《大学物理》习题和答案..
《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
(完整版)《大学物理》练习题及参考答案

《大学物理》练习题一. 单选题:1.下列说法正确的是……………………………………() 参看课本P32-36A . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率有关B . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率无关C . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率无关D . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率有关2.下列说法正确的是………………………………… ( ) 参看课本P32-36A . 伽利略变换与洛伦兹变换是等价的B . 所有惯性系对一切物理定律都是不等价的C . 在所有惯性系中,真空的光速具有相同的量值cD . 由相对论时空观知:时钟的快慢和量尺的长短都与物体的运动无关3.下列说法正确的是………………………………… ( )参看课本P58,76,103 A . 动量守恒定律的守恒条件是系统所受的合外力矩为零 B . 角动量守恒定律的守恒条件是系统所受的合外力为零 C . 机械能守恒定律的守恒条件是系统所受的合外力不做功 D . 以上说法都不正确4. 下列关于牛顿运动定律的说法正确的是…………( ) 参看课本P44-45A . 牛顿第一运动定律是描述物体间力的相互作用的规律B . 牛顿第二运动定律是描述力处于平衡时物体的运动规律C . 牛顿第三运动定律是描述物体力和运动的定量关系的规律D . 牛顿三条运动定律是一个整体,是描述宏观物体低速运动的客观规律5.下列关于保守力的说法错误的是…………………( ) 参看课本P71-72 A . 由重力对物体所做的功的特点可知,重力是一种保守力B . 由弹性力对物体所做的功的特点可知,弹性力也是一种保守力C . 由摩擦力对物体所做的功的特点可知,摩擦力也是一种保守力D . 由万有引力对物体所做的功的特点可知,万有引力也是一种保守力6.已知某质点的运动方程的分量式是,,式中R 、ω是常cos x R t ω=sin y R t ω=数.则此质点将做………………………………………………() 参看课本P19A . 匀速圆周运动B . 匀变速直线运动C . 匀速直线运动D . 条件不够,无法确定7.如图所示,三个质量相同、线度相同而形状不同的均质物体,它们对各自的几何对称轴的转动惯量最大的是………( )A . 薄圆筒B . 圆柱体 参看课本P95C . 正方体D . 一样大8.下列关于弹性碰撞的说法正确的是………………() 中学知识在课堂已复习A . 系统只有动量守恒B . 系统只有机械能守恒C . 系统的动量和机械能都守恒D . 系统的动量和机械能都不守恒9.某人张开双臂,手握哑铃,坐在转椅上,让转椅转动起来,若此后无外力矩作用.则当此人收回双臂时,人和转椅这一系统的…………………( ) 参看课本P104A . 转速不变,角动量变大B . 转速变大,角动量保持不变C . 转速和角动量都变大D . 转速和角动量都保持不变10.下列关于卡诺循环的说法正确的是………………( ) 参看课本P144 A . 卡诺循环是由两个平衡的等温过程和两个平衡的绝热过程组成的B . 卡诺循环是由两个平衡的等温过程和两个平衡的等体过程组成的C . 卡诺循环是由两个平衡的等体过程和两个平衡的等压过程组成的D . 卡诺循环是由两个平衡的绝热过程和两个平衡的等压过程组成的11. 如图所示,在场强为E 的匀强电场中,有一个半径为R 的半球面,若场强E 的方向与半球面的对称轴平行,则通过这个半球面的电通量大小为…………………( ) 参看课本P172-173A .B .2E 22R E πC . D . 02R E 12.一点电荷,放在球形高斯面的中心处,下列情况中通过高斯面的电通量会发生变化的…………………………( ) 参看课本P173 A . 将另一点电荷放在高斯面内 B . 将高斯面半径缩小C . 将另一点电荷放在高斯面外D . 将球心处的点电荷移开,但仍在高斯面内13.如图所示,在与均匀磁场垂直的平面内有一长为l 的铜棒B MN ,设棒绕M 点以匀角速度ω转动,转轴与平行,则棒的动B 生电动势大小为……………()参看课本P257A .B . Bl ω2BlωC .D . 12Bl ω212Blω14. 、方均v 、最概然速率为,则这气体分子的三种速率的关系是…………(p v ) A .B 参看课本P125v >p vC .D p v pv =15. 下列关于导体静电平衡的说法错误………………( ) 参看课本P190-191 A . 导体是等势体,其表面是等势面 B . 导体内部场强处处为零 C . 导体表面的场强处处与表面垂直 D . 导体内部处处存在净电荷16. 下列哪种现代厨房电器是利用涡流原理工作的…( ) 参看课本P259A . 微波炉B . 电饭锅17. 下列关于电源电动势的说法正确的是……………() 参看课本P249-250A . 电源电动势等于电源把电荷从正极经内电路移到负极时所作的功B . 电源电动势的大小只取于电源本身的性质,而与外电路无关C . 电动势的指向习惯为自正极经内电路到负极的指向D . 沿着电动势的指向,电源将提高电荷的电势能18. 磁介质有三种,下列用相对磁导率正确表征它们各自特性的是………( r μ)A . 顺磁质,抗磁质,铁磁质 参看课本P39-2400r μ<0r μ<1r μ?B . 顺磁质,抗磁质,铁磁质1r μ>1r μ=1r μ?C . 顺磁质,抗磁质,铁磁质0r μ>0r μ>0r μ> D . 顺磁质,抗磁质,铁磁质1r μ>1r μ<1r μ?19. 在均匀磁场中,一带电粒子在洛伦兹力作用下做匀速率圆周运动,如果磁场的磁感应强度减小,则………………………………………………( ) 参看课本P231 A . 粒子的运动速率减小 B . 粒子的轨道半径减小 C . 粒子的运动频率不变 D . 粒子的运动周期增大20. 两根无限长的载流直导线互相平行,通有大小相等,方向相反的I 1和I 2,在两导线的正中间放一个通有电流I 的矩形线圈abcd ,如图所示. 则线圈受到的合力为…………( ) 参看课本P221-223A . 水平向左B . 水平向右C . 零D . 无法判断21. 下列说法错误的是……………………………………( ) 参看课本P263A . 通过螺线管的电流越大,螺线管的自感系数也越大B . 螺线管的半径越大,螺线管的自感系数也越大C . 螺线管中单位长度的匝数越多,螺线管的自感系数也越大D . 螺线管中充有铁磁质时的自感系数大于真空时的自感系数22. 一电偶极子放在匀强电场中,当电矩的方向与场强的方向不一致时,则它所受的合力F 和合力矩M 分别为…………………………………( ) 参看课本P168-169A . F =0 ,M =0B . F ≠0 ,M ≠0C . F =0 ,M ≠0D . F ≠0 ,M =023. 若一平面载流线圈在磁场中既不受磁力,也不受磁力矩作用,这说明……( )A . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行 参看课本P223-224B . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行C . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直D . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直24. 下列关于机械振动和机械波的说法正确的是………( ) 参看课本P306A . 质点做机械振动,一定产生机械波B .波是指波源质点在介质的传播过程C . 波的传播速度也就是波源的振动速度D . 波在介质中的传播频率与波源的振动频率相同,而与介质无关25. 在以下矢量场中,属保守力场的是…………………( ) A . 静电场 B . 涡旋电场 参看课本P180,212,258C . 稳恒磁场D . 变化磁场26. 如图所示,一根长为2a 的细金属杆AB 与载流长直导线共面,导线中通过的电流为I ,金属杆A 端距导线距离为a .金属杆AB 以速度v 向上匀速运动时,杆内产生的动生电动势为……( ) 参看课本P261 (8-8)A . ,方向由B →A B .,方向由A →B2ln 20πμεIv i =2ln 20πμεIv i =C . ,方向由B →A D . ,方向由A →B0ln 32i Iv μεπ=3ln 20πμεIv i =27.在驻波中,两个相邻波节间各质点的振动………( ) 参看课本P325A . 振幅相同,相位相同B . 振幅不同,相位相同C . 振幅相同,相位不同D . 振幅不同,相位不同28.