课的教学设计与反思,希望给同行一点启发。
二、教学设计分析设计分析:初中阶段最重要的三个相似三角形数学模型分别是“A字型”、“一线三等角模型”、“双垂直模型”,也是学生思维重要的切入口。
通过三道热身训练,让学生捕捉到反比函数当中隐藏的相似三角形的模型,通过辅助线的添加能够进一步呈现模型。
设计的目的就是抓住学生的心灵,激发学生的思维,为接下来的问题引入埋下伏笔,突出反比例函数与相似三角形结合的教学意图,顺理成章引出本节课的课题——反比例函数与相似三角形问题。
本环节注重夯实知识点,对于反比例函数与相似三角形的综合应用采用启发式教学,通过课前热身的训练指导学生进行知识的自我整理、自我质疑,通过自我挑战,达到自我提高的目标。
本环节将由学生自行探索题目中所蕴含的相似三角形模型,一方面可培养学生的表达能力,另一方面又能培养及时归纳总结的好习惯。
相似与反比例综合题练习(含答案)
相似与反比例综合题练习(含解析)一.选择题(共12小题)1.如图所示,已知双曲线y=(x<0)和y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲=6,=,则k=()线y=交于点C,S△ABCA.﹣6 B.﹣4 C.6 D.42.如图,点A在反比例函数y=(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△ADC=.则k的值为()A.B.16 C.D.103.如图,O为坐标原点,点C在x轴上.四边形OABC为菱形,D为菱形对角线AC与OB的交点,反比例函敬y=在第一象限内的图象经过点A与点D,若菱形OABC的面积为24,则点A的坐标为()A.(1,6)B.(,5)C.(2,4)D.(3,3)4.如图,平面直角坐标系中,矩形OABC的边与函数y=(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4 B.6 C.8 D.不能确定5.如图,点A是反比例函数y=(x>0)的图象上一点,过点A作直线y=﹣x 的垂线,垂足为点B,再过点A作AC⊥AB交y=(x>0)的图象于点C,若△ABC是等腰三角形,则点B的坐标是()A.(﹣,)B.(﹣,)C.(﹣2,2)D.(﹣3,3)6.如图,菱形四边形ABCD的四个顶点分别在反比例函数y=,y=﹣的图象上,若该菱形的面积为78,则这个菱形的边长为()A.B.C.13 D.137.如图,已知A,B为反比例函数y1=图象上两点,连接AB,线段AB经过点O,C是反比例函数y2=(k<0)在第二象限内的图象上一点,当△CAB是以AB 为底的等腰三角形,且=时,k的值为()A.﹣ B.﹣3 C.﹣4 D.﹣8.已知,直线y=k1x(k1>0)与反比例函数y=图象交于点A、B两点,以AB 为边作等边△ABC,随着k1的取值不同,点C在反比例函数y=运动,则k2的值是()A.﹣2B.﹣3C.﹣6 D.﹣39.如图,反比例函数y=上有一点A,连接并延长OA,使得OA=AB,过点B作x轴的垂线,分别交反比例函数和x轴于点C、点D.若CD=,∠B=60°,则△AOD的面积为()A.9 B.10C.11D.1210.如图,△ABC是等边三角形,顶点C在y轴的负半轴上,点A(1,),点B在第一象限,经过点A的反比例函数y=(x>0)的图象恰好经过顶点B,则△ABC的边长为()A.3 B.2 C.4 D.311.如图,以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C 分别在x轴、y轴的正半轴上,双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E.过OC边上一点F,把△BCF沿直线BF翻折,使点C落在点C′处(点C′在矩形OABC内部),且C′E∥BC,若点C′的坐标为(2,3),则k的值为()A.B.C.D.12.如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条 B.3条 C.2条 D.1条二.解答题(共8小题)13.如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连接AB.点P 从点B出发,以每秒4个单位长度的速度沿BC的方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于点D,作DE⊥AC于点E.F为射线CB上一点,使得∠CEF=∠ABC.设点P运动的时间为x秒.(1)用含有x的代数式表示CE的长.(2)求点F与点B重合时x的值.(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.14.如图,射线AM平行于射线BN,AB⊥BN,且AB=3,C是射线BN上的一个动点,连接AC,作CD⊥AC,且CD=AC,过C作CE⊥BN交AD于点E,设BC 长为t.(1)AC长为,△ACD的面积为(用含有t的代数式表示);(2)求点D到射线BN的距离(用含有t的代数式表示);(3)是否存在点C,使△ACE为等腰三角形?若存在,请求出此时BC的长度;若不存在,请说明理由.15.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP 的面积为ycm2.①求y关于x的函数关系式.②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.16.如图,在矩形ABCD(AB<AD)中,将△ABE沿AE对折,使AB边落在对角线AC上,点B的对应点为F,同时将△CEG沿EG对折,使CE边落在EF所在直线上,点C的对应点为H.(1)证明:AF∥HG(图(1));(2)证明:△AEF∽△EGH(图(1));(3)如果点C的对应点H恰好落在边AD上(图(2)).求此时∠BAC的大小.17.如(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.(1)点C坐标是,当点D运动8.5秒时所在位置的坐标是;(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大;(3)点E在线段AB上以同样速度由点A向点B运动,如(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD 相似?(只考虑以点A、O为对应顶点的情况)18.如图,在平面直角坐标系中,点A,B坐标分别为(8,4),(0,4),点C,D在x轴上,C(t,0),D(t+3,0)(0<t≤5),过点D作x轴的垂线交线段AB 于点E,交OA于点G,连接CE交OA于点F(1)请用含t的代数式表示线段AE与EF的长;(2)若当△EFG的面积为时,点G恰在的图象上,求k的值;(3)若存在点Q(0,2t)与点R,其中点R在(2)中的的图象上,以A,C,Q,R为顶点的四边形是平行四边形,求R点的坐标.19.如图,点A(m,m+1),B(m+3,m﹣1)都在反比例函数的图象上.(1)求m,k的值;(2)求三角形ABO的面积.20.如图,将透明三角形纸片PAB的直角顶点P落在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x于点C,PA⊥y于点D,AB分别与x轴,y轴相交于点E、F.已知B(1,3).(1)k=;(2)试说明AE=BF;(3)当四边形ABCD的面积为时,求点P的坐标.相似与反比例练习参考答案与试题解析一.选择题(共12小题)1.如图所示,已知双曲线y=(x<0)和y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲线y=交于点C,S△ABC=6,=,则k=()A.﹣6 B.﹣4 C.6 D.4【解答】解:设A(x a,y a),B(x b,y b),C(x c,y c),则有x a y a=x b y b=5,x c y c=k,∵OA∥BC∴=,整理得到:y a x b﹣y a x c=x a y b﹣x a y c①过点A作AF⊥x轴于点F,BE⊥x轴于点E,CD⊥x轴于点D,∵S△ABC =S梯形AFEB+S梯形BEDC﹣S梯形AFDC=6∴(AF+BE)×EF+(BE+CD)×DE﹣(AF+CD)×DF=6代入坐标可得到:(y a+y b)(x b﹣x a)+(y b+y c)(x c﹣x b)﹣(y a+y c)(x c﹣x a)=6,整理得:y a x b﹣x a y b+y b x c﹣y c x b﹣y a x c+x a y c=6,②①②联立得:y b x c﹣y c x b=12,③由=,可得:=,即x b=x c,∴y b==,代入③得:10+x c y c=12,解得:x c y c=4,即k=﹣4.故选:B.2.如图,点A在反比例函数y=(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△ADC=.则k的值为()A.B.16 C.D.10【解答】解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=,∴S△ACB=,∵OA=OB,∴B(2m,2n),S△AOC =S△ACB=,∵A、C在y=上,BC=2CD,∴C(m,n),∵S△AOC =S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴•(n+n)×m=,∴mn=16,故选:B.3.如图,O为坐标原点,点C在x轴上.四边形OABC为菱形,D为菱形对角线AC与OB的交点,反比例函敬y=在第一象限内的图象经过点A与点D,若菱形OABC的面积为24,则点A的坐标为()A.(1,6)B.(,5)C.(2,4)D.(3,3)【解答】解:作AE⊥OC于E,DF⊥OC于F.设A(a,b).