勾股定理重点知识点

合集下载

(寒假班内部讲义)第十八章-勾股定理

(寒假班内部讲义)第十八章-勾股定理

第十八章勾股定理第一部分知识网络一、重、难点重点:勾股定理及其逆定理的应用。

难点:勾股定理及其逆定理的应用。

二、知识要点梳理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

三、规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。

4. 勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,•那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.5.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.第二部分 学习笔记1.直角三角形的边、角之间分别存在什么关系?(1) 角与角之间的关系:在△ABC 中,∠C=90°,有∠A+∠B=90°;(2) 边与边之间的关系:在△ABC 中,∠C=90°,有222c a b =+2.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c ,那么222c a b =+ 即直角三角形的两直角边的平方和等于斜边的平方。

勾股定理知识点总结大全

勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。

具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。

这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。

二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。

几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。

常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。

2. 代数证明另外,勾股定理也可以通过代数方法进行证明。

代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。

通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。

三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。

例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。

勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。

2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。

而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。

这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。

3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。

勾股定理知识点精典总结

勾股定理知识点精典总结

勾股定理知识点一:勾股定理及其证明一.勾股定理:在ABC Rt ∆中,︒=∠90C1.角与角之间有怎样的关系?︒=∠+∠90B A 直角三角形两锐角互余2.边与边之间有怎样的关系?(1)斜边最长; (2)任意两边之和大于第三边,任意两边之差小于第三边(3)勾股定理: a 2+b 2=c 2对这个等式可以变形为:22b a c += 22a c b -= 22b c a -=1、填空题⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。

⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。

⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。

⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。

⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。

⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。

⑺在Rt △ABC ,∠C=90°,如果a=7,c=25,则b= 。

⑻在Rt △ABC ,∠C=90°,如果∠A=30°,a=4,则b= 。

⑼在Rt △ABC ,∠C=90°,如果∠A=45°,a=3,则c= 。

⑽在Rt △ABC ,∠C=90°,如果c=10,a-b=2,则b= 。

⑾在Rt △ABC ,∠C=90°,如果a 、b 、c 是连续整数,则a+b+c= 。

⑿在Rt △ABC ,∠C=90°,如果b=8,a :c=3:5,则c= 。

二.选择题1.在△ABC 中,AB=15,AC=13,BC 上的高AD 长为12,则△ABC 的面积为 ( ).(A )84 (B )24 (C )24或84 (D )84或242.如下图,线段AB=√2、CD=√5,那么,线段EF 的长度为( )A 、√7B 、√11C 、√13D 、√153.如图,点1为单位正方形内一点,且AE=BE=AB ,延长AE 交CD 于F ,作FG ⊥AB 于点G ,则EG 的长度为( )A 、B 、C 、D 、4.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P 的距离是 ( )A .2cm B .4√3cm C .6cm D .8cm5.如图所示,有一个长、宽各2米,高为4米且封闭的长方体纸盒,一只昆虫从顶点要爬到顶点,那么这只昆虫爬行的最短路程为( )A 、3米 B 、 5米 C 、4√2米 D 、2√10米6.如图,在△ABC 中,∠ACB =90º,AC >BC ,分别以AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是 A .S 1=S 2=S 3 B .S 1=S 2<S 3 C .S 1=S 3<S 2 D .S 2=S 3<S 1二.填空题1. 如下图,数轴上点A 表示的数为________;2.已知:在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,∠A=60°,CD=√3,求线段AB 长。

八年级数学勾股定理知识点

八年级数学勾股定理知识点

第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB⑵8BC ==题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC , 2.4AC BC CD AB⋅== DB A C⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm 例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mAB CD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD ==答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒ ②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形 理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CB AAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=, 90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=。

勾股定理知识点总结

勾股定理知识点总结

17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。

其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。

图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。

则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。

(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。

勾股定理还可以解决生产生活中的一些实际问题。

在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。

(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。

勾股定理中考章节复习(知识点+经典题型分析总结)

勾股定理中考章节复习(知识点+经典题型分析总结)

