函数的值域与最值知识点梳理、经典例题及解析、近年高考题带答案

合集下载

高三函数值域或最值的典型例题解析一

高三函数值域或最值的典型例题解析一

高三函数值域或最值的典型例题解析(一)1.函数[]23,4,5y x x-=+∈的值域_____________. 【答案】513,25⎡⎤⎢⎥⎣⎦【解析】由2()f x x =-在(0,)+∞上单调递增,∴23y x =-+在[]4,5x ∈上单调递增,而当4x =时,52y =;当5x =时,135y =. ∴函数值域为513,25⎡⎤⎢⎥⎣⎦.2.求函数253)(-+=x x x f 的值域. 【解析】第一步,观察函数类型,型如;第二步,变形:函数35361111()3222x x f x x x x +-+===+---, 第三步,求出函数在定义域范围内的值域,进而求函数的值域:根据反比例函数的性质可知:1102x ≠-,所以3y ≠,所以函数的值域为}3|{≠y y . 3.若函数()11x f x x -=+的定义域是[)0,+∞,则()f x 的值域是___________. 【答案】[)1,1- 【解析】由()11221111x x f x x x x -+-===-+++ 当0x ≥时,11x +≥,所以1011x <≤+,则2201x -≤-<+ 所以21111x -≤-<+,即()()101x f x x x -=≥+的值域为[)1,1-故答案为:[)1,1-4. 定义在R 上的函数()()()()()1234f x x x x x =++++的值域是__________. 【解析】第一步,将函数配方成:由()()()()()()()()()12341423f x x x x x x x x x =++++=++++()f x ()ax b f x cx d +=+ey cx d=+()f x 2()y a x b c =-+()()225456x x x x =++++()225x x =++10()25x x ++24()2255x x =++-1第二步,根据二次函数的图像和性质即可求出函数的值域:因为2255555244x x x ⎛⎫++=+-≥- ⎪⎝⎭,()22550x x ⇒++≥所以()2255x x ++-11≥-即函数()()()()()1234f x x x x x =++++的值域是[)1-+∞, 5.已知函数432--=x x y 的定义域是],0[m ,值域为]4,425[--,则m 的取值范围是( ) A .]4,0( B .]4,23[ C .]3,23[ D .),23[+∞【答案】C 【解析】试题分析:因二次函数432--=x x y 的对称轴为23=x ,且0=x 时,函数值4-=y ,当23=x 时,425-=y ,因此当3=x 时, 4-=y .故当323≤≤m ,故应选C. 6.设为,的反函数,则的最大值为.【答案】【解析】第一步,先判定函数()222xx f x +=-在区间[]20,上是单调递增的;第二步,求出函数()222x x f x +=-的值域⎥⎦⎤⎢⎣⎡241,;第三步,根据反函数的性质得出反函数()x fy 1-=在⎥⎦⎤⎢⎣⎡241,为增函数; 所以在⎥⎦⎤⎢⎣⎡241,为增函数; 所以的最大值为()()221-+f f 4=7.求函数()1423xx f x +=--, []1,1x ∈-的值域..()1f x -()222x x f x -=+[]0,2x ∈()()1y f x f x -=+4()()1y f x f x -=+()()1y f x fx -=+【解析】第一步,变化函数为二次函数的形式:()1423x x f x +=-- ∴()()32222-•-=xxx f ,设2x t =,∴()()222314f t t t t =--=--第二步,求出换元后函数的定义域: ∵[]1,1x ∈-,∵[]0,2t ∈,第三步,结合二次函数的性质得出函数的值域:可得 ()[]4,3f t ∈--, 综上所述:函数的值域为[]4,3--. 8.求函数y x =+.【解析】第一步,换元(注意换元后的变量的取值范围):令210,2t t x -==,所以原函数可化为()211022y t t t =-++≥ 第二步,根据函数解析式判定单调性: 因为其开口向下,并且对称轴是1t =,故当1t =时取得最大值为1,没有最小值,故值域为(,1]-∞.9.求函数的值域.【解析】第一步,将函数式化成关于的方程的形式:因为所以()()0732222=++-+-y x y x y第二步,根据判别式得出函数值的取值范围:2≠y 时,上式可以看成关于x 的二次方程,该方程的x 范围应该满足()0322≠++=x x x f 即R x ∈此时方程有实数根即0≥∆,3274222++-+=x x x x y x 3274222++-+=x x x x y=∆()[]()()07324222≥+---y y y ⎥⎦⎤⎢⎣⎡-∈⇒2,29y当2=y 时,方程化为7=0,显然不能成立,所以2≠y , 将2=y ,29-=y 分别代入检验的2=y 不符合方程,所以⎪⎭⎫⎢⎣⎡-∈⇒2,29y 10.已知函数9()(03)1f x x x x =+≤≤+,求()f x 的值域. 【解析】第一步,将函数解析式化成()xax x f +=的形式:因为30≤≤x ,所以01>+x ; 所以()()119119-+++=++=x x x x x f ; 第二步,利用基本不等式求函数最小值:()()()5119121191=-+⨯+≥-+++=x x x x x f ,当且仅当191+=+x x ,即2=x 时等号成立。

常见函数值域或最值的经典求法-学会解题之高三数学多题一解【解析版】

常见函数值域或最值的经典求法-学会解题之高三数学多题一解【解析版】

常见函数值域或最值的经典求法【高考地位】函数值域是函数概念中三要素之一,是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求.所以,我们应该掌握一些简单函数的值域求解的基本方法.方法一 观察法万能模板 内 容使用场景 函数值域求解解题模板第一步 观察函数中的特殊函数;第二步 利用这些特殊函数的有界性,结合不等式推导出函数的值域.例1(2022·全国·高一课时练习)(多选)下列函数中,值域为[1,)+∞的是( ) A .1y x =-B .1y x =+ C .21y x =+D .1y x =- 【答案】BC【分析】可以求出选项A 函数的值域为[0,)+∞,选项D 函数的值域为(0,)+∞,选项BC 函数的值域为[1,)+∞,即得解.【详解】解:A. 函数的值域为[0,)+∞,所以该选项不符合题意;B.因为||0,||11x x ≥∴+≥,所以函数的值域为[1,)+∞,所以该选项符合题意; C.因为2220,11,11x x x ≥∴+≥∴+≥,所以函数的值域为[1,)+∞,所以该选项符合题意; D. 函数的值域为(0,)+∞,所以该选项不符合题意. 故选:BC【变式演练1】(2023·全国·高三专题练习)函数()()21{5x f x x +=-+,,2113x x -≤<≤≤的值域是______________(用区间表示) 【答案】[0,4]【分析】根据二次函数、一次函数的性质,分别求解21x 时和13x ≤≤时,函数的值域,综合即可得答案. 【详解】当21x 时,2()(1)f x x =+,为开口向上,对称轴为1x =-的抛物线,所以()[0,4)f x ∈,当13x ≤≤时,()5f x x =-+,为单调递减函数, 所以()[2,4]f x ∈,综上:()[0,4]f x ∈,即()f x 的值域为[0,4]. 故答案为:[0,4]方法二 分离常数法万能模板 内 容使用场景 函数值域求解解题模板第一步 观察函数类型,型如; 第二步 对函数变形成形式;第三步 求出函数在定义域范围内的值域,进而求函数的值域.例2 求函数2)(-=x x f 的值域.【解析】第一步,观察函数类型,型如;第二步,变形:函数35361111()3222x x f x x x x +-+===+---, 第三步,求出函数在定义域范围内的值域,进而求函数的值域:根据反比例函数的性质可知:1102x ≠-,所以3y ≠,所以函数的值域为}3|{≠y y . 【变式演练2】函数212x y x -=+; ①[]5,10x ∈的值域是__________; ②()()3,22,1x ∈---的值域是__________.【答案】 919,712⎡⎤⎢⎥⎣⎦()1,7,3⎛⎫-∞⋃+∞ ⎪⎝⎭【分析】215222x y x x -==-++,然后画出其图像,结合图像可得答案. 【详解】()2252152222x x y x x x +--===-+++, 其图像可由反比例函数5y x-=的图像先向左平移2个单位,再向上平移2个单位得到,如下: ()f x ()ax bf x cx d +=+()f x ()a ef x c cx d=++ey cx d=+()f x ()f x ()f x ()ax b f x cx d +=+ey cx d=+()f x当5x =时97y =,当10x =时1912y =,所以[]5,10x ∈的值域是919,712⎡⎤⎢⎥⎣⎦,因为当3x =-时7y =,当1x =时13y =,所以()()3,22,1x ∈---的值域是()1,7,3⎛⎫-∞⋃+∞ ⎪⎝⎭,故答案为:919,712⎡⎤⎢⎥⎣⎦ ;()1,7,3⎛⎫-∞⋃+∞ ⎪⎝⎭方法三 配方法万能模板 内 容使用场景 函数值域求解解题模板第一步 将二次函数配方成;第二步 根据二次函数的图像和性质即可求出函数的值域.例3 定义在R 上的函数()()()()()1234f x x x x x =++++的值域是__________. 【解析】第一步,将函数配方成:由()()()()()()()()()12341423f x x x x x x x x x =++++=++++2()y a x b c =-+2()y a x b c =-+()()225456x x x x =++++()225x x =++10()25x x ++24()2255x x =++-1第二步,根据二次函数的图像和性质即可求出函数的值域:因为2255555244x x x ⎛⎫++=+-≥- ⎪⎝⎭,()22550x x ⇒++≥所以()2255x x ++-11≥-即函数()()()()()1234f x x x x x =++++的值域是[)1-+∞, 【变式演练3】(2022·全国·高一课时练习)函数212y x x =-++的值域为________.【答案】4(,0)[,)9-∞+∞【分析】先求出x 的取值范围,再求出2924x x -++≤,且220x x -++≠,即得解. 【详解】解:由题得220,1x x x -++≠∴≠-且2x ≠.因为221992()244x x x -++=--+≤, 且220x x -++≠.所以原函数的值域为4(,0)[,)9-∞+∞.故答案为:4(,0)[,)9-∞+∞方法四 反函数法万能模板 内 容使用场景 函数值域求解解题模板第一步 求已知函数的反函数; 第二步 求反函数的定义域;第三步 利用反函数的定义域是原函数的值域的关系即可求出原函数的值域例4 设为,的反函数,则的最大值为. 【答案】【解析】第一步,先判定函数()222xx f x +=-在区间[]20,上是单调递增的;()1fx -()222x f x -=+[]0,2x ∈()()1y f x f x -=+4第二步,求出函数()222x x f x +=-的值域⎥⎦⎤⎢⎣⎡241,; 第三步,根据反函数的性质得出反函数()x fy 1-=在⎥⎦⎤⎢⎣⎡241,为增函数; 所以在⎥⎦⎤⎢⎣⎡241,为增函数; 所以的最大值为()()221-+f f 4=【变式演练4】求函数的值域.方法五 换元法万能模板 内 容使用场景 函数值域求解解题模板第一步 观察函数解析式的形式,函数变量较多且相互关联;第二步 另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域.例5 求函数()1423xx f x +=--, []1,1x ∈-的值域..【解析】第一步,变化函数为二次函数的形式:()1423x x f x +=--∴()()32222-•-=x x x f ,设2x t =,∴()()222314f t t t t =--=--第二步,求出换元后函数的定义域: ∵[]1,1x ∈-,∵[]0,2t ∈,第三步,结合二次函数的性质得出函数的值域:可得 ()[]4,3f t ∈--, 综上所述:函数的值域为[]4,3--.()()1y f x f x -=+()()1y f x fx -=+34()56x f x x +=+【变式演练5】【2021新高考高考最后一卷数学第二模拟】函数22sin sin 21sin x xy x+=+的值域为______. 【答案】1,12⎡⎤-⎢⎥⎣⎦【解析】由题可得,22222sin 2sin cos tan 2tan cos 2sin 12tan x x x x x y x x x ++==++,令tan x t =,则22221t ty t +=+, 即()21y -220t t y -+=,当210y -=,即12y =时,14t =; 当210y -≠,即12y ≠时,要使方程有解,则需()44210y y ∆=--≥,得111,,1222y ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 综上,1,12y ⎡⎤∈-⎢⎥⎣⎦例6 求函数12y x x =+-.【解析】第一步,换元(注意换元后的变量的取值范围):令21120,2t t x x -=-=,所以原函数可化为()211022y t t t =-++≥ 第二步,根据函数解析式判定单调性: 因为其开口向下,并且对称轴是1t =,故当1t =时取得最大值为1,没有最小值,故值域为(,1]-∞.【变式演练6】 求函数,的值域.方法六 判别式法)1x )(cos 1x(sin y ++=⎥⎦⎤⎢⎣⎡ππ-∈2,12x万能模板 内 容使用场景 函数值域求解解题模板第一步 观察函数解析式的形式,型如的函数; 第二步 将函数式化成关于的方程,且方程有解,用根的判别式求出参数的取值范围,即得函数的值域.例7 求函数的值域.【解析】第一步,将函数式化成关于的方程的形式:因为所以()()0732222=++-+-y x y x y第二步,根据判别式得出函数值的取值范围:2≠y 时,上式可以看成关于x 的二次方程,该方程的x 范围应该满足()0322≠++=x x x f 即R x ∈此时方程有实数根即0≥∆,=∆()[]()()07324222≥+---y y y ⎥⎦⎤⎢⎣⎡-∈⇒2,29y当2=y 时,方程化为7=0,显然不能成立,所以2≠y , 将2=y ,29-=y 分别代入检验的2=y 不符合方程,所以⎪⎭⎫⎢⎣⎡-∈⇒2,29y 【变式演练7】(2022·全国·高一专题练习)求函数231xy x x =-+的值域.【答案】(]1,1,5⎡⎫-∞-⋃-+∞⎪⎢⎣⎭【分析】将函数式转化为方程()2310yx y x y ++=-,即该方程在x ∈R 上有解,讨论0y =、0y ≠,结合判别式法即可求值域. 【详解】因为231xy x x =-+,所以当0x =时,0y =;当0y ≠时,原函数化为()2310yx y x y ++=-,22dx ex fy ax bx c++=++x y 3274222++-+=x x x x y x 3274222++-+=x x x x y所以22(31)40y y ∆=+-≥,整理得25610y y ++≥, 解得即1y ≤-或15y ≥-,∴综上,函数231xy x x =-+的值域为(]1,1,5⎡⎫-∞-⋃-+∞⎪⎢⎣⎭. 方法七 基本不等式法万能模板 内 容使用场景 函数值域求解解题模板第一步 观察函数解析式的形式,型如或的函数;第二步 对函数进行配凑成形式,再利用基本不等式求函数的最值,进而得到函数的值域.例8 已知,求函数 的最小值.【解析】第一步,将函数解析式化成()xax x f +=的形式: 因为25≥x ,所以02>-x ; 所以()()()()2212222425422-+-=-+=-+-=x x x x x x x f ; 第二步,利用基本不等式求函数最小值:()()()()()122122222122=-⨯-≥-+-=x x x x x f ,当且仅当()()22122-=-x x ,即3=x 时等号成立。

高考数学专题复习《函数的极值最值》知识梳理及典型例题讲解课件(含答案)

高考数学专题复习《函数的极值最值》知识梳理及典型例题讲解课件(含答案)
后面结合例7讲
(2)已知函数 在 <m></m> 处有极值10, 则 等于( )
A. 或18 B. C. D. 或18
解:因为函数 在 处有极值 ,所以 ,且 ,即 得 或 而当 , 时, ,函数在 处无极值,故舍去. 所以 ,所以 故选C.
解:由题意知, ,令 ,得 , ,因为 在区间 上的最大值就是函数 的极大值,所以极大值点为 ,所以 ,即 .故填 .
1.函数的极值
(1)函数极值的定义:如图,函数 在点 的函数值 比它在点 附近其他点的函数值都小, ;而且在点 附近的左侧 ,右侧 . 类似地,函数 在点 的函数值 比它在点 附近其他点的函数值都大, ;而且在点 附近的左侧 ,右侧 .我们把 叫做函数 的__________, 叫做函数 的________; 叫做函数 的__________, 叫做函数 的________.极小值点、极大值点统称为_______,极小值和极大值统称为______.