两个质点做简谐振动,曲线如图所示,则有( )A . A 振动的相位超前B 振动π/2 参看课本P291B . A 振动的相位落后B 振动π/2C . A 振动的相位超前B 振动πD . A 振动的相位与B 振动同相29.同一点光源发出的两列光波产生相干的必要条件是…() 参看课本P336A . 两光源的频率相同,振动方向相同,相位差恒定B . 两光源的频率相同,振幅相同,相位差恒定C . 两光源发出的光波传播方向相同,振动方向相同,振幅相同D .两光源发出的光波传播方向相同,频率相同,相位差恒定30.如图所示,在一圆形电流I 所在的平面内选取一个同心圆形闭合环路L ,则由安培环路定理可知……………………………………………( ) 参看课本P235A . ,且环路上任一点B =0d 0L B l ⋅=⎰B . ,但环路上任一点B ≠0d 0L B l ⋅=⎰ C . ,且环路上任一点B ≠0d 0 L B l ⋅≠⎰D . ,且环路上任一点B =常量d 0 LB l ⋅≠⎰二. 填空题:31. 平行板电容器充电后与电源断开,然后充满相对电容率为εr 的各向均匀电介质. 则其电容C 将______,两极板间的电势差U 将________. (填减小、增大或不变) 参看课本P195,20032. 某质点沿x 轴运动,其运动方程为: x =10t –5t 2,式中x 、t 分别以m 、s 为单位. 质点任意时刻的速度v =________,加速度a =________. 参看课本P16-1733. 某人相对地面的电容为60pF ,如果他所带电荷为,则他相对地面的电C 100.68-⨯势差为__________,他具有的电势能为_____________. 参看课本P200,20234. 一人从10 m 深的井中提水,起始时,桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1m 要漏去0.1 kg 的水,则水桶匀速地从井中提到井口,人所作的功为____________.参看课本P70 (2-14)35.质量为m 、半径为R 、自转运动周期为T 的月球,若月球是密度均匀分布的实球体,则其绕自转轴的转动惯量是__________,做自转运动的转动动能是__________.参看课本P100 (3-4)36. 1mol 氢气,在温度为127℃时,氢气分子的总平均动能是_____________,总转动动能是______________,内能是_____________. 〔已知摩尔气体常量R = 8.31 J/(mol ·K ) 参看课本 P120 (4-8)37. 如图所示,两个平行的无限大均匀带电平面,其面电荷密度分别为+σ和-σ. 则区域Ⅱ的场强大小E Ⅱ=___________ . 参看课本P17738. 用一定波长的单色光进行双缝干涉实验时,要使屏上的干涉条纹间距变宽,可采用的方法是: (1) _________________________;(2) ________________________. 参看课本P34439. 通过磁场中任意闭合曲面的磁通量等于_________. 感生电场是由______________产生的,它的电场线是__________曲线. (填闭合或不闭合) 参看课本P212,25840. 子弹在枪膛中前进时受到的合力与时间关系为,子弹飞出枪口5400410N F t =-⨯的速度为200m /s ,则子弹受到的冲量为_____________. 参看课本P55-5641. 将电荷量为2.0×10-8C 的点电荷,从电场中A 点移到B 点,电场力做功6.0×10-6J . 则A 、B 两点的电势差U AB =____________ . 参看课本P18142. 如图所示,图中O 点的磁感应强度大小B =______________.参看课本P229-23043. 一个螺线管的自感L =10 mH ,通过线圈的电流I =2A ,则它所储存的磁能W =_____________. 参看课本P26744. 理想气体在某热力学过程中内能增加了ΔE =250J ,而气体对外界做功A =50J ,则气体吸收的热量Q = . 参看课本P132-13345. 一平面简谐波沿x 轴的正方向传播,波速为100 m/s ,t =0时的曲线如图所示,则简谐波的波长λ =____________,频率ν =_____________. 参看课本P30946. 两个同心的球面,半径分别为R 1、R 2(R 1R 2),分别<带有总电量为Q 1、Q 2. 设电荷均匀分布在球面上,则两球面间的电势差U 12= ________________________.参看课本P186-187三. 计算题:47. 一正方形线圈由外皮绝缘的细导线绕成,共绕有100匝,每边长为10 cm ,放在B = 5.0T 的磁场中,当导线中通有I =10.0A 的电流时,求: (1) 线圈磁矩m 的大小;(2) 作用在线圈上的磁力矩M 的最大值. 参看课本P225 (7-7)48.如图所示,已知子弹质量为m ,木块质量为M ,弹簧的劲度系数为k,子弹以初速v o射入木块后,弹簧被压缩了L.设木块与平面间的滑动摩擦因数为μ,不计空气阻力.求初速v o.参看课本P80 (2-23)49. 一卡诺热机的效率为40%,其工作的低温热源温度为27℃.若要将其效率提高到50%,求高温热源的温度应提高多少?参看课本P148 (5-14)50. 质量均匀的链条总长为l,放在光滑的桌面上,一端沿桌面边缘下垂,其长度为a,如图所示.设开始时链条静止,求链条刚刚离开桌边时的速度.参看课本P70 (2-18)51.一平面简谐波在t =0时刻的波形如图所示,设波的频率ν=5 Hz,且此时图中P点的运动方向向下,求:(1) 此波的波函数;(2) P点的振动方程和位置坐标.参看课本P318 (10-11)52.如图所示,A和B两飞轮的轴杆可由摩擦啮合器使之连接,A轮的转动惯量J A=10 kg·m2.开始时,B轮静止,A轮以n A= 600 r/min的转速转动.然后使A和B连接,连接后两轮的转速n = 200 r/min.求: (1) B轮的转动惯量J B ;(2) 在啮合过程中损失的机械能ΔE.参看课本P105 (3-9及补充)53.如图所示,载流I的导线处于磁感应强度为B的均匀磁场中,导线上的一段是半径为R、垂直于磁场的半圆,求这段半圆导线所受安培力.参看课本P224-22554.如图所示的截面为矩形的环形均匀密绕的螺绕环,环的内外半径分别a和b,厚度为h,共有N匝,环中通有电流为I .求: (1) 环内外的磁感应强度B;(2) 环的自感L.参看课本P237-238 (7-23及补充)55.如图所示,一长直导线通有电流I,在与其相距d处放在有一矩形线框,线框长为l ,宽为a ,共有N 匝. 当线框以速度v 沿垂直于长导线的方向向右运动时,线框中的动生电动势是多少? 参看课本P255 (8-3)二. 填空题:31. 增大 减小32.33. 1000V 0.03 J1010m/s t -210m/s t -34. 1029 (或1050) J 35. 36. 4986J 3324J 8310 J 225mR 22245mR T π37. 38. (1) 将两缝的距离变小 (2) 将双缝到光屏的距离变大σε39. 零 变化的磁场 闭合 40.41.300V42.0.2N s ⋅0112I R μπ⎛⎫- ⎪⎝⎭43. 0.02 J44. 300 J45. 0.8 m 125 Hz46.1012114Q R R πε⎛⎫- ⎪⎝⎭三. 计算题:47. 线圈磁矩22100100.110A m m NIS ==⨯⨯=⋅线圈最大磁力矩max 10550N mM mB ==⨯=⋅48. 设子弹质量为m ,木块质量为M ,子弹与木块的共同速度v由动量守恒定律得①0()mv m M v =+由功能原理得 ②2211()()22m M gL kL m M v μ-+=-+由①、②式得 0v =49. 卡诺热机效率: 211T T η=-21300500K 110.4T T η⇒===--同理 21300600K 110.5T T η'==='--高温热源应提高的温度 11600500100KT T '-=-=n50. 设桌面为零势面,由机械能守恒定律得21222a a l mg mg mv l -=-+v ⇒=51. 解:(1) 由图中v P <0知此波沿x 轴负向传播,继而知原点此时向y 正向运动原点处0002A y v =->,023ϕπ⇒=-又x = 3m 处3300y v =>,32πϕ⇒=-由 得2x ϕπλ∆∆=2x λπϕ∆=∆30236m 223πππ-=⨯=⎛⎫--- ⎪⎝⎭此波的波函数 02cos 2x y A t ππνϕλ⎛⎫=++ ⎪⎝⎭20.10cos 10m 183t x πππ⎛⎫=+- ⎪⎝⎭(2) P 点处 P P 00y v =,<P 2πϕ⇒=P 点振动方程P P cos(2)y A t πνϕ=+0.10cos 10m 2t ππ⎛⎫=+ ⎪⎝⎭P 点位置坐标 p 363321m22x λ=+=+=52. (1) 由动量矩守恒定律得A A AB ()J J J ωω=+A A AB 2()2J n J J n ππ=+B 60020010(10)6060J ⨯=+⨯2B 20kg m J ⇒=⋅(2) 损失的机械能2222A A A B A A A B 222241111()(2)()(2)222216001200104(1020)4 1.31510J 260260E J J J J n J J n ωωππππ∆=-+=-+⎛⎫⎛⎫=⨯⨯-+⨯=⨯ ⎪ ⎪⎝⎭⎝⎭53. 依题意得 d 0x x F F =∑=d d sin d sin sin d y F F BI l BIR θθθθ===0sin d 2y F F BIR BIRπθθ===⎰54. (1)0d 2B r B r Iπμ⋅=⋅=∑⎰ 环外的磁感应强度 0B =环内的磁感应强度 02B r NIπμ⋅=02NI B rμπ=(2) 0d d d 2NIhBh r r rμΦπ==001d d ln 22b a NIh NIh br r aμμΦΦππ===⎰⎰环的自感 20ln 2N h N b L I I aμψΦπ===55. 线框的动生电动势1212()N B B lvεεε=-=-001122()NIlv NIlav d d a d d a μμππ⎛⎫=-= ⎪++⎝⎭。
