简易电阻、电容和电感测量仪和程序代码(已验证)

合集下载

简易电阻、电容和电感测试仪设计说明

简易电阻、电容和电感测试仪设计说明

课程设计任务书学生:专业班级:指导教师:工作单位:信息工程学院题目: 简易电阻、电容和电感测试仪设计初始条件:LM317 LM337NE555 NE5532STC89C52 TLC549 ICL7660 1602液晶要求完成的主要任务:1、测量围:电阻 100Ω-1MΩ;电容 100pF-10000pF;电感 100μH-10mH。

2、测量精度:5%。

3、制作1602液晶显示器,显示测量数值,并用发光二级管分别指示所测元件的类别。

时间安排:指导教师签名:年月日系主任(或责任教师)签名:__________ 年月日目录摘要 (3)ABSTRACT (4)1、绪论 (5)2、电路方案的比较与论证 (5)2.1电阻测量方案 (5)2.2电容测量方案 (7)2.3电感测量方案 (8)3、核心元器件介绍 (10)3.1LM317的介绍 (10)3.2LM337的介绍 (11)3.3NE555的介绍 (11)3.4NE5532的介绍 (13)3.5STC89C52的介绍 (14)3.6TLC549的介绍 (16)3.7ICL7660的介绍 (17)3.81602液晶的介绍 (18)4、单元电路设计 (20)4.1直流稳压电源电路的设计 (21)4.2电源显示电路的设计 (21)4.3电阻测量电路的设计 (22)4.4电容测量电路的设计 (23)4.5电感测量电路的设计 (24)4.6电阻、电容、电感显示电路的设计 (25)5、程序设计 (26)5.1中断程序流程图 (26)5.2主程序流程图 (27)6、仿真结果 (27)6.1电阻测量电路仿真 (27)6.2电容测量电路仿真 (28)6.3电感测量电路仿真 (28)7、调试过程 (29)7.1电阻、电容和电感测量电路调试 (29)7.2液晶显示电路调试 (29)8、实验数据记录 (30)心得体会 (31)参考文献 (32)附件 (33)附件1:电路图 (33)附件2:元件清单 (34)附件3:程序代码 (35)附件4:实物图 (45)摘要近几年来,电子行业的发展速度相当快,电子行业的公司企业数目也不断增多。

简易数字式电阻、电容和电感测量仪

简易数字式电阻、电容和电感测量仪

简易数字式电阻、电容和电感测量仪设计摘要:本系统设计主要有控制模块、正弦信号产生模块、测量模块、显示模块组成。

以MSP430作为主控制器,通过SPWM产生频率可调的正弦波信号,标准正弦信号流经待测电感与标准电阻的串连电路,通过峰值检波得到测量电压值,利用电压比例计算的方法推算出电感值。

电容及电阻测量则是通过MSP430控制IO口电平对RC电路充放电测电阻电容。

通过单片机控制12864液晶显示屏显示测试元件类型以及元件参数,并通过手动拨码选择测量的量程,实现精确读数。

一、方案分析与论证1.系统设计方案分析:方案①:用恒流源测量电阻,NE555谐振测量电容以及用LC三点式震荡测量电感的方法。

方案②:用MSP430控制IO口电平对RC电路充放电测电阻电容,用电压比例法来测量电感。

多档位选择用拨码开关实现。

方案一原理简单,但焊接困难、调试复杂,同时考虑到系统的精度,最后选用方案二。

整体系统框图:2.单元电路分析:电阻测量方案分析:用MSP430的IO口产生不同的电平控制RC充放电,对不同的测量档位选取不同的电阻参考阻值。

具体档位分为:100-300Ω、300-20KΩ、20KΩ-200KΩ、200KΩ-1MΩ档位。

电容测量实现方案分析:用MSP430的IO口产生不同的电平控制RC充放电,对不同的测量档位选取不同的电阻参考阻值。

具体档位分为:100-300Ω、300-20KΩ、20KΩ-200KΩ、200KΩ-1MΩ档位。

电感实现方案分析:本设计采用电压比例法来测量电感。

由于电感属电抗元件 ,因此不能采用直流来产生测量信号 ,而只能采用交流信号在角频率为ω的交流信号的作用下 ,电感获得的电压为:(式中Lx为待测电感)标准元件的选择有许多种方法 ,但为了提高测量精度和降低成本 ,本设计采用了标准电阻 ,它获得的电压为:根据电压比例法 ,经过计算可得:(式中:、分别是、向量电压的模值)。

三、系统测试1、主要测试仪器数字万用表、YB1732B3A型直流稳压电源、精密数字电桥。

简易数字式电阻、电容和电感测量仪设计

简易数字式电阻、电容和电感测量仪设计

简易数字式电阻、电容和电感测量仪设计报告摘要:本系统利用TI公司的16位超低功耗单片机MSP430F149和ICL8038精密函数发生器实现对电阻、电容和电感参数的测量。

本系统以自制电源作为LRC数字电桥和各个主要控制芯片的输入电源,并采用ICL8038芯片产生高精度的正弦波信号流经待测的电阻、电容或者电感和标准电阻的串联电路,通过测量电阻、电容或者电感和标准电阻各自的电压,利用电压比例计算的方法推算出电阻值、电容值或者电感值。

利用MSP430F149单片机控制测量和计算结果,运用自校准电路提高测量精度,同时用差压法,消除了电源波动对结果的影响。

测量结果采用12864液晶模块实时显示。

实验测试结果表明,本系统性能稳定,测量精度高。

关键词:LRC 数字电桥、电压比例法、液晶模块、MSP430F149、电阻电容电感测量一、设计内容及功能1.1设计内容设计并制作一台简易数字式电阻、电容和电感参数测量仪,由测量对象、测量仪、LCD 显示和自制电源组成,系统模块划分如下图所示:1.2 具体要求1. 测量范围(1)基本测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。

(2)发挥测量范围:电阻10Ω~10MΩ;电容50pF~10μF;电感50μH~1H。

2. 测量精度(1)基本测量精度:电阻±5% ;电容±10% ;电感±5% 。

(2)发挥测量精度:电阻±2% ;电容±8% ;电感±8% 。

3. 利用128*64液晶显示器,显示测量数值、类型和单位。

4. 自制电源5. 使用按键来设置测量的种类和单位1.3系统功能1. 基本完成以上具体要求2. 使用三个按键分别控制R、C、L的测试3. 采用液晶显示器显示测量结果二、系统方案设计与选择电阻、电容、电感测试仪的设计目前有多种方案可以实现,例如、使用可编程逻辑控制器(PLC)、振荡电路与单片机结合或CPLD与EDA相结合等等来实现。