易错:注意检验
变式2.(1) 若函数 的极小值点是 <m> ,则 的极大值为( )
A. B. C. D.

解:由题意, ,所以 ,解得 ,故 ,可得 ,则 在 和 上单调递增,在 上单调递减,所以 的极大值为 .故选C.
(2)若 , 是函数 的两个极值点,则

(5)有极值的函数一定有最值,有最值的函数不一定有极值. ( )
×
3. 已知函数 的导函数 <m></m> 的图象如图所示,则( )
A.函数 有2个极大值点,2个极小值点B.函数 有1个极大值点,1个极小值点C.函数 有3个极大值点,1个极小值点D.函数 有1个极大值点,3个极小值点

高中数学《函数的最值》基础知识与讲义专题

高中数学《函数的最值》基础知识与讲义专题

高中数学《函数的最值》基础知识与讲义专题一、基础知识:1、函数的最大值与最小值:(1)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≤,那么称0x x =为函数()f x 的一个最大值点,()0f x 称为函数()f x 的最大值(2)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≥,那么称0x x =为函数()f x 的一个最小值点,()0f x 称为函数()f x 的最小值 (3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。

例如:()[)ln ,1,4f x x x =∈,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln 4,但就是达不到。

()f x 没有最大值。

(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z ππ=+∈,有无穷多个。

2.“最值”与“极值”的区别和联系右图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x(1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3、结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下: (1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点 (2)极小值点不会是最大值点,极大值点也不会是最小值点 8、最值点的作用 (1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =−+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ≥=,即不等式ln 1x x ≤− 二、典型例题: 例1:求函数()xf x xe−=的最值思路:首先判定定义域为R ,对函数进行求导,根据单调区间求出函数的最值 解:()()'1x fx x e −=−,令()'0f x >,解得:1x <()f x ∴的单调区间为:()()max 1f x f e∴==,无最小值 小炼有话说:函数()xf x xe−=先增再减,其最大值即为它的极大值点,我们可以将这种先增再减,或者先减再增的函数成为“单峰函数”,在单峰函数中,极值点即为函数的某个最值点。

专题02 常见函数值域或最值的经典求法-学会解题之高三数学万能解题模板【2022版】(解析版)

专题02 常见函数值域或最值的经典求法-学会解题之高三数学万能解题模板【2022版】(解析版)

专题02 常见函数值域或最值的经典求法【高考地位】函数值域是函数概念中三要素之一,是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求.所以,我们应该掌握一些简单函数的值域求解的基本方法.方法一 观察法例1函数[]23,4,5y x x-=+∈的值域_____________. 【答案】513,25⎡⎤⎢⎥⎣⎦【解析】由2()f x x =-在(0,)+∞上单调递增,∴23y x =-+在[]4,5x ∈上单调递增,而当4x =时,52y =;当5x =时,135y =. ∴函数值域为513,25⎡⎤⎢⎥⎣⎦.【变式演练1】求函数x x f 28)(-=的值域. 【解析】∵2x >0,∵0≤8﹣2x <8.∵0≤x28-<2.故函数x x f 28)(-=的值域是)22,0[.方法二分离常数法例2 求函数253)(-+=x x x f 的值域.【解析】第一步,观察函数类型,型如;第二步,变形: 函数35361111()3222x x f x x x x +-+===+---, 第三步,求出函数在定义域范围内的值域,进而求函数的值域: 根据反比例函数的性质可知:1102x ≠-,所以3y ≠,所以函数的值域为}3|{≠y y . 【变式演练2】【北京大学附属中学2021届高三5月阶段性检测】若函数()11x f x x -=+的定义域是[)0,+∞,则()f x 的值域是___________. 【答案】[)1,1- 【解析】由()11221111x x f x x x x -+-===-+++ 当0x ≥时,11x +≥,所以1011x <≤+,则2201x -≤-<+ 所以21111x -≤-<+,即()()101x f x x x -=≥+的值域为[)1,1-故答案为:[)1,1-方法三 配方法 第一步 将二次函数配方成;第二步 根据二次函数的图像和性质即可求出函数的值域.例3 定义在R 上的函数()()()()()1234f x x x x x =++++的值域是__________. 【解析】第一步,将函数配方成:由()()()()()()()()()12341423f x x x x x x x x x =++++=++++()()225456x x x x =++++()f x ()ax b f x cx d +=+ey cx d=+()f x 2()y a x b c =-+2()y a x b c =-+()225x x =++10()25x x ++24()2255x x =++-1第二步,根据二次函数的图像和性质即可求出函数的值域:因为2255555244x x x ⎛⎫++=+-≥- ⎪⎝⎭,()22550x x ⇒++≥所以()2255x x ++-11≥-即函数()()()()()1234f x x x x x =++++的值域是[)1-+∞, 【变式演练3】已知函数432--=x x y 的定义域是],0[m ,值域为]4,425[--,则m 的取值范围是( ) A .]4,0( B .]4,23[ C .]3,23[ D .),23[+∞【答案】C 【解析】试题分析:因二次函数432--=x x y 的对称轴为23=x ,且0=x 时,函数值4-=y ,当23=x 时,425-=y ,因此当3=x 时, 4-=y .故当323≤≤m ,故应选C. 考点:二次函数的图象和性质.方法四 反函数法例4 设为,的反函数,则的最大值为. 【答案】【解析】第一步,先判定函数()222xx f x +=-在区间[]20,上是单调递增的;第二步,求出函数()222x x f x +=-的值域⎥⎦⎤⎢⎣⎡241,; 第三步,根据反函数的性质得出反函数()x fy 1-=在⎥⎦⎤⎢⎣⎡241,为增函数; ()1fx -()222x f x -=+[]0,2x ∈()()1y f x f x -=+4所以在⎥⎦⎤⎢⎣⎡241,为增函数; 所以的最大值为()()221-+f f 4=【变式演练4】求函数的值域.方法五 换元法例5 求函数()1423xx f x +=--, []1,1x ∈-的值域..【解析】第一步,变化函数为二次函数的形式:()1423x x f x +=-- ∴()()32222-•-=xxx f ,设2x t =,∴()()222314f t t t t =--=--第二步,求出换元后函数的定义域: ∵[]1,1x ∈-,∵[]0,2t ∈,第三步,结合二次函数的性质得出函数的值域:可得 ()[]4,3f t ∈--, 综上所述:函数的值域为[]4,3--.【变式演练5】【2021新高考高考最后一卷数学第二模拟】函数22sin sin 21sin x xy x+=+的值域为______.【答案】1,12⎡⎤-⎢⎥⎣⎦【解析】由题可得,22222sin 2sin cos tan 2tan cos 2sin 12tan x x x xx y x x x ++==++,令tan x t =,则22221t ty t +=+,()()1y f x f x -=+()()1y f x fx -=+34()56x f x x +=+即()21y -220t t y -+=,当210y -=,即12y =时,14t =; 当210y -≠,即12y ≠时,要使方程有解,则需()44210y y ∆=--≥,得111,,1222y ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 综上,1,12y ⎡⎤∈-⎢⎥⎣⎦例6求函数y x =+.【解析】第一步,换元(注意换元后的变量的取值范围):令210,2t t x -==,所以原函数可化为()211022y t t t =-++≥ 第二步,根据函数解析式判定单调性: 因为其开口向下,并且对称轴是1t =,故当1t =时取得最大值为1,没有最小值,故值域为(,1]-∞.【变式演练6】 求函数,的值域.方法六 判别式法)1x )(cos 1x (sin y ++=⎥⎦⎤⎢⎣⎡ππ-∈2,12x第一步 观察函数解析式的形式,型如的函数;第二步 将函数式化成关于的方程,且方程有解,用根的判别式求出参数的取值范围,即得函数的值域.例7 求函数的值域.【解析】第一步,将函数式化成关于的方程的形式:因为所以()()0732222=++-+-y x y x y第二步,根据判别式得出函数值的取值范围:2≠y 时,上式可以看成关于x 的二次方程,该方程的x 范围应该满足()0322≠++=x x x f 即R x ∈此时方程有实数根即0≥∆,=∆()[]()()07324222≥+---y y y ⎥⎦⎤⎢⎣⎡-∈⇒2,29y当2=y 时,方程化为7=0,显然不能成立,所以2≠y , 将2=y ,29-=y 分别代入检验的2=y 不符合方程,所以⎪⎭⎫⎢⎣⎡-∈⇒2,29y 【变式演练7】求函数12+=x xy 的值域. 【解析】2201xy yx x y x =∴-+=+,当0y =时方程有解,当0y ≠时由0∆≥可得2140y -≥1122y ∴-≤≤,综上可知值域为]21,21[-.方法七 基本不等式法22dx ex fy ax bx c++=++x y 3274222++-+=x x x x y x 3274222++-+=x x x x y例8 已知,求函数 的最小值.【解析】第一步,将函数解析式化成()xax x f +=的形式: 因为25≥x ,所以02>-x ; 所以()()()()()221222212425422-+-=-+-=-+-=x x x x x x x x f ; 第二步,利用基本不等式求函数最小值:()()()()()122122222122=-⨯-≥-+-=x x x x x f ,当且仅当()()22122-=-x x ,即3=x 时等号成立。