《大学物理》试题及答案

《 大学物理学 》课程试题一、选择题(单选题,每小题3分,共30分)1、质点的运动方程为:)()28()63(22SI j t t i t t r,则t=0时,质点的速度大小是[ ]。
(A )5m.s -1 (B )10 m.s -1 (C) 15 m.s -1 (D) 20m.s -1 2、一质点在半径为0.1m 的圆周上运动,其角位置为3t 42 (SI )。
当切向加速度和法向加速度大小相等时,θ为[ ]。
(A) 2rad (B) 2/3rad (C) 8rad (D) 8/3rad 3、有些矢量是对于一定点(或轴)而确定的,有些矢量是与定点(或轴)的选择无关的。
在下述物理量中,与参考点(或轴)的选择无关的是[ ]。
(A )力矩 (B )动量 (C )角动量 (D )转动惯量 4、半径为R 的均匀带电球面的静电场中,各点的电势V 与距球心的距离r 的关系曲线为[ ]。
5、在真空中,有两块无限大均匀带电的平行板,电荷面密度分别为+σ和-σ的,则两板之间场强的大小为[ ]。
(A )0E (B) 02 E (C) 02E (D )E=06、关于静电场的高斯定理有下面几种说法,其中正确的是[ ]。
(A )如果高斯面上电场强度处处为零,则高斯面内必无电荷;(B )如果高斯面内有净电荷,则穿过高斯面的电场强度通量必不为零; (C )高斯面上各点的电场强度仅由面内的电荷产生;(D )如果穿过高斯面的电通量为零,则高斯面上电场强度处处为零。
7、静电场的环路定理说明静电场的性质是[ ]。
(A )电场线不是闭合曲线; (B )电场力不是保守力;(C )静电场是有源场; (D )静电场是保守场。
8、均匀磁场的磁感强度B垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。
(A) B r 22 (B) B r 2 (C) 0 (D) 无法确定9、关于真空中电流元I 1dl 1与电流元I 2dl 2之间的相互作用,正确的是[ ]。
《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
《大学物理》第十章气体动理论习题参考答案

第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。
3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。
7、1:1;2:1;10:3。
8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。
已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。
质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。
(完整版)大学物理学上下册习题与答案

习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。
《大学物理》习题册题目及答案第12单元稳恒电流的磁场

第12单元 稳恒电流的磁场 第七章 静电场和恒定磁场的性质(三)磁感应强度序号序号 学号学号 姓名姓名 专业、班级专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:向的半球壳表面的磁通量的大小是: (A) Wb 2a R p(B) Wb 2b R p (C) Wb 2c R p (D) Wb 2abc R p[ B ]2. ]2. 若要使半径为若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.07.0××105- T T,则铜线中需,则铜线中需要通过的电流为要通过的电流为((μ0=4π×107-T ·m ·A 1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. [ B ]3. 一载有电流一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r)(R=2r),,两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B 沿图中闭合路径L 的积分l B d ×ò等于等于(A)I 0m(B)I 031m (C) I041m(D)I032m[ D ]5. [ D ]5. 有一由有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0abcdI L1201I 2I 1R 2R二 填空题1.1.一无限长载流直导线,通有电流一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度强度 B B 的大小为aIp m 830。
(完整版)《大学物理》习题册题目及答案第2单元 动量守恒定律

第2单元 动量守恒定律序号 学号 姓名 专业、班级一 选择题[ B ]1. 力i F t 12=(SI)作用在质量m =2 kg 的物体上,使物体由原点从静止开始运动,则它在3秒末的动量应为:(A) -54i kg ⋅m ⋅s -1(B) 54i kg ⋅m ⋅s -1(C) -27i kg ⋅m ⋅s -1 (D) 27i kg ⋅m ⋅s-1[ C ]2. 如图所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为:(A) mv 2 (B)()()22/2v R mg mv π+(C)vRmgπ (D) 0[ A ]3 .粒子B 的质量是粒子A 的质量的4倍。
开始时粒子A 的速度为()j i ϖϖ43+,粒子B 的速度为(j i ϖϖ72-)。
由于两者的相互作用,粒子A 的速度为()j i ϖϖ47-,此时粒子B 的速度等于:(A) j i 5- (B) j i ϖϖ72- (C) 0 (D) j i ϖϖ35-[ C ]4. 水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦及空气阻力) (A )总动量守恒(B )总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒 (C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒 (D )动量在任何方向的分量均不守恒二 填空题1. 一颗子弹在枪筒里前进时所受的合力大小为t F 31044005⨯-=(SI),子弹从枪口射出的速率为3001s m -⋅。
假设子弹离开枪口时合力刚好为零,则(1) 子弹走完枪筒全长所用的时间 t = 0.003 s ,(2) 子弹在枪筒中所受的冲量 I = s N 6.0⋅ , (3) 子弹的质量 m = 2 ×10-3 kg 。
2. 质量m 为10kg 的木箱放在地面上,在水平拉力F 的作用下由静止开始沿直线运动,其拉力随时间的变化关系如图所示。
《大学物理》热力学基础练习题及答案解析

《大学物理》热力学基础练习题及答案解析一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、从增加内能来说,做功和热传递是等效的。
但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。
4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。
”此说法对吗? 为什么?答:不对。
对外做功,则内能减少,温度降低。
5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。