简易电阻电容电感测试仪论文

简易电阻电容电感测试仪论文
2.1 电路原理图
2.2 电路分析
当 R1=R2=R3=R4=R 时,有 I 0 待测电阻:
Vi 2 2R
,则,
待测电容:
3 、 AD637 交流转有效值电路
3.1 电路原理图
3.2 电路分析
实际上是电压采样电路,前级电压跟随器主要是其隔离作用,避免给测量电路引 入负载。AD637 是根据数据手册所给的典型应用电路链接。
2.1.3 方案三:阻抗法
阻抗法测量有两种实现方法:用恒流源供电,然后测量元件电压;用恒 压源,测量元件电流。由于很难测量电流,而元件电压很容易测量,所以可以通 过测量元件电压,然后通过 AD 转换送给单片机,实现将难测的物理量转换为较 容易测量的物理量。 系统整体可分为四大部分:信号产生部分、测试部分(转换部分) 、数 据处理部分和显示部分。其中信号产生部分目的是产生幅度不变,频率可调的正 弦波,根据所测元件范围不同提高测量精度。测试部分目的是将待测元件的参数 转换为可测信号电压。数据处理部分是将已知信号获取并反算元件参数信号,但 考虑到交流信号需转换为有效值才能送给 MSP430F149 自带的模数转换器,进行 数据处理,所以在送给单片机之前要做相应转换,最后通过液晶显示。 其系统框图如下:
1.2.2 发挥部分
(1)扩大测量范围。 (2)提高测量精度。 (3)测量量程自动转换。
2 、系统总体方案设计
2.1 系统方案的选择
2.1.1 方案一:振荡法
这种方法的思想是将较难测量的物理量转变成精度较高且较容易测量 的物理量。基于此思路,我们把电子元件的集中参数 R、C、 L 转换成频率信号 f,然后用单片机计数后再运算求出 R、L、C 的值,并送显示,转换的原理分别 是 RC 振荡和f 是单片机容易处理的数字量。 其系统框图如下:

简易电阻、电容和电感测试仪报告

简易电阻、电容和电感测试仪报告

简易电阻、电容和电感测试仪1.1 基本设计要求(1)测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。

(2)测量精度:±5% 。

(3)制作4位数码管显示器,显示测量数值。

示意框图1.2 设计要求发挥部分(1)扩大测量范围;(2)提高测量精度;(3)测量量程自动转化。

摘要:本系统是依赖单片机MSP430建立的的,本系统利用555多谐振荡电路将电阻,电容参数转化为频率,而电感则是根据电容三点式振荡转化为频率,这样就能够把模拟量近似的转换为数字量,而频率f是单片机很容易处理的数字量,一方面测量精度高,另一方面便于使仪表实现自动化,而且单片机构成的应用系统有较大的可靠性。

系统扩展、系统配置灵活。

容易构成何种规模的应用系统,且应用系统较高的软、硬件利用系数。

单片机具有可编程性,硬件的功能描述可完全在软件上实现,而且设计时间短,成本低,可靠性高。

综上所述,利用振荡电路与单片机结合实现电阻、电容、电感测试仪更为简便可行,节约成本。

所以,本次设计选定以单片机为核心来进行。

关键词:430单片机,555多谐振荡电路,,电容三点式振荡一、系统方案电阻测量方案:555RC多谐振荡。

利用RC和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电阻的大小,如果固定电阻值,该方案硬件电路实现简单,通过选择合适的电容值即可获得适当的频率范围,再交由单片机处理。

综合比较,本设计采用方案三,采用低廉的NE555构建RC多谐振荡电路,电路简单可行,单片机易控制。

电容测量方案:555RC多谐振荡同样利用RC和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电容的大小,如果固定电阻值,该方案硬件电路实现简单,能测出较宽的电容范围,能够较好满足题目的要求。