2024年高考数学一轮复习专题05函数的单调性与最值含解析

2024年高考数学一轮复习专题05函数的单调性与最值含解析

专题05函数的单调性与最值最新考纲1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.基础学问融会贯穿1.函数的单调性(1)单调函数的定义(2)单调区间的定义假如函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,假如存在实数M满意条件(1)对于随意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于随意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值【学问拓展】函数单调性的常用结论(1)对∀x 1,x 2∈D (x 1≠x 2),f x 1-f x 2x 1-x 2>0⇔f (x )在D 上是增函数,f x 1-f x 2x 1-x 2<0⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax(a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ]. (3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”.重点难点突破【题型一】确定函数的单调性(区间) 命题点1 给出详细解析式的函数的单调性 【典型例题】下列函数中,值域为R 且在区间(0,+∞)上单调递增的是( ) A .y =x 2+2xB .y =2x +1C .y =x 3+1D .y =(x ﹣1)|x |【解答】解:依据题意,依次分析选项:对于A ,y =x 2+2x =(x +1)2﹣1,其值域为[﹣1,+∞),不符合题意; 对于B ,y =2x +1,其值域为(0,+∞),不符合题意;对于C ,y =x 3+1,值域为R 且在区间(0,+∞)上单调递增,符合题意; 对于D ,y =(x ﹣1)|x |,在区间(0,1)上为减函数,不符合题意;故选:C .【再练一题】已知函数f (x )=ln ,则( )A .f (x )是奇函数,且在(﹣∞,+∞)上单调递增B .f (x )是奇函数,且在(﹣∞,+∞)上单调递减C .f (x )是偶函数,且在(0,+∞)上单调递增D .f (x )是偶函数,且在(0,+∞)上单调递减【解答】解:依据题意,函数f (x )=ln,其定义域为R ,有f(﹣x)=ln ln f(x),则函数f(x)为偶函数,设t,y=lnt,对于t,则导数t′,当x>0时,t′>0,即函数t在区间(0,+∞)上为增函数,又由y=lnt在区间(0,+∞)上为增函数,则函数f(x)=ln在0,+∞)上为增函数,故选:C.命题点2 解析式含参数的函数的单调性【典型例题】定义在R的函数f(x)=﹣x3+m与函数g(x)=f(x)+x3+x2﹣kx在[﹣1,1]上具有相同的单调性,则k 的取值范围是()A.(﹣∞,﹣2] B.[2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)【解答】解:依据题意,函数f(x)=﹣x3+m,其定义域为R,则R上f(x)为减函数,g(x)=f(x)+x3+x2﹣kx=x2﹣kx+m在[﹣1,1]上为减函数,必有x1,解可得k≥2,即k的取值范围为[2,+∞);故选:B.【再练一题】已知函数f(x)(a>0且a≠1)在R上单调递减,则a的取值范围是()A.[,1)B.(0,] C.[,] D.(0,]【解答】解:由题意,分段函数是在R上单调递减,可得对数的底数需满意0<a<1,依据二次函数开口向上,在(单调递减,可得,即,解得:.且[x2+(4a﹣3)x+3a]min≥[log a(x+1)+1]max故而得:3a≥1,解得:a.∴a的取值范围是[,],故选:C.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.【题型二】函数的最值【典型例题】若函数f(x),则函数f(x)的值域是()A.(﹣∞,2)B.(﹣∞,2]C.[0,+∞)D.(﹣∞,0)∪(0,2)【解答】解:当x<1时,0<2x<2,当x≥1时,f(x)=﹣log2x≤﹣log21=0,综上f(x)<2,即函数的值域为(﹣∞,2),故选:A.【再练一题】函数f(x)=e x﹣x在区间[﹣1,1]上的值域为()A.[1,e﹣1] B.C.D.[0,e﹣1]【解答】解:函数的导数f′(x)=e x﹣1,由f′(x)>0得e x﹣1>0,即e x>1,得0<x≤1,此时函数递增,由f′(x)<0得e x﹣1<0,即e x<1,得﹣1≤x<0,此时函数递减,即当x=0时,函数取得微小值同时也是最小值f(0)=1,∵f(1)=e﹣1,f(﹣1)1<e﹣1,∴函数的最大值为f(1)=e﹣1,即函数的值域为[1,e﹣1],故选:A.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再视察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最终结合端点值,求出最值.(5)换元法:对比较困难的函数可通过换元转化为熟识的函数,再用相应的方法求最值.【题型三】函数单调性的应用命题点1 比较大小【典型例题】已知函数,若,则a、b、c之间的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.b<a<c【解答】解:依据题意,函数,其定义域为R,则f(﹣x)=|ln(x)|=|ln|=|﹣ln(x)|=|ln(x)|=f (x),即函数f(x)为偶函数,设g(x)=ln(x)=ln,有g(0)=ln1=0,设t,则y=lnt,当x≥0时,t为减函数且t>0,而y=lnt在(0,+∞)为增函数,则g(x)=ln(x)=ln在[0,+∞)上为减函数,又由g(0)=0,则在区间[0,+∞)上,g(x)≤0,又由f(x)=|g(x)|,则f(x)在区间[0,+∞)上为增函数,a=f()=f(log94),b=f(log52)=f(log254),又由log254<log94<1<1.80.2,则有b<a<c;故选:D.【再练一题】已知函数f(x)=x•ln,a=f(),b=f(),c=f(),则以下关系成立的是()A.c<a<b B.c<b<a C.a<b<c D.a<c<b【解答】解:,,;∵;∴;∴c<a<b.故选:A.命题点2 解函数不等式【典型例题】已知函数f(x)=e x﹣e﹣x,则关于x的不等式f(x)+f(x2﹣2)<0的解集为()A.(﹣2,1)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣1,2)D.(﹣∞,﹣1)∪(2,+∞)【解答】解:依据题意,函数f(x)=e x﹣e﹣x,有f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),则函数f(x)为奇函数,又由f′(x)=e x+e﹣x>0,则函数f(x)在R上为增函数,f(x)+f(x2﹣2)<0⇒f(x)<﹣f(x2﹣2)⇒f(x)<f(2﹣x2)⇒x<2﹣x2,即x2+x﹣2<0,解可得﹣2<x<1,即其解集为(﹣2,1);故选:A.【再练一题】设定义在R上的奇函数f(x)满意f(x)=x3﹣8(x>0),则{x|f(x﹣2)≥0}=()A.[﹣2,0)∪[2,+∞)B.(﹣∞﹣2]∪[2,+∞)C.[0,2)∪[4,+∞)D.[0,2]∪[4,+∞)【解答】解:∵f(x)是R上的奇函数,且x>0时,f(x)=x3﹣8;∴f(0)=f(2)=f(﹣2)=0,且f(x)在(0,+∞),(﹣∞,0)上都单调递增;∴①x=2时,满意f(x﹣2)≥0;②x>2时,由f(x﹣2)≥0得,f(x﹣2)≥f(2);∴x﹣2≥2;∴x≥4;③x<2时,由f(x﹣2)≥0得,f(x﹣2)≥f(﹣2);∴x﹣2≥﹣2;∴x≥0;∴0≤x<2;综上得,f(x﹣2)≥0的解集为[0,2]∪[4,+∞).故选:D.命题点3 求参数范围【典型例题】若函数f(x)在R上是增函数,则a的取值范围为()A.(﹣∞,1] B.(0,2)C.(0,1] D.[1,2)【解答】解:∵f(x)在R上是增函数;∴;解得0<a≤1;∴a的取值范围为:(0,1].故选:C.【再练一题】若(a≠1),在定义域(﹣∞,+∞)上是单调函数,则a的取值范围是()A.B.C.D.【解答】解:f(x)在定义域(﹣∞,+∞)上是单调函数时,①函数的单调性是增函数时,可得当x=0时,(a2﹣1)e ax≤ax2+1=1,即a2﹣1≤1,解之得a∵x≥0时,y=ax2+1是增函数,∴a>0又∵x<0时,(a2﹣1)e ax是增函数,∴a2﹣1>0,得a<﹣1或a>1因此,实数a的取值范围是:1<a②函数的单调性是减函数时,可得当x=0时,(a2﹣1)e ax≥ax2+1=1,即a2﹣1≥1,解之得a或a.∵x≥0时,y=ax2+1是减函数,∴a<0又∵x<0时,(a2﹣1)e ax是减函数,∴a2﹣1>0,得a<﹣1或a>1因此,实数a的取值范围是:a综上所述,得a∈故选:C.思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f”符号脱掉,转化为详细的不等式求解,应留意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需留意若函数在区间[a,b]上是单调的,则该函数在此区间的随意子集上也是单调的;③分段函数的单调性,除留意各段的单调性外,还要留意连接点的取值.基础学问训练1.若,则下列不等式正确的是()A.B.C.D.【答案】D【解析】∵,对A选项,变形为log a x3<log a y2,而函数y=是单调递减函数,x3<y2,∴log a x3>log a y2,故A不正确;对B选项,,函数y=cosx是单调递减函数,∴,故B不正确;对C选项,y=是单调递减函数,∴, 故C不正确;而D选项,幂函数y=是单调递增函数,∴,故应选D.2.已知函数且满意,则的取值范围为()A.B.C.D.【答案】C【解析】因为,所以,所以函数为定义在R上的偶函数;又时,单调递减,所以由偶函数的对称可得:时,单调递增,所以由可得,解得.故选C3.已知函数,则函数有()A.最小值,无最大值 B.最大值,无最小值C.最小值1,无最大值 D.最大值1,无最小值【答案】D【解析】∵函数f(x)的定义域为(﹣∞,]设t,则t,且x,∴f(x)=g(t)t2+t(t﹣1)2+1,t,∴g(t)≤g(1)即g(t)≤1∴函数f(x)的最大值1,无最小值.故选D.4.若函数f(x)=log2(x2-2x+a)的最小值为4,则a=()A.16 B.17 C.32 D.33【答案】B【解析】函数f(x)=log2(x2-2x+a)的最小值为4,可得y= x2-2x+a的最小值为16,由y=(x-1)2+a-1,可得a-1=16,即a=17,故选:B.5.高斯是德国闻名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数,则函数的值域是()A. B. C. D.【答案】A【解析】.∴当时,;当时,;∴函数的值域是.故选A.6.已知函数的最小值为8,则A.B.C.D.【答案】B【解析】函数的最小值为8,可得,明显的最小值不为8;时,由对数函数的性质可得当时,的最小值为,由题意可得,设递增,,可得,故选:B.7.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A. B. C. D.【答案】A【解析】由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x),①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满意条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,故f(a)+f(b)>2.再由f(a)+f(b)>f(c)恒成立,可得2≥t,结合大前提t﹣1>0,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得 2t≥1,解得1>t.综上可得,t≤2,故选:A.8.奇函数单调递减,若,则满意的取值范围是()A.B.C.D.[1,3]【答案】D【解析】因为奇函数单调递减,所以函数单调递减,且为奇函数,所以,因为,所以,所以,解得,即满意的取值范围是,故选D.9.假如对定义在R上的奇函数,对随意两个不相邻的实数,全部,则称函数为“H函数”,下列函数为H函数的是A.B.C.D.【答案】D【解析】依据题意,对于全部的不相等实数,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.10.已知定义在上的函数,对随意,有,且时,有,设,则()A.B.C.D.【答案】A【解析】因为对随意,所以,因为时,有,所以函数在区间上是增函数,因为,所以,即,所以,故选A.11.已知定义在R上的函数f(x)=-1(m为实数)为偶函数,记a=f(log0.53),则a,b,c的大小关系为( )A.a<b<c B.a<c<b C.c<a<b D.c<b<a【答案】B【解析】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选:B.12.已知t为常数,函数在区间上的最大值为2,则t的值为A.B.C.D.【答案】A【解析】令上的增函数.当,即时,,舍去.当,即时,由于单调递增,故函数的最值在端点处取得..若,解得(舍去).当时,符合题意.当,解得.当时,,不符合题意.当时,符合题意.故.所以选A.13.假如奇函数在区间上是减函数,值域为,那么______.【答案】12【解析】由f(x)在区间上是递减函数,且最大值为5,最小值为-2,得f(3)=5,f(7)=-2,∵f(x)是奇函数,∴.故答案为:12.14.已知函数,若上是减函数,则实数的取值范围为____.【答案】[,0)【解析】若在R上是减函数,因为y=上单调递减,故只需满意,解得:k∈[,0)故答案为:[,0)15.设函数f(x)=|x-1|在x∈[t,t+4](t∈R)上的最大值为M(t),则M(t)的最小值为______.【答案】2【解析】作出函数f(x)=|x-1|的图象,如图所示,当t+4≤1即t≤-3时,f(x)在[t,t+4]递减,可得最大值M(t)=f(t)=|t-1|=1-t,由M(t)在t≤-3递减,可得M(t)≥4,即最小值为4;当t≥1时,f(x)在[t,t+4]递增,可得最大值M(t)=f(t+4)=|t+3|=t+3,由M(t)在t≥1递增,可得M(t)≥4,即最小值为4;当t<1<t+4,即-3<t<1时,f(x)在(t,1)递减,在(1,t+4)递增,可得f(x)的最小值为0;当t=-1时,f(t)=f(t+4)=2;当-1<t<1时,f(t)<f(t+4),f(x)的最大值M(t)=f(t+4)=t+3,且M(t)∈(2,4);当-3<t<-1时,f(t)>f(t+4),f(x)的最大值M(t)=f(t)=1-t,且M(t)∈(2,4);综上可得M(t)的最小值为2.故答案为:2.16.已知函数,若当时,都有,则a的取值范围为______.【答案】【解析】①当时,即②当时,若,即时,若,即时,③当时,综上所述,17.对于区间,若函数同时满意:上是单调函数;函数的值域是,则称区间为函数的“保值”区间.求函数的全部“保值”区间.函数是否存在“保值”区间?若存在,求出实数m的取值范围;若不存在,说明理由.【答案】(1);(2)函数存在“保值”区间,此时m的取值范围是.【解析】因为函数的值域是,且的值域是,所以,所以,从而函数在区间上单调递增,故有,解得,又,所以,所以函数的“保值”区间为;若函数存在“保值”区间,若,由可得函数的“保值”区间为;若,此时函数在区间上单调递减,可得,消去m得,整理得,因为,所以,即,即有,因为,可得;若,此时函数在区间上单调递增,可得,消去m得,整理得.因为,所以,可得,可得.由,即有.综合得,函数存在“保值”区间,此时m的取值范围是.18.已知函数常数.证明上是减函数,在上是增函数;时,求的单调区间;对于中的函数和函数,若对随意,总存在,使得成立,求实数a的值.【答案】(1)见解析;(2)见解析;(3)【解析】证明::设,且,,,,当时,即,当时,即,时,,即,此时函数为减函数,当时,,即,此时函数为增函数,故上是减函数,在上是增函数;时,,,设,则,,由可知上是减函数,在上是增函数;,即,即上是减函数,在上是增函数;由于为减函数,故又由(2)得由题意,的值域为的值域的子集,从而有,解得.19.已知函数,其中.解关于x的不等式;求a的取值范围,使在区间上是单调减函数.【答案】(1)见解析;(2).【解析】的不等式,即为,即为,当时,解集为;当时,解集为;当时,解集为;,由在区间上是单调减函数,可得,解得.即a的范围是.20.已知函数.判定并证明函数的单调性;是否存在实数m,使得不等式对一切都成立?若存在求出m;若不存在,请说明理由.【答案】(1)见解析;(2)【解析】函数上R上的单调递增函数.证明如下:设,,,且,,函数上R上的单调递增函数.函数,,是R上的奇函数,不等式对一切都成立,,对一切都成立,是R上的增函数,,对一切都成立,.存在实数,使得不等式对一切都成立.实力提升训练1.已知是自然对数的底数),,则的大小关系是( ) A.B.C.D.【答案】A【解析】记,可得x=e可知:上单调递增,又∴,即故选:A2.若函数,设,则的大小关系A.B.C.D.【答案】D【解析】依据题意,函数,是二次函数,其对称轴为y轴,且在上为增函数,,则有,则;故选:D.3.已知函数,若的最小值为,则实数m的值为A. B. C.3 D.或3【答案】C【解析】函数,即,当时,不成立;当,即时,递减,可得取得最小值,且,解得成立;当,即时,递增,可得取得最小值,且,不成立;综上可得.故选:.4.若函数上的最大值与最小值的差为2,则实数的值为( ).A.2 B.-2 C.2或-2 D.0【答案】C【解析】解:①当a=0时,y=ax+1=1,不符合题意;②当a>0时,y=ax+1在[1,2]上递增,则(2a+1)﹣(a+1)=2,解得a=2;③当a<0时,y=ax+1在[1,2]上递减,则(a+1)﹣(2a+1)=2,解得a=﹣2.综上,得a=±2,故选C.5.已知直线分别与函数的图象交于两点,则两点间的最小距离为()A. B. C. D.【答案】D【解析】依据题意得到PQ两点间的距离即两点的纵坐标的差值,设t+1=u,t=u-1>0,原式等于依据均值不等式得到当且仅当u=1,t=0是取得最值.故答案为:D.6.已知函数的值域为()A. B. C. D.【答案】C【解析】由题意,设,则,又由指数函数的性质,可知函数为单调递减函数,所以函数的值域为,故选C.7.已知函数的定义域为(1)试推断的单调性;(2)若,求的值域;(3)是否存在实数,使得有解,若存在,求出的取值范围;若不存在,说明理由. 【答案】(1)单调递增(2)(3)存在,且取值范围为【解析】解:(1)设单调递增.(2)令的值域为(3)由而当时,令,所以的取值范围为8.已知函数(1)设的两根,且,试求的取值范围(2)当时,的最大值为2,试求【答案】(1)(2)【解析】(1)由题意可得的两根,且,解得故(2)当时,的最大值为2,由,可知抛物线开口向上,对称轴为①若,则当时取得最大值,即,解得②若,则当时取得最大值,即,解得故9.已知函数.(1)若,求a的值.(2)推断函数的奇偶性,并证明你的结论.(3)求不等式的解集.【答案】(1);(2)奇函数;(3).【解析】,则,得,即,则.函数的定义域为R,,即函数是奇函数.由不等式,,在R上是增函数,不等式等价为,即,即,得.即不等式的解集为.10.已知函数.(Ⅰ)推断并证明的单调性;(Ⅱ)设,解关于的不等式.【答案】(Ⅰ)上单调递增;(Ⅱ).【解析】解:(Ⅰ)的定义域为,由是奇函数;任取,则,上单调递增;又由(Ⅰ)知,上的奇函数,上单调递增;上单调递增.(Ⅱ),由是奇函数;又由(Ⅰ)知上单调递增,上单调递增,等价于,可得:,解得:不等式的解集是.。