V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。
答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。
不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。
摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。
两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
8、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。
《大学物理》习题册题目及答案第12单元 稳恒电流的磁场

第12单元 稳恒电流的磁场第七章 静电场和恒定磁场的性质(三)磁感应强度序号 学号 姓名 专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是: (A) Wb 2a R π(B) Wb 2b R π (C) Wb 2c R π(D) Wb 2abc R π[ B ]2. 若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.0×105- T ,则铜线中需要通过的电流为(μ0=4π×107-T ·m ·A1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B沿图中闭合路径L 的积分l B d ⋅⎰等于(A)I 0μ(B)I 031μ (C) I 041μ(D)I 032μ[ D ]5. 有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0二 填空题1.一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度 B 的大小为aIπμ830。
3.半径为0.5cm 的无限长直圆柱形导体上,沿轴线方向均匀地流着I=3A 的电流,作一个半径r=5cm 、长l=5cm 且与电流同轴的圆柱形闭合曲面S ,则该曲面上的磁感应强度 B 沿曲面的⎰=⋅Sd s B _______0_________________________。
大学物理答案

《大学物理》练习题 No .1 电场强度班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________ 说明:字母为黑体者表示矢量 选择题1.关于电场强度定义式E = F/q0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q0的大小成反比; (B) 对场中某点,试探电荷受力F 与q0的比值不因q0而变; (C) 试探电荷受力F 的方向就是场强E 的方向;(D) 若场中某点不放试探电荷q0,则F = 0,从而E = 0.2.如图1.1所示,在坐标(a, 0)处放置一点电荷+q ,在坐标(-a,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x, 0).当x >>a 时,该点场强的大小为:[ D ](A) x q 04πε. (B)204x qπε.(C)302x qa πε (D)30x qaπε.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷 q2 的作用力为f12 ,当放入第三个电荷Q 后,以下说法正确的是[ C ] (A) f12的大小不变,但方向改变, q1所受的总电场力不变; (B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化; f12的大小、方向均发生改变, q1受的总电场力也发生了变化. 填空题1.如图1.4所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离211λλλ+d.2.如图1.5所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E=23220)(21a y qy+πε ,场强最大值的位置在y=a22±.3. 两块“无限大”的带电平行电板,其电荷面密度分别为σ (0>σ)及σ2-,如图1.6所示,试写出各区域的电场强度E。
《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。
2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。
4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。
因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。
5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。
6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。
刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。
大学物理练习题及答案

∙ -q OABCD关于点电荷以下说法正确的是 D(A) 点电荷是电量极小的电荷; (B) 点电荷是体积极小的电荷;(C) 点电荷是体积和电量都极小的电荷;(D) 带电体的线度与其它有关长度相比可忽略不计。
关于点电荷电场强度的计算公式E = q r / (4 π ε 0 r 3),以下说法正确的是 B(A) r →0时, E →∞;(B) r →0时, q 不能作为点电荷,公式不适用; (C) r →0时, q 仍是点电荷,但公式无意义;(D) r →0时, q 已成为球形电荷, 应用球对称电荷分布来计算电场. 如果对某一闭合曲面的电通量为S E d ⋅⎰S=0,以下说法正确的是 A(A) S 面内电荷的代数和为零; (B) S 面内的电荷必定为零; (C) 空间电荷的代数和为零; (D) S 面上的E 必定为零。
已知一高斯面所包围的空间内电荷代数和 ∑q =0 ,则可肯定: C(A). 高斯面上各点场强均为零. (B). 穿过高斯面上每一面元的电场强度通量均为零.(C). 穿过整个高斯面的电场强度通量为零. (D). 以上说法都不对.如图,在点电荷+q 的电场中,若取图中P 点处为 电势零点,则M 点的电势为 D(A) q /(4πε0a ) (B) −q /(4πε0a ) (C) q /(8πε0a ) (D) −q /(8πε0a )对于某一回路l ,积分l B d ⋅⎰l 等于零,则可以断定 D(A) 回路l 内一定有电流; (B) 回路l 内一定无电流;(C) 回路l 内可能有电流; (D) 回路l 内可能有电流,但代数和为零。
如图,一电量为-q 的点电荷位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 A(A) 从A 到各点,电场力做功相等; (B) 从A 到B ,电场力做功最大; (C) 从A 到D ,电场力做功最大;+q(D) 从A 到C ,电场力做功最大。
大学物理练习题及参考答案

一、填空题 1、一质点沿y 轴作直线运动,速度j t v)43(+=,t =0时,00=y ,采用SI 单位制,则质点的运动方程为=ymt t 223+;加速度y a = 4m/s 2 。
2、一质点沿半径为R 的圆周运动,其运动方程为22t +=θ。
质点的速度大小为 2t R ,切向加速度大小为 2R 。
3、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 400N 。
4、在一带电量为Q 的导体空腔内部,有一带电量为-q 的带电导体,那么导体空腔的内表面所带电量为 +q ,导体空腔外表面所带电量为 Q -q 。
5、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F)43(+=作用下,无摩擦地运动,则物体运动到3米处,在这段路程中力F所做的功为5J13mV 21W 2.=∆=。
6、带等量异号电荷的两个无限大平板之间的电场为0εσ,板外电场为 0 。
8、一长载流导线弯成如右图所示形状,则O 点处磁感应强度B的大小为RIR I 83400μπμ+,方向为⊗。
9、在均匀磁场B 中, 一个半径为R 的圆线圈,其匝数为N,通有电流I ,则其磁矩的大小为NIR m 2π=,它在磁场中受到的磁力矩的最大值为NIBR M 2π=。
10、一电子以v垂直射入磁感应强度B 的磁场中,则作用在该电子上的磁场力的大小为F = Bqv F 0=。
电子作圆周运动,回旋半径为qBmvR =。
11、判断填空题11图中,处于匀强磁场中载流导体所受的电磁力的方向;(a ) 向下 ;(b ) 向左 ;(c ) 向右 。