勾股定理中考章节复习(知识点+经典题型分析总结)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。

2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。

3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

⑵ 命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

⑷ 定理:用推理的方法判断为正确的命题叫做定理。

⑸ 证明:判断一个命题的正确性的推理过程叫做证明。

⑹ 证明的一般步骤① 根据题意,画出图形。

② 根据题设、结论、结合图形,写出已知、求证。

③ 经过分析,找出由已知推出求证的途径,写出证明过程。

AB C a b c 弦股勾A BD 5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

勾股定理基础知识点

勾股定理基础知识点

知识点一:勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。

勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。

(2) 勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边(3)理解勾股定理的一些变式(在三角形ABC 中,∠C=90°): c 2=a 2+b 2,a2=c 2-b 2, b 2=c 2-a 2 , c 2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

c a b =+22a cb =-22b c a =-22在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。

知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;知识点四:勾股数满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么当k>0时,ka,kb,kc同样也是勾股数组)常见勾股数:①3、4、5;②5、12、13;口诀:5月12记一生(13)③8、15、17;口诀:八月十五在一起(17)④7、24、25;⑤10、24、26;⑥9、40、41;⑦6、8、10;⑧9;12;15;⑨15、20、25.知识点五:勾股树知识点六:勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。

勾股定理知识点总结

勾股定理知识点总结

第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c =b,a = ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题c b aH G F ED CB Abacbac cabcab a bcc baE D CBA5、利用勾股定理作长为的线段作长为、、的线段。

勾股定理知识点总结

勾股定理知识点总结

第18章勾股定理复习一•知识归纳1 .勾股定理内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么a 2 b 2 c 2勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边 称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了勾三,股四,弦五"形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2 •勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是在 ABC 中, C 90,则 c a 2 b 2 , b c 2 a 2 , a 、c 2 b 2② 知道直角三角形一边,可得另外两边之间的数量关系 ③ 可运用勾股定理解决一些实际问题① 图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变② 根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4SS 正方形EFGHS正方形ABCD,4 -ab (b a)22c 2,化简可证.方法四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为S 4 -ab c 2 2ab c 22大正方形面积为S (a b)2 所以a 2 b 2 c 2方法三:S 梯形-(a b) (a22 2a 2ab bb), S 梯形2SADE S ABE2 — ab - c 2,化简得证2 23 •勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了 对象是直角三角形4 •勾股定理的应用①已知直角三角形的任意两边长,求第三边对于锐角 所考察的ba5、利用勾股定理作长为的线段作长为的线段。