∵四边形ABCO是菱形,∴AD=DC,∵AE∥DF,∴EF=FC,∴DF=AE=b∵反比例函敬y=在第一象限内的图象经过点A与点D,∴D (2a ,b ),∴OE=EF=FC=a ,∴OA=OC=3a ,∴AE==2a ,∵OC•AE=24, ∴3a•2a=24, ∴a 2=4,∵a >0,∴a=2,∴A (2,4), 故选:C .4.如图,平面直角坐标系中,矩形OABC 的边与函数y=(x >0)图象交于E ,F 两点,且F 是BC 的中点,则四边形ACFE 的面积等于( )A .4B .6C .8D .不能确定【解答】解:连接OF 、OB 、OE .∵四边形ABCO 是矩形,∴S △ABO =S △BCO ,∵BF=CF ,∴S △CFO =S △BFO ,∵E 、F 在y=(x >0)上,∴S △AEO =S △FCO =S △ABO ,∴AE=EB ,∵BF=CF ,∴EF ∥AC ,∴△BEF ∽△BAC , ∴=,∵S 矩形ABCO =16,∴S △BEF =×8=2,∴S 四边形ACFE =8﹣2=6,故选:B .5.如图,点A 是反比例函数y=(x >0)的图象上一点,过点A 作直线y=﹣x 的垂线,垂足为点B ,再过点A 作AC ⊥AB 交y=(x >0)的图象于点C ,若△ABC 是等腰三角形,则点B 的坐标是( )A .(﹣,)B .(﹣,)C .(﹣2,2)D .(﹣3,3)【解答】解:由题意,△ABC 是等腰直角三角形,BC ∥x 轴,设B (a ,﹣a ), ∵AC ∥OB ,∴AC ⊥直线y=x ,∴A 、C 关于直线y=x 对称,作OH ⊥AC 于H ,则四边形ABOH 是矩形,∴AH=HC=OB,AB=2OB,∴A(﹣a,﹣3a),∴3a2=6,∴a2=2,∵a<0,∴a=﹣,∴B(﹣,),故选:A.6.如图,菱形四边形ABCD的四个顶点分别在反比例函数y=,y=﹣的图象上,若该菱形的面积为78,则这个菱形的边长为()A.B.C.13 D.13【解答】解:根据对称性可知,反比例函数y=,y=﹣的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD的对角线AC与BD的交点即为原点O.如图:作DM⊥x轴于M,CN⊥x轴于N.连接OD,OC.∵DO ⊥OC ,∴∠DOM +∠CON=90°,∠CON +∠OCN=90°,∴∠DOM=∠OCN ,∵∠DMO=∠CNO=90°,∴△DOM ∽△OCN ,∵S △DOM =2,S △OCN =, ∴()2=,∴可以假设OD=2k ,OC=3k ,∵S 菱形ABCD =4••2k•3k=78,∴k=, ∴CD==k=,故选:B .7.如图,已知A ,B 为反比例函数y 1=图象上两点,连接AB ,线段AB 经过点O ,C 是反比例函数y 2=(k <0)在第二象限内的图象上一点,当△CAB 是以AB 为底的等腰三角形,且=时,k 的值为( )A.﹣ B.﹣3 C.﹣4 D.﹣【解答】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∵∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴=()2,∵CA:AB=5:8,AO=OB,∴CA:OA=5:4,∴CO:OA=3:4,∴=()2=,∵S△AOE=2,=,∴S△COF∴=,∵k<0,∴k=﹣,故选:A.。
专题2.10反比例函数与几何综合大题(学生版)
专题2.11反比例函数与几何综合大题一、解答题1.(2022·上海奉贤·九年级期中)如图,已知在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图像经过点A、B(−1,0),反比例函数y=6x的图像也经过点A,且点A横坐标是2.(1)求一次函数的解析式.(2)点C是x轴正半轴上的一点,连接AC,tan∠ACB=34,过点C作CE⊥x轴分别交反比例函数y=6x和一次函数y=kx+b(k≠0)的图像于点D、E,求点D、E的坐标.(3)在(2)的条件下,连接AD,一次函数y=kx+b(k≠0)的图像上是否存在一点F使得△EAD和△ECF相似?若存在,请直接写出点F坐标;若不存在,请说明理由.2.(2022·上海·八年级专题练习)如图,在平面直角坐标系中,△AOB是等边三角形.(1)在y轴正半轴取一点E,使得△EOB是一个等腰直角三角形,EB与OA交于M,已知MB=32,求MO.≠0的图(2)若等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD.反比例函数y=象恰好经过点C和点D,求反比例函数解析式.(此题无需写括号理由)3.(2022·福建·晋江市季延中学九年级期中)如图点P(m,n)是双曲线y=k x(x<0)上一动点,且m,n为关于a的一元二次方程4a2+ba+320的两根,动直线与x轴、y轴正半轴分别交于点A、B,过点A与AB垂直的直线交y轴于点E,点F是AE的中点,过B点且与AB垂直的直线交FO的延长线于Q点.(1)求双曲线的解析式;(2)当OP取最小值求b的值.(3)若点O到AB的距离等于OP的最小值,求1EF+1BQ的值.>04.(2022·安徽·淮南市龙湖中学九年级期中)如图,直线y=ax+6经过点A−3,0,交反比例函数y=的图象于点B1,m.(1)求k的值;(2)点D为第一象限内反比例函数图象上点B下方的一个动点,过点D作DC⊥y轴交线段AB于点C,连接AD,求△ACD的面积的最大值.5.(2022·广东·南山实验教育麒麟中学九年级期中)直线y=2x与反比例函数y=2x图象交于A,B两点,CA点右侧任意一点;(1)如图1,求A,B两点坐标;(2)如图2,连接BC,若∠ABC=45°,求点C的坐标;(3)如图3,设直线AC,BC分别与x轴相交于D,E两点,且AC=mCD,BC=nCE,求n−m的值.6.(2022·江苏·景山中学九年级阶段练习)在平面坐标系xOy中,给出如下定义:若点P在图形M上,点Q 在图形N上,称线段PQ长度的最小值为图形M、N的“最近距离”,记为d M,N.特别地,若图形M、N有公共点,规定值为0.(1)如图1,⊙O的半径为2,①点A0,1,则d A,⊙O=_________.>0的图像为G1,则d G1,⊙O=_________.②记反比例函数y=(2)如图2,点B2,0,⊙B的半径为1,直线l1:y=kx+3,若d l1,⊙B=135,求k的值.(3)如图3,直线l2:y=−x+4与x轴交于点C,与y轴交于点D,边长为2的正方形EFHK的中心为O,将正方形EFHK沿着x m个单位,记正方形EFHK为图形G2,若线段CD与正方形EFHK的“最近距离”满足0≤d CD,G2≤12,请直接写出m的取值范围.7.(2022·重庆第二外国语学校九年级期中)如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,S△ABC=3,且CA⊥x轴.(1)若点C在反比例函数y=k x(k≠0)的图象上,求该反比例函数的解析式;(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由;(3)在(2)的条件下,取OB的中点M,将线段OM沿着y轴上下移动,线段OM的对应线段是O1M1,直接写出四边形CM1O1N周长的最小值.8.(2022·陕西·西北大学附中九年级期中)如图,一次函数y=−x+4的图象与反比例函数y=k x(k为常数,且k≠0)的图象交与A1,a、B两点.(1)求反比例函数的表达式及点B的坐标;(2)点P在反比例函数第三象限的图象上,使得△PAB的面积最小,求满足条件的P点坐标及△PAB面积的最小值.9.(2021·广东·佛山市南海外国语学校九年级阶段练习)如图1,平面直角坐标系xOy中,A−4,3,反比例<0的图象分别交矩形ABOC的两边AC、BC于E、F(E、F不与A重合),沿着EF将矩形ABOC函数y=折叠使A、D重合(1)如图2,连接BC,求证:EF∥BC;(2)当点D落在矩形ABOC内部时,求k的取值范围;(3)如图3,连接CD,求CD的最小值,并直接写出此时点D的坐标.>0图象上10.(2022·山西·大同市云州区初级示范中学校九年级阶段练习)如图,已知点A为函数y=任意一点,连接OA并延长至点B,使AB=OA,过点B作BC∥x轴交函数图象于点C,过点A作AD⊥BC,垂足为D,连接OC.求四边形OCDA的面积.11.(2022·山东师范大学第二附属中学九年级阶段练习)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,已知顶点B(2,4),反比例函数y=k x(x>0)的图像与BC,AB分别交于D,E,BD=12.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)若点F在直线AC上,点G在反比例函数y=k x(x>0)的图像上,是否存在合适的F、G点,使四边形BCFG平行四边形,若存在,请求出点G的坐标.若不存在,请说明理由.12.(2022·湖南·长沙市北雅中学模拟预测)知识拓展如图1,由DE∥BC,AD=DB,可得AE=EC;如图2,由AB∥CD∥EF,AE=EC,可得BF=FD;解决问题如图3,直线AB与坐标轴分别交于点A m,0,B0,n m>0,n>0,反比例函数y=m x x>0的图象与AB交于C,D两点.(1)若m+n=8,n取何值时ΔABO的面积最大?(2)若SΔAOC=SΔCOD=SΔBOD,求点B的坐标.13.(2022·辽宁·灯塔市第一初级中学九年级期中)如图,在直角坐标系中,点B的坐标为(4,2),过点B 分别作x轴、y轴的垂线,垂足分别是C,A,反比例函数y=4x(x>0)的图象分别交AB,BC于点E,F.(1)求直线EF的解析式;(2)求△EOF的面积;(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P的坐标.14.(2022·山东·新泰市宫里镇初级中学九年级阶段练习)如图,函数y=k x(x>0)的图像过点A(n,2)和B(85,2n−3)两点.