12、已知质点的运动学方程为j t i t r)1(2-+=。
试求:(1)当该质点速度的大小为15-⋅s m 时,位置矢量=r i 1;(2)任意时刻切向加速度的大小τa =1442+t t 。
16、有一球状导体A ,已知其带电量为Q 。
大学物理第一章习题参考答案

θ
+
v = vmax / 2
(B) (D)
v = 3v max / 2
v0 r A
O
v = 2v max / 2 v = v max / 2
o
t=0
解:如图画出已知所对应矢量 A,可知 A 与 x 轴正向的夹角 为 θ = 60 ,则根据简谐运动与旋转矢量的对应关系可得
7.5 x(cm)
v = ωA sin θ = 3v max / 2
4. 一弹簧振子作简谐振动,总能量为 E1 ,如果简谐振动振幅增加为原来的两倍,重物的 质量增加为原来的四倍,则它的总能量 E 变为 [ D ] (A) E1 /4 (B) E1 /2 解:原来的弹簧振子的总能量 E1 = (C) 2 E1 (D) 4 E1
1 1 2 2 2 kA1 = m1ω1 A1 ,振动增加为 A2 = 2 A1 ,质量增 2 2
1 π 3
。
解: 由矢量图可知,x1 和 x2 反相,合成振动的振幅
A = A1 − A2 = 0.05 − 0.03 = 0.02(m) ,初相 ϕ = ϕ1 =
四、计算题: 1.一定滑轮的半径为 R,转动惯量为 J,其上挂一轻绳,绳的一端 系一质量为 m 的物体,另一端与一固定的轻弹簧相连,如图所示。 设弹簧的倔强系数为 k, 绳与滑轮间无滑动,且忽略摩擦力及空气的 阻力。现将物体 m 从平衡位置拉下一微小距离后放手,证明物体作 简谐振动,并求出其角频率。 解:取如图 x 坐标,平衡位置为坐标原点,向下为正方向。 m 在平衡位置,弹簧伸长 x0, 则有 mg = kx0 ……………………(1) 现将 m 从平衡位置向下拉一微小距离 x, m 和滑轮 M 受力如图所示。 由牛顿定律和转动定律列方程, mg − T1 = ma ………………… (2)
《大学物理》习题册题目及答案第3单元角动量守恒定律

第3单元 角动量守恒定律序号 学号 姓名专业、班级一 选择题[ A ]1.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为 (A) GMR m(B)RGMm (C) R GMm(D)RGMm2 [ C ]2. 关于刚体对轴的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C) 取决于刚体的质量、质量的空间分布和轴的位置(D) 只取决于转轴的位置、与刚体的质量和质量的空间分布无关。
[ E ]3. 如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体 (A)动能不变,动量改变。
(B)动量不变,动能改变。
(C)角动量不变,动量不变。
(D)角动量改变,动量改变。
(E)角动量不变,动能、动量都改变。
[ A ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大 。
[ B ]5.两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘质量与厚度相A •同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 (A) A J >B J (B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定[ A ]6.有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
《大学物理》恒定磁场练习题及答案

《大学物理》恒定磁场练习题及答案一、简答题1、如何使一根磁针的磁性反转过来?答:磁化:比如摩擦,用一个磁体的N 极去摩擦小磁针的N 极可以让它变为S 极,另一端成N 极。
2、为什么装指南针的盒子不是用铁,而是用胶木等材料做成的? 答:铁盒子产生磁屏蔽使得指南针无法使用。
3、在垂直和水平的两个金属圆中通以相等的电流,如图所示,问圆心O 点处的磁场强度大小及方向如何?答:根据圆电流中心处磁感应强度公式,水平金属圆在O 点的磁感应强度大小为RI20μ;方向垂直向下,竖直金属圆在O 点的磁感应强度大小为RI20μ;方向垂直指向纸面内。
故O 点叠加后的磁感应强度大小为RI220μ;方向为斜下450指向纸面内。
4、长直螺旋管中从管口进去的磁力线数目是否等于管中部磁力线的数目? 为什么管中部的磁感应强度比管口处大?答:因为磁力线是闭合曲线,故磁力线数目相等。
根据载流长直螺旋管磁感应强度计算公式)cos (cos 21120θθμ-=nI B 可知,管口处21πθ→,0cos 1=θ,管口处磁感应强度为20cos 21θμnI B =;中心处212cos 2cos cos θθθ'='-',故中心处磁感应强度为20cos θμ'=nI B ,因为22θθ>',所以中心处磁感应强度比管口处大。
5、电荷在磁场中运动时,磁力是否对它做功? 为什么? 答:不作功,因为磁力和电荷位移方向成直角。
6、在均匀磁场中,怎样放置一个正方型的载流线圈才能使其各边所受到的磁力大小相等?答:磁力线垂直穿过正四方型线圈的位置。
因为线圈每边受到的安培力为B Ia F ⨯=,由于处在以上平面时,每边受到的磁力为IaB F =。
7、一个电流元Idl 放在磁场中某点,当它沿x 轴放置时不受力,如把它转向y 轴正方向时,则受到的力沿z 铀负方向,问该点磁感应强度的方向如何?答:由安培力公式B Idl dF ⨯=可知,当Idl 沿x 轴放置时不受力,即0=dF ,可知B 与Idl 的方向一致或相反,即B 的方向沿x 轴线方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 热力学基础一、选择题2. 对于物体的热力学过程, 下列说法中正确的是[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关(C) 在物体内, 若单位体积内所含热量越多, 则其温度越高(D) 以上说法都不对8. 理想气体物态方程在不同的过程中可以有不同的微分表达式, 则式T R MmV p p V d d d =+表示 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 任意过程9. 热力学第一定律表明[ ] (A) 系统对外做的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所做的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于113. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2,(Vp . 一次是等温压缩到2V , 外界做功A ;另一次为绝热压缩到2V, 外界做功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较14. 1mol 理想气体从初态(T 1, p 1, V 1 )等温压缩到体积V 2, 外界对气体所做的功为 [ ] (A) 121lnV V RT (B) 211ln V V RT (C) )(121V V p - (D) 1122V p V p -20. 物质的量相同的两种理想气体, 一种是单原子分子气体, 另一种是双原子分子气体,从同一状态开始经等体升压到原来压强的两倍.在此过程中, 两气体 [ ] (A) 从外界吸热和内能的增量均相同 (B) 从外界吸热和内能的增量均不相同 (C) 从外界吸热相同, 内能的增量不相同 (D) 从外界吸热不同, 内能的增量相同 21. 两汽缸装有同样的理想气体, 初态相同.经等体过程后, 其中一缸气体的压强变为原来的两倍, 另一缸气体的温度也变为原来的两倍.在此过程中, 两气体从外界吸热 [ ] (A) 相同 (B) 不相同, 前一种情况吸热多 (C) 不相同, 后一种情况吸热较多 (D) 吸热多少无法判断25. 两汽缸装有同样的理想气体, 初始状态相同.等温膨胀后, 其中一汽缸的体积膨胀为原来的两倍, 另一汽缸内气体的压强减小到原来的一半.在其变化过程中, 两气体对外做功[ ] (A) 相同(B) 不相同, 前一种情况做功较大(C) 不相同, 后一种情况做功较大(D) 做功大小无法判断27. 在273 K和一个1atm下的单原子分子理想气体占有体积22.4 L.将此气体绝热压缩至体积为16.8 L, 需要做多少功?[ ] (A) 330 J (B) 680 J (C) 719 J (D) 223 J28. 一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E1变化到E2.在上述三过程中, 气体的[ ] (A) 温度变化相同, 吸热相同(B) 温度变化相同, 吸热不同(C) 温度变化不同, 吸热相同(D) 温度变化不同, 吸热也不同30. 