采用低廉的NE555构建RC多谐振荡电路,电路简单可行,单片机易控制。

电感测量方案:电容三点式采用LC配合三极管组成三点式震荡振荡电路,通过测输出频率大小的方法来实现对电感值测量。

原创的电阻电容电感测试仪程序

原创的电阻电容电感测试仪程序

#include<reg51.h>#define Lcdxs P0sbit RS=P2^7;sbit RW=P2^6;sbit LcdE=P2^5;sbit k1=P2^2;sbit k2=P2^1;sbit k3=P2^0;sbit E=P1^0;sbit b=P1^1;sbit A=P1^2;sbit Y=P3^5;sbit LED1=P1^3;sbit LED2=P1^4;sbit LED3=P1^5;void keyscan();void display();Time_init();unsigned char flag,t,n;unsigned int xx1,xx2;float y,Rnum,Cnum,Lnum;unsigned long Rnum1,x1,x2,x3,x4,x5,x6,x7; void Write_com(unsigned char com);void Write_date(unsigned char date);Lcd_init();void Delay10ms(unsigned char i);void Delay1ms(unsigned char i);unsigned char code table_R[]="R: Ω" ; unsigned char code table_C[]="C: F" ; unsigned char code table_L[]="L: H" ;void main(){E=0;//是数据选择器使能Lcd_init();Time_init();while(1){keyscan();display();}}void keyscan(){if(k1==0)Delay10ms(1);if(k1==0){LED1=0;LED2=1;LED3=1;A=b=0; //选择R端数据选通TR0=1;//开始一秒计时TR1=1;//开始计数频率flag=1;while(!k1) //等待按键返回;{};}if(k2==0)Delay10ms(1);if(k2==0){LED2=0;LED1=1;LED3=1;b=0;A=1;//使电容端数据选通TR0=1;TR1=1;flag=2;while(!k2){};}if(k3==0)Delay10ms(1);if(k3==0){LED3=0;LED1=1;LED2=1;b=1;A=0;//使电感端数据选通TR0=1;TR1=1;flag=3;while(!k3){};}}void Time_0()interrupt 1{TH0=(65536-50000)/256;TL0=(65536-50000)%256;t++;if(t==10)//到0.5s时停止计时{t=0;TR0=0;TR1=0;xx2=TH1;xx1=TL1;y=2*(xx2*256+xx1);// y值即频率值f,每秒震动的次数;}}void display(){//如果flag=1,测电阻R值;if(flag==1){Rnum=(1.0/(y*1.5624e-7)-200)/2.0; //取值C1=0.22uF, R1=200Ω;Rnum=Rnum*10;Rnum1=(long)Rnum;x7=Rnum1/1000000;Write_com(0x80+0x40);Write_date(0x30+x7);x6=Rnum1/100000;x6=x6%10;Write_date(0x30+x6);x5=Rnum1/10000;x5=x5%10;Write_date(0x30+x5);x4=Rnum1/1000;x4=x4%10;Write_date(0x30+x4);x3=Rnum1%1000;x3=x3/100;Write_date(0x30+x3);x2=Rnum1%100;x2=x2/10;Write_date(0x30+x2);Write_date(0x2e);x1=Rnum1/1;x1=x1%10;Write_date(0x30+x1);}//如果flag=2,测电容C值;if(flag==2){Cnum=1/(20800*y); //取值R1=R2=10000Ω;Cnum=Cnum*10;Rnum1=(long)Cnum;x7=Rnum1/1000000;Write_com(0x80+0x40);Write_date(0x30+x7);x6=Rnum1/100000;x6=x6%10;Write_date(0x30+x6);x5=Rnum1/10000;x5=x5%10;Write_date(0x30+x5);x4=Rnum1/1000;x4=x4%10;Write_date(0x30+x4);x3=Rnum1%1000;x3=x3/100;Write_date(0x30+x3);x2=Rnum1%100;x2=x2/10;Write_date(0x30+x2);Write_date(0x2e);x1=Rnum1/1;x1=x1%10;Write_date(0x30+x1);}//如果flag=3,测电感L值;if(flag==3){Lnum=(1/(3.94784*y*y))*(1e12); //取值C取0.1uF,此次计算结果的单位为uH Lnum=Lnum*10;Rnum1=(long)Lnum;x7=Rnum1/1000000;Write_com(0x80+0x40);Write_date(0x30+x7);x6=Rnum1/100000;x6=x6%10;Write_date(0x30+x6);x5=Rnum1/10000;x5=x5%10;Write_date(0x30+x5);x4=Rnum1/1000;x4=x4%10;Write_date(0x30+x4);x3=Rnum1%1000;x3=x3/100;Write_date(0x30+x3);x2=Rnum1%100;x2=x2/10;Write_date(0x30+x2);Write_date(0x2e);x1=Rnum1/1;x1=x1%10;Write_date(0x30+x1);}}Time_init(){TMOD=0x51;//定时器0用于定时,定时器1用于计数TH0=(65536-50000)/256;TL0=(65536-50000)%256;TH1=0;TL1=0;EA=1;ET0=1;ET1=1;}void Write_com(unsigned char com){RS=0;RW=0;Lcdxs=com;Delay10ms(1);LcdE=1;Delay10ms(1);LcdE=0;}void Write_date(unsigned char date){RS=1;RW=0;Lcdxs=date;Delay10ms(1);LcdE=1;Delay10ms(1);LcdE=0;}Lcd_init(){Write_com(0x38);//设置显示模式Write_com(0x0c);//开显示不显示光标,光标不闪烁Write_com(0x06);//写一个指针加1Write_com(0x01);//清屏Write_com(0x80);//设置数据指针期起点}void Delay10ms(unsigned char i){unsigned char j,k;for(;i>0;i--)for(j=38;j>0;j--)for(k=130;k>0;k--); }void Delay1ms(unsigned char i) {unsigned char j,k;for(;i>0;i--)for(j=38;j>0;j--)for(k=13;k>0;k--);}。

简易电阻、电容和电感测量仪

简易电阻、电容和电感测量仪

简易电阻、电容和电感测量仪(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除竞赛题目:简易电阻、电容和电感测量仪2012年4月10日简易电阻、电容和电感测量仪摘要:本系统是以STM32为控制系统的简易数字式电阻、电容和电感测量仪。

系统利用半桥测量RLC的原理,设计了由信号产生电路、半桥电路、信号放大电路、真有效值测量电路、相位检测电路构成的系统。

电阻、电容和电感的信息通过半桥电路变成电信号,由放大电路和检测电路变换为可测量量,由控制系统计算得到元器件信息。

整个系统可以实现电阻、电容和电感的测量。

关键词:RLC测量仪半桥电路真有效值测量相位检测 STM321.绪论现今的万用表可以测量交流电压,交流电流,直流电压,直流电流,电阻,二极管正向压降,晶体管共发射极电流放大系数,有一些还能测试电容量,电导,温度等,但是对于电感量却不能直接测出,也不能够免掉在不同测量量之间切换的麻烦。

在模拟电子技术中,最基本的元器件莫过于电阻、电容和电感,如何准确、快速的测出这三者各项系数对于快速选择元器件和设计和搭建电路至关重要。

本组成员通过参看国内外万用表数据资料,了解其工作原理,并借鉴有关RLC测量的方法,通过对比谐振法和电桥法,并根据客观条件,选用了一种既能够较准确的测量各项参数,又符合实际条件的方法——电桥法。

2.方案论证2.1总体方案题目要求系统能对电阻、电容、电感测量,测量范围:电阻100Ω~1MΩ;电感100Pf~10000pF;电感100uH~10mH;测量精度为±10%。

方案一:运用谐振法,利用不同的频率使RLC电路产生谐振,从而测量出R、L、C参数。

利用信号源产生两种不同分辨率、两种不同频率范围的纯正弦波信号;经宽带稳压放大电路放大,形成检测电路需要的10V 恒压;测试接口电路根据测试参数自动切换量程;通过A/D 转换芯片检测接口电路中电容两端电压,经MCU 处理;MCU 根据谐振时,电容两端电压最大原理判断电路是否处于谐振,在谐振时,多次重复测量相关参数以减少随机误差,最后将计算结果显示。

简单电阻,电容和电感检验测试仪设计

简单电阻,电容和电感检验测试仪设计

课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 简易电阻、电容和电感测试仪设计初始条件:LM317 LM337NE555 NE5532STC89C52 TLC549 ICL7660 1602液晶要求完成的主要任务:1、测量范围:电阻100Ω-1MΩ;电容100pF-10000pF;电感100μH-10mH。

2、测量精度:5%。

3、制作1602液晶显示器,显示测量数值,并用发光二级管分别指示所测元件的类别。

时间安排:指导教师签名:年月日系主任(或责任教师)签名:__________ 年月日目录摘要 (4)ABSTRACT (5)1、绪论 (7)2、电路方案的比较与论证 (7)2.1电阻测量方案 (7)2.2电容测量方案 (9)2.3电感测量方案 (11)3、核心元器件介绍 (12)3.1LM317的介绍 (12)3.2LM337的介绍 (13)3.3NE555的介绍 (14)3.4NE5532的介绍 (17)3.5STC89C52的介绍 (18)3.6TLC549的介绍 (20)3.7ICL7660的介绍 (23)3.81602液晶的介绍 (24)4、单元电路设计 (26)4.1直流稳压电源电路的设计 (27)4.2电源显示电路的设计 (28)4.3电阻测量电路的设计 (29)4.4电容测量电路的设计 (30)4.5电感测量电路的设计 (31)4.6电阻、电容、电感显示电路的设计 (32)5、程序设计 (33)5.1中断程序流程图 (33)5.2主程序流程图 (34)6、仿真结果 (34)6.1电阻测量电路仿真 (34)6.2电容测量电路仿真 (35)6.3电感测量电路仿真 (36)7、调试过程 (37)7.1电阻、电容和电感测量电路调试 (37)7.2液晶显示电路调试 (38)8、实验数据记录 (38)心得体会 (40)参考文献 (41)附件 (42)附件1:电路图 (42)附件2:元件清单 (43)附件3:程序代码 (45)附件4:实物图 (64)摘要近几年来,电子行业的发展速度相当快,电子行业的公司企业数目也不断增多。