(1)求n和k的值;(2)将直线OA沿x轴向左移动得直线DE,交x轴于点D,交y轴于点E,交y=k x(x>0)于点C,若S△ACO=6,求直线DE解析式;(3)在(2)的条件下,第二象限内是否存在点F,使得△DEF为等腰直角三角形,若存在,请直接写出点F的坐标;若不存在,请说明理由.15.(2022·上海·新区川沙新镇江镇中学九年级阶段练习)如图,直线AC:y=ax+2分别交y轴和反比例函数y=k x(x>0)的图象于点C和点A(2,m),点B也在反比例函数的图象上,且BC∥x轴,tan∠ACB=2.(1)求点A、B的坐标;(2)设点D在x轴的正半轴上,点E在该反比例函数的图象上.①若四边形BDCE是菱形,求出该菱形周长;②若以点A、C、D、E为顶点的四边形是平行四边形,请直接写出点D的坐标.16.(2022·浙江·九年级专题练习)已知在平面直角坐标系xOy中,点A是反比例函数y=1x(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=k x(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=k x(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.17.(2021·河南·商城县第二中学九年级阶段练习)已知反比例函数y=1-m x(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,4),(﹣3,0).①求出函数解析式;②【分类讨论思想】设点P是该反比例函数图象上的一点,若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为______个.18.OABC,OA在y轴上,OC在x轴上,OA=2,AB=4,双曲线k>0与矩形的边AB、BC分别交于点E、F.(1)若点E是AB的中点,求点F的坐标;(2)将△BEF沿直线EF对折,点B落在x轴上的D处,过点E作EG⊥OC于点G.问:△EGD与△DCF是否相似?若相似,请求出相似比;若不相似,请说明理由.19.(2021·辽宁·沈阳市清乐围棋学校九年级阶段练习)如图,在平面直角坐标系中,边长为2的正方形ABCD 关于y轴对称,边AD在x轴上,点B在第四象限,直线BD:y1=kx+b与反比例函数y2=m x的图象交于点B,点E.(1)求反比例函数及直线BD的关系式;(2)直接写出不等式m x﹣kx﹣b<0的解集.20.(2022·安徽·利辛县汝集镇西关学校九年级阶段练习)如图,ΔAOB的边OB在x轴上,且∠ABO=90°,反比例函数y=k x(x>0)的图像与边AO、AB分别相交于点C、D,连接BC.已知OC=BC,ΔBOC的面积为12.(1)求k的值;(2)若AD=6,求直线OA的函数表达式.21.(2022·浙江省武义县实验中学八年级阶段练习)如图,四边形OBAC是矩形,OC=2,OB=6,反比例函数y=k x 的图象过点A.(1)求k的值.(2)点P为反比例函数图象上的一点,作PD⊥直线AC,PE⊥x轴,当四边形PDCE是正方形时,求点P的坐标.(3)点G为坐标平面上的一点,在反比例函数的图象上是否存在一点Q,使得以A、B、Q、G为顶点组成的平行四边形面积为16?若存在,请求出点G的坐标;若不存在,请说明理由.22.(2022·广东·深圳市宝安第一外国语学校模拟预测)数学是一个不断思考,不断发现,不断归纳的过程,古希腊数学家帕普斯(Pappus,约300−350)把∠AOB三等分的操作如下:(1)以点O为坐标原点,OB所在的直线为x轴建立平面直角坐标系;(2)在平面直角坐标系中,绘制反比例函数y=1x(x>0)的图像,图像与∠AOB的边OA交于点C;(3)以点C为圆心,2OC为半径作弧,交函数y=1x的图像于点D;(4)分别过点C和D作x轴和y轴的平行线,两线交于点E,M;(5)作射线OE,交CD于点N,得到∠EOB.(1)判断四边形CEDM的形状,并证明;(2)证明:O、M、E三点共线;(3)证明:∠EOB=13∠AOB.23.(2022·江苏省盐城中学新洋分校八年级阶段练习)【感知】如图1,已知反比例函数y=k x上有两点A(−2,1),B(1,−2),AE⊥x轴交x轴于点E,BF⊥y轴交y轴于点F,则S△AEF=______;S△BEF=_______;EF与AB的位置关系:_______.【探究】数学社团的同学们对上述问题又时行了思考,如图2,当A,B是双曲线y=k x(x>0)同一支上任意两点,过A,B分别向y轴,x轴作垂线,交y轴于点E,交x轴于点F,连接AF、BE.①试探究△AEF与△BEF面积的关系并说明理由.②试探究EF与AB之间的位置关系并说明理由.【运用】如图3,已知点A、B在反比例函数y=12x的图像上,且A(3,m),B是反比例函数y=12x第三象限内图像上的一动点,过点A作AE⊥x轴,过点B作BF⊥y轴,垂足分别分为E,F,若四边形AEFB的面积为20,求点B的坐标.(提示,可直接运用上述所发现的结论,答案见公众号:绿爱生活)【拓展】如图4,函数y=k x(x>0)的图像与过原点O的直线相交于B、D两点,点A是第一象限内图像上的动点(点A在点B的左侧),直线AB分别交于y轴、x轴于点C、E,连接AD分别交y轴、x轴于点M、N.若AC=23AB,则AM AD=______.24.(2022·广东·佛山市南海外国语学校三模)如图1,在平面直角坐标系xOy中,点C在x轴负半轴上,四边形OABC为菱形,反比例函数y=−12x(x>0)经过点A(a,−3),反比例函数y=k x(k>0,x<0)经过点B,且交BC边于点D,连接AD.(1)求直线BC的表达式.(2)求tan∠DAB的值.(3)如图2,P是y轴负半轴上的一个动点,过点P作y轴的垂线,交反比例函数y=−12x(x>0)于点N.在点P运动过程中,直线AB上是否存在点E,使以B,D,E,N为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.25.(2021·江苏·开明中学八年级期末)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴和y轴的正半轴上,A(8,0),B(0,6),点C从原点O出发,沿边OA向点A运动,速度为每秒1个单位长度,点D从点A出发,沿边AB向点B运动,速度为每秒2个单位长度.设两点同时出发,运动时间为t秒(0< t<5)(1)当t=时,DC∥BO;(2)当△ADC的面积为9时,求t的值;(3)在(2)的条件下;①作射线BC,若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.②过点C作直线l1⊥x轴,过点B作直线l2⊥y轴,直线l1与直线l2交于点P,反比例函数y=k x(k>0,x>0)的图像与直线l1、l2分别交于点E、F,连接EF,在y轴上是否存在点Q,使得△PEF和△QEF全等,若存在,请直接写出相应的k的值;若不存在,请说明理由.26.(2022·广东·东莞市万江第三中学三模)阅读理解对于任意正实数a,b,∵(a−b)2≥0,∴a+b−2ab≥0,∴a+b≥2ab,只有当a=b时,等号成立.结论:在a+b≥2ab(a,b均为正实数)中,若ab为定值p,则a+b≥2p只有当a=b时,a+b有最小值2p.根据上述内容,回答下列问题:(1)若m>0,只有当m=______时,m+1m有最小值______.(2)探索应用如图,已知A−2,0,B0,−3,P为双曲线y=6x(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.(3)实践应用建筑一个容积为800m3,深为8m的长方体蓄水池,池壁每平方米造价为80元,池底每平方米造价为120元,如何设计池底的长、宽,使总造价最低?27.(2022·山东·新泰市楼德镇初级中学九年级阶段练习)反比例函数y=k x(k>0)的图像与直线y=mx+n的图像交于Q点,点B(3,4)在反比例函数y=k x的图像上,过点B作PB∥x轴交OQ于点P,过点P作PA∥y轴交反比例函数图像于点A,已知点A的纵坐标为94.(1)求反比例函数及直线OP的解析式;(2)在x轴上存在点N,使得△AON的面积与△BOP的面积相等,请求出点N的坐标;(3)在y轴上找一点E,使△OBE为等腰三角形,直接写出点E坐标.28.(2022·江苏·泰州中学附属初中八年级期末)如图在平面直角坐标系中,已知直线y=﹣12x+2及双曲线y =k x(k>0,x>0).直线交y轴于A点,x轴于B点,C、D为双曲线上的两点,它们的横坐标分别为a,a+m(m >0).(1)如图①连接AC、DB、CD,当四边形CABD为平行四边形且a=2时,求k的值.(2)如图②过C、D两点分别作CC'∥y轴∥DD'交直线AB于C',D',当CD∥AB时,①对于确定的k值,求证:a(a+m)的值也为定值.②若k=6,且满足m=a﹣4+d a,求d的最大值.29.(2022·江苏·泰州中学附属初中八年级期末)定义:平面直角坐标系内的矩形若满足以下两个条件:①各边平行于坐标轴:②有两个顶点在同一反比例函数图像上,我们把这个矩形称为该反比例函数的“伴随矩形”.例如,图1中,矩形ABCD的边AD∥BC∥x轴,AB∥CD∥y轴,且顶点A、C在反比例函数y=k x(k≠0)的图像上,则矩形ABCD是反比例函数的“伴随矩形”.解决问题:(1)已知,矩形ABCD中,点A、C的坐标分别为:①A(﹣3,8),C(6,﹣4);②A(1,5),C(2,3);③A(3,4),C(2,6),其中可能是某反比例函数的“伴随矩形”的是______;(填序号)(2)如图1,点B(2,1.5)是某比例系数为8的反比例函数的“伴随矩形”ABCD的顶点,求直线BD的函数解析式;(3)若反比例函数“伴随矩形”ABCD如图2所示,试说明有一条对角线所在的直线一定经过原点.30.(2022·上海市梅陇中学九年级期中)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数y=−1x,y=4x的图像交于A、B两点,(1)当OB与x轴的正半轴的夹角为45°时,求点A、B的坐标.(2)在直角∠BOA绕原点O按顺时针方向旋转过程中,∠OAB大小会变化吗?如果不变,请求出tan∠OAB的值如果有变化,请说明理由.(3)如果AB交y轴于点C,若AC=2BC时,求点A,B的坐标.。
