初中数学华东师大七年级下册(2023年新编)第10章 轴对称平移与旋转生活中的轴对称教案

合集下载

七年级下册数学华师版 第10章 轴对称、平移与旋转10.1 轴对称10.1.1 生活中的轴对称【说课稿】

七年级下册数学华师版  第10章  轴对称、平移与旋转10.1  轴对称10.1.1  生活中的轴对称【说课稿】

课题:生活中的轴对称---------定安县永丰学校蔡小梅一、教材分析“生活中的轴对称”是七年级下册第十章《轴对称》中的第一节内容,它与现实生活联系紧密,轴对称的知识在小学已有初步的渗透,在初中阶段,它不但与图形的三种运动方式(平移、翻折、旋转)中的翻折有着不可分割的联系,又是今后研究等腰三角形的轴对称性及其相关性质的重要依据和基础。

轴对称的知识分为六个课时,本节属于第一课时,主要学习轴对称图形的概念、理解轴对称图形和两个图形成轴对称的区别,识别简单的轴对称图形及对称轴。

二、学情分析学生在小学阶段对轴对称已经有了初步的接触。

学生从生活中接触了轴对称图形。

三、教学目标,教学重点,教学难点1、教学目标:根据大纲要求和教材的特点,结合七年级学生的实际水平,本节课我确定了如下教学目标:(1)知识与技能目标:通过欣赏、折叠等活动,认识轴对称图形的共同特征,能识别简单的轴对称图形及对称轴,通过实践操作,理解轴对称图形和两个图形成轴对称的区别。

(2)过程与方法目标:经历折叠、剪纸等活动,发展学生的形象思维和空间观念,积累数学活动的经验,在动手实践中学会与人合作、彼此交流。

(3)情感与态度目标:初步获得动手的乐趣和成就感,欣赏并体会对称美,感受轴对称的价值,培养学生热爱生活的情感。

2、教学重点:根据本节课的内容和地位,重点确定为:掌握轴对称图形的概念,识别轴对称图形和对称轴。

3、教学难点:理解轴对称图形和两个图形成轴对称的区别。

四、法分析学法指导【课堂组织策略】利用学生的好奇心,设疑,解疑,组织有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关知识。

【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

【辅助策略】利用多媒体演示,迅速和直观的出示知识内容。

学具:剪刀、已裁好的图片(圆、矩形、五角星等)、白纸。

五、教学过程设计(一) 创设情境,激发兴趣我们生活在一个充满对称的世界之中,对称给人以平衡与和谐的美感。

七年级数学下册第十章轴对称、平移与旋转 全章学案 (新版)华东师大版

七年级数学下册第十章轴对称、平移与旋转   全章学案 (新版)华东师大版

生活中的轴对称从上面的图片看:这些图形如果沿某条直线,对折的两部分是请画出轴对称图形的对称轴。

像这样,把一个图形沿着某一条直线过去,如果它能够与另一请一个同学分享今天这节课他学到了什么。

平移导学目标:1. 理解图形经过平移后,“对应点所连的线段平行(或在同一条直线上),并且相等”,“对应线段平行(或在同一条直线上),并且相等”。

2. 灵活运用轴对称、平移或它们的组合进行图案设计,认识和欣赏这些图形的变换在现实生活中的应用3. 在观察、操作、推理、归纳等探索过程中,学会合情推理能力,进一步培养数学说理的习惯与能力。

导学重难点:重点:平移的特点与基本性质。

难点:利用平移的基本性质进行图案设计。

导学环节:一.自主先学1.创设教学情景(或知识链接)如图,在画平行线的时候,有时为了需要,将直尺与三角板放在倾斜的位置上。

但不管怎样,我们总可以推得:A′B′∥AB,A′B′=AB,∠B′=∠B。

同时也有:A′C′∥_____,A′C′=____,∠C′=____。

2.学法指导分析3.自主学习(完成预习内容)(1)观察下图,△ABC沿着PQ的方向平移到△A′B′C′的位置,除了对应线段平行并且相等以外,你还发现了什么现象?(2)试一试。

将上图中的△A′B′C′沿着RS的方向平移到△A″B″C″的位置,其平移的距离为线段RS的长度。

注意:在平移过程中,对应点所连的线段也可能在一条直线上。

(3)例如图,△ABC经过平移到△A′B′C′的位置。

指出平移的方向,并量出平移的距离。

4)课本“试一试”。

在课本方格纸上作出。

4.组内交流质疑二.展示后教1.小组汇报交流,展示质疑问题2.教师精讲点拨,解决质疑问题三.检测反馈1.课堂达标练习填空:(1)将线段AB向右平移3cm得到线段CD,如果AB=5 cm,则CD= ____cm.(2)将∠ABC向上平移10cm得到∠EFG,如果∠ABC=52°,则∠EFG= _________,BF= _____ cm.(3)将面积为30cm2的等腰直角三角形ABC 向下平移20cm ,得到△MNP ,则△MNP 是 三角形,它的面积是__________cm2.图中小船经过平移到了新的位置,你发现少了什么?请补上.3.如图1,在四边形ABCD 中,AD ∥BC ,AB=CD ,AD <BC ,要探究∠B 与∠C 的关系,可以采用平移的方法(如图2.3)。