简易电阻、电容和电感测试仪软件实现

简易电阻、电容和电感测试仪软件实现

简易电阻、电容和电感测试仪软件实现作者:周波来源:《科学与财富》2016年第08期摘要:结合实际,重点阐述了电阻、电容和电感测试仪软件程序。

关键词:电阻;电容;电感测试仪;程序设计本设计是用汇编语言对AT89S51编程,以下是各个单元的软件设计。

1 整体程序设计整体程序是对各个子程序的调用和组织,系统开始后,主程序负责安排初始化、系统信号的发送和读取,以及数据的处理,最后通过LED做数据显示。

系统的测量选择可以由按键选择并且由发光二极管做指示。

整体程序设计如下:ORG 0000HLJMP STARTORG 001BHJMP INTM1 ;定义中断地址ORG 0030HSTART : MOV A,#3HMOV P2,A ;初始化p2口LOOP1: JB P2.2,DZ1;有按键1动作则转dz1JB P2.3,DR1;有按键2动作则转dr1JB P2.4,DG1;有按键3动作则转dg1LCALL DELAY;延时LJMP LOOP1;若无按键动作,继续扫描DZ1: MOV A,#24HMOV P2,A;点亮二极管1并选通电阻测量LCALL DZ ;调用电阻处理模块LCALL DISPLAY;调用显示程序LJMP START ;电阻处理完毕,程序返回等待下次测量DR1: MOV A,#49HMOV P2,A ;点亮二极管2并选通电容测量LCALL DR ;调用电容处理模块LCALL DISPLAY;调用显示程序LJMP START ;电容处理完毕,程序返回等待下次测量DG1: MOV A,#92HMOV P2,A ;点亮二极管3并选通电感测量LCALL DG ;调用电感处理模块LCALL DISPLAY;调用显示程序LJMP START;电感处理完毕,程序返回等待下次测量程序运行顺序是先定义程序开始地址,定义T1口中断地址,初始化P2口,判断按键动作,如果有动作,则被选择电路的指示灯亮,否则继续循环扫描按键,直到有键按下。

简易数字式电阻电容和电感测量仪设计方案

简易数字式电阻电容和电感测量仪设计方案

简易数字式电阻电容和电感测量仪设计方案设计一个简易的数字式电阻、电容和电感测量仪可以分为以下几个步骤:1.设计测量电路:首先,需要设计一个测量电路,电路可以使用基本的电压和电流测量技术。

电阻测量可以使用恒流法或恒压法,电容测量可以使用充放电法或交流法,电感测量可以使用交流法。

根据选择的测量方法设计合适的电路。

2.选取合适的传感器:为了实现数字化测量,需要选择合适的传感器。

电阻可以使用电阻表,电容可以使用电容计,电感可以使用电感表。

根据需要选择合适的传感器并进行调试和校准。

3.连接传感器与微控制器:将选取的传感器与微控制器进行连接,确保传感器的输出信号可以被微控制器读取。

可以使用模拟输入通道或数字接口来连接传感器和微控制器。

4.编写微控制器程序:根据测量电路和传感器的特性,编写微控制器的程序,实现测量功能。

程序中需要包括对传感器信号的处理、测量结果的计算和存储等功能。

5.设计用户界面:为了方便使用,可以设计一个简单的用户界面。

可以使用液晶显示屏、按键或触摸屏等组件来实现用户界面。

用户界面可以用来选择测量类型、显示测量结果等。

6.调试和测试:将硬件和软件部分进行集成,并进行调试和测试。

确保测量准确性和可靠性,对测量仪进行必要的校准和调整。

总结:设计一个简易的数字式电阻、电容和电感测量仪需要选择合适的测量电路和传感器,采集传感器信号并经过微控制器处理、计算和显示。

同时需要设计合适的用户界面,实现用户操作和结果显示。

最后进行调试和测试,确保测量仪的准确性和可靠性。

电阻电容测试仪程序

电阻电容测试仪程序
delayms(5);
}
delayms(2000);//数据显示2s
}
//延时函数
void delayms(uint xms)
{
uint i,j;
for(i=xms;i>0;i--)
for(j=110;j>0;j--);
}
//液晶写命令函数
void write_com(uchar com)
{
lcdrs=0;
for(num=0;num<6+count;num++)
{
write_data(table4[num]);
delayms(5);
}
}
//电感显示函数
void display_L(uint L)
{
uchar count=0;
uint L0;
L0=L;
while(L)
{
L=L/10;
count++;
}
for(num=5+count;num>5;num--)
}
for(num=5+count;num>5;num--)
{
table2[num]=f0%10+48;
f0=f0/10;
}
write_com(0x80);
for(num=0;num<6+count;num++)
{
write_data(table2[num]);
delayms(5);
}
}
//电容显示函数
//简易电容、电感测量仪程序
//初始化
#include <reg52.h>

简易R、L、C(电阻、电容和电感)测量仪器的制作

简易R、L、C(电阻、电容和电感)测量仪器的制作

毕业设计(论文)任务书电气自动化专业级电气班设计(论文)题目:简易电阻、电容和电感参数测试仪的设计与制作学生姓名:起讫日期:年 4 月11 日年 5 月31 日指导老师:_ 职称_副教授__ 一、设计(论文)题目:简易电阻、电容和电感参数测试仪的设计与制作二、设计(论文)任务主要技术指标:1、设计任务:设计并制作一台数字显示的电阻器、电容器和电感器参数测试仪。

示意框图如下:电阻器电容器信号变换测试与显与处理示电感器直流电源频率2、设计主要技术指标:(1)、测量功能及量程范围电阻:100Ω—1MΩ 电容:100pF—10000pF 电感:100Μh—10mH (2)、测量精度显示为4 位LED有过量程指示;测量精度:±5三、设计(论文)基本要求:(包括:技术要求、工作要求、图纸要求、写作要求等)1、毕业设计(论文)要求(1)、资料收集,写出综述;(2)、电路原理分析;(3)、能够对做出的实物进行测量和调试。