专题67 反比例函数背景下的全等、相似问题(解析版)
例题精讲考点1反比例函数与全等三角形综合问题【例1】.如图,把一个等腰直角三角形放在平面直角坐标系中,∠ACB=90°,点C(﹣1,0),点B在反比例函数y=的图象上,且y轴平分∠BAC,则k的值是________解:如图,过点B作BD⊥x轴于D,在OA上截取OE=OC,连接CE,∵点C(﹣1,0),∴CO=1,∴CO=EO=1,∴∠CEO=45°,CE=,∵△BAC为等腰直角三角形,且∠ACB=90°,∴BC=AC,∠OCA+∠DCB=90°,∠CAB=45°,∵∠OCA+∠OAC=90°,∴∠OAC=∠BCD,在△OAC和△DCB中,∴△OAC≌△DCB(AAS),∴AO=CD,OC=BD=1,∵y轴平分∠BAC,∴∠CAO=22.5°,∵∠CEO=∠CEA+∠OAC=45°,∴∠ECA=∠OAC=22.5°,∴CE=AE=,∴AO=1+=CD,∴DO=,∴点B坐标为(,﹣1),∵点B在反比例函数y=的图象上,∴k=﹣1×=﹣,变式训练【变1-1】.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠BAC=30°,点A的坐标为(﹣3,0),将△ABC沿直线AC翻折,点B的对应点D 恰好落在反比例函数的图象上,则k的值为()A.B.﹣2C.4D.﹣4解:如图,过点D作DE⊥y轴于点E.由对称可知CD=BC,易证△DCE≌△BCO(AAS),∴CE=CO,DE=OB,∵∠BAC=30°,OA=3∴OC=OA=,∠OCB=30°,∴OB=OC=1,∴DE=OB=1,CE=OC=,OE=2,|k|=DE•OE=1×2=2,∵反比例函数图象在第二象限,∴k=﹣2,故选:B.【变1-2】.如图,点A是反比例函数y=图象上的一动点,连接AO并延长交图象的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足_______(填等量关系)解:如图,连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,∵由直线AB与反比例函数y=的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC⊥BC,AC=BC,∴CO⊥AB,CO=AB=OA,∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE≌△COF(AAS),∴OE=OF,AE=CF,∵点C(m,n),∴CF=﹣m,cF=n,∴OE=﹣m,AE=n,∴A(﹣m,n),∵点A是反比例函数y=图象上,∴﹣mn=4,即mn=﹣4,考点2反比例函数与相似三角形综合问题【例2】.如图,在平面直角坐标系中,四边形AOBD的边OB与x轴的正半轴重合,AD∥OB,DB⊥x轴,对角线AB,OD交于点M.已知AD:OB=2:3,△AMD的面积为4.若反比例函数y=的图象恰好经过点M,则k的值为()A.B.C.D.12解:过点M作MH⊥OB于H.∵AD∥OB,∴△ADM∽△BOM,∴=()2=,=4,∵S△ADM=9,∴S△BOM∵DB⊥OB,MH⊥OB,∴MH∥DB,∴===,∴OH=OB,=×S△OBM=,∴S△MOH∵=,∴k=,故选:B.变式训练【变2-1】.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,=,则k的值为()A.B.﹣C.﹣D.﹣3解:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=()2=()2=,=×4=2,又∵S△AOC=,∴S△OBD∴k=﹣.故选:B.【变2-2】.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延=8,则k等于长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC ()A.8B.16C.24D.28解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴=,即BC×OE=BO×AB.=8,即BC×OE=2×8=16=BO×AB=|k|.又∵S△BEC又由于反比例函数图象在第一象限,k>0.所以k等于16.故选:B.【变2-3】.如图,在等腰△AOB中,AO=AB,顶点A为反比例函数y=(x>0)图象上一点,点B在x轴的正半轴上,过点B作BC⊥OB,交反比例函数y=的图象上于点C,连接OC交AB于点D,若△BCD的面积为2,则k的值为()A.18B.20C.22D.21解:如图,过点A作AF⊥OB交x轴于F,交OC于点E,∵OA=AB,AF⊥OB,∴OF=FB=OB,∵BC⊥OB,∴AF∥BC,∴△ADE∽△BDC,,∴BC=2EF,设OF=a,则OB=2a,∴A(a,),C(2a,),∴AF=,BC=,∴AF=2BC=4EF,AE=AF﹣EF=3EF,∵△ADE∽△BDC,∴,∴=()2=,∵△BCD的面积为2,=,∴S△ADE∴=,∵=,∴EC=OE,∴=,∴=,=,∴S△AOE∵==,∴==,=S△AOE=×=10,∴S△AOF∴|k|=10,∵k>0,∴k=20.故选:B.1.如图,AB⊥x轴,B为垂足,双曲线y=(x>0)与△AOB的两条边OA,AB分别相交于C,D两点,OC=CA,且△ABC的面积为3,则k等于()A.4B.2C.3D.1解:连接BC,过点C作CM⊥OB于M,∵OC=CA,即=,∴==,又∵△ABC的面积为3,=,∴S△OBC又∵CM∥AB,∴==,∴==,=S△OBC==|k|,∴S△OMC∵k>0,∴k=1,故选:D.2.如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为()A.3B.2C.D.4解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=OB,∴OC=BC=×2CE=CE,∵AE∥OD,∴△COD∽△CEA,∴=()2=4,∵△BCD的面积等于1,OC=OB,=S△BCD=,∴S△COD=4×=1,∴S△CEA∵OC=CE,=S△CEA=,∴S△AOC=+1=,∴S△AOE=k(k>0),∵S△AOE∴k=3,故选:A.3.如图所示,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,则tan∠BAO的值为()A.B.C.D.解:作AC⊥x轴于C,BD⊥x轴于D,如图,∵顶点A,B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,=×|1|=,S△BOD=×|﹣5|=,∴S△AOC∵∠AOB=90°,∴∠BOD+∠AOC=90°,∵∠AOC+∠OAC=90°,∴∠OAC=∠BOD,而∠ACO=∠BDO,∴△AOC∽△OBD,∴=()2==,∴=,在Rt△AOB中,tan∠BAO==,故选:B.4.如图,函数y=﹣(x<0)的图象经过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连接AD.若AD=3,则△ABO的周长为()A.12B.6+C.6+2D.6+2解:如图,过点D作DE⊥AO于E,∵点D是BO的中点,∴AD=BD=DO=3,∴BO=6,∵DE⊥AO,AB⊥AO,∴AB∥DE,∴,∴AB=2DE,AO=2EO,=DE×EO=,∵S△DEO=AB×AO=2,∴S△ABO∵AB2+AO2=OB2=36,∴(AB+AO)2=36+8,∴AB+AO=2,∴△ABO的周长=AO+BO+AB=6+2,故选:D.5.如图,长方形ABCD的顶点A、B均在y轴的正半轴上,点C在反比例函数y=(x>0)的图象上,对角线DB的延长线交x轴于点E,连接AE,已知S△ABE=1,则k的值是()A.1B.C.2D.4解:延长DC与x轴交于点F,∵ABCD是矩形,∴AD=BC,AD∥BC∥OE,∴△ABD∽△OBE,∴=,即:AD•OB=AB•OE,=1=AB•OE,又∵S△ABE∴AD•OB=AB•OE=2=BC•OB,=BC•OB=2=|k|,即:S矩形OBCF∴k=2或k=﹣2(舍去),故选:C.6.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为3.解:设点P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣3(不合题意舍去),∴点P(1,3),∴3=,解得k=3.故答案为:3.7.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.8.在平面直角坐标系xOy中,点A,B在反比例函数y=(x>0)的图象上,且点A与点B关于直线y=x对称,C为AB的中点,若AB=4,则线段OC的长为2.解:设A(t,),∵点A与点B关于直线y=x对称,∴B(,t),∵AB=4,∴(t﹣)2+(﹣t)2=42,即t﹣=2或t﹣=﹣2,解方程t﹣=﹣2,得t=﹣﹣2(由于点A在第一象限,所以舍去)或t=﹣+2,经检验,t=﹣+2,符合题意,∴A(﹣+2,+2),B(+2,﹣+2),∵C为AB的中点,∴C(2,2),∴OC==2.故答案为2.9.如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为9.