高中勾股定理知识点总结

高中勾股定理知识点总结

高中勾股定理知识点总结一、勾股定理的定义勾股定理又称毕达哥拉斯定理,是指在直角三角形中,直角边的平方之和等于斜边的平方。

具体表达为:设直角三角形的两条直角边分别为a和b,斜边为c,则有a^2 + b^2 = c^2。

其中,a、b、c分别代表直角三角形的三条边的长度。

二、勾股定理的应用1. 检验直角三角形:当我们已知一个三角形的三条边的长度时,可以通过勾股定理来判断这个三角形是否为直角三角形。

如果已知a^2 + b^2 = c^2,那么这个三角形一定是直角三角形。

2. 求直角三角形的未知边长:当我们已知一个直角三角形的其中两条边的长度时,可以通过勾股定理来求解第三条边的长度。

根据a^2 + b^2 = c^2,可以利用这个公式求解出c的值。

3. 解决几何问题:在一些几何问题中,勾股定理也经常发挥重要作用。

例如,在求解直角三角形的面积、周长等问题时,可以先利用勾股定理求解出各边的长度,然后再进行进一步的计算。

三、勾股定理的证明勾股定理最早是由古希腊数学家毕达哥拉斯发现的,所以也被称为毕达哥拉斯定理。

在数学中,勾股定理的证明有多种方法,其中最著名的就是几何证明和代数证明。

1. 几何证明:几何证明是利用几何图形和性质来证明勾股定理。

一种常见的几何证明方法是构造一个正方形,然后证明正方形的对角线长度分别为a+b和c,从而得到a^2 + b^2 = c^2。

2. 代数证明:代数证明是利用代数运算和方程推导来证明勾股定理。

代数证明的思路更加抽象和数学化,需要运用代数知识进行推理和计算。

四、勾股定理的推广除了直角三角形外,勾股定理还可以推广到其他类型的三角形中。

其中最重要的就是斜三角形的勾股定理。

斜三角形的勾股定理表达为:a^2 + b^2 = c^2 - 2ab*cosC。

其中,a、b、c分别代表三角形的三条边的长度,C代表三角形的斜边对应的角的余弦值。

这个定理在解决一些非直角三角形的问题时也具有重要的作用。

第一章 勾股定理知识点归纳

第一章 勾股定理知识点归纳

第一章 勾股定理1、勾股定理(1)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+(2)勾股定理的验证:测量、数格子、拼图法、面积法,如青朱出入图、五巧板、玄图、总统证法……(通过面积的不同表示方法得到验证,也叫等面积法或等积法)(3)勾股定理的适用范围:仅限于直角三角形2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

常用勾股数:(3、4、5) (6、8、10) (5、12、13) (9、12、15) (15、20、25)(7、24、25) (8、15、17) (9、40、41)规律:(1)短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。

即当a 为奇数且a <b 时,如果b+c=a 2那么a,b,c 就是一组勾股数.如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)……(2)大于2的任意偶数,2n(n >1)都可构成一组勾股数分别是:2n ,n 2-1,n 2+1 如:(6,8,10)(8,15,17)(10,24,26)……4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积……(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度//斜边上的高线/周长/面积……(3)判定三角形形状: a 2 +b 2>c 2锐角~,a 2 +b 2=c 2直角~,a 2 +b 2<c 2钝角~判定直角三角形a..找最长边;b.比较长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状(4)构建直角三角形解题5、解立体图形上两点之间的最短距离问题(1)将立体图形展成平面图形(2)根据“两点之间线段最短”确定最短路线(3)最后以上面的最短路线为边构造直角三角形,利用勾股定理解决圆柱表面蚂蚁吃面包:勾股定理:圆柱高的平方+地面周长一半的平方=最短距离的平方6、直角三角形斜边上的高=两直角边乘积/斜边7、折叠问题的常用方法:折叠前后的图形全等。

勾股定理知识点总结

勾股定理知识点总结

第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2。

勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。

勾股定理知识点

勾股定理知识点

勾股定理1、勾股定理的定义和应用定义:如果直角三角形的两直角边为a 、b ,斜边为c ,那么22b a +2c =,即直角三角形两直角边的平方和等于斜边的平方。

主要应用有:①已知直角三角形的两边,求第三边;②已知直角三角形的一边,确定另两边的关系;③证明含平方关系的问题等。

有时还要构造直角三角形,以便利用勾股定理。

例:已知:如图,在△ABC 中,∠ACB = ,AB =5cm ,AC =3cm ,CD ⊥AB 于D ,求CD 的长.分析:由于△ABC 为直角三角形,就可先由勾股定理求出BC 。

再根据面积求出CD 的长。

解:由勾股定理可得222AB BC AC =+,即22253=+BC ,所以4=BC。

,2121CD AB BC AC S ABC ⋅=⋅=∴∆ ∴,5214321CD ⨯⨯=⨯⨯ ∴.512=CD (此题关键在于用好勾股定理以及利用等面积法求高线)2、直角三角形的判别条件(即勾股定理的逆定理)如果一个三角形的三边长分别是a ,b ,c ,且满足22b a +2c =,那么这个三角形是直角三角形。

它可应用于判断三角形是否为直角三角形,从而得到直角,两条直线垂直等信息,也可解决实际问题。

3、勾股数:满足22b a +2c =的三个正整数,称为勾股数。

常见的勾股数有:3,4,5; 5,12,13; 8,15,17; 7,24,25; 20,21,29; 9,40,41;…… 这些勾股数组的整数倍仍然是勾股数组,由这些勾股数的倍数为三边长的三角形也是直角三角形。