(4)、写出测量的数据,并对所测得的数据进行分析。

(5)、能独立完成毕业设计(论文)课题所规定的各项任务,具有一定的综合分析问题和解决问题的能力,在毕业设计(论文)成果中能表现出某些自己的见解。

(6)、毕业设计(论文)说明书齐备,内容正确,概念清楚,条理分明,文章通顺,书写工整,图纸齐全,符合现行标准规定。

(7)、毕业设计(论文)成果必须采用计算机绘图,毕业设计(论文)说明书必须打印成册上交。

(8)、毕业答辩时能熟练地、正确地回答问题。

2、毕业设计(论文)内容评价、(1)完成情况:是否完成所给毕业设计(论文)题目的任务及完成的程度。

(2)、设计(论文)水平:分析、计算是否正确,资料引用正确与否,重点是否突出,图表是否符合标准,文字叙述是否简明清晰。

(3)、毕业设计(论文)方案的实用价值,对生产实际、科学技术发展的意义及作用。

(4)、毕业设计(论文)说明书的质量。

四、重点研究和解决的问题或指定的专题:1、重点研究的问题能够准确测量出电阻、电容、电感的数据,并使测量的数据误差小于技术参数2、重点解决的问题R、L、C 等参数的物理量到电量的转换;用汇编语言数据的算法,软件、硬件的调试和如何减小测量过程中的误差;单片机系统的设计与制作?濉⒂λ鸭 淖柿霞安慰嘉南祝?何立民主编.单片机应用技术选编(1)〔C〕北京:北京航空航天大学出版社,1993 -19992何立民主编.单片机高级教程.应用与设计〔M〕北京:北京航空航天大学生出版社,2002.83李广弟编.单片机基础〔M〕北京:北京航空航天出版社,1999.10 何立民编.MCS-51 系列单片机应用系统设计系统配置与接口技术〔M〕北京:北京航空航天大学出版社,1999.64张毅刚等编. MCS-51 单片机应用设计〔M〕哈尔滨工业大学出版社出版,19905周良权等编.模拟电子技术基础〔M〕高等教育出版社,19936余永权编.ATMEL 89 系统Flash 单片机原理与应用〔M〕电子工业出版社,19937全国大学生电子设计竞赛组委会.全国大学生电子设计竞赛获奖作品精选(1994-1999)〔M〕北京理工大学出版社,2003 年 3 月六、设计(论文)完成时应提交的文件:1、毕业设计说明书或论文2、毕业设计原件3、毕业设计任务书4、读书笔记七、进度计划安排:各阶段内容名称起止日期时间比例()1 下达任务书、学生收集、熟悉资料2005/4/11~2005/4/17 1周2 毕业实习、设计调研2005/4/18~2005/4/22 1周3 总体设计2005/4/23~2005/4/27 1周 4 硬件设计2005/4/27~2005/5/3 2周 5 软件设计2005/5/4~2005/5/10 1周6 电路制作2005/5/11~2005/5/16 1周7 系统调试2005/5/16~2005/5/23 0.5 周8 设计说明书与图纸输出2005/5/23~2005/5/27 1.5 周9 总结、准备设计答辩2005/5/27~2005/5/30 0.5 周10 毕业答辩2005/5/31~2005/6/2 0.5 周八、其他摘要RLC 参数的测量在学习和工作中常常用到.电阻、电容、电感的测量有模拟指针式和数字式测量仪器模拟指针式测电阻、电容、电感速度快但是读数的偏差很大加之它的体积大不易携带.而数字式测量仪不紧速度快测量精度高还有体积小等特点.这些特点主要是使用了单片机这一智能芯片它集中完成了控制、测量、计算使的电路简单、可靠. 设计的原理是把R、L、C 转换成频率信号f,转换的原理分别是RC 振荡电路和LC 电容三点式振荡电路。

简易数字式电阻、电容和电感测量仪设计方案

简易数字式电阻、电容和电感测量仪设计方案

简易数字式电阻、电容和电感测量仪设计方案简易数字式电阻、电容和电感测量仪设计报告摘要:本系统利用TI公司的16位超低功耗单片机MSP430F149和ICL8038精密函数发生器实现对电阻、电容和电感参数的测量。

本系统以自制电源作为LRC数字电桥和各个主要控制芯片的输入电源,并采用ICL8038芯片产生高精度的正弦波信号流经待测的电阻、电容或者电感和标准电阻的串联电路,通过测量电阻、电容或者电感和标准电阻各自的电压,利用电压比例计算的方法推算出电阻值、电容值或者电感值。

利用MSP430F149单片机控制测量和计算结果,运用自校准电路提高测量精度,同时用差压法,消除了电源波动对结果的影响。

测量结果采用12864液晶模块实时显示。

实验测试结果表明,本系统性能稳定,测量精度高。

关键词:LRC 数字电桥、电压比例法、液晶模块、MSP430F149、电阻电容电感测量一、设计内容及功能1.1设计内容设计并制作一台简易数字式电阻、电容和电感参数测量仪,由测量对象、测量仪、LCD 显示和自制电源组成,系统模块划分如下图所示:1.2 具体要求1. 测量范围<1)基本测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。

<2)发挥测量范围:电阻10Ω~10MΩ;电容50pF~10μF;电感50μH~1H。

2. 测量精度<1)基本测量精度:电阻±5% ;电容±10% ;电感±5% 。

<2)发挥测量精度:电阻±2% ;电容±8% ;电感±8% 。

3. 利用128*64液晶显示器,显示测量数值、类型和单位。

4. 自制电源5. 使用按键来设置测量的种类和单位1.3系统功能1. 基本完成以上具体要求2. 使用三个按键分别控制R、C、L的测试3. 采用液晶显示器显示测量结果二、系统方案设计与选择电阻、电容、电感测试仪的设计目前有多种方案可以实现,例如、使用可编程逻辑控制器(PLC>、振荡电路与单片机结合或CPLD与EDA相结合等等来实现。

简易电阻、电容和电感测试仪设计.(DOC)

简易电阻、电容和电感测试仪设计.(DOC)

... . .元器件参数测量仪的设计一、课程目的1.加深对电路分析、模拟电路、数字逻辑电路、微处理器等相关课程理论知识的理解;2.掌握电子系统设计的基本方法和一般规则;3.熟练掌握电路仿真方法;4.掌握电子系统的制作和调试方法;二、设计任务1.设计并制作一个元器件参数测量仪。

2.(基本要求)电阻阻值测量,围:100欧~1M欧;3.(基本要求)电容容值测量,围:100pF~10 000pF;4.(基本要求)测量精度:正负5% ;5.(基本要求)4位显示对应数值,并有发光二极管分别指示所测器件类型;6.(提高要求)增加电感参数的测量;7.(提高要求)增加三极管直流放大倍数的测量;8.(提高要求)扩大量程;9.(提高要求)提高测量精度;10.(提高要求)测量量程自动切换;三、任务说明:电阻电容电感参数测量常用电桥法,该方法测量精度,但是电路复杂。