高考求函数值域及最值得方法及例题_训练题

高考求函数值域及最值得方法及例题_训练题

一.观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域.例1:求函数)+=的值域.y-3x32(点拨:根据算术平方根的性质,先求出)-的值域.32(x解:由算术平方根的性质,知)2(x-≥3。

∴函数的值域为)3-≥0,故3+)2(x3,3[+∞ .点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5)的值域。

(答案:值域为:{0,1,2,3,4,5})二.反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域.例2:求函数y=(x+1)/(x+2)的值域.点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数, 故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函数的值域为{y∣y<-1或y>1})三.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域. 例3:求函数y=√(-x2+x+2)的值域.点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。

此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。

练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

(2021年整理)高中数学专题之函数的值域与最值(内附练习及答案)

(2021年整理)高中数学专题之函数的值域与最值(内附练习及答案)

高中数学专题之函数的值域与最值(内附练习及答案)(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题之函数的值域与最值(内附练习及答案)(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题之函数的值域与最值(内附练习及答案)(推荐完整)的全部内容。

高中数学专题之函数的值域与最值(内附练习及答案)(推荐完整) 编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望高中数学专题之函数的值域与最值(内附练习及答案)(推荐完整) 这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈高中数学专题之函数的值域与最值(内附练习及答案)(推荐完整)> 这篇文档的全部内容。

函数的值域与最值【基本概念】求函数最值的基本方法: 1、配方法(二次函数) 2、分离常数法(分式函数) 3、反函数法(分式函数) 4、基本函数性质法5、换元法[换元必换限](无理函数、高次函数等)6、基本不等式法(耐克函数)7、单调性法(单调区间上的值域与最值) 8、数形结合法 【典型例题】例1:求下列函数的值域。

(1)2121x y x -=+; (2)()lg 12cos y x =-; (3)2y x =;(4)2211x x y x -+=+;(5)()2lg 612y x x x x =-+≤≤; (6)3sin 2cos xy x-=-。