七年级数学下册 第10章 轴对称 平移与旋转章末复习教学设计 (新版)华东师大版

七年级数学下册 第10章 轴对称 平移与旋转章末复习教学设计 (新版)华东师大版

第10章轴对称、平移与旋转教学目标【知识与技能】进一步感知、理解轴对称、平移与旋转现象.并能准确判断图形的平移和旋转现象.【过程与方法】通过观察、分类、对比,进一步理解图形的轴对称、平移和旋转的变换特征.【情感态度】通过丰富的旋转、平移、轴对称的感性认识,激发学生学习数学的兴趣,感受到生活与数学的密切关系. 【教学重点】理解物体的轴对称、平移和旋转的变换特征.【教学难点】理解物体的轴对称、平移和旋转的变换特征.教学过程一、知识框图,整体把握【教学说明】通过引导学生复习总结知识结构,进一步加深学生对本章知识的理解.二、释疑解惑,加深理解轴对称:1.轴对称图形的概念:如果图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形.这条直线叫做这个图形的对称轴.2.轴对称的概念:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形的对应点(即两个图形重合时互相重合的点.)叫做对称点.3.轴对称的的特征:如果一个图形关于某一条直线对称,那么连结对称点的线段的垂直平分线就是该图形的对称轴.4.轴对称的画法:如果图形是由直线、线段或射线组成时,那么只要画出图形中的特殊点的对称点,然后连接对称点,就可以画出关于这条直线的对称图形.平移:1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的特征:(1)平移后的图形与原图形的对应线段平行且相等(也可能在同一条直线上.),对应角相等,图形的形状和大小不变.(2)平移后对应点所连的线段平行并且相等.(3)在平移过程中,对应点所连的线段也可能在一条直线上.旋转:1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.2.旋转的特征:图中每一点都绕着旋转中心按同一旋转方向旋转了同样的角度;对应点到旋转中心的距离相等;对应线段相等,对应角相等;对应点与旋转中心的连线所成的角彼此相等;图形的形状与大小不变.旋转对称图形:图形围绕旋转中心旋转一定角度后能与自身重合的图形就称为旋转对称图形.中心对称图形:1.中心对称图形的概念:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.2.中心对称图形的特征:关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;反过来,如果两个图形的所有对应点连线都经过某一点,并且被这点平分,那么这两个图形关于这一点对称. 中心对称与轴对称的联系与区别:全等图形1.全等图形的概念:能够完全重合的两个图形叫做全等图形.2.全等图形的性质:全等多边形的对应边、对应角分别相等.全等三角形的对应边、对应角分别相等.【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知例1下列日常生活现象中,不属于平移的是()A.飞机在跑道上加速滑行B.大楼电梯上上下下地迎送来客C.时钟上的秒针在不断地转动- 2 -- 3 -D.滑雪运动员在白茫茫的平坦雪地上滑翔例2下列图形中,既是轴对称图形,又是中心对称图形的是( )A.等边三角形B.长方形C.等腰梯形D.平行四边形例3如图所示,△ABC 平移后得到△DEF,已知∠B=35°,∠A=85°,则∠DFE=( )A.60°B.35°C.120°D.85°例4如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD 的四个顶点都在格点上,O 为AD 边的中点,若把四边形ABCD 绕着点O 顺时针旋转180°,画出四边形ABCD 旋转后的图形A ′B ′C ′D ′.例5如图,已知△ACE 是等腰直角三角形,∠ACE=90°,B 为AE 上一点,△ABC 经过旋转到达△EDC 的位置,问:(1)旋转中心是哪个点?旋转了多少度?(2)若已知∠ACB=20°,求∠CDE 、∠DEB 的度数.【答案】1.C 2.B 3.A 4.解:如图:5.解:(1)旋转中心是点C ,旋转了90°.(2)∵△ACE 是等腰直角三角形∴∠CAB=∠CEA=45°∵△ABC 经过旋转到达△EDC 的位置∴△EDC 与△ABC 全等∴∠ECD =∠ACB=20°,∠CED=∠CAB=45°∴∠DEB=∠CED+∠CEA=90°在△EDC 中,∠ECD=20°,∠CED=45°∴∠CDE=180°-20°-450=115°四、复习训练,巩固提高1.下列标志中,是旋转对称图形但不是轴对称的有( )A.2个B.3个C.4个D.5个2.如图,下面的四个图形中,由左图绕点O顺时针旋转90°后,向左平移一个单位得到的是( )-4 -3.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 顺时针转动一个角度到A1BC1的位置,使得点A 、B 、C1在同一条直线上,那么这个角度等于( )A.120°B.90°C. 60°D. 30°4.如图,某居民小区有一长方形地,居民想在长方形地内修筑同样宽的两条小路(图中画线的是两条小路),余下部分绿化,道路的宽为2米,则绿化的面积为多少平方米?5.如图,P 为等边三角形ABC 内的一点,将△ABP 绕点A 逆时针旋转60°后能与△ACP ′重合,如果AP=3,试问PP ′是多少?为什么?【教学说明】 学生先独立完成,教师再作讲解强调.【答案】1.A 2.B 3.A 4.分析:根据平移的性质,图中水平的路平移到一条直线上,就等于32米;竖直的路平移到一条直线上,就等于20米,这样就知道了路的面积,从而可以求出剩余的面积.解:32×20—32×2—20×2+2×2=540平方米答:绿化的面积540平方米5.解:∵△ACP ′是△ABP 绕点A 逆时针旋转60°得到的.∴∠PAP ′=60° AP=AP ′ ∴△APP ′是等腰三角形且∠PAP ′=60°∴∠APP′=AP′P=60°∴△APP′是等边三角形∴PP′=AP=3五、师生互动,课堂小结通过今天的整理复习,你对对称、平移、旋转有了哪些新的认识?课后作业1.布置作业:教材第138~142页“复习题”中第2、6、10、13、15、17题.2.完成练习册中本课时练习.教学反思本节课对轴对称、平移、旋转的特征进行有目的的回顾整理.注重在练习上加深对知识点的进一步掌握.练习题有层次,有效地整合了教材和新课堂设计的练习题,注意练习的层次性.既有基本练习,又有综合练习,尽量结合学生的生活实际去设计,提升学生解决问题的能力;拓展题目,主要让学生自己依据要求去独立或合作完成,培养了学生的空间想象能力和合作意识.- 5 -。

2023七年级数学下册第10章轴对称、平移与旋转10.3旋转1图形的旋转教案(新版)华东师大版

2023七年级数学下册第10章轴对称、平移与旋转10.3旋转1图形的旋转教案(新版)华东师大版
2.拓展建议
-让学生尝试寻找生活中的旋转现象,拍摄照片或绘制草图,观察和分析这些现象背后的数学原理。
-引导学生思考旋转在艺术中的应用,如剪纸艺术、螺旋线条的设计等,探索数学与艺术的联系。
-鼓励学生探索旋转与其他几何变换(如平移、轴对称)的关系,尝试自主研究它们之间的联系和区别。
-给学生提供一些旋转相关的数学竞赛题目或挑战性问题,激发学生深入研究和探索的兴趣。
3.学生在生活中对旋转现象有所接触,如旋转门、风车等,为本节本节课旨在培养学生的数学抽象、逻辑推理、数学建模和数学运算的核心素养。通过图形的旋转的学习,学生能够抽象出旋转的性质和坐标表示,运用逻辑推理分析旋转的性质和坐标表示之间的关系,建立数学模型解决实际问题。同时,通过运用坐标表示进行图形旋转的运算,提高学生的数学运算能力。
-建议学生阅读数学史相关资料,了解旋转性质的发展历程,认识数学家们的重要贡献。
课后拓展
1.拓展内容
-阅读材料:推荐学生阅读与旋转相关的数学文章和教材,如《几何变换》、《几何中的旋转》等,以深化对旋转性质的理解。
-视频资源:推荐一些与旋转相关的数学教学视频,如几何画板教程、旋转的实际应用案例等,帮助学生直观理解旋转的性质和应用。
-鼓励学生探索旋转与其他几何变换(如平移、轴对称)的关系,尝试自主研究它们之间的联系和区别,提高学生的研究能力和创新能力。
课堂
1.课堂评价
-提问评价:通过提问的方式,了解学生对旋转性质和坐标表示的理解程度,及时发现问题并进行解决。
-观察评价:观察学生在课堂活动中的表现,了解他们对旋转的应用能力和团队合作意识。
-学生可将自己对旋转的理解和应用写成读后感或实验报告,与同学分享,互相交流和学习。
-教师可提供必要的指导和帮助,如解答学生在阅读和探索过程中遇到的问题,推荐适合的阅读材料和视频资源等。

华师版七年级数学下册第10章轴对称平移与旋转PPT课件

华师版七年级数学下册第10章轴对称平移与旋转PPT课件

七年级数学下(HS) 教学课件
10.1 轴对称
10.1.2 画轴对称图形
导入新课 讲授新课 当堂练习 课堂小结
学习目标
1.能够按要求画简单平面图形经过一次对称后的图形.(难点) 2.掌握作轴对称图形的方法.(重点)
导入新课
问题引入
我们前面学习了轴对称图形以及轴对称图形的一些相关的 性质.如果有一个图形和一条直线,如何画出这个图形关于这 条直线对称的图形呢?这节课我们一起来学习作轴对称图形的
2. 如图,点 A 和点 A’ 关于某条直线成轴对称,你能画出这条 直线吗?
A .
. A’
总结归纳 画图形的对称轴的画法。 (1)找出图形的任意一组对称点。 (2)连结对称点。 (3)画出对称点所连线段的垂直平分线, 就可以得到该图形的对称轴。 结论:如果一个图形是轴对称图形,那么连结对称点的线 段的垂直平分线就是该图形的对称轴.
知识要点 轴对称图形
比较归纳
两个图形成轴对称
图形
区别
一个图形具有的特 殊形状
两个全等图形的特殊 的位置关系
联系
1.都是沿着某条直线折叠后能重合. 2.可以互相转化.
归纳总结 轴对称图形(或成轴对称的两个图形)的对应线段(对折 后重合的线段)相等,对应角(对折后重合的角)相等.
典例精析 例1 下面这些图形是轴对称图形吗?
相等) ∴△BCE的周长=BC+CE+EB=10+6+6=22 答:△BCE的周长为22。
问题2: 角是不是轴对称图形?
试验:在半透明的纸上画∠AOB,对折,使角的两条边完 全重合,然后用直尺画出折痕OM. 从上面试验可以看出,角是轴对称图形,对称轴 是它的角平分图形,对称轴是它的角平分线 所在的直线.