也可为简化起见,电阻测量也可采用简单的恒流法,电容采用555定时电路;1、绪论在现代化生产、学习、实验当中,往往需要对某个元器件的具体参数进行测量,在这之中万用表以其简单易用,功耗低等优点被大多数人所选择使用。

然而万用表有一定的局限性,比如:不能够测量电感,而且容量稍大的电容也显得无能为力。

所以制作一个简单易用的电抗元器件测量仪是很有必要的。

现在国外有很多仪器设备公司都致力于低功耗手持式电抗元器件测量仪的研究与制作,而且精度越来越高,低功耗越来越低,体积小越来越小一直是他们不断努力的方向。

该类仪器的基本工作原理是将电阻器阻值的变化量,电容器容值的变化量,电感器电感量的变化量通过一定的调理电路统统转换为电压的变化量或者频率的变化量等等,再通过高精度AD采集或者频率检测计算等方法来得到确定的数字量的值,进而确定相应元器件的具体参数。

2、电路方案的比较与论证2.1电阻测量方案方案一:利用串联分压原理的方案图2-1串联分压电路图根据串联电路的分压原理可知,串联电路上电压与电阻成正比关系。

电子技术课程设计-简易电阻、电容、电感检测仪

电子技术课程设计-简易电阻、电容、电感检测仪

电子技术课程设计题目:简易电阻、电容和电感测试仪组员:张坤潘能渊吴占玺班级:自动化082班指导老师:***目录:设计要求 (3)系统方案 (4)理论分析与计算 (5)测试与分析 (6)总结 (7)参考文献 (7)致谢 (8)附录 (8)简易电阻、电容和电感测试仪设计任务设计并制作一台数字显示的电阻、电容和电感参数测试仪,示意框图如下:要求1.基本要求(1)测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。

(2)测量精度:±5% 。

(3)显示测量数值,并分别指示所测元件的类型和单位。

2.发挥部分(1)扩大测量范围。

(2)提高测量精度。

(3)测量量程自动转换。

摘要:本设计主要由电阻测试模块、电容测试模块、电感测试模块、分频电路、以及数据选择电路几大功能模块组成。

并通过STC89C52单片机进行频率测量和计算以及对系统的控制,实现对电阻、电容和电感的测试并在LCD1602上显示其测试结果。

系统利用RC震荡原理以及电感的储能原理,配合555定时器组成多谐振荡电路。

由于不同的电容、电阻、电感值的大小对应的谐振频率不同,通过测量振荡电路发出的频率计算出相应的电阻、电容和电感的值。

本系统设计简单,成本低,性能完全超出题目要求指标,测量范围广,在测量范围内测量误差满足设计要求。

关键词:谐振电路,谐振频率,555定时器一、系统方案1.系统设计思路将电阻、电容和电感测量模块产生的不同频率的方波信号经整形和分频电路分别送至通道选择模块,根据测试的元件类型,单片机通过按键的输入选择相应的测试电路,并自动检测出待测元件的值所对应的频率范围,控制通道选择模块选通相应的输入通道,来自动选择分频的倍数,实现对元件测量的自动换挡。

同时单片机通过一定的计算后向液晶发出测量结果并在液晶上显示出测量元件的类型和测量值。

图1 系统设计框图2.方案选择(1) 电阻测试模块电路利用RC和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电阻的大小,选择合适的电容值即可获得适当的频率范围,通过D触发器74LS74将波形整形成二分频的对称方波送交控制器处理。

简易电阻电容电感测量

简易电阻电容电感测量

简易的测量电阻电容电感摘要:本设计是一个电阻电感电容的简易测量装置,主要由模拟测量和1602液晶显示两部分组成,其中电阻和电容电感的测量都是通过构造电路产生一定频率的波形,再通过单片机读取频率,经过程序处理转化,再通过1602液晶显示。

由于系统处理数据时通过单片机对频率信号的读取,使得最后测量的结果更加精确与稳定,误差控制在题目所允许的范围内。

关键词:电阻电容电感测量仪,1602显示,555定时器,电容三点式目录1. 系统设计 (2)1.1 设计要求 (2)1.2 方案比较 (2)1.2.1 电阻测量方案 (2)1.2.2 电容测量方案 (4)1.2.3电感测量方案 (5)1.2.4显示电路方案 (6)1.3 方案论证 (6)1.3.1 总体思路 (6)1.3.2 设计方案 (7)2. 单元电路设计 (7)2.1 电阻测量电路 (7)2.2 电容测量电路 (8)2.3 电感测量电路 (9)2.4 1602显示电路 (10)3. 软件设计 (11)4. 系统测试 (11)4.1 测试仪器与设备 (11)4.2 指标测试 (12)5 结论 (13)参考文献 (13)附录1、元器件明细表...............................................................= (13)附录2:程序清单 (13)1. 系统设计1.1 设计要求设计并制作一台数字显示的电阻、电容和电感参数测试仪1. 测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。

2. 测量精度:±5% 。

3. 带有显示部分。

1.2 方案比较1.2.1 电阻测量方案相位测量方案的关键问题是电阻测量方法的选择。

方案一:串联分压原理VRx R0图1串联电路原理图根据串联电路的分压原理可知,串联电路上电压与电阻成正比关系。

通过测量Rx和R0上的电压。

由公式 Rx=Ux/(U0/R0)方案二:利用直流电桥平衡原理的方案图2 电桥(其中R1,R2,为可变电位器,R3为已知电阻,R4为被测电阻)根据电路平衡原理,不断调节电位器,使得电表指针指向正中间。

简易电阻电容电感测量仪

简易电阻电容电感测量仪

简易电阻电容电感测量仪题目: 简易电阻、电容、电感测量仪专业: 电气工程系组号 : 第10组指导老师: 小组成员:1摘要针对万用表只能测量有限种类的元器件的参数,对于电容和电感等一些电抗元件就无能为力了。

所以这次设计一种简便的电容电感测量仪,方便电路设计人员或者高校电子类专业的学生测量电路中需要用到的电容及电感的具体值。

本次设计以单片机为控制核心,搭配必要的外围电路对电阻、电容和电感参数进行测量。

系统的基本原理是将电阻阻值、电容容值、电感感值的变化均转换成方波脉冲频率的变化,利用计数器测频后通过单片机做运算,最后计算出待测元件的各个参数并显示在1602液晶屏幕上。