例:如图,在一次夏令营活动中,•小明从营地A 点出发,沿北偏东60°方向走了5003米到达B 点,然后再沿北偏西30•°方向走了500米到达目的地C 点,求A 、C 两点间的距离.解:过点B 作NM 垂直于正东方向,垂足为M ,则∠ABM=60°因∠NBC=30°,所以∠ABC=90°在Rt △ABC 中,AC=2222(5003)500AB BC +=+=1000(米).4、勾股定理在现实世界的广泛应用(1)将实际问题转化为由勾股定理解决实际问题,关键是构造直角三角形。

勾股定理知识点归纳

勾股定理知识点归纳

勾股定理知识点归纳一、勾股定理的定义如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a²+b²= c²。

这就是勾股定理。

勾股定理揭示了直角三角形三条边之间的数量关系,是解决直角三角形相关问题的重要工具。

二、勾股定理的证明勾股定理的证明方法有很多种,常见的有以下几种:1、赵爽弦图法通过四个全等的直角三角形拼成一个大正方形,中间形成一个小正方形。

大正方形的面积等于小正方形的面积加上四个直角三角形的面积,从而证明勾股定理。

2、毕达哥拉斯证明法以直角三角形的斜边为边长作正方形,再分别以两条直角边为边长作正方形。

通过计算三个正方形的面积关系来证明勾股定理。

3、总统证法通过将直角三角形拼成梯形,利用梯形面积等于三个三角形面积之和来证明勾股定理。

三、勾股定理的应用1、已知直角三角形的两条直角边,求斜边例如,一个直角三角形的两条直角边分别为3 和4,根据勾股定理,斜边 c =√(3²+ 4²) = 5 。

2、已知直角三角形的一条直角边和斜边,求另一条直角边比如,直角三角形的斜边为 5,一条直角边为 3,则另一条直角边 b =√(5² 3²) = 4 。

3、实际生活中的应用(1)测量问题在无法直接测量某些长度时,可以构建直角三角形,利用勾股定理来计算。

比如测量旗杆的高度,可以在旗杆底部向外量出一段距离,然后测量这段距离以及在这个点观测旗杆顶部的仰角,通过勾股定理计算旗杆高度。

(2)航海问题在航海中,确定船只的位置和航向时,经常会用到勾股定理。

(3)建筑问题在建筑施工中,计算建筑物的高度、角度等也会用到勾股定理。

四、勾股定理的逆定理如果三角形的三边长 a,b,c 满足 a²+ b²= c²,那么这个三角形是直角三角形。

勾股定理的逆定理是判断一个三角形是否为直角三角形的重要依据。

五、勾股数满足 a²+ b²= c²的三个正整数,称为勾股数。

勾股定理知识点总结归纳

勾股定理知识点总结归纳

精心整理第18章勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222a b c+=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①②定理常见方法如下:方法一:4EFGHS S S∆+=正方形正方形ABCD,14(2ab b⨯+-方法二:四个直角三角形的面积与小正方形面积的和为S=大正方形面积为22()S a b a=+=+所以222a b c+=方法三:1()()2S a b a b=+⋅+梯形,2222ab c⋅+,化简得证3.它只适用于直角三角形,对于锐角三角因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.①在ABC∆中,90C∠=︒,则c,b=,a=②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。

思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。

ba作法:如图所示(1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。

斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是 、、、。

举一反三【变式】在数轴上表示的点。

解析:可以把看作是直角三角形的斜边,, 为了有利于画图让其他两边的长为整数,而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理全章知识点总结大全

勾股定理全章知识点总结大全

勾股定理全章知识点总结大全一.基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC∆中,90∠=︒,则c=,Cb,a)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C 为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC 为锐角三角形)。

(定理中a,b,c及222+=只是一种表现形式,不可认为是唯一的,如a b c若三角形三边长a,b,c满足222+=,那么以a,b,c为三边的三角形是直a c b角三角形,但是b 为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:,4EFGH S S S ∆+=正方形正方形ABCD 2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 6:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;9,12,15;8,15,17;9,40,41;12,16,20等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)二、规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