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

专题3.5 导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【题型1 根据函数图象判断极值】【方法点拨】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.【例1】(2022春•杨浦区校级期末)已知函数y=f(x)(a<x<b)的导函数是y=f'(x)(a<x<b),导函数y=f'(x)的图象如图所示,则函数y=f(x)在(a,b)内有()A.3个驻点B.4个极值点C.1个极小值点D.1个极大值点【解题思路】由题意结合导函数图像即可确定函数的性质.【解答过程】解:由导函数的图象可知,原函数存在4个驻点,函数有3个极值点,其中2个极大值点,1个极小值点.故选:C.【变式1-1】(2022春•纳雍县期末)已知函数f(x)的导函数的图像如图所示,则下列结论正确的是()A.﹣1是f(x)的极小值点B.曲线y=f(x)在x=2处的切线斜率小于零C.f(x)在区间(﹣∞,3)上单调递减D.﹣3是f(x)的极小值点【解题思路】根据题意,由函数导数与单调性的关系依次分析选项,即可得答案.【解答过程】解:根据题意,依次分析选项:对于A,在x=﹣1左右都有f′(x)<0,﹣1不是f(x)的极值,A错误;对于B,f′(x)的图象在(﹣3,3)上,f′(x)<0,f(x)为减函数,则曲线y=f(x)在x=2处的切线斜率即f′(2)小于零,B正确;对于C,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,f(x)为增函数,C错误;对于D,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,在(﹣3,3)上,f′(x)<0,则﹣3是f (x)的极大值点,D错误;故选:B.【变式1-2】(2022春•朝阳区校级月考)如图,可导函数y=f(x)在点P(x0,f(x0))处的切线方程为y=g(x),设h(x)=g(x)﹣f(x),h'(x)为h(x)的导函数,则下列结论中正确的是()A.h'(x0)=0,x0是h(x)的极大值点B.h'(x0)=0,x0是h(x)的极小值点C.h'(x0)≠0,x0不是h(x)的极大值点D.h'(x0)≠0,x0是h(x)的极值点【解题思路】由图判断函数h(x)的单调性,结合y=g(x)为y=f(x)在点P处的切线方程,则有h'(x0)=0,由此可判断极值情况.【解答过程】解:由题得,当x∈(﹣∞,x0)时,h(x)单调递减,当x∈(x0,+∞)时,h(x)单调递增,又h'(x0)=g'(x0)﹣f'(x0)=0,则有x0是h(x)的极小值点,故选:B.【变式1-3】(2022春•南阳期末)函数f(x)的导函数是f'(x),下图所示的是函数y=(x+1)•f'(x)(x∈R)的图像,下列说法正确的是()A.x=﹣1是f(x)的零点B.x=2是f(x)的极大值点C.f(x)在区间(﹣2,﹣1)上单调递增D.f(x)在区间[﹣2,2]上不存在极小值【解题思路】根据函数y=(x+1)•f'(x)(x∈R)的图像判断f′(x)的符号,进而判断f(x)的单调性和极值即可.【解答过程】解:由函数y=(x+1)•f'(x)(x∈R)的图像知,当﹣2<x<﹣1时,x+1<0,y>0,∴f'(x)<0,f(x)在(﹣2,﹣1)上减函数,当﹣1<x<2时,x+1>0,y>0,∴f'(x)>0,f(x)在(﹣1,2)上增函数,当x>2时,x+1>0,y<0,f'(x)<0,f(x)在(2,+∞)上减函数,∴x=﹣1、x=2分别是f(x)的极小值点、极大值点.∴选项A、C、D错误,选项B正确,故选:B.【题型2 求已知函数的极值(点)】【方法点拨】求函数f(x)极值的一般解题步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.【例2】(2022•扬中市校级开学)已知函数f(x)=12x−sinx在[0,π2]上的极小值为()A .π12−√32B .π12−12C .π6−12D .π6−√32【解题思路】根据极小值的定义,结合导数的性质进行求解即可. 【解答过程】解:由f(x)=12x −sinx ⇒f′(x)=12−cosx , 当x ∈(0,π3)时,f ′(x )<0,f (x )单调递减,当x ∈(π3,π2)时,f ′(x )>0,f (x )单调递增,所以π3是函数的极小值点,极小值为:f(π3)=π6−√32, 故选:D .【变式2-1】(2022春•资阳期末)函数f (x )=x 3﹣3x 的极大值为( ) A .﹣4B .﹣2C .1D .2【解题思路】求导,利用导数确定f (x )的单调区间,从而即可求极大值. 【解答过程】解:因为f (x )=x 3﹣3x ,x ∈R , 所以f ′(x )=3x 2﹣3=3(x +1)(x ﹣1), 令f ′(x )=0,得x =﹣1或x =1,所以当x <﹣1时,f ′(x )>0,f (x )单调递增;当﹣1<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增;所以f (x )的单调递增区间为:(﹣∞,﹣1),(1,∞);单调递减区间为(﹣1,1). 所以f (x )极大值=f (﹣1)=2. 故选:D .【变式2-2】(2022春•平谷区期末)函数f (x )=x +2cos x 在[0,π]上的极小值点为( ) A .π3B .π6C .5π6D .2π3【解题思路】分析函数导数的符号变化,由此可得函数的单调性,由单调性得出结论即可. 【解答过程】解:对于函数f (x )=x +2cos x ,f ′(x )=1﹣2sin x , 因为x ∈[0,π],当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,所以f (x )在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数. 因此,函数f (x )=x +2cos x 在[0,π]上的极小值点为5π6.故选:C .【变式2-3】(2022春•新乡期末)已知函数f (x )=(x ﹣1)2(2﹣x )3,则f (x )的极大值点为( ) A .1B .75C .﹣1D .2【解题思路】解:因为f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ),所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【解答过程】解:f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ), 令f ′(x )=0得x =1或x =75,所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【题型3 由函数的极值(点)求参数】 【方法点拨】根据函数极值情况求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求出参数后,验证所求结果是否满足题意.【例3】(2022春•龙海市校级期末)函数f (x )=4x 3﹣ax 2﹣2bx +2在x =1处有极大值﹣3,则a ﹣b 的值等于( ) A .0B .6C .3D .2【解题思路】对函数求导,利用f (1)=﹣3以及f ′(1)=0解出a ,b ,进而得出答案. 【解答过程】解:由题意得f ′(x )=12x 2﹣2ax ﹣2b ,因为f (x )在x =1处有极大值﹣3, 所以f ′(1)=12﹣2a ﹣2b =0,f (1)=4﹣a ﹣2b +2=﹣3,解得a =3,b =3, 所以a ﹣b =0. 故选:A .【变式3-1】(2022春•哈尔滨期末)若函数f(x)=6alnx +12x 2−(a +6)x 有2个极值点,则实数a 的取值范围是()A.(﹣∞,6)∪(6,+∞)B.(0,6)∪(6,+∞)C.{6}D.(0,+∞)【解题思路】根据条件函数f(x)有两个极值点,转化为方程f′(x)=0有两个不等正实数根,得到求解.【解答过程】解:函数f(x)的定义域(0,+∞),f′(x)=6ax+x−(a+6)=(x−6)(x−a)x,令f′(x)=0得,x=6或x=a,∵函数f(x)有2个极值点,∴f'(x)=0有2个不同的正实数根,∴a>0且a≠6,故选:B.【变式3-2】(2022春•淄博期末)已知x=2是函数f(x)=ax3﹣3x2+a的极小值点,则f(x)的极大值为()A.﹣3B.0C.1D.2【解题思路】先对函数求导,然后结合极值存在条件可求a,进而可求函数的极大值.【解答过程】解:因为f′(x)=3ax2﹣6x,由题意可得,f′(2)=12a﹣12=0,故a=1,f′(x)=3x2﹣6x,当x>2或x<0时,f′(x)>0,函数单调递增,当0<x<2时,f′(x)<0,函数单调递减,故当x=0时,函数取得极大值f(0)=1.故选:C.【变式3-3】(2022春•赣州期末)已知函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)在x=1处取得极值,则a+b的最大值为()A.1B.√2C.2D.2√2【解题思路】根据题意,对函数求导,令f′(1)=0可求得a2+b2=2,利用基本不等式可求a+b的最大值.【解答过程】解:函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)的导数为f′(x)=3x2+2a2x+2b2﹣7,因为函数在x=1处取得极值,所以f′(1)=3+2a2+2b2﹣7=0,即a2+b2=2,因为a 2+b 2=(a +b )2﹣2ab =2,即(a +b )2﹣2=2ab , 因为ab ≤(a+b 2)2,所以(a +b)2−2≤2(a+b 2)2, 整理得(a +b )2≤4,所以a +b ≤2,当且仅当a =b =1时等号成立,此时f ′(x )=3x 2+2x ﹣5=(3x +5)(x ﹣1),满足函数在x =1处取得极值, 所以a +b 的最大值为2, 故选:C .【题型4 利用导数求函数的最值】 【方法点拨】(1)若函数f (x )在闭区间[a ,b ]上单调递增或单调递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值, 最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极大(或极小)值点,这个极值点就是最大(或最小)值点,此结论在导 数的实际应用中经常用到.【例4】(2022•河南开学)函数f(x)=x 2−2x +8x 在(0,+∞)上的最小值为( ) A .2B .3C .4D .5【解题思路】由题意求导,从而确定函数的单调性,从而求函数的最值.【解答过程】解:因为f ′(x)=2x −2−8x 2=(x 3−2x 2)+(x 3−8)x 2=(x−2)(2x 2+2x+4)x 2,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 故f (x )min =f (2)=4. 故选:C .【变式4-1】(2022春•中山市校级月考)函数y =x ﹣2sin x 在区间[0,2]上的最小值是( ) A .π6−√3B .−π3−√3C .−π6−√3D .π3−√3【解题思路】利用导数研究函数区间单调性,进而求其最小值即可. 【解答过程】解:由y ′=1﹣2cos x , 当0≤x <π3时,y ′<0,即y 递减; 当π3<x ≤2时,y ′>0,即y 递增;所以y min =π3−2sin π3=π3−√3.【变式4-2】(2022春•乐山期末)已知函数f (x )=x 2﹣lnx ,则函数f (x )在[1,2]上的最小值为( ) A .1B .√22C .18+12ln2 D .12+12ln2【解题思路】求导确定函数在[1,2]上的单调性,求出最小值即可.【解答过程】解:因为f (x )=x 2﹣lnx (x >0),所以f ′(x )=2x −1x =2x 2−1x ,所以当x ∈[1,2]时,f ′(x )=2x 2−1x >0,则f (x )在[1,2]上单调递增,则f (x )在[1,2]上的最小值为f (1)=1. 故选:A .【变式4-3】(2022•绿园区校级开学)函数f (x )=lnx +1x −12与g (x )=xe x ﹣lnx ﹣x 的最小值分别为a ,b ,则( ) A .a =b B .a >bC .a <bD .a ,b 的大小不能确定【解题思路】根据函数的单调性分别求出函数f (x ),g (x )的最小值,比较a ,b 即可. 【解答过程】解:f (x )的定义域是(0,+∞), f ′(x)=1−1x =x−1x, 令f ′(x )<0,解得:0<x <1,令f ′(x )>0,解得:x >1, f (x )在(0,1)递减,在(1,+∞)递增, f (x )的最小值是f (1)=1,故a =1, g (x )=xe x ﹣lnx ﹣x ,定义域(0,+∞), g ′(x)=(x +1)e x −1x −1=x+1x (xe x −1),令h (x )=xe x ﹣1,则h ′(x )=(x +1)e x >0,x ∈(0,+∞),则可得h (x )在(0,+∞)上单调递增,且h (0)=﹣1<0,h (1)=e ﹣1>0, 故存在x 0∈(0,1)使得h (x )=0即x 0e x 0=1,即x 0+lnx 0=0, 当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,函数g (x )单调递减, 当x ∈(x 0,+∞)时,g ′(x )>0,函数g (x )单调递增,故当x =x 0时,函数取得最小值g(x 0)=x 0e x 0−lnx 0−x 0=1−lnx 0−x 0=1,即b =1, 所以a =b ,【题型5 由函数的最值求参数】【例5】(2022春•烟台期末)若函数f(x)=x 3−3a 2x 2+4在区间[1,2]上的最小值为0,则实数a 的值为( ) A .﹣2B .﹣1C .2D .103【解题思路】对函数求导后,分a ≤0和a >0两种情况求出函数的单调区间,从而可求出函数的最小值,使最小值等于零,从而可出实数a 的值. 【解答过程】解:由f(x)=x 3−3a 2x 2+4,得f '(x )=3x 2﹣3ax =3x (x ﹣a ), 当a ≤0时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增,所以f(x)min =f(1)=1−3a2+4=0,解得a =103(舍去), 当a >0时,由f '(x )=0,得x =0或x =a , 当0<a ≤1时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增, 所以f(x)min =f(1)=1−3a 2+4=0,解得a =103(舍去), 当1<a <2时,当1<x <a 时,f '(x )<0,当a <x <2时,f '(x )>0, 所以f (x )在(1,a )上递减,在(a ,2)上递增,所以当x =a 时,f (x )取得最小值,所以f(a)=a 3−3a2a 2+4=0,解得a =2(舍去), 当a ≥2时,当1≤x ≤2时,f '(x )<0,所以f (x )在[1,2]上递减, 所以f(x)min =f(2)=23−3a2×4+4=0,解得a =2, 综上,a =2, 故选:C .【变式5-1】(2022春•贵阳期末)若函数f(x)=e x +lnx +x √x −1+a 在x ≤20222021上的最小值为e +1,则a 的值为( ) A .0B .1C .20202021D .20212020【解题思路】判断函数f (x )的定义域,可知函数f (x )在定义域上单调递增,由此可建立关于a 的方程,解出即可得到答案.【解答过程】解:函数的定义域为[1,20222021],而函数y =e x ,y =lnx ,y =x √x −1在[1,+∞)上均为增函数,∴函数f(x)=e x +lnx +x √x −1+a 在[1,20222021]单调递增, ∴f (x )min =f (1)=e +a =e +1,解得a =1. 故选:B .【变式5-2】(2022春•江北区校级期末)若函数f (x )=x 3﹣3x 在区间(2a ,a +3)上有最小值,则实数a 的取值范围是( ) A .(−2,12)B .(﹣2,1)C .[−1,12)D .(﹣2,﹣1]【解题思路】由导数性质得f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1),x =1时,f (x )min =﹣2.由此利用函数性质列不等式即可求解a 的范围. 【解答过程】解:∵f (x )=x 3﹣3x ,∴f ′(x )=3x 2﹣3, 由f ′(x )=0,得x =±1,x ∈(﹣∞,﹣1)时,f ′(x )>0;x ∈(﹣1,1)时,f ′(x )<0;x ∈(1,+∞)时,f ′(x )>0, ∴f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1), ∴x =1时,f (x )min =﹣2. f (x )=x 3﹣3x =﹣2时, x 3﹣3x +2=0,x 3﹣x ﹣2x +2=0, x (x 2﹣1)﹣2x +2=0,x (x +1)(x ﹣1)﹣2(x ﹣1)=0, (x 2+x )(x ﹣1)﹣2(x ﹣1)=0, (x ﹣1)(x 2+x ﹣2)=0, (x ﹣1)(x +2)(x ﹣1)=0, (x ﹣1)2(x +2)=0, 解得x =1,x =﹣2,∴﹣2≤2a <1<a +3,∴﹣1≤a <12. 即实数a 的取值范围是[﹣1,12),故选:C.【变式5-3】(2022春•公安县校级月考)已知函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,若f(x)的最小值为0对任意x>0恒成立,则实数a的最小值为()A.2√eB.−2e C.1√eD.√e【解题思路】把f(x)转化为f(x)=e2lnx+ax+1﹣(2lnx+ax+1)﹣1,证明e x﹣1≥x恒成立,得到f(x)≥0恒成立,从而得到a=−2lnx−1x,令g(x)=−2lnx−1x,利用导数求出函数g(x)的最小值即可求出结果.【解答过程】解:∵函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1,令t=lnx2+ax+1,则h(t)=e t﹣t﹣1,f′(t)=e t﹣1,当t∈(﹣∞,0)时h′(t)<0,h(t)单调递减,当t∈(0,+∞)时,h′(t)>0,h(t)单调递增,∴h(t)≥h(0)=0,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1≥0,等号成立的条件是lnx2+ax+1=0,即a=−1−2lnxx在(0,+∞)上有解,设g(x)=−2lnx+1x,则g′(x)=−2−(2lnx+1)x2=2lnx−1x2,令g′(x)=0,解得x=√e,∴当x∈(0,√e)时,g′(x)<0,g(x)单调递减,当x∈(√e,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)min=g(√e)=2√e,即a的最小值为2√e.故选:A.【题型6 极值和最值的综合问题】【方法点拨】解决函数极值、最值综合问题的策略:(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论.(3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例6】(2022春•城厢区校级期末)已知函数f(x)=x3−32(k+1)x2+3kx+1,其中k∈R.(1)当k=3时,求函数f(x)在(0,3)内的极值点;(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.【解题思路】(1)首先求得导函数,然后利用导函数研究函数的单调性,据此可求得函数的值域;(2)求得函数的解析式,然后结合导函数的符号确定函数的单调性,分类讨论即可求得实数k的取值范围.【解答过程】解:(1)k=3时,f(x)=x3﹣6x2+9x+1,则f'(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),令f'(x)=0得x1=1,x2=3,当x<1时,f′(x)>0,f(x)单调递增;当1<x<3时,f′(x)<0,f(x)单调递减;当x>3时,f′(x)>0,f(x)单调递增;所以f(x)的单调递增区间为(﹣∞,1),(3,+∞),单调递减区间为(1,3);所以f(x)在(0,1)上单调递增,在(1,3)上单调递减.故f(x)在(0,3)内的极大值点为x=1,无极小值点;(2)方法一:f'(x)=3x2﹣3(k+1)x+3k=3(x﹣1)(x﹣k),①当k≤1时,∀x∈[1,2],f'(x)≥0,函数f(x)在区间[1,2]单调递增,所以f(x)min=f(1)=1−32(k+1)+3k+1=3,即k=53(舍);②当k≥2时,∀x∈[1,2],f'(x)≤0,函数f(x)在区间[1,2]单调递减,所以f(x)min=f(2)=8﹣6(k+1)+3k⋅2+1=3,符合题意;③当1<k<2时,当x∈[1,k)时,f'(x)≤0,f(x)区间在[1,k)单调递减,当x∈(k,2]时,f'(x)>0,f(x)区间在(k,2]单调递减,所以f(x)min=f(k)=k3−32(k+1)k2+3k2+1=3,化简得:k3﹣3k2+4=0,即(k+1)(k﹣2)2=0,所以k=﹣1或k=2(都舍);综上所述:实数k取值范围为k≥2.【变式6-1】(2022春•德州期末)已知函数f(x)=x3−3ax+1(a>12 ).(1)若函数f(x)在x=﹣1处取得极值,求实数a的值;(2)当x∈[﹣2,1]时.求函数f(x)的最大值.【解题思路】(1)利用导数求得函数极值,代入计算即可得到a的值;(2)f'(x)=0的根分类讨论,然后列表表示f'(x)的正负,极值点,同时注意比较端点处函数值,从而得最大值.【解答过程】解:(1)由题意可知f'(x)=3x2﹣3a,因为函数f(x)在x=﹣1处取得极值,所以f'(﹣1)=0,即3﹣3a=0,解得a=1,经检验a=1,符合题意,所以a=1;(2)由(1)知f'(x)=3x2﹣3a,令f'(x)=0,x=±√a,当0<√a<1,即0<a<1时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,√a)√a(√a,1)1 f'(x)+0﹣0+f(x)﹣7+6a单调递增单调递减单调调增2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当1≤√a<2,即1≤a<4时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,1)1f'(x)+0﹣f(x)﹣7+6a单调递增单调递减2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当√a≥2即a≥4时,f'(x)=3x2﹣3a≤0恒成立,即f(x)在[﹣2,1]上单调递减,所以f(x)的最大值为f (﹣2)=﹣7+6a ,综上所述,当12<a <4时,f (x )的最大值为2a √a +1;当a ≥4时,f (x )的最大值为﹣7+6a .【变式6-2】(2022春•漳州期末)已知函数f(x)=(x −1)e x −t2x 2−2x ,f '(x )为f (x )的导函数,函数g (x )=f '(x ).(1)当t =1时,求函数g (x )的最小值;(2)已知f (x )有两个极值点x 1,x 2(x 1<x 2)且f(x 1)+52e −1<0,求实数t 的取值范围. 【解题思路】(1)当t =1时,根据题意可得g (x )=xe x ﹣tx ﹣2,求导得g '(x )=(x +1)e x ﹣1,分析g (x )的单调性,进而可得g (x )min .(2)问题可化为t =e x −2x,有两个根x 1,x 2,令ℎ(x)=e x −2x,则ℎ′(x)=e x +2x 2>0,求导分析单调性,又x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0,推出t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2),分析f (x 1)的单调性,又φ(−1)=−52e +1,推出﹣1<x 1<0,即可得出答案.【解答过程】解:g (x )=f '(x )=xe x ﹣tx ﹣2,(1)当t =1时,g (x )=xe x ﹣x ﹣2,g '(x )=(x +1)e x ﹣1, 当x ≤﹣1时,x +1≤0,e x >0, 所以g '(x )=(x +1)e x ﹣1≤0﹣1<0, 当﹣1<x <0时,0<x +1<1,0<e x <1, 所以g '(x )=(x +1)e x ﹣1<1×1﹣1=0, 当x >0时,x +1>1,e x >1,所以g '(x )=(x +1)e x ﹣1>1×1﹣1=0.综上g (x )在(﹣∞,0)上为减函数,在(0,+∞)上为增函数, 所以g (x )min =g (0)=﹣2.(2)依题有:方程g (x )=0有两个不同的根x 1,x 2, 方程g (x )=0可化为t =e x −2x , 令ℎ(x)=e x −2x ,则ℎ′(x)=e x +2x 2>0, 所以h (x )在(﹣∞,0)和(0,+∞)都是增函数,因为x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0, 所以t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2), 所以f(x 1)=(x 1−1)e x 1−t2x 12−2x 1 =(x 1−1)e x 1−12(e x 1−2x 1)x 12−2x 1=(−x 122+x 1−1)e x 1−x 1<−52e +1,令φ(x)=(−x 22+x −1)e x −x(x <0),则φ′(x)=−12x 2e x −1<0,所以φ(x )在(﹣∞,0)上为减函数,又因为φ(−1)=−52e +1, 所以﹣1<x 1<0, 所以t =e x 1−2x 1>1e+2. 【变式6-3】(2022春•潞州区校级期末)有三个条件: ①函数f (x )在x =1处取得极小值2; ②f (x )在x =﹣1处取得极大值6; ③函数f (x )的极大值为6,极小值为2.这三个条件中,请任意选择一个填在下面的横线上(只要填写序号),并解答本题. 题目:已知函数f (x )=x 3﹣3ax +b (a >0),并且 _____. (1)求f (x )的解析式;(2)当x ∈[﹣3,1]时,求函数f (x )的最值.【解题思路】(1)求出函数f (x )的导数f ′(x ),选择条件①,②,利用给定的极值点及对应的极值列式求解并验证作答;选择条件③,判断极大值与极小值列式求解并验证作答. (2)利用(1)的结论,利用导数求出给定区间上的最值作答. 【解答过程】解:(1)选条件①:求导得f ′(x )=3x 2﹣3a ,由{f ′(1)=0f(1)=2,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当﹣1<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 则f (x )在x =1处取得极小值2, 所以f (x )=x 3﹣3x +4;选条件②:求导得f ′(x )=3x 2﹣3a ,由{f ′(−1)=0f(−1)=6,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当x <﹣1时,f ′(x )>0,当﹣1<x <1时,f ′(x )=<0,则f(x)在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4.选条件③:求导得f′(x)=3x2﹣3a,令f′(x)=3x2﹣3a=0,得x=±√a,当x<−√a或x>√a时,f′(x)>0,当−√a<x<√a时时,f′(x)<0,因此,当x=−√a时,f(x)取得极大值f(−√a),当x=√a时,f(x)取得极小值f(√a),于是得{(−√a)3−3a(−√a)+b=6(√a)3−3a√a+b=2,解得{a=1b=4,此时f′(x)=3(x+1)(x﹣1),当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在x=1处取得极小值2,在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4;(2)由(1)知,f(x)=x3﹣3x+4,当x∈[﹣3,1]时,f′(x)=3(x+1)(x﹣1),当﹣3<x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在[﹣3,﹣1)上递增,在(﹣1,1]上递减,而f(﹣3)=﹣14,f(1)=2,所以f(x)max=f(﹣1)=6,f(x)min=f(﹣3)=﹣14.。

高中数学专题之函数的值域与最值(内附练习及答案)

高中数学专题之函数的值域与最值(内附练习及答案)

函数的值域与最值【基本概念】求函数最值的基本方法: 1、配方法(二次函数) 2、分离常数法(分式函数) 3、反函数法(分式函数) 4、基本函数性质法5、换元法[换元必换限](无理函数、高次函数等)6、基本不等式法(耐克函数)7、单调性法(单调区间上的值域与最值) 8、数形结合法 【典型例题】例1:求下列函数的值域。

(1)2121x y x -=+; (2)()lg 12cos y x =-;(3)2y x =(4)2211x x y x -+=+;(5)()2lg 612y x x x x =-+≤≤; (6)3sin 2cos xy x-=-。

解:(1)[解一]分离常数法:()()21212211,11,212121x x y y x x x -+-===-≠⇒∈-∞+∞+++ [解二]反函数法:()21122112122x y y y x y x y x y -+=⇒-=--⇒=-⇒≠+-(2)基本函数性质法:[][]cos 1,112cos 1,3x x ∈-⇒-∈-又12cos 0x -> (](]12cos 0,3,lg3x y ⇒-∈⇒∈-∞(3)换元法:令0t =≥,则221x t =+[)22132101,24y x t t t t y ⎛⎫=++=++≥⇒∈+∞ ⎪⎝⎭又(4)基本不等式法:令10t x =+≠,则()()21211414t t x t y t tt---+=-⇒==+-当0t >时,40y ≥=,当且仅当2t =即1x =时取等号当0t <时,48y ≤-=-,当且仅当2t =-即3x =-时取等号 ∴(][),80,y ∈-∞-+∞(5)单调性法:1lg y x =在[]1,2上单调增且226y x x =-+在[]1,2上单调增 12y y y ⇒=+在[]1,2上单调增[]5,8lg 2y ⇒∈+(6)数形结合法:设()cos ,sin P θθ、()2,3Q ,则3sin 2cos PQ xk y x-==-设()3212y k x k ⎡-=-⇒≤⇒∈-+⎢⎣⎦即2y ⎡∈+⎢⎣⎦例2:函数()21f x ax a =++在区间()1,1-上的值有正有负,求实数a 的取值范围。