一定量的理想气体, 从同一状态出发, 经绝热压缩和等温压缩达到相同体积时, 绝热压缩比等温压缩的终态压强[ ] (A) 较高(B) 较低(C) 相等(D) 无法比较31. 一定质量的理想气体从某一状态经过压缩后, 体积减小为原来的一半, 这个过程可以是绝热、等温或等压过程.如果要使外界所做的机械功为最大, 这个过程应是[ ] (A) 绝热过程(B) 等温过程(C) 等压过程(D) 绝热过程或等温过程均可33. 一定质量的理想气体经历了下列哪一个变化过程后, 它的内能是增大的?[ ] (A) 等温压缩(B) 等体降压(C) 等压压缩(D) 等压膨胀35. 提高实际热机的效率, 下面几种设想中不可行的是[ ] (A) 采用摩尔热容量较大的气体作工作物质(B) 提高高温热源的温度(C) 使循环尽量接近卡诺循环(D) 力求减少热损失、摩擦等不可逆因素38. 卡诺循环的特点是[ ] (A) 卡诺循环由两个等压过程和两个绝热过程组成(B) 完成一次卡诺循环必须有高温和低温两个热源(C) 卡诺循环的效率只与高温和低温热源的温度有关(D) 完成一次卡诺循环系统对外界做的净功一定大于042. 根据热力学第二定律可知, 下列说法中唯一正确的是[ ] (A) 功可以全部转换为热, 但热不能全部转换为功(B) 热量可以从高温物体传到低温物体, 但不能从低温物体传到高温物体(C) 不可逆过程就是不能沿相反方向进行的过程(D) 一切自发过程都是不可逆过程44. 热力学第二定律表明[ ] (A) 不可能从单一热源吸收热量使之全部变为有用功(B) 在一个可逆过程中, 工作物质净吸热等于对外做的功(C) 摩擦生热的过程是不可逆的(D) 热量不可能从温度低的物体传到温度高的物体46. 有人设计了一台卡诺热机(可逆的).每循环一次可从400 K 的高温热源吸收1800 J 的热量, 向300 K 的低温热源放热800 J, 同时对外做功1000 J .这样的设计是 [ ] (A) 可以的, 符合热力学第一定律 (B) 可以的, 符合热力学第二定律(C) 不行的, 卡诺循环所做的功不能大于向低温热源放出的热量 (D) 不行的, 这个热机的效率超过了理论值 48. 如图9-1-48所示,如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a '',那么循环abcda 与da c b a ''所做的功和热机效率变化情况是 [ ] (A) 净功增大,效率提高 (B) 净功增大,效率降低 (C) 净功和效率都不变 (D) 净功增大,效率不变 51. 在图9-1-51中,I c II 为理想气体绝热过程,I a II 和I b II 是任意过程.此两任意过程中气体做功与吸收热量的情况是[ ] (A) I a II 过程放热,做负功;I b II 过程放热,做负功(B) I a II 过程吸热,做负功;I b II 过程放热,做负功(C) I a II 过程吸热,做正功;I b II 过程吸热,做负功(D) I a II 过程放热,做正功;I b II 过程吸热,做正功 55. 两个完全相同的汽缸内盛有同种气体,设其初始状态相同.今使它们分别作绝热压缩至相同的体积,其中汽缸1内的压缩过程是非准静态过程,而汽缸2内的压缩过程则是准静态过程.比较这两种情况的温度变化[ ] (A) 汽缸1和汽缸2内气体的温度变化相同 (B) 汽缸1内的气体较汽缸2内的气体的温度变化大(C) 汽缸1内的气体较汽缸2内的气体的温度变化小 (D) 汽缸1和汽缸2内的气体的温度无变化 二、填空题9. 一卡诺机(可逆的),低温热源的温度为C 27 ,热机效率为40%,其高温热源温度为 K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加 K .10. 一个作可逆卡诺循环的热机,其效率为η,它的逆过程的致冷系数212T T T w -=,则η与w 的关系为 .11. 1mol 理想气体(设VPC C =γ为已知)的循环过程如图9-2-11所示,其中CA 为绝热过程,A 点状态参量(11,V T ),和B 点的状态参量(21,V T )为已知.则C 点的状态参量为:=C V ,T 12T图9-2-11图9-1-51=C T ,=C p .12. 一定量的理想气体,从A 状态),2(11V p 经历如图9-2-12所示的直线过程变到B 状态)2,(11V p ,则AB 过程中系统做功___________, 内能改变△E =_________________.13. 质量为m 、温度为0T 的氦气装在绝热的容积为V 的封闭容器中,容器一速率v 作匀速直线运动.当容器突然停止后,定向运动的动能全部转化为分子热运动的动能,平衡后氦气的温度增大量为 .16. 一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3) 绝热过程.其中:__________过程气体对外做功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多. 19. 如图9-2-19所示,一定量的理想气体经历c b a →→过程,在此过程中气体从外界吸收热量Q ,系统内能变化E ∆.则Q和E ∆ >0,<0或= 0的情况是:Q _________, ∆E __________.20. 将热量Q 传给一定量的理想气体, (1) 若气体的体积不变,则其热量转化为 ;(2) 若气体的温度不变,则其热量转化为 ;(3) 若气体的压强不变,则其热量转化为 . 21. 有一卡诺热机,用29kg 空气作为工作物质,工作在27℃的高温热源与-73℃的低温热源之间,此热机的效率η=______________.若在等温膨胀的过程中汽缸体积增大到2.718倍,则此热机每一循环所做的功为_________________.(空气的摩尔质量为29×10-3 kg ⋅mol -1,普适气体常量R =8.3111K mol J --⋅⋅)第10章 气体动理论一、选择题(30)1. 一理想气体样品, 总质量为m , 体积为V , 压强为p , 热力学温度为T , 密度为ρ, 总分子数为N , k 为玻尔兹曼常数, R 为摩尔气体常量, 则其摩尔质量可表示为 [ ] (A)mRTpV(B) pV mkT (C) p kT ρ (D) p RT ρ2. 如图10-1-2所示,一个瓶内装有气体, 但有小孔与外界相通, 原来瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为原来质量的______倍.Ap12p 1p B1V 12V VO图9-2-12pVO ab图9-2-19 c图10-1-2[ ] (A)12727(B)32(C) 43(D)101 6. 理想气体能达到平衡态的原因是[ ] (A) 各处温度相同 (B) 各处压强相同(C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同7. 理想气体的压强公式k 32εn p =可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出8. 一个容器内贮有1mol 氢气和1mol 氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是:[ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的10. 若室内生起炉子后温度从15︒C 升高到27︒C, 而室内气压不变, 则此时室内的分子数减少了[ ] (A) 0.5% (B) 4% (C) 9% (D) 21%13. 对于kT 23k =ε中的平均平动动能k ε和温度T 可作如下理解 [ ] (A) k ε是某一分子的平均平动动能 (B) k ε是某一分子的能量长时间的平均值 (C)k ε是温度为T 的几个分子的平均平动动能(D) 气体的温度越高, 分子的平均平动动能越大15. 在刚性密闭容器中的气体, 当温度升高时, 将不会改变容器中 [ ] (A) 分子的动能 (B) 气体的密度(C) 分子的平均速率 (D) 气体的压强 16. 在一固定容积的容器内, 理想气体温度提高为原来的两倍, 则 [ ] (A) 分子的平均动能和压强都提高为原来的两倍(B) 分子的平均动能提高为原来的两倍, 压强提高为原来的四倍 (C) 分子的平均动能提高为原来的四倍, 压强提高为原来的两倍 (D) 因为体积不变, 所以分子的动能和压强都不变17. 两种不同的气体, 一瓶是氦气, 另一瓶是氮气, 它们的压强相同, 温度相同, 但容积不同, 则[ ] (A) 单位体积内的分子数相等 (B) 单位体积内气体的质量相等 (C) 单位体积内气体的内能相等 (D) 单位体积内气体分子的动能相等19. 如果氢气和氦气的温度相同, 物质的量也相同, 则这两种气体的 [ ] (A) 平均动能相等 (B) 平均平动动能相等 (C) 内能相等 (D) 势能相等21. 