华师大版数学七年级下册《第10章 轴对称、平移与旋转 10.2 平移 1. 图形的平移》教学课件

华师大版数学七年级下册《第10章 轴对称、平移与旋转 10.2 平移 1. 图形的平移》教学课件

根据上述分析,你能说明什么样 的图形运动称为平移吗?
平面图形在它所在的平面上的平行 移动,简称平移.它由移动的方向和距 离所决定.
(1)平移不改变物体形状大小,只改变位置; (2)平移的前提条件是在同一平面内; (3)平移必须是沿直线运动.
P
B
A
当我们用直尺和三角板
画平行线时,△ABC 沿直尺 C
形是( D ).
A
B
C
D
3.在以下现象中,①温度计中,液柱的 上升或下降;②打气筒打气时,活塞的运动; ③钟摆的摆动;④传送带上,瓶装饮料的移
动属于平移的是( D ).
A.①② B.①③ C.②③ D.②④
4.如图,小船经过平移到了新的位置, 你发现缺少了什么吗?请补上.
课后作业
1.从教材习题中选取. 2.完成练习册本课时的习题.
试一试
如图,△ABC 沿着由点 A 到点 A′ 的方向,平 移到△A′B′C′ 的位置. 你知道线段 AC 的中点 M 以 及线段 BC上的点 N 平移到什么地方去了吗?
ቤተ መጻሕፍቲ ባይዱ
A
A′
M
M′
B N C B′ N′ C′
随堂练习
1.平移是由_移__动__的__方__向__和__距__离__所决定.
2.下列四组图形中,有一组中的两个图 形经过平移其中一个能得到另一个,这组图
(4)线段 BC 的对应边是_B_′_C_′_; (5)∠B 的对应角是_∠__B_′_; (6)∠C 的对应角是_∠__C_′_.
△ABC平移的方向就是由点 B 到 点 B′ 的方向,平移的距离就是 线段 BB′ 的长度.
总结
一个图形经过平移后得到一个新图形, 这个图形能与原来图形互相重合,只是位 置发生了变化,我们把互相互相重合的点 称为对应点,互相重合的角称为对应角, 互相重合的线段称为对应线段.