勾股定理知识点

勾股定理知识点

一、复习勾股定理的知识点1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=2.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题4.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形5.勾股数记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等6.勾股定理的应用7.勾股定理逆定理的应用例.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCB A二、学生做相应的复习题(30min)三、教师进行讲解,并总结学生的知识薄弱点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理重点知识点2017精选关于勾股定理重点知识点一、勾股定理与逆定理A.勾股定理在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。

如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2。

1、勾股定理应用的前提条件是在直角三角形中。

2、勾股定理公式a2+b2=c2 的变形有:a2= c2—b2,b2=c2-a2及c2=a2+b2。

3、由于a2+b2=c2>a2 ,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边。

B.勾股定理的逆定理如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。

说明:①勾股定理的逆定理验证利用了三角形的全等。

②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形。

必须满足较小两边平方的和等于最大边的平方才能做出判断。

(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角。

然后进一步结合其他已知条件来解决问题。

注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是。

面积分割法、构造直角三角形二、实数与数轴1、实数与数轴上的点是一一对应关系。

任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数。

数轴上的任一点表示的数,不是有理数,就是无理数。

2、在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a的绝对值就是在数轴上这个数对应的点与原点的距离。

3、利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小。

三、矩形的性质1、矩形的定义:有一个角是直角的平行四边形是矩形。

2、矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形。

它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点。

(3)由矩形的性质,可以得到直角三角线的一个重要性质,直角三角形斜边上的中线等于斜边的一半。

四、等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形。

(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等。

【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线。

以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论。

等边三角形的性质(1)等边三角形的定义:三条边都相等的的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。

①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况。

在等边三角形中,腰和底、顶角和底角是相对而言的的。

(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60° 。

等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴。

五、三角形的外角性质(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对。

(2)三角形的外角性质:①三角形的外角和为360°。

②三角形的一个外角等于和它不相邻的两个内角的和。

③三角形的一个外角大于和它不相邻的任何一个内角。

(3)若研究的'角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去。

(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角。

三角形内角和定理(1)三角形内角的概念:三角形内角是三角形三边的夹角。

每个三角形都有三个内角,且每个内角均大于0°且小于180°。

(2)三角形内角和定理:三角形内角和是180° 。

(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角。

在转化中借助平行线。

(4)三角形内角和定理的应用主要用在求三角形中角的度数。

①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角。

六、翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换。

2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等。

3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件。

解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案。

我们运用方程解决时,应认真审题,设出正确的未知数。

七、弧长的计算(1)圆周长公式:C=2πR(2)弧长公式:l=nπR180(弧长为l,圆心角度数为n,圆的半径为R)①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位。

②若圆心角的单位不全是度,则需要先化为度后再计算弧长。

③题设未标明精确度的,可以将弧长用π表示。

④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一。

八、多边形(1)多边形的概念:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

(2)多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

(3)正多边形的概念:各个角都相等,各条边都相等的多边形叫做正多边形。

(4)多边形可分为凸多边形和凹多边形,辨别凸多边形可用两种方法:①画多边形任何一边所在的直线整个多边形都在此直线的同一侧。

②每个内角的度数均小于180°,通常所说的多边形指凸多边形。

(5)重心的定义:平面图形中,多边形的重心是当支撑或悬挂时图形能在水平面处于平稳状态,此时的支撑点或者悬挂点叫做平衡点,或重心。

常见图形的重心(1)线段:中点(2)平行四边形:对角线的交点(3)三角形:三边中线的交点(4)任意多边形九、三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边。

(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形。

(3)三角形的两边差小于第三边。

(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略。

十、轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点。

2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点。

十一、线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”。

(2)性质:①垂直平分线垂直且平分其所在线段。

②垂直平分线上任意一点,到线段两端点的距离相等。

③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。

十二、矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形。

(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形。

它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点。

(3)由矩形的性质,可以得到直角三角线的一个重要性质,直角三角形斜边上的中线等于斜边的一半。

十三、三角形中位线定理(1)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。

(2)几何语言:如图,∵点D、E分别是AB、AC的中点∴CE∥BC , DE=BC十四、全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具。

在判定三角形全等时,关键是选择恰当的判定条件。

(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。

十五、正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质。

④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴。

相关文档
最新文档