函数的最值知识点总结与经典题型归纳精编版

函数的最值知识点总结与经典题型归纳精编版

函数的最值知识梳理1. 函数最大值一般地,设函数()y f x =的定义域为I . 如果存在实数M 满足:①对于任意x 都有()f x M ≤.②存在0x I ∈,使得0()f x M =.那么,称M 是函数()y f x =的最大值.2. 函数最小值一般地,设函数()y f x =的定义域为I . 如果存在实数M 满足:①对于任意x 都有()f x M ≥.②存在0x I ∈,使得0()f x M =.那么,称M 是函数()y f x =的最小值.注意:对于一个函数来说,不一定有最值,若有最值,则最值一定是值域中的一个元素.3. 函数的最值与其单调性的关系.(1)若函数在闭区间[,]a b 上是减函数,则()f x 在[,]a b 上的最大值为 f (a ),最小值为 f (b );(2)若函数在闭区间[,]a b 上是增函数,则()f x 在[,]a b 上的最大值为 f (b ),最小值为 f (a ).4.二次函数在闭区间上的最值.探求二次函数在给定区间上的最值问题,一般要先作出()y f x =的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.例题精讲【例1】求函数()3f x x =在[0,3]上的最大值和最小值.解:因为函数()3f x x =在[0,3]上单调递增所以()3f x x =在[0,3]上的最大值为(3)339f =⨯=;()3f x x =在[0,3]上的最小值为(0)300f =⨯=;【例2】求函数12-=x y 在区间[2,6]上的最大值和最小值. 解:函数12-=x y 的图象如下图所示,所以12-=x y 在区间[2,6]上单调递减; 所以12-=x y 在区间[2,6]上的最大值为2221=-; 最小值为22615=-.题型一 利用图象求最值【例3】求下列函数的最大值和最小值.(1)25332,[,]22y x x x =--∈- (2)|1||2|y x x =+--解:(1)二次函数232y x x =--的对称轴为 x =-1.画出函数的图象,由下图,可知:当1x =-时,max 4y =;当32x =时,min 94y =-. 所以函数25332,[,]22y x x x =--∈-最大值为4,最小值为94-. (2)3,2|1||2|21,123,1x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩ 作出函数图象,如下图,可知:[3,3]y ∈-所以函数的最大值为 3, 最小值为-3.题型二 利用函数单调性求最值【例4】求函数9()f x x x=+在[1,3]x ∈上的最大值和最小值. 分析:先判断函数的单调性,再求最值.解:因为1213x x ≤<≤ 所以12121299()()()f x f x x x x x -=+-+121299()x x x x =-+-2112129()x x x x x x -=-+ 12129()(1)x x x x =--因为1213x x ≤<≤所以120x x -<,129x x ≤ 所以12910x x -<,所以12()()0f x f x ->,12()()f x f x > 所以9()f x x x=+在区间[1,3]上单调递减; 所以求函数()f x 在[1,3]x ∈上的最小值为918(3)333f =+=,最大值为9(1)1101f =+=. 题型三 函数最值的应用【例5】已知函数22()x x a f x x ++=,[1,)x ∈+∞(1)当12a =时,求函数()f x 的最小值.(2)若对任意的[1,)x ∈+∞,()0f x >恒成立,试求a 的取值范围.解:(1)当12a =时,2122()x x f x x ++=设121x x ≤<则12121211()()(2)(2)22f x f x x x x x -=++-++21121212121221()()22x x x x x x x x x x x x --=-+=-因为120x x -<,所以1221x x >,12210x x ->所以12()()0f x f x -<,12()()f x f x <所以()f x 在区间[1,)+∞上单调递增所以的最小值为17(1)1222f =++=.(2)()0f x >对[1,)x ∈+∞恒成立⇔220x x a ++>对[1,)x ∈+∞恒成立⇔22a x x >-- 对[1,)x ∈+∞恒成立.令222(1)1u x x x =--=-++,其在[1,)+∞上是减函数,∴当1x =时,max 3u =-. 因此3a >-.故实数a 的取值范围是(3,)-+∞.课堂练习仔细读题,一定要选择最佳答案哟!1.函数f (x )=⎩⎨⎧ 2x +6 x ∈[1,2]x +7 x ∈[-1,1],则f (x )的最大值、最小值分别为() A .10,6 B .10,8 C .8,6 D .以上都不对2.已知f (x )在R 上是增函数,对实数a 、b 若a +b >0,则有( )A .f (a )+f (b )>f (-a )+f (-b )B .f (a )+f (b )<f (-a )+f (-b )C .f (a )-f (b )>f (-a )-f (-b )D .f (a )-f (b )<f (-a )+f (-b )3. 若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1)D .(0,1] 4.函数y =|x -3|-|x +1|有( )A .最大值4,最小值0B .最大值0,最小值-4C .最大值4,最小值-4D .最大值、最小值都不存在5.函数y =-x 2-10x +11在区间[-1,2]上的最小值是________.6.如果函数f (x )=-x 2+2x 的定义域为[m ,n ],值域为[-3,1],则|m -n |的最小值为________.7. 已知函数2()23f x x x =--,若[,2]x t t ∈+时,求函数()f x 的最值.8. 求函数()1x f x x =-在区间[2,5]上的最大值和最小值.9. 已知函数 f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a=-1 时,求f(x)的最大值和最小值;(2)求使函数y=f(x)在区间[-5,5]上是单调函数的 a 的取值范围.。

函数的值域(最值)的常见求法带解析

函数的值域(最值)的常见求法带解析

【知识要点】一、函数值域的定义函数值的集合叫做函数的值域.二、函数的值域取决于定义域和对应法则,不论采用什么方法求函数的值域,都要考虑定义域,函数的问题必须遵循“定义域优先”的原则.三、常见函数的值域1、一次函数的值域为.2、二次函数,当时的值域为,时的值域为.3、反比例函数的值域为.4、指数函数的值域为.5、对数函数的值域为.6、幂函数的值域为,幂函数的值域为.7、正弦函数、余弦函数的值域为,正切函数的值域为.四、求函数的值域常用的方法求函数的值域常用的方法有观察法、分离常数法、配方法、反函数法、换元法、判别式法、基本不等式法、单调性法、数形结合法、导数法、绝对值不等式法和柯西不等式法等.其中最常用的有“三数(函数、数形结合、导数)”和“三不(基本不等式、绝对值不等式、柯西不等式)”.五、函数的值域一定要用集合或区间来表示.六、函数的值域、取值范围和函数的最值实际上是同一范畴的问题,所以求函数值域的方法适用于求函数的最值和取值范围等.【方法讲评】方法六判别式法使用情景形如的函数.解题步骤一般先将函数化成二次方程,再利用判别式来求函数的值域.【例1】求函数的值域.【点评】(1)分子、分母中含有二次项的函数类型,此函数经过变形后可以化为的形式,再利用判别式加以判断.(2)函数经过变形后可以化为的形式后,要注意对是否为零进行分类讨论,因为它不一定是一元二次方程.(3)判别式法解出值域后一定要将端点值(本题是)代回方程检验,把不满足题意的舍去.【反馈检测1】求函数的值域.方法七基本不等式法使用情景一般变量是正数,变量的和或积是定值.解题步骤一般先进行配凑,再利用基本不等式求函数的最值,从而得到函数的值域.【例2】已知,求函数的最小值.【解析】.=当且仅当,即时,上式等号成立.因为在定义域内,所以最小值为.【点评】(1)本题不能直接使用基本不等式,本题在利用基本不等式前,要对函数化简,要用到分离函数的方法对函数进行化简,再使用基本不等式.(2)很多函数在使用基本不等式之前都要进行化简和配凑,所以要注意观察函数的结构,再进行变形,再使用基本不等式.(3)利用基本不等式求最值时,要注意“一正二定三相等”,三个条件缺一不可.【例3】已知,求函数的最大值.【点评】(1)基本不等式有二元基本不等式(和三元不等式.(2)基本不等式不仅适用于一般函数,也适用三角函数和其它所有函数,只要满足条件,就可以利用“一正二定三相等”来分析解答.【反馈检测2 】已知,,且,则的最小值为.【反馈检测3】【2017浙江,17】已知αR,函数在区间[1,4]上的最大值是5,则的取值范围是___________.方法八单调性法使用情景函数的单调性容易判断.解题步骤先判断函数的单调性,再利用函数的单调性得到函数的值域.【例 4】求函数的值域.【点评】(1)本题先利用复合函数的单调性确定了函数的单调区间,从而得到函数的最大值和最小值,得到函数的值域.(2)判定函数的单调性常用的有定义法、图像法、复合函数分析法和导数法,注意灵活使用.【例5】求函数的值域.【解析】令,则在上都是增函数,所以在上是增函数当时,当时,故所求函数的值域为。

高一上学期函数专题:值域最值求法(含答案解析)

高一上学期函数专题:值域最值求法(含答案解析)