解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,∵△OMN是边长为10的等边三角形,∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°设OC=b,则BC=,OB=2b,∴BM=OM﹣OB=10﹣2b,B(b,b),∵∠M=60°,AB⊥OM,∴AM=2BM=20﹣4b,∴AN=MN﹣AM=10﹣(20﹣4b)=4b﹣10,∵∠AND=60°,∴DN==2b﹣5,AD=AN=2b﹣5,∴OD=ON﹣DN=15﹣2b,∴A(15﹣2b,2b﹣5),∵A、B两点都在反比例函数y=(x>0)的图象上,∴k=(15﹣2b)(2b﹣5)=b•b,解得b=3或5,当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,∴b=3,∴k=b•b=9,故答案为:9.10.如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,求k=.解:过A作AE⊥x轴,垂足为E,∵C(0,﹣3),∴OC=3,∵∠AED=∠COD=90°,∠ADE=∠CDO∴△ADE∽△CDO,∴,∴AE=1;又∵y轴平分∠ACB,CO⊥BD,∴BO=OD,∵∠ABC=90°,∴∠OCD=∠DAE=∠ABE,∴△ABE∽△DCO,∴设DE=n,则BO=OD=3n,BE=7n,∴,∴n=∴OE=4n=∴A(,1)∴k=.故答案为:.11.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=12.解:如图,过点D、E分别作x轴的垂线,垂足分别为F、G,=S矩形OADF=2S△OEG=k,则S△OBC又∵EG∥BC,∴△OEG∽△OBC,∴=()2=2,∴=,∴=,∴==,∴=,∴k=12.故答案为12.12.如图,在平面直角坐标系中,∠OAB=60°,∠AOB=90°,反比例函数y1=的图象经过点A,反比例函数y2=﹣的图象经过点B,则m的值为1.解:作BH⊥x轴,垂足为H,AM⊥y轴,垂足为M,∵∠OAB=60°,∠AOB=90°,∴△BHO∽△AMO,∴,令OM=a,则BH=,代入反比例函数y2=﹣得:x=,∴OH=,得:AM=,∴,又∵AM•OM=m,∴m=1.故答案为1.13.如图,线段OA与函数y=(x>0)的图象交于点B,且AB=2OB,点C也在函数y =(x>0)图象上,连结AC并延长AC交x轴正半轴于点D,且AC=3CD,连结BC,若△BCD的面积为3,则k的值为.解:如图,分别过点A,B,C作x轴的垂线,垂足分别为M,E,F.∴BE∥CF∥AM,∴OB:OA=BE:AM=OE:OM=1:3,CD:AD=DF:DM=CF:AM=1:4,设点B的坐标为(a,b),∴OE=a,BE=b,∴AM=3BE=3b,OM=3OE=3a,∴CF=AM=b,∴C(a,b),∴OF=a,∴FM=OM﹣OF=a,∴DF=FM=a,∴OD=OM﹣DF﹣FM=a.∵△BCD的面积为3,∴△ABC的面积=3×△BCD的面积=9,∴△ABD的面积=12.∴△BOD的面积=×△ABD的面积=6.∴•OD•BE=a×b=6.解得k=ab=.故答案为:.14.如图,在平面直角坐标系中,点A、B在函数y=(k>0,x>0)的图象上,过点A作x轴的垂线,与函数y=﹣(x>0)的图象交于点C,连接BC交x轴于点D.若点A的横坐标为1,BC=3BD,则点B的横坐标为2.解:作BE⊥x轴于E,∴AC∥BE,∴△CDF∽△BDE,∴==,∵BC=3BD,∴==,∴CF=2BE,DF=2DE,设B(,b),∴C(1,﹣2b),∵函数y=﹣(x>0)的图象交于点C,∴﹣k=1×(﹣2b)=﹣2b,∴k=2b,∴B的横坐标为==2,故答案为:2.15.如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x>0)=6,则k=的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC.解:如图,作CM⊥AB于点M,DN⊥AB于点N,设C (m ,),则OM =m ,CM =,∵OE ∥CM ,AE =CE ,∴==1,∴AO =m ,∵DN ∥CM ,CD =2BD ,∴===,∴DN =,∴D 的纵坐标为,∴=,∴x =3m ,即ON =3m ,∴MN =2m ,∴BN =m ,∴AB =5m ,∵S △ABC =6,∴5m •=6,∴k =.故答案为:.16.如图,A 为反比例函数(其中x >0)图象上的一点,在x 轴正半轴上有一点B ,OB =4.连接OA ,AB ,且OA =AB =2.过点B 作BC ⊥OB ,交反比例函数(其中x >0)的图象于点C ,连接OC 交AB 于点D ,则的值为.解:过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH===6,∴点A的坐标为(2,6).∵A为反比例函数(其中x>0)图象上的一点,∴k=2×6=12.∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC=3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴,故答案为.17.如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=和y=(k<0)上,=,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴=()2,∵A点在双曲线y=,=,=×4=2,=,∴S△AOM∴=()2,=,∴S△ODN∵D点在双曲线y=(k<0)上,∴|k|=,∴k=﹣9,∵平行于x轴的直线与两双曲线分别交于点E,F,=+=,∴S△OEF故答案为.18.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=8.解:点A、B的坐标分别为(4,0)、(0,4),即:OA=OB,∴∠OAB=45°=∠COD,∠ODA=∠ODA,∴△ODA∽△CDO,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD2=(4﹣n)2+n2=2n2﹣8n+16,CD=(m+n﹣4),DA=n,即2n2﹣8n+16=(m+n﹣4)×n,解得:mn=8=k,故答案为8.19.如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴=2,于点E,BC⊥AC,连接BE,反比例函数y=(x>0)的图象经过点D,已知S△BCE 则k的值是4.解:(解法一)过点D作DF⊥x轴于点F,如图所示.∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.又∵BC⊥AC,∴DA⊥AC.∵CD平行于x轴,∴∠ACD=∠CEO.∵CO⊥OE,DA⊥AC,∴∠ECO=∠D.设点D的坐标为(m,)(m>0),则CD=m,OC=DF=.在Rt△CAD中,CD=m,∠CAD=90°,AD=m•cos∠D.在Rt△COE中,OC=,∠COE=90°,CE==.S△BCE=CE•BC=•m•cos∠D=k=2,解得:k=4;(解法二)设点D的坐标为(m,n)(m>0,n>0),则CD=m,OC=n,∵CD∥x轴,∴∠ACD=∠OEC.∵四边形ABCD为平行四边形,BC⊥AC,∴DA⊥AC,AD=BC,∴∠DAC=∠COE=90°,∴△COE∽△DAC,∴=,即=,∴mn=BC•CE.=BC•CE=2,∵S△BCE=4.∴mn=2S△BCE∵点D在反比例函数y=(x>0)的图象上,∴k=mn=4.故答案为:4.20.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB.过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,则的值为.解:过点A作AH⊥x轴,垂足为H,AH交OC于点M,如图,∵OA=AB,AH⊥OB,∴OH=BH=OB=×4=2,A(2,),C(4,),∵AH∥BC,∴MH=BC=,∴AM=AH﹣MH=﹣=,∵AM∥BC,∴△ADM∽△BDC,∴==.21.如图,点A在反比例函数第一象限内图象上,点B在反比例函数第三象限内图象上,AC⊥y轴于点C,BD⊥y轴于点D,交于点E,若BO=CE,则k的值为.解:过点A作AP⊥x轴于点P,过点B作BQ⊥x轴于点Q,∵AC=BD=,∴点A的横坐标为,点B的横坐标为﹣,∵点A在反比例函数第一象限内图象上,点B在反比例函数第三象限内图象上,∴点A的纵坐标为6,点B的纵坐标为﹣3,∵AC⊥y轴,BD⊥y轴,∴CD=AP+BQ=9,OD=3,AC∥BD,∴∠CAE=∠DBE,∠ACE=∠BDE,∴△ACE≌△BDE(AAS),∴CE=DE=CD=,∵BO=CE,∴BO=,在Rt△BOD中,由勾股定理可得BD2+OD2=OB2,即,解得k=或k=﹣(舍去),故答案为:.22.如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数的图象经过线段DC的中点N,若BD=4,则ME的长为.解:在菱形ABCD中,AB=BC,BD⊥AC,OB=OD==2,∠ABC=2∠OBC,∴点D(0,2),设点C(m,0),∵点N为CD的中点,∴点,∵反比例函数的图像经过点N,∴,解得:,即点,∴,∴,,∴∠OBC=30°,∴∠ABC=60°,∴△ABC为等边三角形,∴,∵AE⊥BC,∴,∴.故答案为:.23.如图,平面坐标系中,AB交矩形ONCM于E、F,若=(m>1),且双曲线y==S1,S△OEF=S2,用含m的代数式表示.也过E、F两点,记S△CEF解:过点F作FG⊥y轴于点G,如图所示:∵CM⊥y轴,FG⊥y轴,∴CM∥FG,MC=FG,∴△BME∽△BGF,∴===,设点C的坐标为(a,b),则E(,b),F(a,),∴S1=×(a﹣)•(b﹣)=ab;S2=a•b﹣•﹣•﹣ab=ab.∴=.24.