新华东师大版七年级数学下册《10章 轴对称、平移与旋转 10.4 中心对称》教案_19

新华东师大版七年级数学下册《10章 轴对称、平移与旋转  10.4 中心对称》教案_19

教学内容:义务教育课程标准华东师大版教科书七年级下册第十章中心对称第二单元中心对称一、内容和内容解析1.内容中心对称概念、性质和中心对称图形的概念.2.内容解析中心对称是旋转角为180°的旋转,是一种特殊的旋转.中心对称在生活中广泛存在,而中心对称图形是对轴对称图形,旋转知识的延伸与拓展,学生通过本节课再次体会旋转变化,认识中心对称和中心对称图形,同时也进一步完善初中学习中对“对称图形”知识的认识.本节课从旋转变化引入中心对称的概念,先让学生从旋转的角度观察两个图形之间的关系,类比旋转得出中心对称的定义,在此基础上,通过探索成中心对称的两个图形的对称中心与对应点所连线段之间的关系获得性质,并能运用中心对称的性质画出一个图像关于某一点的对称图形,以画出的图形用描述的方式给出了中心对称图形的概念,类比中心对称得出中心对称图形的定义,渗透了从一般到特殊的数学思想方法,要求会判断一个图形是否为中心对称图形,在此基础上,通过对比中心对称和中心对称图形的概念、轴对称图形和中心对称图形,加深知识间的区别和联系.基于以上分析,确定本节课的教学重点是:中心对称概念、性质和中心对称图形的概念.二、目标和目标解析1.目标了解中心对称、中心对称图形的概念,会画一个简单几何体关于某一点对称的图形,会判断一个图形是否为中心对称图形.通过操作、观察、归纳中心对称的性质,经历由具体到抽象认识问题的过程.知道中心对称和中心对称图形联系与区别.感悟类比方法在研究数学问题中的作用.2.目标解析达成目标(1)的标志:学生能根据两个图形的特殊关系的到中心对称是旋转角为180°的旋转,类比旋转的定义得出中心对称的概念,用运动的观点观察和认识图形的过程中渗透旋转变化的思想.抽象出中心对称图形的特征,能正确识别简单的中心对称图形.达成目标(2)的标志:学生知道中心对称是旋转角为180°的旋转,进而得出中心对称的两个图形是全等图形,对称中心到两个对称点的距离相等.知道中心对称图形是一个图形,它绕一个点旋转180°后能与自身完全重合.中心对称反映了两个图形的位置关系,这两个图形绕着某一点旋转180°后能够重合;一个中心对称图形沿对称中心可以分成中心对称的两个图形,成中心对称的两个图形也可以看成是一个中心对称图形.中心对称图形和轴对称图形都是具有某种性质的一个图形.而中心对称图形有一个对称中心,图形绕中心旋转180°,轴对称图形有一条对称轴,图形沿轴对折.三、学生学情诊断学生学过轴对称图形,旋转的概念及性质,这是本节课的知识基础,在此基础上得出中心对称和中心对称图形的概念不难,但是需认识到中心对称的旋转角度必须是180°,而且这使得对称点和对称中心三点共线.而中心对称图形渗透了旋转变换思想,学生学习静态图形已成习惯,对运动变化不适应,教学时,老师要充分利用具体图形,让学生获得感性认识,进而归纳出中心对称图形满足的条件.基于以上分析,本节课的教学难点是:中心对称性质的探索、中心对称图形和中心对称的区别与联系.四、教学策略分析自然界和日常生活中有很多具有中心对称性质的事物,为学生的学习奠定了感性认识;经过轴对称图形的探索,学生具备了观察、归纳的能力;旋转的学习也为学生积累了探索的经验.因此,本节课采用演示、观察法,借助多媒体辅助教学.引导学生类比分析,通过自主探究、合作交流的方式,获取知识,掌握方法.五、教学过程前面我们研究了旋转及其性质,现在研究一类特殊的旋转--中心对称及其性质.1.了解中心对称的概念问题1 (1)如左图,把其中一个图案绕点O旋转180°,你有什么发现?图1 图2 (2)如右图,线段AC,BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180°,你有什么发现?师生活动:教师展示两组图形,演示旋转过程,学生观察后回答问题(两个图形重合).设计意图:让学生通过观察图形,感知中心对称的特征,为得出中心对称的概念作铺垫.从旋转变化的角度让学生从几何图形中体会中心对称是特殊的旋转.问题2 你能说说上述两个旋转的共同点吗?师生活动:学生独立思考后进行交流,然后学生代表发言.教师根据学生回答情况进行评价,如果学生有困难,可以适时追问.教师追问1:图形中旋转中心是哪个点?教师追问2:旋转的角度是多少?教师追问3:两个图形的关系是什么?师生活动:师生共同归纳得出:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心(简称中心).设计意图:进一步明确中心对称的共同点:(1)两个图形;(2)(选定)一个点;(3)旋转角是180°(4)两个图形重合.发现两个图形成中心对称图形的特征,进而概括出中心对称的概念.问题3 中心对称与旋转的联系和区别是什么?师生活动:学生思考并相互交流,发现其联系——中心对称和旋转都是绕着某一点进行旋转后两图形重合;区别--中心对称的旋转角都是180°,旋转的旋转角度不固定,中心对称是特殊的旋转.设计意图:进一步明确中心对称是特殊的旋转,为探索中心对称的性质作铺垫.问题4 对称中心和对称点事如何确定的?你还能指出图2中其他的对称点吗?师生活动:学生思考并回答.设计意图:明晰概念,让学生结合图1、图2理解定义中的“某一点”,明确对称中心和对称点的关系,为探索中心对称的性质作铺垫.2.探索中心对称的性质问题5 中心对称是特殊的旋转,它会有哪些性质?师生活动:教师引导学生动手操作,完成教科书64-65页的画图(图3):旋转三角尺,画关于O对称的两个三角形;利用画好的图形,分别连接对应点AA′,BB′,CC′.图3教师追问1:点O在线段AA′上吗?如果在,在什么位置?教师追问2:△ABC与△A′B′C′有什么关系?教师追问3:你能从以上过程中得到什么结论?师生活动:学生思考讨论并发表自己的看法.设计意图:让学生利用具体图形,获得感性认识,进而归纳出中心对称的性质.教师追问4:中心对称是特殊的旋转,你能从旋转的性质出发总结(演绎、类比)出中心对称的性质吗?师生活动:学生独立思考后进行交流,然后学生代表发言.教师根据学生回答情况进行评价,如果学生有困难,可以适时提出以下问题.教师追问5:中心对称的旋转角度是180°,这使得对称点和对称中心这三点有怎样的特殊位置关系?师生活动:师生共同归纳出中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.设计意图:通过中心对称性质的归纳总结让学生体会演绎和类比等方法在研究数学问题中的重要作用.清楚“三点共线”这一几何事实的表述方式.3.应用中心对称性质画图例(1)如下图4,选择点O为对称中心,画出点A关于点O的对称点A′;(2)如下图5,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.图4 图5 师生活动:学生依据中心对称的性质动手画图,学生代表在黑板上画图.待学生完成作图后,教师进一步追问.教师追问1:为什么这样作出的点A′就是点A关于点O的对称点?教师追问2:怎样画出△ABC关于点O对称的△A′B′C′?师生活动:学生思考并回答:要画一个多边形关于已知点的对称图形,只要画出这个多边形的各个顶点关于已知点的对称点,再顺次连接各点即可.设计意图:利用中心对称的性质画图,加强对中心对称性质的理解,为学习中心对称图形的学习作铺垫.4.了解中心对称图形的概念问题1:(1)图4我们已经画出点A关于点O的对称点A′,那么我们观察画出的图形整体有什么特点?(2)图5我们也观察画出的图形整体有什么特点?设计意图:让学生通过观察及动手操作,感知中心对称图形的特征,为得出中心对称图形的概念作铺垫.教师追问1:旋转的对象都是几个图形?教师追问2:图形都是绕着什么旋转?教师追问3:旋转的角度是多少?教师追问4:旋转后的图形与原图形有什么关系?师生活动:师生共同归纳出:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(板书:中心对称图形的定义)设计意图:进一步明确中心对称图形的共同点:(1)一个图形;(2)绕着某一个点;(3)旋转角是180°;(4)与本身重合.发现中心对称图形的特征,从而概括出中心对称图形的概念.问题2:在我们学过的图形中,有哪些是中心对称图形?学生活动:以小组为单位,操作手中的学具,归纳出初中阶段常见的中心对称图形.设计意图:学生实际操作,让学生更深刻的理解中心对称图形的特征.中心对称图形的形状通常匀称美观,我们在自然界中可以看到许多美丽的中心对称图形,如雪花.在很多建筑物和工艺品中也常采用中心对称图形作装饰图案,如地毯.另外,由于具有中心对称图形形状的物体,能够在所在的平面内绕对称中心平稳地旋转,所以在各种机器中要旋转的零部件的形状常设计成中心对称图形,如水泵叶轮等.问题3:现实生活中你还见过哪些中心对称图形?师生活动:学生独立思考,给足够的时间小组交流归纳,看看哪个小组说出的图形最多.教师及时点评,课件展示生活中的一些中心对称图形及常见中心对称图形的几何图案.设计意图:加深了对中心对称图形这一概念的理解,培养了学生的识图能力和分析问题的能力,同时又让学生欣赏到了中心对称图形在生活中的应用和数学的美.5.小结反思(1)引导学生从数学知识和思想方法两个角度对本节课进行回顾小结.本节课应掌握:(1)中心对称的概念及性质、中心对称图形的概念.(2)根据性质作图.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的两个核心知识点:中心对称图形的概念,中心对称图形和中心对称的区别与联系.(2)课堂检测.六、课堂检测题必做题1.(10分)在下列图形中,既是轴对称图形,又是中心对称图形的是( )A.等边三角形 B.等腰三角形 C.平行四边形 D.正方形2.(10分)下列图形中,是中心对称图形,但不一定是轴对称图形的是( )A.正方形B.矩形C.菱形 D.平行四边形3.(10分)下列汽车标志图案中属于中心对称图形的是()A B C D4.(10分)下列标志中,既是轴对称图形,又是中心对称图形的是()A B C D5.(10分)下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D6.(20分)如图(1)所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到张扑克牌如图(2)所示,他很快确定了哪一张牌被旋转过,则应该是( )A .方块4B .黑桃 5C .梅花6D .红桃77.(30分)在①线段,②角,③等腰三角形,④等腰梯形,⑤平行四边形,⑥矩形,⑦菱形,⑧正方形,⑨圆中,是轴对称图形的有_______________ ,是中心对称图形的有_______________ ,既是轴对称图形又是中心对称图形的有______________.选做题为班级设计一个成中心对称图形的班徽.。

新华东师大版七年级数学下册《10章 轴对称、平移与旋转 10.4 中心对称》教案_9

新华东师大版七年级数学下册《10章 轴对称、平移与旋转  10.4 中心对称》教案_9

中心对称图形教学目标:(1)了解中心对称图形的概念,会判断一个图形是否为中心对称图形.(2)知道中心对称图形和两个图形成中心对称、轴对称图形和中心对称图形的联系与区别.教学重点:中心对称图形的概念及其应用.一、温故知新:1.下列说法中正确的是( )A.全等的两个图形成中心对称B.成中心对称的两个图形必须重合C.成中心对称的两个图形全等D.旋转后能够重合的两个图形成中心对称2.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有____________.3.如图所示,△ABC和△DEF是成中心对称的两个三角形,请找出它的对称中心.二、设问导读:阅读课本P66的思考,完成下列问题:在思考中你分别有什么发现?(1)可以发现: .(2)可以发现:: .三、 探究分析:中心对称图形的概念:如果一个图形绕着某一个点旋转180°后,能和原来的图形互相重合,那么这个图形叫做中心对称图形;这个点叫做它的对称中心;互相重合的点叫做对称点.例题:判断下列图形是否是中心对称图形练习:判断下列图形是否是中心对称图形四、巩固训练:1:在26个英文大写正体字母中,哪些字母是中心对称图形?等边三角形菱菱行2:轴对称图形与中心对称图形的比较:五、自学检测:1:下列这些数字中有___个是中心对称的图形.有_____个是轴对称的图形.2 :观察图形,并回答下面的问题:(1)哪些只是轴对称图形?(2)哪些只是中心对称图形?(3)哪些既是轴对称图形,又是中心对称图形?2:下面的扑克牌中,哪些牌面是中心对称图形.六、直击中考:2.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )七、小结:1.。