高一上学期函数专题:值域最值求法学校:___________姓名:___________班级:___________考号:___________一、单选题1.函数()2f x = )A .[]22-,B .[]1,2C .[]0,2D .⎡⎣ 2.函数2211x y x -=+的值域是 A .[1,1]- B .(]1,1- C .[)1,1- D .(1,1)-3.设函数()2251x x f x x -+=-在区间[]2,9上的最大值和最小值分别为M 、m ,则m M +=. A .272 B .13C .252D .12 4.函数()3452x f x x -+=-的值域是( ) A .()(),22,-∞+∞B .()(),22,-∞--+∞C .55,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .R 5.函数()11142x x f x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在区间[]2,2-上的最小值为( ) A .14 B .34 C .1316 D .136.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( )A .3B .1C .1D .47.已知实数,x y 满足221x xy y -+=,则x y +的最大值为A .1B .2C .3D .48.函数()212log 617y x x =-+的值域是( ).A .RB .(],3-∞-C .[)8,+∞D .[)3,+∞ 9.已知324y x x =++,则y 的取值范围为( )A .(),22,⎤⋃-∞+∞⎦B .(][),22,-∞-+∞C .(),-∞⋃+∞D .(),11,⎤⋃-∞+∞⎦二、填空题10.函数()20.4log 34y x x =-++的值域是________.11.2211x x y x x -+=++的值域为________.三、解答题12.已知函数()=21x f x ,求函数()f x 的定义域与值域.13.已知函数()24f x x mx =++.(1)求函数在区间[]1,2上的最大值max y ;(2)当[]1,2x ∈时,0y <恒成立,求实数m 的取值范围.14.已知函数2()2f x x ax =-+-,[1,3]x ∈(1)若()0f x <恒成立,求a 的范围.(2)求()f x 的最小值()g a .15.已知函数()22()lg 1(1)1f x a x a x ⎡⎤=-+++⎣⎦.(1)若()f x 的定义域为R ,求实数a 的取值范围;(2)若()f x 的值域为R ,求实数a 的取值范围.参考答案1.C【分析】求出函数的定义域,设224(2)4t x x x =-+=--+,求出t 的值域,再求出2y =可得解.【详解】由240x x -+≥得240x x -≤,得04x ≤≤,设224(2)4t x x x =-+=--+,则04t ≤≤,所以2[0,2]y =,即函数2y =[0,2].故选:C2.B【分析】 由2211x y x-=+可得221y yx x +=-,当10y +≠时,由()()4110y y ∆=-+-≥ ,解得11y -<≤,从而得到答案.【详解】 因为2211x y x -=+,所以221y yx x +=-, 整理得()2110y x y ++-=当10y +=时,上式不成立,故1y ≠-当10y +≠时,()()4110y y ∆=-+-≥ ,解得11y -<≤故选B.【点睛】本题考查求函数的值域,属于一般题.3.C【分析】把函数解析式化为()()()22142541111f x x x x x x x x -+-+===-+---,令1x t -=,则()[]4,1,8t t ty f x ==+∈,根据对勾函数性质可求出最小值和最大值.【详解】解:()()()22142541111f x x x x x x x x -+-+===-+---; 因为[]2,9x ∈,所以[]11,8x -∈,令1x t -=,则[]1,8t ∈;因为()[]4,1,8t t ty f x ==+∈, 根据对勾函数性质可知当2t =时,函数有最小值为4;当8t =时,函数有最大值为172. 所以252m M +=. 故选:C.【点睛】本题考查了函数的变形分离常数法,及利用导数在闭区间求最值的问题,属于中档题. 4.B【分析】先分离常数,再根据反比例函数单调性求值域.【详解】()344341077252252525x x x f x x x x x -+--+==-=-=------,()2f x ∴≠-,值域为()(),22,-∞-⋃-+∞.【点睛】本题考查分式函数单调性以及值域,考查基本求解能力.5.B【分析】 先令12xt ⎛⎫= ⎪⎝⎭,得()21g t t t =-+,再根据范围结合二次函数的性质,即可得解. 【详解】 解:令12x t ⎛⎫= ⎪⎝⎭,1,44t ⎡⎤∈⎢⎥⎣⎦,则原函数等价于()21g t t t =-+,1,44t ⎡⎤∈⎢⎥⎣⎦,又二次函数g t 的对称轴为11,424t ⎡⎤=∈⎢⎥⎣⎦,故最小值是13=24g ⎛⎫ ⎪⎝⎭, 即()f x 的最小值为34. 故选:B.【点睛】本题考查了指数函数的性质和二次函数的最值的求法,属于基础题.6.A【分析】将函数()y f x =的解析式配凑为()()1222f x x x =-++-,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的x 值,可得出a 的值.【详解】当2x >时,20x ->,则()()1122222f x x x x x =+=-++≥-- 4=,当且仅当()1222x x x -=>-时,即当3x =时,等号成立,因此,3a =,故选A. 【点睛】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.7.B【详解】原式可化为:22()1313()2x y x y xy ++=+≤+,解得22x y -≤+≤,当且仅当1x y ==时成立.所以选B.8.B【分析】先求出函数的定义域,然后判定复合函数的单调性,结合单调性求出函数值域【详解】()22617380x x x -+=-+>恒成立,∴函数()212log 617y x x =-+的定义域为R设()22617388t x x x =-+=-+≥由复合函数的单调性可知函数()212log 617y x x =-+在定义域R 上先增后减,函数取到最大值即:()21122log 617log 83y x x =-+≤=-函数的值域为(],3-∞-故选B【点睛】本题主要考查了求复合函数的值域,在求解时先求出函数的定义域,然后判断出函数的单调性,最后求出函数值域,需要掌握解题方法9.A【分析】 本题首先可将函数转化为2432224x y x +⎛⎫=+- ⎪+⎝⎭,2x ≠-,然后分为2x >-、2x <-进行讨论,通过基本不等式即可得出结果.【详解】3243224224x y x x x +⎛⎫=+=+- ⎪++⎝⎭,2x ≠-,当2x >-时,240x +>,243222224x x ++-≥=+, 当且仅当642x 时取等号;当2x <-时,240x +<,243222224x x ++-≤-=+, 当且仅当642x 时取等号,则y 的取值范围为(),22,⎤⋃-∞+∞⎦, 故选:A.10.[)2,-+∞【分析】先求出函数的定义域为()1,4-,设()223253424f x x x x ⎛⎫=-++=--+ ⎪⎝⎭,()1,4x ∈-,根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出()20.4log 34y x x =-++的单调性,从而可求出值域.【详解】解:由题可知,函数()20.4log 34y x x =-++,则2340x x -++>,解得:14x -<<,所以函数的定义域为()1,4-,设()223253424f x x x x ⎛⎫=-++=--+ ⎪⎝⎭,()1,4x ∈-, 则31,2x ⎛⎫∈- ⎪⎝⎭时,()f x 为增函数,3,42x ⎛⎫∈ ⎪⎝⎭时,()f x 为减函数, 可知当32x =时,()f x 有最大值为254, 而()()140f f -==,所以()2504f x <≤, 而对数函数0.4log y x =在定义域内为减函数,由复合函数的单调性可知,函数()20.4log 34y x x =-++在区间31,2⎛⎫- ⎪⎝⎭上为减函数,在3,42⎛⎫ ⎪⎝⎭上为增函数, 0.425log 24y ∴≥=-, ∴函数()20.4log 34y x x =-++的值域为[)2,-+∞.故答案为:[)2,-+∞.【点睛】关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.11.1,33⎡⎤⎢⎥⎣⎦【分析】利用判别式法求得函数的值域.【详解】 由于22131024x x x ⎛⎫++=++> ⎪⎝⎭,所以函数2211x x y x x -+=++的定义域为R , 由2211x x y x x -+=++化简得221yx yx y x x ++=-+, 即()()21110y x y x y -+++-=,关于x 的一元二次方程有解,1y =时,存在0x =,符合题意,1y ≠时,由()()221410y y ∆=+--≥, 即231030y y -+≤,即()()3310y y --≤, 解得(]1,11,33⎡⎫⋃⎪⎢⎣⎭, 综上可得2211x x y x x -+=++的值域为1,33⎡⎤⎢⎥⎣⎦. 故答案为:1,33⎡⎤⎢⎥⎣⎦【点睛】本小题主要考查分式型函数值域的求法,属于中档题.12.定义域(,4]-∞,值域(7,16]【解析】【分析】根据题意函数()=21x f x 可知,利用偶次方根的被开方数非负,写出对应的不等式,即可解出函数的定义域.利用换元法,令t =t 为自变量的二次函数,结合t 的取值范围,即可解出()f x 的值域.【详解】()=21x f x1620x ∴-≥,解得4x ≤()f x ∴定义域(,4]-∞.令t =[)0,4t ∈2216x t ∴=-所以原式可变为221621(1)16y t t t =-+-=--+.[)0,4,(7,16]t y ∈∴∈()f x ∴的定义域为(7,16]综上所述,()f x 定义域(,4]-∞,()f x 的定义域为(7,16]【点睛】本题主要考查了求函数的定义域与值域的问题,换元法求函数值域,常用在函数解析式含有根式或者三角函数模型.13.(1)当3m >-时,82max y m =+;当3m ≤-时,5max y m =+ ;(2) 5m <-.【分析】(1)分322m -<和322m -≥两种情况,讨论函数的最大值; (2)[]1,2x ∈时,0y <恒成立的等价条件为(1)0(2)0f f <⎧⎨<⎩,求出不等式组的解可确定m 的取值范围.【详解】(1)函数24y x mx =++的图象开口向上,对称轴为2m x =-, 在区间[]1,2上的最大值,分两种情况: ①322m -<(3m >-)时,根据图象知,当2x =时,函数取得最大值82max y m =+; ②322m -≥(3m ≤-)时,当1x =时,函数取得最大值5max y m =+. 所以,当3m >-时,82max y m =+;当3m ≤-时,5max y m =+.(2)[] 1,20x y ∈<,恒成立,只需在区间[]1,2上的最大值0max y <即可,所以(1)0(2)0f f <⎧⎨<⎩,得45m m <-⎧⎨<-⎩,所以实数m 的取值范围是5m <-. 【点睛】本题主要考查含参数的二次函数在给定区间的最大值,分类讨论是解决本题的关键;另外恒成立问题往往通过其等价条件来求解更简单.14.(1)a <(2)3114()34a a g a a a -≤⎧=⎨->⎩. 【分析】(1)利用分离参数法,结合基本不等式,并根据不等式恒成立的意义求解;(2)根据对称轴与区间中点的位置分类讨论,结合二次函数的图象和性质求得.【详解】解:(1)220x ax -+-<,22ax x <+,[1,3]x ∈,22x a x +∴<,22222x x x x+=+,当且仅当[1,3]x =时成立,∴2min2x x ⎛⎫+=⎪⎝⎭ a ∴<(2)当22a ≤即4a ≤时,min ()(3)311f x f a ==-; 当22a >即4a >时,min ()(1)3f x f a ==-, 综上,3114()34a a g a a a -≤⎧=⎨->⎩. 15.(1)5(,1],3⎛⎫-∞-+∞ ⎪⎝⎭;(2)51,3⎡⎤⎢⎥⎣⎦【分析】对()221(1)1a x a x -+++研究:(1)分类讨论210a -=和210a -≠,210a -≠时,应该有2100a ⎧->⎨∆<⎩; (2)分类讨论210a -=和210a -≠,210a -≠时,应该有2100a ⎧->⎨∆≥⎩; 【详解】(1)函数()22()lg 1(1)1f x a x a x ⎡⎤=-+++⎣⎦的定义域为R ,即()221(1)10a x a x -+++>在R 上恒成立。

函数的值域与最值知识点归纳

函数的值域与最值知识点归纳

函数的值域与最值●知识点归纳一、相关概念 1、值域:函数A x x f y ∈=,)(,我们把函数值的集合{|(),}y y f x x A =∈称为这个函数的值域。

2、最值:求函数最值常用方法和函数值域的方法基本相同。

事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。

因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。

最大值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0) = M 。

那么,称M 是函数y =f (x )的最大值。

记作()max 0y f x =最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0) = M 。

那么,称M 是函数y =f (x )的最小值。

记作()min 0y f x = 注意:①函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f (x 0) = M ;② 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f (x )≤M (f (x )≥M )。

二、基本函数的值域一次函数)(0≠+=a b kx y 的定义域为R ,值域为R ; 二次函数)(02≠++=a c bx ax y 的定义域为R ,;当]44(0);44[022ab ac ,,a ,a b ac ,a --∞<∞+->值域是时值域是时反比例函数)0(≠=k xk y 的定义域为{x|x ≠0},值域为}0/{≠y y ;数函数)10(≠>=a a a y x且的值域为}0/{>y y ; 对数函数)10(log ≠>=a a x y a 且的值域为R ; 正、余弦:函数的值域][1,1-;正、余切函数 2k x ,tan ππ+≠=x y ,cot x y =),(Z k k x ∈≠π的值域为R 。

函数的值域(内含答案)

函数的值域(内含答案)

【高中数学专题训练之___】函数的值域一、要点梳理1、值域: 函数值的取值范围叫做函数的值域,函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域.2、常见函数的值域:(1)一次函数()0y kx b k =+≠的值域为R.(2)二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦. (3)反比例函数()0ky k x=≠的值域为{}0y R y ∈≠. (4)指数函数()01x y a a a =>≠且的值域为{}0y y >. (5)对数函数()log 01a y x a a =>≠且的值域为R. (6)正,余弦函数的值域为[]1,1-,正切函数的值域为R.(7),(0)ky x x x=+≠在 0k >时的值域为(),,k ⎡-∞+∞⎣,在0k <时的值域为R3、求解函数值域问题常用方法(1)单调性法(2)换元法 (3)分离系数法(4)数形结合法(5)判别式法 (6)有界法二、习题精练 方法一、函数单调性法 1、求函数y =+-25x log31-x (2≤x≤10)的值域解:令y 1=25-x ,2y =log31-x ,则 y 1 , 2y 在[ 2, 10 ]上都是增函数。

所以y= y 1 +2y 在[ 2 ,10 ]上是增函数。

当x = 2 时,y m in = 32-+log312-=81,当x = 10 时,max y = 52+log39=33。

故所求函数的值域为:[81,33]。

2、求函数y=1+x -1-x 的值域。

解:原函数可化为: y=112-++x x令y 1 =1+x ,2y = 1-x ,显然y 1 ,2y 在[1,+∞)上为无上界的增函数,所以y= y 1 +2y 在[1,+∞)上也为无上界的增函数。

函数的定义域和值域知识题型总结(含答案)

函数的定义域和值域知识题型总结(含答案)

函数得定义域与值域一、定义域:1。

函数得定义域就就是使函数式得集合、2。

常见得三种题型确定定义域:①已知函数得解析式,就就是、②复合函数f [g(x)]得有关定义域,就要保证内函数g(x)得域就是外函数f (x)得域、③实际应用问题得定义域,就就是要使得有意义得自变量得取值集合、二、值域:1。

函数y=f(x)中,与自变量x得值得集合、2.常见函数得值域求法,就就是优先考虑,取决于 ,常用得方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为法与法)例如:①形如y=,可采用法;②y=,可采用法或法;③y=a[f(x)]2+bf (x)+c,可采用法;④y=x-,可采用法;⑤y=x-,可采用法;⑥y=可采用法等、典型例题例1、求下列函数得定义域:(1)y=;(2)y=; (3)y=、解:(1)由题意得化简得即故函数得定义域为{x|x〈0且x≠—1}、(2)由题意可得解得故函数得定义域为{x|—≤x≤且x≠±}、(3)要使函数有意义,必须有即∴x≥1,故函数得定义域为[1,+∞)、变式训练1:求下列函数得定义域:(1)y=+(x—1)0 ; (2)y=+(5x-4)0; (3)y=+lgcosx;解:(1)由得所以-3〈x〈2且x≠1、故所求函数得定义域为(—3,1)∪(1,2)、(2)由得∴函数得定义域为(3)由,得借助于数轴,解这个不等式组,得函数得定义域为例2、设函数y=f(x)得定义域为[0,1],求下列函数得定义域、(1)y=f(3x); (2)y=f();(3)y=f(; (4)y=f(x+a)+f(x-a)、解:(1)0≤3x≤1,故0≤x≤,y=f(3x)得定义域为[0, ]、(2)仿(1)解得定义域为[1,+∞)、(3)由条件,y得定义域就是f与定义域得交集、列出不等式组故y=f得定义域为、(4)由条件得讨论:①当即0≤a≤时,定义域为[a,1—a];②当即-≤a≤0时,定义域为[-a,1+a]、综上所述:当0≤a≤时,定义域为[a,1-a];当—≤a≤0时,定义域为[—a,1+a]、(0<a<)得定义域就是( ) 变式训练2:若函数f(x)得定义域就是[0,1],则f(x+a)·f(x—a)A、 B、[a,1—a] C、[—a,1+a]D、[0,1]解: B例3、求下列函数得值域:(1)y= (2)y=x—;(3)y=、解:(1)方法一(配方法)∵y=1—而∴0〈∴∴值域为、方法二 (判别式法)由y=得(y-1)∵y=1时,1、又∵R,∴必须=(1-y)2—4y(y-1)≥0、∴∵∴函数得值域为、(2)方法一(单调性法)定义域,函数y=x,y=-均在上递增,故y≤∴函数得值域为、方法二 (换元法)令=t,则t≥0,且x=∴y=-(t+1)2+1≤(t≥0),∴y∈(—∞,]、(3)由y=得,ex=∵ex>0,即>0,解得-1<y<1、∴函数得值域为{y|—1〈y〈1}、变式训练3:求下列函数得值域:(1)y=; (2)y=|x|、解:(1)(分离常数法)y=-,∵≠0,∴y≠-、故函数得值域就是{y|y∈R,且y≠-}、(2)方法一(换元法)∵1-x2≥0,令x=sin,则有y=|sincos|=|sin2|,故函数值域为[0,]、方法二y=|x|·∴0≤y≤即函数得值域为、例4.若函数f(x)=x2-x+a得定义域与值域均为[1,b](b>1),求a、b得值、解:∵f(x)=(x-1)2+a-、∴其对称轴为x=1,即[1,b]为f(x)得单调递增区间、∴f(x)min=f(1)=a—=1①f(x)max=f(b)=b2—b+a=b ②由①②解得变式训练4:已知函数f(x)=x2—4ax+2a+6(x∈R)、(1)求函数得值域为[0,+∞)时得a得值;(2)若函数得值均为非负值,求函数f(a)=2—a|a+3|得值域、解:(1)∵函数得值域为[0,+∞),∴Δ=16a2—4(2a+6)=02a2-a-3=0∴a=-1或a =、(2)对一切x∈R,函数值均非负,∴Δ=8(2a2-a-3)≤0-1≤a≤,∴a+3>0,∴f(a)=2-a(a+3)=-a2-3a+2=-(a+)2+(a)、∵二次函数f(a)在上单调递减,∴f(a)min=f=—,f(a)max=f(-1)=4,∴f(a)得值域为、小结归纳1。