系统使用按键选择被测元件类型,使用1602液晶屏作为显示部分。

实验测试结果表明,测量时,只需将待测元件引脚放在测试仪的输入端,用按键操作需要测量的参数,便可以很快测出被测元器件的参数,简便易用。

本系统性能稳定,测量精度高。

关键词:STC89C52单片机电阻测量电容测量电感测量目录一绪论 ..................................................................... ........................................................................ . (1)二电路方案的比较与论证 ..................................................................... .............................................................2 2.1 电阻测量方案 ..................................................................... ........................................................................ ..2 2.2 电容测量方案 ..................................................................... ........................................................................ ..3 2.3 电感测量方案 ..................................................................... ........................................................................ ..5 三硬件介绍 ..................................................................... ........................................................................ ................6 3.1 NE555的介绍...................................................................... ........................................................................ ..6 3.2 STC89C52的介绍 ..................................................................... ...................................................................8 3.3 1602液晶的介绍 ..................................................................... . (10)3.4 系统方框图: .................................................................... ........................................................................ .12 3.5 电阻测量电路的设计...................................................................... ..........................................................13 3.6 电容测量电路的设计...................................................................... ..........................................................14 3.7 电感测量电路的设计...................................................................... ..........................................................14 四软件流程 ..................................................................... ........................................................................ ..............16 4.1 主流程图 ..................................................................... ........................................................................ .........16 4.2 软件流程图 ..................................................................... ........................................................................ ....17 4.3 电阻测量电路仿真 ..................................................................... ...............................................................18 4.4 电容测量电路仿真 ..................................................................... ...............................................................19 4.5 电感测量电路仿真 ..................................................................... ...............................................................21 五、实验记录 ..................................................................... ........................................................................ ............24 5.1 实验数据记录 ..................................................................... ........................................................................24 5.2 电阻、电容和电感测量电路调试 ..................................................................... ....................................27 5.3 液晶显示电路调试 ..................................................................... ...............................................................27 六结语 ..................................................................... ........................................................................ .......................27 附件: .................................................................... ........................................................................ .. (28)一绪论在现代化生产、学习、实验当中,往往需要对某个元器件的具体参数进行测量,在这之中万用表以其简单易用,功耗低等优点被大多数人所选择使用。

简易电阻、电容和电感测试仪设计

简易电阻、电容和电感测试仪设计

课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 简易电阻、电容和电感测试仪设计初始条件:LM317 LM337NE555 NE5532STC89C52 TLC549 ICL7660 1602液晶要求完成的要紧任务:一、测量范围:电阻 100Ω-1MΩ;电容 100pF-10000pF;电感 100μH-10mH。