新华东师大版七年级数学下册《10章 轴对称、平移与旋转 10.1 轴对称 轴对称的再认识》教案_10

新华东师大版七年级数学下册《10章 轴对称、平移与旋转  10.1 轴对称  轴对称的再认识》教案_10

10.1.2《轴对称的再认识》【华师大版七年级下册】一、教材分析轴对称是生活中常见的图形变化,是密切数学与现实联系的重要内容。

《轴对称图形的再认识》既是上一节课《生活中的轴对称》内容的延展和深化,又是后续学习探索等腰三角形性质,进一步学习某些特殊四边形、圆和函数图像等知识的基础,不仅可解决几何中某些计算、作图、证明等问题,而且还可解释其他自然科学中和生产生活实际中的有关现象、解决最短路径问题、设计图案等等。

在轴对称知识的学习过程中,学生经历“观察—实验—归纳—论证”,体验“具体—抽象—具体”,是典型的“实验几何”到“论证几何”的学习过程,有助于发展学生的空间观念和推理能力,用轴对称的观点分析复杂图形,提升观察分析图形的能力,培养美学观以及和谐平衡的哲学思想都有着重要作用。

二、学情分析通过上一节课《生活中的轴对称》的学习中,学生初步认识了轴对称的概念,但对于轴对称这种图形变化中的“变与不变”没有深刻的体会,因此本节课的学习主要通过学生动手实验,通过轴对称图形中的对称轴的画法,直观得出轴对称变换过程中图形的变化情况,并归纳出轴对称的基本性质。

三、教学目标1、知识与技能:(1)会准确叙述轴对称的基本性质;(2)会结合图形用符号语言解释轴对称的基本性质;(3)能利用轴对称的基本性质分析问题、解决问题。

2、过程与方法:经历轴对称的基本性质的探究过程,体会图形变换中“变与不变”的思想,掌握研究图形变换的一般方法。

3、情感、态度、价值观:通过探究活动,渗透特殊到一般、数形结合等数学思想方法,增强合作交流意识和科学探索精神。

四、教学重难点重点:探究并掌握轴对称的基本性质。

难点:经历“观察—实验—归纳—论证”的图形变换的研究过程。

五、教学策略这节课主要以“观察—实验—归纳—论证”来进行教学双边活动,借助于智慧课堂等信息技术手段,引导学生自主探究、交流互动、归纳验证。

六、教学过程(一)微课引导提出问题在一张对折的长方形纸上用笔尖扎出“4”这个数字,将纸打开后铺平.回答几个问题:(1)图中的两个“4”有什么关系?其中点A的对称点为_______(2)线段AB与线段A′B′有什么数量关系?_____________∠A与∠A′有什么数量关系?___________________(3)连接点A与点A′的线段,设折痕所在直线为l,线段AA′与直线l有什么关系? _____________________________________【设计意图】通过微课的引导,对上节课的内容进行复习,并且为本节课的学习作准备.(二)自主探究获得新知1、探究1:线段是轴对称图形吗?师:我们学过的线段是轴对称图形吗?如果是,为什么?你是怎么发现的?生:(引导学生说出轴对称图形的定义)师:同学们动手验证一下,在透明的白纸上作出一条6cm长的线段,并把它对折,有没有重合?生:(经过引导)有师:既然是轴对称图形,你说对称轴在哪里?能不能画出来?(学生动手作图)师:(智慧同屏上传学生的作图)你能说出这条对称轴与线段有什么关系?(教师标记线段、直线)生:直线CD与线段AB垂直?直线CD平分线段AB?直线CD与线段AB重合?师:其实线段的对称轴有两条,我们今天研究与线段不重合的对称轴。