如图,在平面直角坐标系中,点P、Q在函数y=(x>0)的图象上,PA、QB分别垂直x轴于点A、B,PC、QD分别垂直y轴于点C、D.设点P的横坐标为m,点Q的纵坐标为n,△PCD的面积为S1,△QAB的面积为S2.(1)当m=2,n=3时,求S1、S2的值;(2)当△PCD与△QAB全等时,若m=3,直接写出n的值.解:(1)∵当m=2时,y==6,∴P(2,6).∵PA⊥x轴,PC⊥y轴,∴PC=OA=2,PA=OC=6.∵当m=3时,x==4,∴Q(4,3).∵QB⊥x轴,QD⊥y轴,∴DQ=OB=4,QB=OA=3,∴CD=OC﹣OD=3,AB=OB﹣OA=2,∴S1=CD•CP=×3×2=3,S2=AB•QB=×2×3=3.(2)∵m=3,∴P(3,4),∴PC=OA=3,当△PCD≌△QBA时,∵QB=PC=3,∴n=3;当△PCD≌△ABQ时,∵PC=OA=3,∴AB=PC=3,∴OB=OA+AB=3+3=6.∵点Q在反比例函数y=的图象上,∴y==2,∴n=2.综上所述,n=2或3.25.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;:S△BOP=1:4,求点P的坐标.(3)若点P在线段AB上,且S△AOP解:(1)∵反比例函数y=经过A(1,2),∴k2=1×2=2,∴反比例函数解析式为y=,∵B(﹣2,n)在反比例函数y=的图象上,∴n==﹣1,∴B(﹣2,﹣1),∵直线y=k1x+b经过A(1,2),B(﹣2,﹣1),∴,解得,∴一次函数的解析式为y=x+1;(2)观察图象,k1x+b>的x的取值范围是﹣2<x<0或x>1;(3)设P(x,x+1),:S△BOP=1:4,∵S△AOP∴AP:PB=1:4,即PB=4PA,∴(x+2)2+(x+1+1)2=16[(x﹣1)2+(x+1﹣2)2],解得x1=,x2=2(舍去),∴P点坐标为(,).26.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k >0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=4;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.解:(1)连接OE,如图1,∵Rt△AOE的面积为2,∴k=2×2=4.(2)连接AC,如图1,设D(x,5),E(3,),则BD=3﹣x,BE=5﹣,=,∴,又∵∠B=∠B,∴△BDE∽△BCA,∴∠BED=∠BAC,∴DE∥AC.(3)假设存在点D满足条件.设D(x,5),E(3,),则CD=x,BD=3﹣x,BE=5﹣,AE=.作EF⊥OC,垂足为F,如图2,易证△B′CD∽△EFB′,∴,即=,∴B′F=,∴OB′=B′F+OF=B′F+AE=+=,∴CB′=OC﹣OB′=5﹣,在Rt△B′CD中,CB′=5﹣,CD=x,B′D=BD=3﹣x,由勾股定理得,CB′2+CD2=B′D2,(5﹣)2+x2=(3﹣x)2,解这个方程得,x1=1.5(舍去),x2=0.96,∴满足条件的点D存在,D的坐标为D(0.96,5).27.如图,点A和点E(2,1)是反比例函数y=(x>0)图象上的两点,点B在反比例函数y=(x<0)的图象上,分别过点A、B作y较的垂线,垂足分别为点C、D,AC =BD,连接AB交y轴于点F.(1)求k;(2)设点A的横坐标为a,点F的纵坐标为m,求证:am=﹣2.(3)连接CE、DE,当∠CED=90°时,求A的坐标.(1)解:∵点E(2,1)是反比例函数y=(x>0)图象上的点,∴k=1×2=2;(2)证明:∵点A的横坐标为a,∴点A的纵坐标为,∵AC=BD,∴B(﹣a,﹣),∵AC∥BD,∴∠CAF=∠DBF,∠ACF=∠BDF,∵AC=BD,∴△ACF≌△BDF(ASA),∴CF=DF,∴m=﹣,∴am=﹣2;(3)解:∵∠CED=90°,CF=DF,∴CD=2EF,∴=2,由(2)知,=﹣m,∴﹣4m=2,解得m=1或﹣,当m=1时,a=﹣2(舍去),当m=﹣时,a=,∴A(,).28.已知在平面直角坐标系xOy中,点A是反比例函数y=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=(k>0,x<0)的图象于点B,过点A作AE ⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.(1)①证明:设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),∴AE=OF=a,∵AE⊥y轴,∴AE∥OF,∴四边形AEFO是平行四边形;②解:过点B作BD⊥y轴于点D,如图1,∵AE⊥y轴,∴AE∥BD,∴△AEO∽△BDO,∴,∴当k=4时,,即,=2S△AOE=1;∴S△BOE(2)不改变.理由如下:过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P的坐标为(b,),则AE=a,OE=,PH=﹣,∵四边形AEGO是平行四边形,∴∠EAO=∠EGO,AE=OG,∵∠EGO=∠PGH,∴∠EAO=∠PGH,又∵∠PHG=∠AEO,∴△AEO∽△GHP,∴,∵GH=OH﹣OG=﹣b﹣a,∴,∴﹣k=0,解得,∵a,b异号,k>0,∴,=×OE×(﹣b)=×(﹣b)=﹣,∴S△POE∴对于确定的实数k,动点A在运动过程中,△POE的面积不会发生变化.。
中考数学压轴题专题复习——反比例函数的综合及答案
中考数学压轴题专题复习——反比例函数的综合及答案一、反比例函数1.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.2.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a= ,解得a= ,此时正方形的边长为.∴所求“伴侣正方形”的边长为或(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;b、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,c、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣ x2+ ;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D 的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;故二次函数的解析式分别为:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.3.【阅读理解】对于任意正实数a、b,因为≥0,所以≥0,所以≥2 ,只有当时,等号成立.【获得结论】在≥2 (a、b均为正实数)中,若为定值,则≥2 ,只有当时,有最小值2 .(1)根据上述内容,回答下列问题:若 >0,只有当 =________时,有最小值________.(2)【探索应用】如图,已知A(-3,0),B(0,-4),P为双曲线(>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.【答案】(1)1;2(2)解:设P(x,),则C(x,0),D(0,),∴CA=x+3,BD= +4,∴S四边形= CA×BD= (x+3)( +4),化简得:S=2(x+ )+12.∵x>0,>0,∴x+ ≥2 ABCD=6,只有当x= ,即x=3时,等号成立,∴S≥2×6+12=24,∴四边形ABCD的面积有最小值24,此时,P(3,4),C(3,0),D(0,4),AB=BC=CD=DA=5,∴四边形ABCD是菱形.【解析】【解答】解:(1)根据题目所给信息可知m+ ≥2 ,且当m= 时等号,∴当m=1时,m+ ≥2,即当m=1时,m+ 有最小值2.故答案为:1,2;【分析】(1)此题是一道阅读题,根据题中所给的信息可知:,只有当m=时等号成立,一个正数只有1和它的倒数相等,从而得出答案;(2)根据双曲线上点的坐标特点设出P点的坐标,根据垂直于坐标轴上的点的坐标特点表示出C,D两点的坐标,从而表示出AC,BD的长,根据对角线互相垂直的四边形的面积等于两对角线积的一半建立出S与x的函数关系式,根据题干提供的信息得出得出,只有在,即x=3时,等号成立,从而得出S的最小值,从而得出P,C,D三点的坐标,进而算出AB=BC=CD=DA=5,根据四边相等的四边形是菱形得出结论。
2022年中考数学专题复习:反比例函数与几何综合
