指数函数题型归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数及其性质应用
1.指数函数概念
一般地,函数叫做指数函数,其中是自变量,函数的定义域为.
2.指数函数函数
性质:
且
图象过定点
,即当时,
在
变化对图在第一象限内,从逆时针方向看图象,方向看图象,指数函数题型训练
题型一 比较两个值的大小 1、“同底不同指”型 (1)21
51-
⎪
⎭⎫ ⎝⎛ 3
251⎪⎭⎫
⎝⎛ (2) 2.51.7 31.7 (3)0.8
14⎛⎫ ⎪⎝⎭
1.8
12⎛⎫
⎪⎝⎭
(4)
0.5
a ()0.6
0,1a
a a >≠
归纳:
2、“同指不同底”型
(1)56
311⎛⎫ ⎪
⎝⎭
56
833⎛⎫ ⎪
⎝⎭
(2)9 2
4
归纳: 3、“不同底不同指”型
(1)0.3
1.7
3.1
0.9
(2) 2.5
1.7
30.7 (3)0.1
0.8
- 0.2
9
-
(4)b a (01)a
b a b <<< (5) 1
23-⎛⎫ ⎪
⎝⎭
13
3
归纳:
综合类:(1)已知232()3a =,132()3b =,232
()5
c =则a 、b 、c 的大小关系为
(2)如果0m <,则2m a =,1
()2
m b =,0.2m c =则a 、b 、c 的大小关系为
题型二 过定点问题 1、函数33x y a -=+恒过定点
2、函数()150,1x y
a a a +=->≠图像必过定点,这个定点是
3、已知对不同的a 值,函数()()120,1x f x a a a -=+>≠的图像恒过定点P ,则P 点的坐标
是 归纳:
题型三 解指数函数不等式 1、2212
2≤⎪
⎭
⎫ ⎝⎛-x 2、 8
21(
)33
x x --< 3、0.225x < 4、221(2)(2)x x a a a a -++>++ 归纳:
题型四 求指数函数相关的定义域
1
、y =
、y =
、y =
4、13
2
x y
-= 5、已知
()f x 的定义域为(0,1) ,则(3)x f 的定义域为__________
归纳:
题型五 求指数函数相关的值域 1、2
x
y
-= 2、1421x x y
+=++
3、1
33+=x x
y 4、设02x ≤
≤ ,求函数12
4
325x x y -=-⋅+值域
5、求1423x x y
+=-+,(,1]x ∈-∞的值域。
题型六 方程问题 1、2
23
380x x +--= 2、23360x x --=
3、23325032x
x
⎛⎫⎛⎫
⨯+⨯-=
⎪ ⎪⎝⎭⎝⎭
归纳:
题型七 最值问题 1、已知12x -≤≤,求函数1()3239x x f x +=+⋅-的最大值和最小值
2、已知函数221(1)x x y a a a =+->在区间[1,1]-上的最大值是14,求a 的值.
3、函数
()x
f x a = (0,1)a a >≠且在区间]2,1[-中的最大值比最小值大2
a
,
则a 的值为 归纳:
题型八 奇偶性问题
若函数a x f x
+-=
1
21
)(为奇函数,则实数a 的值是 题型九 单调性问题 1、函数3
22
2--=x x y 的单调区间。
3、求函数222
2
x x y
-++=单调区间。
4、求函数232
13x x y -+⎛⎫
= ⎪
⎝⎭
的单调区间。
归纳:
题型十 图象变换及应用问题 1、为了得到函数935x y
=⨯+的图象,可以把函数3x y =的图象( ).
A .向左平移9个单位长度,再向上平移5个单位长度
B .向右平移9个单位长度,再向下平移5个单位长度
C .向左平移2个单位长度,再向上平移5个单位长度
D .向右平移2个单位长度,再向下平移5个单位长度 2、画出函数121x y -=-图像,并求定义域与值域。
3、利用函数
()2x f x =的图像,作出下列个函数的图像
⑴
(1)f x -,⑵()1f x -,⑶()f x -,⑷()f x -
归纳: 选做题: 1、函数17
6221+-⎪
⎭
⎫ ⎝⎛=x x y 的定义域为 ,值域为 ,
单调递增区间为 ,单调递减区间为 2、已知函数
1
()1
x x
a f x a -=+ (0,1)a a >≠且。 (1)求
()f x 的定义域和值域;(2)讨论()f x 的奇偶性。
3、函数x x y 4212-+=的定义域,单调区间。