华师大版数学教案 七年级下册 第10章 轴对称、平移与旋转

华师大版数学教案 七年级下册 第10章 轴对称、平移与旋转

第10章轴对称、平移与旋转10.1 轴对称1.生活中的轴对称【知识与技能】通过观察、分析现实生活实例和典型图形的过程,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴,了解轴对称和轴对称图形的联系和区别.【过程与方法】通过大量的实例初步认识轴对称,能识别简单的轴对称图形及其对称轴.【情感态度】通过欣赏现实生活中的轴对称图形,体验轴对称在现实生活中的广泛应用,体会数学来源于生活.【教学重点】正确理解轴对称图形以及轴对称的概念.【教学难点】能正确区分轴对称图形和轴对称.一、情境导入,初步认识从各小组收集的图片中选择一些有代表性的,用投影仪演示,使学生能够形象直观地感受图形的对称 .看完图片以后老师总结:自远古以来,对称形式被认为是和谐、美丽并且真实的.不论在自然界里还是在建筑中,不论在艺术中还是在科学中,甚至最普通的日常生活用品中,对称的形式都随处可见.请学生自己讨论,在生活中你见过哪些对称图形.例如:青山倒映在水中(教材第98页图),这是令人难忘的景象.还有一些伟大的建筑物,它们都是轴对称图形.【教学说明】通过观察图片.使学生能够形象直观地感受图形的对称.使学生明白对称在美学和自然界中的作用.二、思考探究,获取新知探究1轴对称图形这些美丽的图形来自生活,细心观察之后,你能发现这些图形有什么共同特征么?用自己的语言描述.你能不能在上面的每个图形中画一条线,在把这个图形沿你所画的线对折,使左右两旁的部分完全重合.【归纳结论】如果图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形.这条直线叫做这个图形的对称轴.理解轴对称图形应注意三点:(1)轴对称图形是一个图形;(2)对折;(3)重合.探究2轴对称观察下面两组图形.图(1)中有几个天使呢?请注意观察,当把这两个天使沿着一条直线折叠后,会发现什么样的现象?请同学再看图(2),当沿着一条直线折叠后,这两个五边形会有什么现象?这就是说两个图形也可以是对称的.我们把这样的两个图形称为成轴对称.【归纳结论】像上面所述,把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形的对应点(即两个图形重合时互相重合的点)叫做对称点.理解轴对称图形应注意三点:(1)“轴对称”是两个图形.(2)对折.(3)重合.试一试:请同学标出第(2)个图中A、B、C三点的对称点A1、B1、C1.在图(2)中,如果把它看作两个五边形,那么它就是成轴对称的,如果我们把它看作是一个图形的两个部分,那么它就成了轴对称图形.从上图中我们可以发现,轴对称图形(或成轴对称的两个图形)沿对称轴对折后的两部分是完全重合的,所以它的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.【教学说明】通过感官加深对轴对称图形和成轴对称的理解.三、运用新知,深化理解1.如图所示的几个图案中,是轴对称图形的是()2如图所示,下面的5个英文字母中是轴对称图形的有()A.2个B.3个C.4个D.5个3.如图所示的图案中,是轴对称图形的有()A.1个B.2个C.3个D.4个4.如图所示,从轴对称的角度来看,你觉得下面哪一个图形比较独特?简单说明你的理由.5.观察如图所示的图案,它们都是轴对称图形,它们各有几条对称轴?在图中画出所有的对称轴.6.如图所示的四个图形中,从几何图形的性质考虑哪一个与其他三个不同?请指出这个图形,并简述你的理由.【教学说明】进行适当的由浅入深,由感性到理性的一些练习,老师进行了一些必要的讲解,打好学生的知识技能和运算能力的基础.【答案】1.A 2.B 3.B 4.解:(3)比较独特,它有无数条对称轴,其他图形只有两条对称轴. 5.解:(1)2条(2)4条(3)5条(4)3条画图略 6.解:②不是轴对称图形四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师加以补充.1.布置作业:教材第100页“练习”.2.完成练习册中本课时练习.本节通过大量生动的生活中的实例引领学生进入图形中的对称世界,深刻体会对称在现实生活中的广泛应用和丰富的文化价值.同时通过本节的学习与探索,使同学们对对称的认识由感性到理性,由浅到深,为后面抽象的对称图形的学习作好铺垫工作.2. 轴对称的再认识【知识与技能】使学生掌握用“连结对称点的线段被对称轴垂直平分”验证一个图形是不是轴对称图形,并请熟练画出轴对称图形的对称轴.【过程与方法】通过动手操作探索轴对称的性质,运用轴对称性质解决实际问题.【情感态度】培养独立观察思考的习惯,感受数学几何图形的美,体验设计轴对称图形带来的快乐.【教学重点】画轴对称图形的对称轴.【教学难点】画轴对称图形的对称轴.一、情境导入,初步认识自己用笔尖扎出“14”这个数字,将纸打开后铺平.回答几个问题:(1)图中的两个“14”有什么关系?(2)在上面扎字的过程中,点E与点E′重合,点F与点F′重合.设折痕所在直线为l,连接点E与点E′的线段与直线l有什么关系?点F与点F′呢?(3)线段AB与线段A′B′有什么关系?CD与C′D′呢?(4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.【教学说明】对上节课的内容进行复习,为本节课的学习作准备.二、思考探究,获取新知探究1线段的垂直平分线请学生在半透明纸上画出线段AB和它的中点O,再过O点画与AB垂直的直线CD,沿直线CD将纸对折,观察线段OA和线段OB是否重合.在上述试验中,显然线段OA和线段OB互相重合,因此,线段AB是轴对称图形.垂直并且平分一条线段的直线称为这条线段的垂直平分线.如上图中直线CD是线段AB的垂直平分线.线段的垂直平分线是直线.探究2线段请同学思考:线段的对称轴是什么?它是唯一的吗?线段的对称轴有两条,一条是它的垂直平分线,另一条是这条线段所在的直线.探究3角小实验:每位同学准备一张半透明的白纸,在纸上画一个角(∠AOB),然后对折这个角,使角的两条边完全重合,然后用直尺画出折痕OM.请同学思考:从上面的实验中你能发现什么?角是轴对称图形,对称轴是它的角平分线所在的直线.如图所示的直线OM就是它的对称轴.探究4画对称轴有时我们感觉一个图形是轴对称的,那么如何来验证呢?这就需要我们去找到它的对称轴,看看沿着对称轴翻折以后两部分是否重合.(1)试一试:如图,方格子内的两图形都是成轴对称的,请画出它们的对称轴.在上图中,由于图形在方格子内,我们可以凭直觉很准确地画出两个图形的对称轴,你能想想是什么原因吗?因为在方格子中我们比较容易看清楚图形的位置,也就比较容易确定图形的中间位置.(2)如果没有方格子,而又不能折叠,你还能比较容易地画出图形的对称轴吗?请同学试试看,如下图的对称轴我们应该如何去画呢?请同学们画出图形的对称轴,相互交流你是怎样画的?(3)如图点A和点A1关于某直线对称,画出这个图形的对称轴.如图,连结点A和点A1,画出线段AA1的垂直平分线MN,则直线MN 就是所是点A和点A1的对称轴.做完以后,我们可以总结一下对称轴的画法.【归纳结论】1.找出轴对称图形的任意一组对应点,连结对称点.2.画出对称点所在连线段的垂直平分线.则这条垂直平分线就是它的对称轴.通过以上的操作,我们可以有这样的结论:如果一个图形关于某一条直线对称,那么连结对称点的线段的垂直平分线就是该图形的对称轴.【教学说明】让学生在准备好的图案上动手操作,通过观察测量,对折等解决以上问题.解决问题的方法和结论学生会说出好多种,对这些结论进行整理,就是轴对称的性质.三、运用新知,深化理解1.下列说法错误的是( )A.等边三角形是轴对称图形B.轴对称图形的对应边相等,对应角相等C.成轴对称的两条线段必在对称轴一侧D.成轴对称的两个图形对应点的连线被对称轴垂直平分2.设A、B两点关于直线MN轴对称,则垂直平分.3.下列图形中,哪些是图形对称轴,哪些不是图形的对称轴?4.已知,直线a与直线b是两条相交直线,它是轴对称图形吗?如果是,它有几条对称轴?画画试试看.5.画出以下图形的对称轴.6.画出下列图形的对称轴.7.下列图形中,哪些是轴对称图形?哪些不是轴对称图形?如果是轴对称图形,请你画出对称轴.【教学说明】对本节知识进行巩固练习.【答案】1.C 2.直线MN 线段AB 3.解:②、④、⑥是图形的对称轴,①、③、⑤不是图形的对称轴. 4.解:有两条对称轴,作图略. 5.解:作图略6.解:作图略7.解:第1个图形是轴对称图形,它有2条对称轴,其它两个图形不是轴对称图形,作图略.四、师生互动,课堂小结先小组内交流收获和感想,然后以小组为单位派代表进行总结.教师加以补充.1.布置作业:教材第110页“习题10.1”中第3 、4、5 题.2.完成练习册中本课时练习.本节课应采用小组学习模式,在小组讨论之前,应该留给学生充分独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.根据不同学生的不同特点应注意适当增减内容以保证课堂教学的顺利完成.3.画轴对称图形【知识与技能】使学生能够按要求作出简单平面图形经过一次对称后的图形.【过程与方法】通过画轴对称图形,增强学生学习几何的趣味感,培养审美情操.【情感态度】通过画轴对称图形的过程体验图形之间的对称美、和谐美.【教学重点】让学生识别轴对称图形与画轴对称图形的对称轴.【教学难点】画轴对称图形.一、情境导入,初步认识1.上节课我们学习了画两个图形或一个图形的对称轴.请同学们为下面的两张轴对称图形画出对称轴.2.将大家画好的轴对称图形遮掉左边一半或右边一半后,你能还原出原来的图形来吗?同桌可以共同讨论合作完成.【教学说明】对上节课的知识进行复习,同时引出本节课学习的内容.二、思考探究,获取新知1如图,实线所构成的图形为已知图形,虚线为对称轴,请画出已知图形的轴对称图形.画完之后,请同学们思考下面两个问题:(1)你可以通过什么方法来验证你画的是否正确.(2)和其他同学比较一下,你的方法是最简单吗?在格点图中,大家会很容易画出已知图形的轴对称图形,如果没有格点图,我们还能比较准确地画出已知图形的轴对称图形吗?2.你能画出点A关于直线L的对称点吗?画法:(1)过点A向直线L画垂线段AO,垂足点O;(2)延长AO至OA1,使OA1=OA.则点A1就是点A关于直线L的对称点.3.你能画出线段AB关于直线L的对称线段吗?画法:(1)画点A、点B关于直线L的对称点A1 、B1;(2)连结A1 、B1 .则线段A1 B1就是线段AB关于直线L的对称线段.4.你能画出三角形ABC关于直线L的对称图形吗?画法:(1)画出点A、点B和C点关于直线L的对称点A1 、B1和C1;(2)连结A1 B1、B1 C1 、A1 C1 、则△A1 B1 C1就是△ABC关于直线L的对称三角形.【归纳结论】从上面的例子可以知道,如果图形是由直线、线段或射线组成时,那么只要画出图形中的特殊点的对称点,然后连接对称点,就可以画出关于这条直线的对称图形.【归纳结论】先画点的对称点,再画线段的对称图形,最后画三角形的对称图形.