2022年中考数学专题复习:反比例函数与几何综合1.如图,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)k y k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =4.(1)点A 是否在该反比例函数的图象上?请说明理由; (2)若反比例函数的图象与DE 交于点Q ,求点Q 的横坐标.2.如图1,点A 、B 是双曲线y =kx (k >0)上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段AC 、AD 、BE 、BF ,AC 和BF 交于点G ,得到正方形OCGF (阴影部分),且S 阴影=1,△AGB 的面积为2.(1)求双曲线的解析式;(2)在双曲线上移动点A 和点B ,上述作图不变,得到矩形OCGF (阴影部分),点A 、B在运动过程中始终保持S 阴影=1不变(如图2),则△AGB 的面积是否会改变?说明理由.3.已知点A 为函数4(0)y x x=>图象上任意一点,连接OA 并延长至点B ,使AB OA =,过点B 作//BC x 轴交函数图象于点C ,连接OC .(1)如图1,若点A 的坐标为(4,)n ,求点C 的坐标;(2)如图2,过点A 作AD BC ⊥,垂足为D ,求四边形OCDA 的面积.4.如图,直线1:l y k x b =+与双曲线()20k y x x=>相交于A ,B 两点,与x 轴交于点C ,若点A ,B 的横坐标分别是1和2,(1)请直接写出21k k x b x+>的解集; (2)当AOB 的面积为3时,求2k 的值.5.如图,在平面直角坐标系中,A(8,0)、B(0,6)是矩形OACB的两个顶点,双曲线y=kx(k≠0,x>0)经过AC的中点D,点E是矩形OACB与双曲线y=kx的另一个交点.(1)点D的坐标为______,点E的坐标为______;(2)动点P在第一象限内,且满足S△PBO=56S△ODE.①若点P在这个反比例函数的图象上,求点P的坐标;①若点Q是平面内一点,使得以A、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.6.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数ykx=(x>0)的图象经过AO的中点C,交AB于点D,且AD=3.(1)若点D的坐标为(4,n).①求反比例函数ykx=的表达式;①求经过C,D两点的直线所对应的函数解析式;(2)在(1)的条件下,设点E是x轴上的点,使△CDE为以CD为直角边的直角三角形,求E点的坐标.7.如图1,点(08)(2)A B a ,、,在直线2y x b =-+上,反比例函数(ky x x=>0)的图象经过点B .(1)求反比例函数解析式;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC 、BD . ①如图2,当m =3时,过D 作DF ①x 轴于点F ,交反比例函数图象于点E ,求E 点坐标;①在线段AB 运动过程中,连接BC ,若①BCD 是以BC 为腰的等腰三角形,求所有满足条件的m 的值.8.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为(8,4),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将①OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到①ODE ,OD 与CB 相交于点F ,反比例函数()0ky x x=>的图象经过点F ,交AB 于点G .(1)求k 的值.(2)连接FG ,求四边形OAGF 的面积.(3)图中是否存在与①BFG相似的三角形?若存在,请找一个,并进行证明;若不存在,请说明理由.9.如图,在平面直角坐标系中,四边形ABCD为矩形,若点AD①AB=3①4,A(-6,0)、D(-9,4),点B、C在第二象限内.(1)请直接写出:点B的坐标________;(2)将矩形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、C两点的对应点B′、C′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式:(3)在(2)的情况下,是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、C′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q 的坐标;若不存在,请说明理由.10.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin①AOB=45,反比例函数y=kx(x>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标.11.如图,在正方形OABC 中,点O 为坐标原点,点()3,0C -,点A 在y 轴正半轴上,点E ,F 分别在BC ,CO 上,2CE CF ==,一次函数()0y kx b k =+≠的图象过点E 和F ,交y 轴于点G ,过点E 的反比例函数()0my m x=≠的图象交AB 于点D .(1)求反比例函数和一次函数的解析式;(2)在线段EF 上是否存在点P ,使ADP APG S S =△△,若存在,求出点P 的坐标;若不存在,请说明理由.12.如图是反比例函数y 2x=与反比例函数y 4x =在第一象限中的图象,点P 是y 4x =图象上一动点,P A ①x 轴于点A ,交函数y 2x =图象于点C ,PB ①y 轴于点B ,交函数y 2x=图象于点D ,点D 的横坐标为a .(1)求四边形ODPC 的面积;(2)连接DC 并延长交x 轴于点E ,连接DA 、PE ,求证:四边形DAEP 是平行四边形.13.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,OA=3,AB=4,反比例函数kyx(k>0)的图象与矩形两边AB,BC分别交于点D,点E,且BD=2AD.(1)求点D的坐标和k的值;(2)连接OD,OE,DE,求①DOE的面积;(3)若点P是线段OC上的一个动点,是否存在点P,使①APE=90°?若存在,求出此时点P的坐标;若不存在,请说明理由.14.如图1,点P是反比例函数y=kx(k>0)在第一象限的点,P A①y轴于点A,PB①x轴于点B,反比例函数y=6x的图象分别交线段AP、BP于C、D,连接CD,点G是线段CD上一点.(1)若点P(6,3),求①PCD的面积;(2)在(1)的条件下,当PG平分①CPD时,求点G的坐标;(3)如图2,若点G是OP与CD的交点,点M是线段OP上的点,连接MC、MD.当①CMD=90°时,求证:MG=12CD.15.在矩形AOBC 中,分别以,OB OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.A 点坐标为(0,3),B 点坐标为(4,0),F 是BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数(0)ky x x=>的图象与AC 边交于点E ,连接,OE OF ,作直线EF .(1)若2CF =,求反比例函数解新式; (2)在(1)的条件下求出EOF △的面积; (3)在点F 的运动过程中,试说明ECFC是定值.16.如图1,一次函数y =kx ﹣3(k ≠0)的图象与y 轴交于点B ,与反比例函数y =mx(x>0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积; (3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O 'CD ',若点O 的对应点O '恰好落在该反比例函数图象上(如图2),求出点O ',D '的坐标.17.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()4,2,OA ,OC 分别落在x 轴和y 轴上,OB 是矩形的对角线,将OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到ODE ,OD 与CB 相交于点F ,反比例函数()0k y x x=>的图象经过点F ,交AB 于点G .(1)求出k 的值.(2)在x 轴上是否存在一点M ,使MF MG -的值最大?若存在,求出点M ;若不存在,说明理由.(3)在线段OA 上存在这样的点P ,使得PFG △是等腰三角形,请直接写出OP 的长.18.如图,菱形OABC 的点B 在y 轴上,点C 坐标为(4,3),双曲线ky x=的图象经过点A .(1)菱形OABC 的边长为 ; (2)求双曲线的函数关系式;(3)①点B 关于点O 的对称点为D 点,过D 作直线l 垂直于x 轴,点P 是直线l 上一个动点,点E 在双曲线上,当P 、E 、A 、B 四点构成平行四边形时,求点E 的坐标; ①将点P 绕点A 逆时针旋转90°得点Q ,当点Q 落在双曲线上时,求点Q 的坐标.19.已知正方形OABC 的面积为9,点O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数(),ky x 0k 0x=>>的图象上,点(),P m n 是函数(),k y x 0k 0x=>>的图象上任意一点.过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .若矩形OEPF 和正方形OABC 不重合部分(阴影)面积为S .(提示:考虑点P 在点B 的左侧或右侧两种情况)(1)求B 点的坐标和k 的值; (2)写出S 关于m 的函数关系式; (3)当3S =时,求点P 的坐标.20.如图,在平面直角坐标系xOy 中,正方形ABCD 的边AB 在x 轴的正半轴上,顶点C ,D 在第一象限内,正比例函数y 1=3x 的图象经过点D ,反比例函数2(0)ky x x=>的图象经过点D ,且与边BC 交于点E ,连接OE ,已知AB =3. (1)点D 的坐标是 ; (2)求tan ①EOB 的值;(3)观察图象,请直接写出满足y 2>3的x 的取值范围; (4)连接DE ,在x 轴上取一点P ,使98DPES =,过点P 作PQ 垂直x 轴,交双曲线于点Q ,请直接写出线段PQ 的长.。
反比例函数与相似