高考总复习:函数的最值与值域(理基础) 知识梳理

高考总复习:函数的最值与值域(理基础) 知识梳理

函数的最值与值域【考纲要求】1.会求一些简单函数的定义域和值域;2. 理解函数的单调性、最大(小)值及其几何意义;3. 会运用函数图象理解和研究函数的性质.4. 在某些实际问题中,会建立不等式求参数的取值范围,以及求最大值和最小值.【知识网络】【考点梳理】考点一、函数最值的定义1.最大值:如果对于函数()f x 定义域D 内的任意一个自变量x ,存在0x D ∈,使得0()()f x f x ≤成立,则称0()f x 是函数()f x 的最大值.注意:下面定义错在哪里?应怎样订正.如果对于函数()f x 定义域D 内的任意一个自变量x ,都有()f x M ≤,则称M 是函数()f x 的最大值.2.最小值的定义同学们自己给出.考点二、函数最值的常用求法1.可化为二次函数的函数,要特别注意自变量的取值范围.2.判别式法:主要适用于可化为关于x 的二次方程,由0∆≥(要注意二次项系数为0的情况)求出函数的最值,要检验这个最值在定义域内是否有相应的x 的值.3.换元法:很多含根式的函数的最值的求法经常用到换元法来求.常用的换元有———三角代换,整体代换.4.不等式法:利用均值不等式求最值.5.利用函数的性质求函数的最值6.含绝对值的函数或分段函数的最值的求法7.利用导数求函数的最值。

要点诠释:(1)求最值的基本程序:求定义域、求导数、求导数的零点、列表、根据表比较函数值大小给出最值;(2)一些能转化为最值问题的问题:()f x A >在区间D 上恒成立⇔函数min ()()f x A x D >∈()f x B <在区间D 上恒成立⇔函数max ()()f x B x D <∈在区间D 上存在实数x 使()f x B <⇔函数min ()()f x B x D <∈在区间D 上存在实数x 使()f x A >⇔函数max ()()f x A x D >∈【典型例题】类型一、通过转化或换元的方法求解函数的值域或最值例1.求函数22()x x x f x eme e -=-+-x me -的最值. 【解析】22()()x x x x f x e e m e e --=+-+2()()2x x x x e e m e e --=+-+-令x x t e e -=+(注意t 的范围),这样所求函数就变为二次函数.【总结升华】当式子中同时出现22x x -+和1x x -±时,都可以化为二次式.举一反三: 【变式】求函数13y x x =-++的值域. 【解析】平方再开方,得42(1)(3),[3,1]y x x x =+-+∈-[2,22]y ∴∈类型二、函数值的大小比较,求函数值域,求函数的最大值或最小值例2. 求下列函数值域:(1)2-12x y x =+; 1)x ∈[5,10]; 2)x ∈(-3,-2)∪(-2,1); (2)y=x 2-2x+3; 1)x ∈[-1,1]; 2)x ∈[-2,2]. 【解析】(1)2(2)-5-5-522x y y x x x +===+++2可看作是由左移2个单位, 再上移2个单位得到,如图1)f(x)在[5,10]上单增,919[(5),(10)][,]712y f f ∈即; 2)1(-,(1))((-3),)(-)(7)3y f f ∈∞⋃+∞∞⋃+∞即,,;(2)画出草图1)y ∈[f(1),f(-1)]即[2,6];2)[(1),(-2)][2,11]y f f ∈即.举一反三: 【变式】已知函数13x f (x)13x+=-. (1)判断函数f(x)的单调区间;(2)当x ∈[1,3]时,求函数f(x)的值域.【解析】(1)13x (3x 1)22f (x)113x 13x 3x 1+--++===----- 1f (x)(-)3∴∞在,上单调递增,在1(,)3+∞上单调递增; (2)1[1,3](,)3⊆+∞故函数f(x)在[1,3]上单调递增 ∴x=1时f(x)有最小值,f(1)=-2x=3时f(x)有最大值5f (3)4=- ∴x ∈[1,3]时f(x)的值域为5[2,]4--.类型三、含参类函数的最值与值域问题例3. 已知二次函数f(x)=x 2-(a-1)x+5在区间1(,1)2上是增函数,求:(1)实数a 的取值范围;(2)f(2)的取值范围.【解析】(1)∵对称轴-12a x =是决定f(x)单调性的关键,联系图象可知 只需-11 222a a ≤∴≤; (2)∵f(2)=22-2(a-1)+5=-2a+11又∵a ≤2,∴-2a ≥-4∴f(2)=-2a+11≥-4+11=7[)f(2)7,+∴∈∞.举一反三: 【变式】已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是________.【解析】2()(2)f x x x=≥单调递减且值域(0,1],3()(1)(2)f x x x =-<单调递增且值域为(,1)-∞,由图象知,若()f x k =有两个不同的实根,则实数k 的取值范围是(0,1). 类型四、抽象函数的最值与值域问题例4.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2 B .10[2,]3 C .510[,]23 D .10[3,]3【答案】B 【解析】令()t f x =,则1[,3]2t ∈,110()[2,]3F x t t =+∈ 举一反三:【变式】设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1()(2)f f 的值为( ) A .1516 B .2716- C .89 D .18【答案】A【解析】∵2(2)2224f =+-=, ∴211115()()1()(2)4416f f f ==-=. 类型五:解析几何在最值方面的综合应用例7.设A (0,0),B (4,0),C (t+4,4),D (t ,4)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N (t )的值域为( )A .{9,10,11}B .{9,10,12}C .{9,11,12}D .{10,11,12}【解析】当t ≠0时,直线AD 的方程为4y x t=, 分别与直线y=1,y=2,y=3交于点1(,1)4tM ,2(,2)2t M 33(,3)4M t 。

三角函数最值及其综合运用知识点总结及经典高考题解析

三角函数最值及其综合运用知识点总结及经典高考题解析

三角函数最值及其综合运用【考纲说明】1、了解三角函数的最值(值域),理解三角函数取最值的条件,掌握求三角函数最值的常用方法。

2、结合三角函数的性质,会求形如函数)0>,0≠)(+sin(=w A φwx A y 、)0>,0≠)(+cos(=w A φwx A y 、)0>,0≠)(+tan(=w A φwx A y 的综合问题。

【知识梳理】一、三角函数的最值 1、定义 (1)当2-2=ππk x )∈(Z k 时,x y sin =取最小值1-;当2+2=ππk x )∈(Z k 时,x y sin =取最大值1;正弦函数x y sin =)∈(R x 的值域为[]1,1-。

(2)当ππk x +2=)∈(Z k 时,x y cos =取最小值1-;当πk x 2=)∈(Z k 时,x y cos =取最大值1;余弦函数x y cos =)∈(R x 的值域为[]1,1-。

(3))2+≠,∈(tan =ππk x R x x y 的值域为R 。

2、常用方法(1)求三角函数最值的常用方法①配方法(主要利用二次函数理论及三角函数的有界性);②化为一个角的三角函数(主要利用和差角公式及三角函数的有界性);③数形结合法(常用到直线的斜率关系);④换元法(如万能公式,将三角问题转化为代数问题);⑤基本不等式法等。

(2)三角函数的最值都是在给定区间上取得的,因而特别要注意题设中所给出的区间。

①求三角函数最值时,一般要进行一些代数变换和三角变换,要注意函数有意义的条件及弦函数的有界性②含参数函数的最值问题,要注意参数的作用和影响。

(3)具体方法:①y =a sin x +b cos x 型函数最值的求法:常转化为y (x +ϕ) ②y =a sin 2x +b sin x +c 型:常通过换元法转化为y =at 2+bt +c 型: ③y =dx c b x a ++cos sin 型:i 当x R ∈时,将分母与y 乘转化变形为sin (x +ϕ)=()f y 型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的值域与最值【考纲说明】1.理解值域和最值的区别与联系,掌握求函数值域和最值的基本方法; 2.通过函数最值求参数的范围,同时解决恒成立问题;【知识梳理】2.函数的值域1、函数值域的概念在函数y=f (x )中,与自变量x 的值对应的y 值叫做函数值。

函数值的集合叫做函数的值域。

2、确定函数值域的原则(1)当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;(2)当函数y=f (x )用图像给出时,函数的值域是指图像在y 轴上的投影所覆盖的实数y 的集合; (3)当函数y=f (x )用解析式给出时,函数的值域由函数的定义域及其解析式唯一确定; (4)当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定; 3、常见函数的值域(1)一次函数y=kx+b (k ≠0)的值域为R ;(2)二次函数y=ax 2+bx+c (a ≠0),当a>0时值域为]44(0);44[022ab ac ,,a ,a b ac ,a --∞<∞+->值域是时值域是时 (3)反比例函数y=xk(x ≠0)的值域为{}R y y y ∈≠且,0| (4)指数函数)10(≠>=a a a y x且的值域为),0(+∞。

(5)对数函数)10(log ≠>=a a x y a 且的值域为R ;(6)正弦函数x y sin =,余弦函数x y cos =的值域都是]1,1[-。

(7)正切函数),2(tan Z k k x x y ∈≠=∏+∏其中,cot x y =),(Z k k x ∈≠π的值域为R 。

3.函数的最值1、函数的最值一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: (1)①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0) = M 。

那么,称M 是函数y =f (x )的最大值。

记作()max 0y f x =一、①对于任意的x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0) = M 。

那么,称M 是函数y =f (x )的最小值。

记作()min 0y f x =2、利用函数最值求参数的范围通过分离变量,用自变量把参数表示出来,得到参数关于某个变量的函数或不等式,然后求出该函数的最值。

利用函数的最值,可得到参数的范围。

3、最值在实际问题中的应用(1)在实际问题中建立函数模型,利用函数的最值求相关量的最值; (2)已知实际问题中有关量的最值,求相关量的取值范围;4.求函数值域和最值的常用方法1、基本函数法对于基本函数的值域,可通过它的图像、性质直接求解; 2、配方法对于形如y=ax 2+bx+c (a ≠0)或y = a [f(x)]2+ b f(x) + c (a ≠0)类的函数的值域问题,均可用配方法求解; 3、换元法利用代数或三角换元,将所给函数转化为易求值域的函数。

形如y=)(1x f 的函数,令f (x )=t ; 形如y=ax+b+d cx +(a 、b 、c 、d 均为常数,ac ≠0)的函数,令d cx +=t ;形如22x a -的函数,可利用三角代换,令x=a cos θ,θ∈[0,π];或令x=a sin θ ,θ∈]2,2[ππ-4、不等式法利用基本不等式a+b ≥2ab 。

注意条件“一正二定三相等” 5、函数的单调性法确定函数在定义域上(或定义域上的某个子集)的单调性求出函数的值域。

例如f (x )=ax+xb(a>0,b>0) 当利用不等式法等号不能成立时,可考虑利用函数的单调性。

6、数形结合法如果所给函数有较明显的几何意义,可借助于几何法求函数的值域。

形如1212x x y y --可联想两点(x 1,y 1)与(x 2,y 2)连线的斜率。

7、函数的有界性法 形如y=xxsin 1sin +,可用y 表示出sinx ,再根据-1< sinx ≤1,解关于y 的不等式,可求出y 的取值范围。

8、导数法设y=f(x)的导数为f ’(x),由f ’(x)=0可求得极值点坐标。

若函数定义域为[a,b],则最值必定为极值点和区间端点中函数值的最大值和最小值。

【经典例题】【例1】(2013年新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A.(,0]-∞B.(,1]-∞C.[2,1]-D.[2,0]- 【解析】D【例2】错误!未指定书签。

(2013辽宁(理))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示 ,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -= A.2216a a -- B.2216a a +- C.16- D.16 【解析】B【例3】(2012天津)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取 值范围是(A )[1 (B)(,1)-∞∞(C)[2- (D)(,2)-∞-∞ 【解析】D【例4】错误!未指定书签。

(2013年上海卷(理))设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++, 若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________ 【解析】87a ≤-【例5】(2010浙江)设,x y 为实数,若2241,x y xy ++=则2x y +的最大值是 .。

【解析】5102【例6】(2012浙江卷.理)已知a >0,b ∈R ,函数()342f x ax bx a b =--+. (Ⅰ)证明:当0≤x ≤1时,(ⅰ)函数()f x 的最大值为|2a -b |﹢a ;(ⅱ) ()f x +|2a -b |﹢a ≥0; (Ⅱ) 若﹣1≤()f x ≤1对x ∈[0,1]恒成立,求a +b 的取值范围. 【解析】(Ⅰ)利用导数求解;(Ⅱ)a +b 的取值范围为:(]3-∞,.【例7】(2012全国卷.理)已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间;(2)若21()2f x x ax b ≥++,求(1)a b +的最大值. 【解析】(1)()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞(2)当x =max ()2eF x =当1,a b ==(1)a b +的最大值为2e【例8】(2012湖南卷)已知函数()f x =ax e x =-,其中a ≠0. 二、若对一切x ∈R ,()f x ≥1恒成立,求a 的取值集合.三、在函数()f x 的图像上取定两点11(,())A x f x ,22(,())B x f x 12()x x <,记直线AB 的斜率为k ,问:是否存在x 0∈(x 1,x 2),使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.【解析】(Ⅰ)a 的取值集合为{}1.(Ⅱ)存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln,)()ax ax e e x a a x x --. 【例9】设函数()f x =2()ln x a x -,a ∈R(Ⅰ)若x =e 为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的x ∈(0,3e ],恒有()f x ≤42e 成立. 【解析】(Ⅰ)a e = 或3a e =。

(Ⅱ)a的取值范围为33e a e ≤≤。

【例10】(2011北京理)已知椭圆G :2214x y +=,过点(m ,0)作圆221x y +=的切线l 交椭圆G 于A ,B 两点。

(Ⅰ)求椭圆G 的焦点坐标和离心率;(Ⅱ)将||AB 表示为m 的函数,并求||AB 的最大值。

【解析】(Ⅰ)椭圆G 的焦点坐标为)0,3(),0,3(-,离心率为.23==a c e (Ⅱ)212212)()(||y y x x AB -+-=.3||342+=m m |AB|的最大值为2. 【例11】(2012四川) 已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立。

(Ⅰ)求1a ,2a 的值; (Ⅱ)设10a >,数列110{lg}na a 的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值。

【解析】(I )120,0a a ==;或121,2a a ==1212a a =-=-(II )数列{}n b 是单调递减的等差数列(公差为1lg 22-),从而 故7n =时,n T 取得最大值,且n T 的最大值为1777()7(113lg 2)217lg 2222b b T ++-===-【例12】已知向量a =)sin sin (cos x x x ωωω,-,b =)cos 32sin cos (x x x ωωω,--, 设函数f (x )=a ·b +)(R x ∈λ的图像关于直线x =π对称,其中λω,为常数,且)(1,21∈ω (1) 求函数f (x )的最小正周期;(2) 若y=f (x )的图像经过点)(0,4π求函数f (x )在区间⎥⎦⎤⎢⎣⎡530π,上的取值范围 【解析】略【课堂练习】1.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是 (A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦(C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 2.(2012全国)已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )3.(2011湖南)设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)++∞ C .(1,3) D .(3,)+∞ 4.错误!未指定书签。

相关文档
最新文档