由易到难,这样学生就很容易的知道了知识的形成过程.三、运用新知,深化理解1.已知△ABC 在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A′的坐标为( )A.(-4,2)B.(-4,-2)C.(4,-2)D.(4,2)2.下列各图都是一个汉字的一半,你能想像出它的另一半并能确定它是什么字吗?(有几个字的笔划在对称轴上.)3.如图,已知△ABC和直线MN.求作:△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.4.如图,作字母M关于y轴的轴对称图形并写出所得图形相应各端点的坐标.5.如图,在网格中有两个大小、形状一样的图形(阴影部分),用这两个图形拼成轴对称图形,试分别在图中画出两种不同的拼法.【教学说明】检测本节课学生的掌握情况,再作适当的讲解.【答案】1.D2.解:图略(1)中(2)林(3)南(4)京(5)米(6)来(7)共(8)品(9)吉(10)木(11)釜3.解:4.解:A′(4,0);B′(4,3);C′(2.5,0);D′(1,3);E′(1,0)5.解:四、师生互动,课堂小结先小组内交流收获和感想,然后以小组为单位派代表进行总结.教师加以补充.1.布置作业:教材第110页“习题10.1”中第6 题.2.完成练习册中本课时练习.学生是学习的主体,要让学生成为真正的主人,就必须在数学活动中学习数学,也就是在创造中学习数学.本课从最基本的图形中,让学生自己动手画,体验探索成功的快乐;通过动手操作,小组讨论来解决自己提出的问题;通过有层次的练习,提高学生解决问题的能力,巩固所学知识.4.设计轴对称图案【知识与技能】会设计简单的轴对称图案.【过程与方法】在探索和实践的过程中,培养学生观察、分析和口头表达能力.【情感态度】通过设计简单的轴对称图案让学生体验图案对称的美,感受具有对称美的图案.【教学重点】能灵活运用轴对称进行简单的图案设计.【教学难点】能灵活运用轴对称进行简单的图案设计.一、情境导入,初步认识教师通过屏幕向学生展示生活中具有对称美的事物.例如:一只彩蝶、一片绿叶、一些装饰图案.为什么它们总给我们美的感觉(让学生自由发言) ?它们的外形呈几何对称性.人类在漫长的岁月中体验着对称,享受着对称,它给人以平衡与和谐的美感.今天这节课要求发挥大家的想象力自己去设计对称图案,自己去创造对称美.【教学说明】通过观察图形,使学生明白轴对称在生活中的重要性.二、思考探究,获取新知一个美丽的图案是如何画出来的呢?下面请看题:1.如下图,是一个轴对称图形.(1)有多少条对称轴呢?(2)可以利用轴对称性来画出它吗?2.准备一张正方形纸片,按以下五个步骤一起来画:(1)在正方形纸片上用虚线画出四条对称轴.(2)如图,在其中一个三角形中,画出图形形状的基本线条(可以自己设计线条).(3)按照其中一条斜的对称轴画出(2)中图形的对称图形.(4)按照其中一条斜的对称轴画出(3)中图形的对称图形.(5)按照水平(或垂直)对称轴画出(4)中图形的对称图形.画好后可以涂上自己喜欢的颜色,擦掉其它多余的线条,一幅对称的图案就完成了(如下图).【教学说明】学生亲自动手画图,感受成功的喜悦.三、运用新知,深化理解1.将一张正方形纸片沿右图中虚线剪下,能拼成哪些轴对称图形.请你们画出.2.用四块如图的瓷砖拼成一个正方形,形成轴对称的图案,和自己的同伴比一比,看谁的拼法多.3.如图“聪明的机器人”是由2条线段、2个圆、2个三角形、2个长方形组成的.请你用以上图形设计一幅对称图案.4.仿照课文的过程,利用下图设计出一个轴对称图案.【教学说明】学生先独立思考,然后小组内讨论交流.从而发展了学生的空间想象力.【答案】1.解:略 2.解:略 3.解:略 4.解:略四、师生互动,课堂小结先小组内交流收获和感想,然后以小组为单位派代表进行总结.教师加以补充.1.布置作业:教材第109页“练习”.2.完成练习册中本课时练习.课前让学生充分收集生活中的利用轴对称设计的图案,使学生感受到轴对称在生活中的广泛存在和丰富的文化价值.课堂上各个环节为学生展示自己聪明才智提供机会,并在此过程中让学生去发现问题、分析问题、解决问题形成独到见解.课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度.10.2 平移1. 图形的平移【知识与技能】1.通过具体实例认识图形的平移变换,探索它的基本性质.2.能按要求画出简单的平面图形平移后的图形,培养学生观察问题、分析问题、解决问题的能力.【过程与方法】通过动手操作,观察分析,学会判断图形在方格纸上沿竖直和水平方向两次平移的方向和平移的格数.【情感态度】通过观察、归纳、推理可以获得数学猜想,了解数学活动中充满着探索性和创造性,感受学习的乐趣,体会数学美.【教学重点】认识图形的平移变换.【教学难点】掌握两次连续平移的方法,正确判断平移的距离.一、情境导入,初步认识请你判断:小明跟着妈妈乘观光电梯上楼,一会儿,小明兴奋地大叫起来:“妈妈!妈妈!你看我长高了!我比对面的大楼还要高!”小明说的对吗?为什么?【教学说明】通过实际问题引入新课,提高学生学习兴趣.二、思考探究,获取新知1.日常生活中经常可以看到的一些如图所示的现象:如滑雪运动员在白茫茫的平坦雪地上滑翔,火车在笔直的铁轨上飞驰而过等等.2.我们还可以看到如图所示的一幅幅美丽的图案,它们可以看成是由某一基本图形沿着一定的方向移动而产生的结果.3.根据上述分析,你能说明什么样的图形运动称为平移吗?【归纳结论】在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.4.图形在平移的过程中有哪几个要素需要注意的呢?【归纳结论】平移三要素:几何图形——运动方向——运动距离.5.当我们用直尺和三角板画平行线时,△ABC沿直尺PQ平移到△A′B′C′时,就可以画出AB的平行线A′B′了.我们把点A与A′叫作对应点,线段AB与A′B′叫作对应线段,∠A与∠A′叫作对应角.此时:(1)点B的对应点是,(2)点C的对应点是,(3)线段AC的对应边是,(4)线段BC的对应边是,(5)∠B的对应角是,(6)∠C的对应角是,上述问题都给了我们平移的大致印象,哪位同学能说—说什么叫平移?【教学说明】让学生自己总结平移的概念,掌握平移的三要素.三、运用新知,深化理解1.平移是由所决定.2.下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( )3.下列图形中,是由(1)仅通过平移得到的是( )4.在以下现象中,①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上,瓶装饮料的移动属于平移的是()A.①,②B.①,③C.②,③D.②,④5.如图,△A′B′C′是由△ABC平移得到的,写出图中的对应角、对应线段、对应点.【教学说明】通过练习,进一步了解平移的概念和三要素.【答案】1.平面图形、平移的距离、平移的方向 2.D 3.C 4.D5.解:对应角是:∠A和∠A′,∠ABC和∠B′,∠C和∠A′C′B′.对应线段是:AB和A′B′,AC和A′C′,BC和B′C′.对应点是:A和A′B和B′C和C′.四、师生互动,课堂小结组织学生总结这节课所学的内容,并作适当的补充.1.布置作业:教材第113页“练习”2.完成练习册中本课时练习.本节课首先,通过创设大量的生活情境让学生形成直观上的初步认识.然后,让学生通过演示,使平移运动生动、形象地展现在学生面前,给学生更多的空间和机会.将静态的教学内容,设计成动态的过程,将传统的教学方法演变得更加生动有趣.引导学生在丰富、有趣的数学活动中,积极思考、充分探究、获取知识、发展能力.加深了学生对概念的理解,起到突破难点的作用.2. 平移的特征【知识与技能】能根据所给条件作简单的平面图形平移后图形.【过程与方法】经历观察、操作、欣赏、认识探索平移的基本特征的过程,理解平移时对应点所连线段平行(有时在同一条直线上.)且相等,对应线段平行(有时在同一条直线上.)且相等以及对应角相等的理论.【情感态度】培养良好的识图能力,体会变换的美.【教学重点】平移的特征和平移的基本性质.【教学难点】准确理解平移的特征和平移的基本性质.一、情境导入,初步认识1.展示日常生活中的平移实例,学生回忆已学知识.2.什么是平移?3.平移的三要素是什么?【教学说明】通过这些画面的展示切身感受到我们身边的生产、生活中广泛存在着平移现象,激发了学生原有的认知结构,为本节课探究问题作好了铺垫.二、思考探究,获取新知1.如图△A′B′C′是由△ABC平移得到的.(1)平移后的图形与原来的图形的形状、大小有没有发生变化?(2)每对对应线段有怎样的位置关系和数量关系?(3)每对对应角之间又有怎样的关系?【归纳结论】平移后的图形与原图形的对应线段平行且相等(也可能在同一条直线上),对应角相等,图形的形状和大小不变.2.观察探索:△ABC沿着PQ的方向平移到△A′B′C′的位置,除了对应线段平行并且相等以外,你还发现有哪些线段平行且相等?【归纳结论】平移后对应点所连的线段平行并且相等.3.注意:若把△ABC沿着BC的方向平移到△A′B′C′的位置,在平移过程中,同学们发现了不同于所概括规律的特征吗?【归纳结论】在平移过程中,对应点所连的线段也可能在一条直线上.4.将图中的△A′B′C′沿着RS的方向平移到△A″B″C″的位置,其平移的距离为线段RS的长度.【教学说明】先让学生独立思考,便于让每个同学都能在自己的探索过程中找到一定的成就感,从而获得进一步探索的信心和勇气.三、运用新知,深化理解1.见教材第116页例题.2.在平移过程中,对应线段( )A.互相平行且相等B.互相垂直且相等C.互相平行(或在同一条直线上)且相等3.如图所示,平移△ABC可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=____度,∠EDF= 度,∠F= 度,∠DOB= 度.4.如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.24cm2B.36cm2C.48cm2D.无法确定5.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余, 将AB,CD分别平移到EF和EG的位置,则△EFG为三角形,若AD=2cm,BC=8cm,则FG= .6.将字母A按箭头所指的方向,平移3cm,作出平移后的图形.【教学说明】考察学生能否灵活运用平移的特征解决实际问题.【答案】2.C 3.70 50 60 60 4.B 5.直角 6 cm 6.解:略四、师生互动,课堂小结1.通过本节课,你学习了哪些知识?2.通过本节课,你掌握了哪些学习方法?3.通过本节课,你最大的体验是什么?1.布置作业:教材第117页“习题10.2”中第1、2、3 题.2.完成练习册中本课时练习.该节课要注意关注学困生的学习状态,利用大量的动画展示平移的特征,其目的之一是加强直观性,目的之二是吸引学生的注意力,增强学习的效果.从上课的情况来看,收到了不错的效果,当然,对于学困生来说,在观察引导后,还需多加辅导,特别是画平移的图形.。

