人教版八年级下册数学(新) 第十九章《一次函数》复习教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第19章一次函数

一、明确课标要求

1.初步理解一次函数及其图象的性质;初步体会方程与函数的关系.

2.能根据信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题.

3.经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,发展抽象思维能力.

4.经历一次函数图象及其性质的探索和应用,发展合作意识、应用能力.

二、重点、难点回顾

1.一次函数:若两变量x、y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数,特别地,当b=0时,y=kx (k≠0),叫正比例函数2.一次函数的图象

是一条直线,作一次函数的图象时,只要确定两个点,再过这两个点作直线即可,一次函数y=kx+b的图象也称为直线y=kx+b

3.正比例函数y=kx的图象

是经过原点(0,0)的一条直线

4.一次函数y=kx+b的图象性质

①当k>0时,y随x增大而增大,并且b>0时,函数的图象在第一、二、四象限;

当b<0时,函数的图象在第二、三、四象限;当b=0时,函数的图象在第

一、三象限和原点.

②当k<0时,y随x增大而减小,并且b>0时,函数的图象在第一、二、四象限;

当b<0时,函数的图象在第二、三、四象限;当b=0时,函数的图象在第二、四象限和原点.

5.确定一次函数表达式的条件

确定一次函数的解析式一般需要要独立的两个条件,确定出k、b的值即可.6.一次函数图象的应用

根据已知的一次函数图象,获取信息,发展形象思维,解决简单的实际问

题,发展数学应用能力,并初步体会方程与函数的关系

7.一次函数与一次不等式、一次方程(组)的关系:

(1)二元一次方程的每一组解就是对应一次函数图象上的点的坐标.

(2)二元一次方程组的解就是对应两个一次函数图象的交点坐标.

(3)对于一次函数y=2x+4,当y=0,对应的x值即为一元一次方程2x+4=0的解;

当y>0时,对应的x的取值范围即为一元一次不等式2x+4>0的解集.

三、易混、易错点提示

1.一次函数概念不明确,分不清谁是自变量,谁是谁的函数问题;

2.搞不清正比例函数与一次函数的关系,容易忽略k≠0这个条件;

3.搞不清一次函数y随x的变化情况;

4.一次函数的应用问题有障碍。

四、学习方法与建议

本章的重点是一次函数的概念、图象和性质,难点是对函数的意义和函数的表示方法。所以,在学习中,要加强新旧知识的联系,要主动地从事观察、操作、交流、归纳等探索活动,要注意与现实生活联系起来,同时要注意发展自己的形象思维能力和抽象思维能力.

五、热点、考点解密

考点1:一次函数图象的理解与运用

例5.永州市内货摩(运货的摩托)的运输价格为:2千米内运费5元;路程超过2千米的,每超过1千米增加运费1元,那么运费y元与运输路程x千米的函数图象是( )

图4

解析:本题重点考查对一次函数图象的理解,可以根据2千米内运费5元;路程超过2千米的,每超过1千米增加运费1元的规定,结合函数与自变量的变化关系来确定,答案为B .

点评:(1)出租车问题是我们生活中常遇到的问题,也是中考热点问题,解答此类问题的方法一般是函数知识去解答;(2)注意:8元是起步价;(3)由此启示我们,要多观察社会、生活,逐步积累解决数学问题的生活经验.

例6.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y (个)与生产时间t (小时)的函数关系如图5

(1)根据图象填空: ①甲、乙中,_______在生产过程中,_______因机器故障停止生产②当t =_______(2)谁在哪一段时间内的生产速度最快?求该段时间内,

他每小时生产零件的个数. 分析:本题重点考查对函数概念的理解程度,只要根据题意,结合函数图象,问题便易于解决

解:(1)①甲,甲,2;

②3,5.5;

(2)甲在47-时的生产速度最快,

40101074

-=-,∴他在这段时间内每小时生产零件10个.

评注:本题主要考查读图能力和运用函数图象解决实际问题的能力.

考点2:一次函数的综合应用

例7.某饮料厂开发了A 、B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计

图5

划生产A 、B 两种饮料共100瓶.设生产A 种饮料x 瓶,解答下列问题:

(1)有几种符合题意的生产方案?写出解答过程;

(2)如果A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值会使成本总额最低?

分析:

本题是一次函数的综合运用,它首先结合贴近生活的实际问题------新型饮料配料问题而设计的,它要求根据实际情况,首先利用不等式组解决方案问题,最后利用一次函数性质进行决策从而解决问题,

解:⑴ 设生产A 种饮料x 瓶,根据题意得:

解这个不等式组,得20≤x≤40.

因为其中正整数解共有21个,所以符合题意的生产方案有21种.

⑵ 根据题意,得 y =2.6x +2.8(100-x).整理,得 y =-0.2x +280. ∵k =-0.2<0,∴y 随x 的增大而减小.∴当x =40时成本总额最低.

评注:本题是利用不等式组的知识,得到几种生产方案的设计,再利用一次函数性质得出最佳设计方案问题

考点3:用函数的观点看方程(组)与不等式

例8.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图

象如图6所示,则关于x 的不等式12k x b k x +>的解为(

A .1x >-;

B .1x <-;

C .2x <-;

D .无法确定 的典型问题 x b +

x 图6 2030(100)28004020(100)2800x x x x +-+-⎧⎨⎩,.

≤ ≤

相关文档
最新文档