二、测量精度:5%。

3、制作1602液晶显示器,显示测量数值,并用发光二级管别离指示所测元件的类别。

时刻安排:指导教师签名:年月日系主任(或责任教师)签名:__________ 年月日目录摘要 (3)ABSTRACT (4)一、绪论 (5)二、电路方案的比较与论证 (5)电阻测量方案 (5)电容测量方案 (7)电感测量方案 (8)3、核心元器件介绍 (10)LM317的介绍 (10)LM337的介绍 (11)NE555的介绍 (11)NE5532的介绍 (13)STC89C52的介绍 (14)TLC549的介绍 (16)ICL7660的介绍 (17)1602液晶的介绍 (18)4、单元电路设计 (20)直流稳压电源电路的设计 (21)电源显示电路的设计 (21)电阻测量电路的设计 (22)电容测量电路的设计 (23)电感测量电路的设计 (24)电阻、电容、电感显示电路的设计 (25)五、程序设计 (26)中断程序流程图 (26)主程序流程图 (27)六、仿真结果 (27)电阻测量电路仿真 (27)电容测量电路仿真 (28)电感测量电路仿真 (28)7、调试进程 (29)电阻、电容和电感测量电路调试 (29)液晶显示电路调试 (29)八、实验数据记录 (30)心得体会 (31)参考文献 (32)附件 (33)附件1:电路图 (33)附件2:元件清单 (34)附件3:程序代码 (35)附件4:实物图 (45)摘要近几年来,电子行业的进展速度相当快,电子行业的公司企业数量也不断增多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方案三:RC和555定时器组成的多谐振荡电路。很多仪表都是把较难测量的物理量转变成精度较高且较容易测量的物理量。基于此思路,我们把电阻阻值转换成频率信号,通过测量输出振荡频率的大小即可求得电阻的大小,如果固定电阻值,该方案硬件电路实现简单,通过选择合适的电容值即可获得适当的频率围,同时输出波形为TTL电平的方波信号所以不需要再对信号做电平变换,即可直接供数字电路处理,这种处理一方面便于使仪表实现智能化,另一方面也避免了由指针读数引起的误差。
方案二:测周期法。该测量方法是通过测量被测信号的周期来计算频率。被测信号经脉冲形成电路变成方波通过单片机的计数器计数,再根据计算公式即可获得被测信号的频率。该方案对低频信号的测量比较准确,但对于高频信号,测量误差较大,故只适合低频信号的测量。
在比较两种方案之后,决定采用第一种方案来进行频率的测量。
1.5
1.3
方案一:采用电桥法测量电感。将待测电感和已知标准电阻电容组成电桥,通过单片机控制调节电阻参数使电桥平衡,电感的大小由电阻和电桥的本征频率求得,该方案测量精准,同时可以测量电容和电阻的大小,但其电路复杂,实现起来较为困难。
方案二:用555定时器和被测电感利用电感储能以及充放原理构成多谐振荡器,通过测频率值确定被测电感的值。该方案电路结构简单,输出波形为TTL电平的方波信号,简单分频后可获得较为理想的测试频率围,方便单片机精确测量。
2.192M
2.217M1.1416k16K16.1k
0.62
9M
8.9M
8.376M
5.88
5.3.2
表4-3电容测量数据
标称值
(F)
电桥测量(F)
仪器测量(F)
误 差
(%)
标称值
(F)
电桥测量(F)
仪器测量(F)
误 差
(%)
10p
10p
10.5p
5.00
4.7n
4.9n
5.1n
4.08
100p
100p
3.
因为电感测量模块产生的信号是正弦信号,所以必须先整形成方波,又由理论分析可知电路的输出频率很高,所以也要对输出的信号分频,单片机才能处理。
3.3.1
图3-3电感测量电路
3.3.2
图3-4 整形电路
3.3.3
图3-5 10分频电路
3.4
电阻与电容的测量电路中均需要自动换挡,我们采用继电器来实现。继电器是一种电子控制器件,通常应用于自动控制电路中。当测量电路中所测频率过低时,单片机就会控制继电器转换量程。
为使振荡频率保持在10-20kHz这一段单片机计数的高精度围,需选择合适的C1和R1的值,同时不能使电阻功耗太大。所以我们设计了两路电路,
第一个量程选择 ;
第二个量程选择 ; 这样,
在第一个量程中,若 时(下限), ;
在第二个量程中,若 时(上限), 。
因为RC振荡的稳定度可达1/1000,单片机测频率最多误差一个脉冲,所以由单片机测频率值引起的误差在百分之一以下。
即:
如图3-3所示, C1和C2分别采用100nF和1uF的独石电容,其电容值远大于晶体管的极间电容,可以把极间电容忽略,则
单片机的高精度测量围有限,因此在测电感这一档时,只能分频后送单片机计数。
误差分析:
由此可见,因为 相当小, 的精度主要取决于电容值的稳定性,从理论上讲,只要 小于 , 也就能达到相当的水平。一般而言,电容的稳定性,特别是像独石电容一类性能比较好的电容, 能满足小于 的要求,这样误差精度就能保持在 以。
误差分析:
同 的测量,有 ,
已知 能满足 以下的精度,而精密的金属膜电阻其阻值的变化 亦能满足 左右的精度。这样,电容的精度也可以做得很高。
2.3
电感的测量是采用电容三点式振荡电路来实现的。三点式振荡电路是指:LC回路中与发射极相连的两个电抗元件必须是同性质的,另外一个电抗元件必须为异性质的,而与发射级相连的两个电抗元件同为电容式的三点式振荡电路,其振荡频率为:
简易电阻、电感和电容的测试仪
摘 要:本系统以MSP430单片机作为控制核心,由555构成多谐振荡电路实现对电阻和电容的测量,采用电容三点式振荡电路实现对电感的测量。控制继电器实现电阻、电容测量的档位自动切换,使测量精度满足指标要求;为使单片机精确测量待测频率,在电感测量模块中先进行整形和分频,然后测量,以提高测量精度。该系统设计简单,成本低,操作简单,在测量围误差很小,经电路仿真分析可达到题目要求的指标。
量程自动转换原理:单片机在第一个频率的记录中发现频率过小,即通过继电器转换量程。再测频率,求 的值。
误差分析 :
因为 相当小,在 左右,远小于仪表所需要的精度,可忽略。这样, 的精度取决于 ,即电容的稳定性。电路中采用了稳定性良好的独石电容,理论上说,只要 小于 ,所测电阻的精度亦能在 以下。由于单片机程序中采用了多位数的浮点运算,计算精度可远高于 。
2.05
100u
100.9u
102.7u
1.78
3.2m
3.298m
3.217m
2.45
330u
339.8u
340.6u
0.23
15m
15.4m
16m
3.89
5.4
电阻模块的测量结果显示在基本测量围误差均小于5%,而在拓展围误差偏大。
电容模块的测量结果显示所有测量的误差均在5%以。
电感模块的测量结果显示可以测量的围误差均小于5%,但拓展指标没有做到,10uH的电感已经测量不出来。
102p
2.00
33n
35n
36.3n
3.71
1n
0.98n
0.94n
4.08
100n
101n
105.5n
4.45
5.3.3
表4-4电感测量数据
标称值(H)
电桥测量(H)
仪器测量(H)
误 差
(%)
标称值(H)
电桥测量(H)
仪器测量(H)
误 差
(%)
30u
31.1u
30.85u
0.80
1m
1.02m
0.999m
测试R
KEY2
测试C
KEY5
测试L
KEY6
返回
该系统以MSP430作为控制平台,其主程序流程如图4-1所示。程序开始先对系统初始化,然后由键盘输入测试项目(如:1电阻测量;2电容测量;3电感测量),然后采集信号频率,在测量电阻和测量电容时要通过对信号频率进行分析来转换电路(量程转换),再将从新采集的信号频率进行计算,得到待测器件的参数,并由液晶屏输出参数。测量完成之后系统返回到初始化的状态。
系统设计总框图如图1-4所示,本设计将电阻、电容和电感测量模块产生的不同频率的方波信号经整形和分频电路分别送至通道选择模块,根据测试的元件类型,单片机通过按键的输入选择相应的测试电路,并自动检测出待测元件的值所对应的频率围,控制继电器实现对元件测量的自动换挡。同时单片机通过一定的计算后,在液晶显示屏上显示出元件的类型和测量值。
2.2
电容测量的原理图也如图2-1,同样由555电路构成的多谐振荡电路,通过计算振荡输出的频率来计算被测电容的大小。
由2.1的分析知其振荡周期为:
得出: ,即:
为使频率在单片机高精度测量围,我们同样设计了两路电路,取值分别为:第一量程: ;第二量程: ;
这样的取值使电容档的测量围很宽,同样可通过继电器转换量程。
方案三:同样利用RC和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电容的大小,如果固定电阻值,该方案硬件电路实现简单,能测出较宽的电容围,完全满足题目的要求。同时输出波形为TTL电平的方波信号所以不需要再对信号做电平变换。即可直接输入单片机处理。
综合比较,基于对精度要求较高,并从测量时操作的简便程度考虑,本设计采用方案三,用RC和555定时器组成的多谐振荡电路来实现要求。
Rx
方案二:电阻分压法。如图1-2所示,将待测电阻Rx和基准电阻R串联在电路中,由于电阻分压的作用,当串联到电路上的电阻Rx的值不同时其Rx上分的压降也不同。通过测量上Vx便可由公式 求得 。
该方案原理简单,理论上只要参考电阻精确,就可以测量任何阻值的电阻,但实际上由于AD的分辨率有限,当待测电阻很大或是很小时就很难测出Rx上的压降Vx,从而使测量围缩小,要提高测量围和精度就需要对电阻分档测试和提高AD的分辨率。这无疑会增加系统的复杂性和成本,所以也不可行。
如图3-6所示为继电器的原理图,其中,二极管是对其有保护作用,三极管有放大电流的作用。在具体电路中,继电器是1伏和3伏换挡,通过单片机来实现其自动化。
图3-6 继电器原理图
3.5 按键部分
通道的选择可以通过MSP430单片机上面的键盘控制。通道选择见表3-1 .
表3-1按键通道选择
按键
对应测试项
KEY1
六、小结
本次课题设计系统的基本原理是电阻、电容、电感与测量电路构成各自的震荡电路,产生的相应频率的脉冲方波,将该频率数据采集输入到单片机,利用电路中其他器件已知的参数,单片机对频率进行运算,可以算出待测元件的各个参数并显示在1602液晶屏幕上。系统使用按键选择被测元件类型,由于不同的电容、电阻、电感值的大小对应的谐振频率不同,通过测量振荡电路发出的频率计算出相应的电阻、电容和电感的值。该系统设计简单,成本低,性能基本符合题目要求指标,在测量围测量误差很小,且操作简单,人机界面友好。
图4-2按键程序流程图图4-3频率测量流程图
五、系统测试与结果分析
5.1
测试使用的仪器设备如表4.1所示。
表4-1 测试使用的仪器设备
序号
名称、型号、规格
数量
备注
1
RLC电桥测量仪
1
测量精度高
2
数字示波器
1
相关文档
最新文档