2023七年级数学下册第10章轴对称、平移与旋转10.3旋转2旋转的特征教案(新版)华东师大版

2023七年级数学下册第10章轴对称、平移与旋转10.3旋转2旋转的特征教案(新版)华东师大版
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与旋转相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示旋转的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“旋转在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
1. 逻辑推理:通过学习旋转的定义和性质,学生能够运用归纳和演绎的方法,推理出旋转对图形的影响,从而提高其逻辑推理能力。
2. 数学建模:学生将利用旋转的性质解决实际问题,如计算旋转后的图形的位置和大小,这有助于提高学生的数学建模能力。
3. 空间想象:通过观察和操作旋转后的图形,学生能够建立空间想象,理解旋转的概念,并能够将实际问题转化为数学问题。
六、知识点梳理
本节课主要涉及以下知识点:
1. 旋转的定义:图形在平面内围绕某一点进行的圆周运动。
2. 旋转的性质:
a. 旋转不改变图形的大小和形状。
b. 旋转改变图形的方向。
c. 旋转的中心点即为轴点。
d. 旋转的角度可以任意取值。
3. 旋转的应用:
a. 在生活中,旋转现象随处可见,如旋转门、旋转木马等。
c. 旋转是图形围绕某一点进行的圆周运动,既改变方向,也改变图形的位置。
七、教学反思与总结
1. 教学反思:
在今天的教学中,我主要采用了讲授法、讨论法和实验法进行教学。我发现,在讲解旋转的定义和性质时,通过举例和实物演示,学生能够更好地理解和掌握。但在讲解旋转的计算部分,部分学生仍然存在一定的困难。这让我意识到,在今后的教学中,我需要更加注重学生的实际操作,加强练习,以提高学生的理解和运用能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.1.1生活中的轴对称
教学目标:
1知识与技能:理解并掌握轴对称图形和轴对称的概念,能识别简单的轴对称图形和轴对称,理解轴对称图形和轴对称的区别与联系
2过程与方法:经历折叠、剪纸等活动,发展学生的形象思维和空间观念,积累数学活动经验
3
一欣赏美
1
2

1
(1
2
问题组
3)通过练习,你对对称轴有什么认识?
(1)对称轴是一条直线;(2)对称轴在图形中间;(3)对称轴画成虚线
三 探一探
1观察并总结下列各组图形有什么共同特征?
2性质
在轴对称图形或成轴对称的两个图形中,对应线段相等,对应角相等
3 练习 △ABC 与△DEF 关于直线L 成轴对称,则DE 的长度是多少?∠C 是多少度?
四、数学与生活 1我是小特工之编制密码:作密码的每个数字或字母都是轴对称图形,请编制出你喜欢的密码。

1、2、3、4、5、6、7、8、9、0
A 、C 、D 、E 、F 、G 、H 、I 、L 、M
B 、N 、O 、R 、S 、T 、U 、Z
2我是小特工之拼图:添加一个小正方形,使整个图形成为一个轴对称图形
3 我是小特工之分类:试用今天所学知识将下列图形分类
65︒40︒F E D C B
A L
五小结
本节课你学会了什么?。

相关文档
最新文档