xy DB AOC相似探究九题型九:相似与反比例函数【方法技巧】利用垂直作垂线构造直角三角形相似,得到线段关系,进而转化为坐标关系,通过方程求解. 1.直线122y x =-+与x 轴,y 轴分别交于A ,B 两点,AC ⊥AB 交双曲线(0)ky x x=>于C 点,BC 交x 轴于D 点,若2ACDABD SS=,求k 的值.2.如图,在△ABO 中,∠AOB =900,点A 在第一象限,点B 在第四象限,且AO :BO =12A (x 0,y 0)的坐标满足001y x =,求点B (x ,y )的坐标x ,y 所满足的关系式.3.如图,双曲线k y x =当经过Rt △BOC 斜边上的点A ,且满足23AO AB =,与BC 交于点D ,21BODS =,求k 的值,4.如图,直线122y x =--交两坐标轴于A ,B 两点,OC ⊥AB 于C ,直线OC 交双曲线(0)ky x x=>于点D ,若AB =2DO ,求k 的值.相似探究(十)题型十:相似与反比例函数【方法技巧】利用垂直作垂线构造直角三角形相似,将线段关系转化为坐标关系,通过方程求解. 1.如图,直线y =kx (k >0)分别交双曲线y =2x (x >0)和双曲线y =4x (x >0)于A ,B 两点,求OAOB的值.2.如图,在AOB 中,AOB =90,点A 在双曲线y =()0k x x <上,点B 在双曲线y =1x(x >0)上. (1)若k =-2,求OAOB的值; (2)若∠OAB =30°,求k 的值.3.如图,点A 是双曲线y =2x在第一象限的分支上的一个动点,连接AO 并延长交另一分支于 点B ,以AB 为边作等边ABC ,点C 在第四象限,随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y =kx(X >0)上运动,求k 的值.。
3反比例及相似综合
yxP 1P 2P 3A 3A 2A 1O 反比例及相似训练三1.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数ky x=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =.其中正确的结论是 (把你认为正确结论的序号都填上)2.如图,反比例函数y ﹦4x的图象经过直角三角形OAB 的顶点A ,D 为斜边OA 的中点,则过点D 的反比例函数的解析式为 .3. 将x ﹦23 代入反比例函数y ﹦﹣1x 中,所得函数值记为y 1,又将x ﹦y 1+1代入原反比例函数中,所得函数值记为y 2,再将x ﹦y 2+1代入原反比例函数中,所得函数值记为y 3,…,如此继续下去,则y 2016﹦ .4.如图,A 、B 是反比例函数y ﹦k x(k >0)的图象上关于原点O 对称的两点,BC ⊥x 轴,垂足为C ,连接AC 过点D (0,-1.5).若△ABC 的面积为7,则点B 的坐标为___________.5.如图,()111P ,x y ,()222P ,x y ,……()P ,n n n x y 在函数(40y x x=>的图像上,11P OA ∆,212P A A ∆,323P A A ∆,……1P A A n n n -∆都是等腰直角三角形,斜边1OA 、12A A 、23A A ,……1A A n n -都在x 轴上⑴求1P 的坐标 ⑵求12310y y y y ++++的值6.如图,在平面直角坐标系xOy 中,直线y =2x +n 与x 轴、y 轴分别交于点A 、B ,与双曲线xy 4=在第一象限内交于点C (1,m ). (1)求m 和n 的值;(2)过x 轴上的点D (3,0)作平行于y 轴的直线l ,分别与直线AB 和双曲线xy 4=交于点P 、Q ,求△APQ 的面积.7. 如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点, (1)求证:AC 2=AB •AD ;(2)求证:CE ∥AD ;(3)若AD =4,AB =6,求的值.y xDCA B OF EyxO DC BA8.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于F,点E是AB的中点,连接EF.(1)求证:2EF=BD,(2)四边形BDFE的面积为6,求△ABD的面积9.点D为Rt△ABC的斜边AB上一点,点E在AC上,连接DE,CD,且∠ADE=∠BCD,CF⊥CD交DE的延长线于点F,连接AF(1)如图1,若AC=BC,求证:AF⊥AB;(2)如图2,若AC≠BC,当点D在AB上运动时,求证:AF⊥AB.10.如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2)(1)问:始终与△AGC相似的三角形有__________及___________;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习:反比例函数与相似的综合题
【考点分析】
近几年的中考数学题中,对于反比例函数与几何图形的结合的考查力度明显加大,主要考查:①平面直角坐标系中,如何把线段转化为坐标,坐标转化为含有字母的代数式,进而进行代数计算;②反比例函数与相似图形的综合题;③反比例函数与几何图形的平移。
【专题攻略】
在平面直角坐标系中,反比例函数与几何图形的综合题,最基本的解决方法是:由点的坐标求相关线段的长度,根据相关线段的长度表示点的坐标。
这类题在解答时要求我们要熟练运用数学基础知识,还要能灵活运用数形结合、转化、待定系数、分类讨论等基本数学思想和方法。
【课前训练】
1、如图,面积为3的矩形OABC 的一个顶点B 在反比例函数x
k
y =的图象上,另三点在坐标轴上,则k = .
2、如图,A 为反比例函数x
k y =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k =____
第1题 第2题 第3、4题
3、如图,已知双曲线)0k (x
k
y >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相
交于点C .若△OBA 的面积为6,则k =____________.
4、如图,已知双曲线)0k (x
k
y >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相
交于点C .若△OBC 的面积为3,则k =____________.
【典型例题】(2010年广州中考第23题)
已知反比例函数y=
8
m
x
-
(m为常数)的图象经过点A(-1,6).
(1)求m的值;
(2)如图9,过点A作直线AC与函数y=
8 m
x -
与x轴交于点C,且AB=2BC,求点C的坐标.
(2014南沙区一模)如图,已知直线y 4x =-与反比例函数()m
y m 0x 0x
>>=,的图象交于A 、B 两点,与x 轴、y 轴分别相交于C 、D 两点.
(1)若点A 的横坐标为1,求m 的值并利用函数图象求关于x 的不等式m
4x x
<
-的解集; (2)是否存在以AB 为直径的圆经过点P (1,0)?若存在,求出m 的值;若不存在, 请说明理由.
y
x
D C
O B A P
第23题
1、(2013•宁波)如图,等腰直角三角形ABC 顶点A 在x 轴上, ∠BCA=90°,AC=BC=2,反比例函数y=(x >0)的图象分别 与AB ,BC 交于点D ,E .连结DE ,当△BDE ∽△BCA 时, 点E 的坐标为 .
2、(2013 绵阳)如图,已知矩形OABC 中,OA =2,AB =4,双曲线k
y x
(k >0)与矩形两边AB 、BC 分别交于E 、F 。
(1)若E 是AB 的中点,求F 点的坐标;
(2)若将△BEF 沿直线EF 对折,B 点落在x 轴上的D 点,作EG ⊥OC ,垂足为G ,
证明△EGD ∽△DCF ,并求k 的值。
解:(1)OABC 为矩形,AB=OC=4,点E 是
AB 的中点,AE=2,OA=2,,
点E (2,2)在双曲线y=k
x 上,
k=2×2=4 ,点F 在直线BC 及双
曲线y= 4x ,设点F 的坐标为(4,f ),f= 4
4 =1,
所以点F 的坐标为(4,1).
(2)①证明:△DEF 是由△BEF 沿EF 对折得到的, ∠EDF=∠EBF=90º,点D 在直线OC 上, ∠GDE+∠CDF=180º-∠EDF=180º-90º=90º,
∠DGE=∠FCD=90º,∠GDE+∠GED=90º,∠CDF=∠GED , △EGD ∽△DCF ;
② 设点E 的坐标为(a ,2), 点F 的坐标为(4,b ),点E 、F 在双曲线y=k
x 上,
k=2a=4b,a=2b,所以有点E (2b,2), AE=2b,AB=4, ED=EB=4-2b, EG=OA=CB=2, CF=b, DF=BF=CB-CF=2-b, DC=DF 2-CF 2 =(2-b)2-b 2 =21-b ,
O
G
F
E
D
C
B A
y
x
△EGD ∽△DCF,DC DF = EG ED ,2 1-b 2-b = 2 4-2b ,b= 3
4 ,
有点F (4,34 ),k = 4×3
4
= 3.
3、如图,直线1
22
y x =
+分别交轴于A 、C ,点P 是该直线与反比例函数在第一象限内的一个交点,PB ⊥x 轴于B,且9ABP S ∆=.
(1) 求证:△AOC ∽△ABP ; (2)求点P 的坐标; (3)设点R 与点P 在同一个反比例函数的图象上,且点R 在直线PB 的右侧,作RT ⊥x 轴于T,当△BRT 与△AOC 相似时,求点R 的坐标.
解(1)
∴△AOC ∽△ABP
(2)
△AOC ∽△ABP
2
2⎪⎭
⎫
⎝⎛=⎪⎭⎫ ⎝⎛=∴∆∆AB OA PB OC S S ABP AOC
第27题图
PB OC x PB x OC //,∴⊥⊥轴轴 42420044,0;2,0=∴==∴-∴-====∆AOC S OC OA B A x y y x ,),(),,(则令则令
)
3,2(26,332
,329
4
,9P OB AB PB AB OA PB OC S S S S ABP AOC AOC ABP ∴=∴==∴==∴
=∴
=∆∆∆ (3))
坐标为(设点n
n R x
y p 6
,6
)
3,2(∴=
∴
①当△BRT ∽△ACO 时,
RT
OC
BT OA =
即
n
n 6
2
24=- 01222
=--n n
)(131,13121舍去-=+=∴n n
②当△BRT ∽△CAO 时,
BT
OC
RT OA =
即
2264-=n n
0322=--n n )(1,321舍去-==∴n n
综合①、②所述,3131或+=∴n。