平衡状态下, 刚性分子理想气体的内能是[ ] (A) 部分势能和部分动能之和 (B) 全部势能之和 (C) 全部转动动能之和 (D) 全部动能之和22. 在标准状态下, 体积比为2121 V V 的氧气和氦气(均视为刚性分子理想气体)相混合, 则其混合气体中氧气和氦气的内能比为: [ ] (A)21 (B)35 (C)65 (D)103 24. 压强为p 、体积为V 的氢气(视为理想气体)的内能为 [ ] (A)pV 25 (B) pV 23 (C) pV 21(D) pV 25. 理想气体分子的平均平动动能为 [ ] (A) 221v m (B) 221v m (C) 12kT (D) 72kT27. 根据经典的能量均分原理, 在适当的正交坐标系中, 每个自由度的平均能量为 [ ] (A) kT (B)kT 31 (C) kT 23 (D) kT 2129. 在一定速率v 附近麦克斯韦速率分布函数f (v )的物理意义是: 一定量的理想气体在给定温度下处于平衡态时的[ ] (A) 速率为v 时的分子数 (B) 分子数随速率v 的变化(C) 速率为v 的分子数占总分子数的百分比(D) 速率在v 附近单位速率区间内的分子数占总分子数的百分比32. 关于麦氏速率分布曲线, 如图10-1-32所示. 有下列说法, 其中正确的是 [ ] (A) 分布曲线与v 轴围成的面积表示分子总数(B) 以某一速率v 为界, 两边的面积相等时, 两边的分子数也相等(C) 麦氏速率分布曲线下的面积大小受气体的温度与分子质量的影响 (D) 以上说法都不对33. 如图10-1-32所示,在平衡态下, 理想气体分子速率区间v 1 ~ v 2内的分子数为图10-1-32O图10-1-331[ ] (A) ⎰21d )(v vv v f (B) ⎰21d )(v vv v Nf (C) ⎰21d )(v vv v v f (D)⎰21d )(v vv v f34. 平衡态下, 理想气体分子在速率区间v ~ v +d v 内的分子数密度为 [ ] (A) nf (v ) d v (B) Nf (v ) d v (C) ⎰21d )(v vv v f (D)⎰21d )(v v v v Nf40. 设声波通过理想气体的速率正比于气体分子的热运动平均速率, 则声波通过具有相同温度的氧气和氢气的速率之比22H O u u 为[ ] (A) 1 (B) 21 (C) 31 (D) 4141. 设图10-1-41示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则[ ] (A) 图中a 表示氧气分子的速率分布曲线,()()422H p Op =v v (B) 图中a 表示氧气分子的速率分布曲线,()()4122Hp Op =v v (C) 图中b 表示氧气分子的速率分布曲线,()()4122Hp Op =v v (D) 图中b 表示氧气分子的速率分布曲线,()()422Hp Op =v v43. 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 0.根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 [ ] (A) 023m kTx =v(B) 02331m kTx =v(C) 023m kT x =v (D) 02m kT x =v 59. 设有以下一些过程(1) 两种不同气体在等温下互相混合. (2) 理想气体在定容下降温. (3) 液体在等温下汽化.图10-1-41(4) 理想气体在等温下压缩. (5) 理想气体绝热自由膨胀.在这些过程中,使系统的熵增加的过程是[ ] (A) (1)、(2)、(3) (B) (2)、(3)、(4)(C) (3)、(4)、(5) (D) (1)、(3)、(5)60. 一定量的理想气体向真空作绝热自由膨胀,体积由1V 增至2V ,在此过程中气体的 [ ] (A) 内能不变,熵增加 (B) 内能不变,熵减少(C) 内能不变,熵不变 (D) 内能增加,熵增加61. 关于温度的意义,有下列几种说法: (1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是[ ] (A) (1)、(2)、(4) (B) (1)、(2)、(3) (C) (2)、(3)、(4) (D) (1)、(3)、(4)二、填空题(11)1. 设某理想气体体积为V , 压强为p , 温度为T , 每个分子的质量为m ,玻耳兹曼常量为k , 则该气体的分子总数可表示为 .2. 氢分子的质量为3.3×10-24 g ,如果每秒有1023个氢分子沿着与容器器壁的法线成45︒角的方向以105 cm ⋅s -1的速率撞击在2.0 cm 2面积上(碰撞是完全弹性的),则此氢气的压强为____________.5. 气体分子间的平均距离l 与压强p 、温度T 的关系为______________,在压强为 1atm 、温度为0℃的情况下,气体分子间的平均距离l =________________m .7. 某容器内分子数密度为326m 10-,每个分子的质量为kg 10327-⨯,设其中61分子数以速率1s m 200-⋅=v 垂直地向容器的一壁运动,而其余65分子或者离开此壁、或者平行此壁方向运动,且分子与容器壁的碰撞为完全弹性.则(1) 每个分子作用于器壁的冲量=∆p ; (2) 每秒碰在器壁单位面积上的分子数=0n ; (3) 作用在器壁上的压强p = .8. 容器中储有1 mol 的氮气,压强为1.33 Pa ,温度为 7 ℃,则(1) 1 m 3中氮气的分子数为___________________; (2) 容器中的氮气的密度为____________________;(3) 1 m 3中氮分子的总平动动能为_________________.10. 容积为10 l 的盒子以速率v = 200m ⋅s -1匀速运动,容器中充有质量为50g ,温度为C 18 的氢气,设盒子突然停止,全部定向运动的动能都变为气体分子热运动的动能,容器与外界没有热量交换,则达到热平衡后,氢气的温度增加了 K ;氢气的压强增加了 Pa .(摩尔气体常量11K mol 1J 3.8--⋅⋅=R ,氢气分子可视为刚性分子)11. 一能量为1012 eV 的宇宙射线粒子,射入一氖管中,氖管内充有 0.1 mol 的氖气,若宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了_______________K . (1 eV =1.60×10-19J ,摩尔气体常量R =8.31 J ⋅ mol -1 ⋅ K -1)13. 如图10-2-13所示, 大气中有一绝热气缸,其中装有一定量的理想气体,然后用电炉徐徐供热,使活塞(无摩擦地)缓慢上升.在此过程中,以下物理量将如何变化? (选用“变大”、“变小”、“不变”填空)(1) 气体压强______________; (2) 气体分子平均动能______________; (3) 气体内能______________.19. 如图10-2-19所示氢气分子和氧气分子在相同温度下的麦克斯韦速率分布曲线.则氢气分子的最概然速率为______________,氧分子的最概然速率为____________.21. 已知f (v )为麦克斯韦速率分布函数,N 为总分子数,则(1) 速率v > 100 m ⋅ s -1的分子数占总分子数的百分比的表达式为________________;(2) 速率v > 100 m ⋅ s -1的分子数的表达式为________________________. 23. 如图10-2-23所示曲线为处于同一温度T 时氦(相对原子量4)、氖(相对原子量20)和氩(相对原子量40)三种气体分子的速率分布曲线.其中曲线(a )是 气分子的速率分布曲线;曲线(c )是 气分子的速率分布曲线.第12章 波动光学一、选择题1. 如图12-1-1所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是[ ] (A) e n 22 (B) λ2122-e n(C) λ-22n (D) 2222n e n λ-图10-2-19O )s 1-图10-2-23O2. 如图12-1-2所示,1S 、2S 是两个相干光源,他们到P 点的距离分别为 1r 和 2r .路径P S 1垂直穿过一块厚度为1t 、折射率为1n 的一种介质;路径P S 2垂直穿过一块厚度为2t 、折射率为2n 的另一介质;其余部分可看作真空.这两条光路的光程差等于 [ ] (A) )()(111222t n r t n r +-+(B) ])1([])1([121222t n r t n r -+--+ (C) )()(111222t n r t n r --- (D) 1122t n t n -8. 相干光是指[ ] (A) 振动方向相同、频率相同、相位差恒定的两束光(B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光 11. 如图12-1-11所示,用厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两片透明介质分别盖住杨氏双缝实验中的上下两缝, 若入射光的波长为λ, 此时屏上原来的中央明纹处被第三级明纹所占据, 则该介质的厚度为 [ ] (A) λ3(B)123n n -λ(C) λ2(D)122n n -λ13. 在杨氏双缝实验中, 若用白光作光源, 干涉条纹的情况为 [ ] (A) 中央明纹是白色的 (B) 红光条纹较密(C) 紫光条纹间距较大 (D) 干涉条纹为白色 14. 如图12-1-14所示,在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝2S 盖住,并在21S S 连线的垂直平面出放一反射镜M ,则此时 [ ] (A) P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹16. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d , 双缝到屏的距离为D (d D >>),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是图12-1-111S 2S M图12-1-141S S 1t 1r 1n 2t 2n 2r P图12-1-2t 1 t 1 n 2[ ] (A) nd D λ (B) d D n λ (C) nD d λ (D) nd D2λ17. 如图12-1-17所示,在杨氏双缝实验中, 若用一片厚度为d 1的透光云母片将双缝装置中的上面一个缝挡住; 再用一片厚度为d 2的透光云母片将下面一个缝挡住, 两云母片的折射率均为n , d 1>d 2, 干涉条纹的变化情况是[ ] (A) 条纹间距减小 (B) 条纹间距增大 (C) 整个条纹向上移动 (D) 整个条纹向下移动 20. 在保持入射光波长和缝屏距离不变的情况下, 将杨氏双缝的缝距减小, 则[ ] (A) 干涉条纹宽度将变大 (B) 干涉条纹宽度将变小(C) 干涉条纹宽度将保持不变 (D) 给定区域内干涉条纹数目将增加22. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为[ ] (A) 明纹间距逐渐减小, 并背离劈棱移动(B) 明纹间距逐渐变小, 并向劈棱移动(C) 明纹间距逐渐变大, 并向劈棱移动(D) 明纹间距逐渐变大, 并背向劈棱移动24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ] (A) 间隔变小,并向棱边方向平移 (B) 间隔变大,并向远离棱边方向平移(C) 间隔不变,向棱边方向平移 (D) 间隔变小,并向远离棱边方向平移26. 如图12-1-26(a)所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500nm(1nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如图12-1-26(b)所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切.则工件的上表面缺陷是 [ ] (A) 不平处为凸起纹,最大高度为500 nm (B) 不平处为凸起纹,最大高度为250 nm(C) 不平处为凹槽,最大深度为500 nm(D) 不平处为凹槽,最大深度为250 nm27. 设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动, 当透镜向上平移(即离开玻璃板)时, 从入射光方向可观察到干涉条纹的变化情况是[ ] (A) 环纹向边缘扩散, 环纹数目不变 (B) 环纹向边缘扩散, 环纹数目增加(C) 环纹向中心靠拢, 环纹数目不变 (D) 环纹向中心靠拢, 环纹数目减少29. 如图12-1-29所示,在牛顿环装置中, 若对平凸透镜的平面垂直向下施加压力(平凸透镜的平面始终保持与玻璃片平行), 则牛顿环 [ ] (A) 向中心收缩, 中心时为暗斑, 时为明斑, 明暗交替变化 (B) 向中心收缩, 中心处始终为暗斑 (C) 向外扩张, 中心处始终为暗斑 BA图12-1-26(a) 图12-1-26(b)图12-1-17E图12-1-29 λF(D) 向中心收缩, 中心处始终为明斑31. 根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面半径R 的关系式Rr d k k 22=可知,离开环心越远的条纹 [ ] (A) 对应的光程差越大,故环越密 (B) 对应的光程差越小,故环越密(C) 对应的光程差增加越快,故环越密 (D) 对应的光程差增加越慢,故环越密33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的.这是因为[ ] (A) 牛顿环的条纹是环形的 (B) 劈尖条纹是直线形的(C) 平凸透镜曲面上各点的斜率不等 (D) 各级条纹对应膜的厚度不等38. 若用波长为λ的单色光照射迈克耳孙干涉仪,并在迈克耳孙干涉仪的一条光路中放入厚度为l 、折射率为n 的透明薄片.放入后,干涉仪两条光路之间的光程差改变量为[ ] (A) (n -1)l (B) nl (C) 2nl (D) 2(n -1)l43. 光波的衍射现象没有声波显著, 这是由于[ ] (A) 光波是电磁波, 声波是机械波 (B) 光波传播速度比声波大(C) 光是有颜色的 (D) 光的波长比声波小得多46. 在夫琅禾费单缝衍射实验中, 欲使中央亮纹宽度增加, 可采取的方法是[ ] (A) 换用长焦距的透镜 (B) 换用波长较短的入射光(C) 增大单缝宽度 (D) 将实验装置浸入水中49. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图12-1-49所示,在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 [ ] (A) λ (B) 2λ (C) 23λ (D) λ2 50. 在单缝夫琅禾费衍射实验中,若增大缝宽,其它条件不变,则中央明纹[ ] (A) 宽度变小 (B) 宽度变大(C) 宽度不变,且中心强度也不变 (D) 宽度不变,但中心强度增大51. 在如图12-1-51所示的在单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若单缝a 变为原来的23倍,同时使入射的单色光的波长变为原来的 43倍,则屏幕E 上的单缝衍射条纹中央明纹的宽度x ∆将变为原来的P图12-1-49图12-1-51λ[ ] (A)43倍 (B)32倍 (C)89倍 (D)21倍56. 一衍射光栅由宽300 nm 、中心间距为900 nm 的缝构成, 当波长为600 nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为[ ] (A) 2条 (B) 3条 (C) 4条 (D) 5条57. 白光垂直照射到每厘米有5000条刻痕的光栅上, 若在衍射角ϕ = 30°处能看到某一波长的光谱线, 则该光谱线所属的级次为[ ] (A) 1 (B) 2 (C) 3 (D) 465. 在一光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在入射光波长一定的情况下, 光栅的[ ] (A) 光栅常数越小 (B) 衍射图样中亮纹亮度越小(C) 衍射图样中亮纹间距越小 (D) 同级亮纹的衍射角越小67. 用单色光照射光栅,屏幕上能出现的衍射条纹最高级次是有限的.为了得到更高衍射级次的条纹,应采用的方法是[ ] (A) 改用波长更长的单色光 (B) 将单色光斜入射(C) 将单色光垂直入射 (D) 将实验从光密介质改为光疏介质69. 用波长为λ的光垂直入射在一光栅上, 发现在衍射角为ϕ 处出现缺级, 则此光栅上缝宽的最小值为[ ] (A) ϕλsin 2 (B) ϕλsin (C) ϕλsin 2 (D) λϕsin 277. 有两种不同的介质, 第一介质的折射率为n 1 , 第二介质的折射率为n 2 ; 当一束自然光从第一介质入射到第二介质时, 起偏振角为i 0 ; 当自然光从第二介质入射到第一介质时, 起偏振角为i .如果i 0>i , 则光密介质是[ ] (A) 第一介质 (B) 第二介质(C) 不能确定 (D) 两种介质的折射率相同79. 自然光以 60的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射角为 30(B) 折射光为部分线偏振光,折射角为 30(C) 折射光为线偏振光,折射角不能确定(D) 折射光为部分线偏振光,折射角不能确定81. 如图12-1-81所示,一束自然光由空气射向一块玻璃,入射角等于布儒斯特角0i ,则界面2的反射光是[ ] (A) 自然光(B) 完全偏振光且光矢量的振动方向垂直于入射面。