两角和与差的正弦余弦正切公式教学设计

合集下载

《两角和与差的正弦、余弦、正切公式》教学设计

《两角和与差的正弦、余弦、正切公式》教学设计

《两角和与差的正弦、余弦、正切公式》教学设计一、教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等.2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的.二、三维目标1.知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.三、教学重、难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.四、教学用具三角板,彩色粉笔,幻灯片五、教学方法教法:引导探究,归纳总结=,(0,)=,(0,),[-((-=cos(-+sin(-sin=_____.)=)=,据角)=)=都不能等于+ktan( tan的值不存在,所以改用诱导公式tan(-)=来处理等=,sin(-),cos(+),tan(-=,=.∴tanα==.于是有sin(-α)=sin cosα-cos sinα=cos(+α)=cos cosα-sin sinα=tan(α-)===.点评:本例是运用和差角公式的基础题,安排这个例题的目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯.变式训练11.不查表求cos75°,tan105°的值.解:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=,tan105°=tan(60°+45°)= =-(2+).2.设α∈(0,),若sinα=,则2sin(α+)等于( )A. B. C. D. 4答案:A例2 已知sinα=,α∈(,π),cosβ=,β∈(π,),求sin(α-β),cos(α+β),tan(α+β).活动:教师可先让学生自己探究解决,对探究困难的学生教师给以适当的点拨,指导学生认真分析题目中已知条件和所求值的内在联系.根据公式S(α-β)、C(α+β)、T(α+β)应先求出cosα、sinβ、tanα、tanβ的值,然后利用公式求值,但要注意解题中三角函数值的符号.解:由sinα=,α∈(,π),得cosα==-=,∴tanα=.又由cosβ=,β∈(π,).sinβ==,∴tanβ=.∴sin(α-β)=sinαcosβ-cosαsinβ=×()-(.∴cos(α+β)=cosαcosβ-sinαsinβ=()×()-×()=∴tan(α+β)==.点评:本题仍是直接利用公式计算求值的基础题,其目的还是让学生熟练掌握公式的应用,训练学生的运算能力.变式训练2引导学生看章头图,利用本节所学公式解答课本章头题,加强学生的应用意识.解:设电视发射塔高CD=x米,∠CAB=α,则sinα=,在Rt△ABD中,tan(45°+α)=tanα.于是x=,又∵sinα=,α∈(0,),∴cosα≈,tanα≈.tan(45°+α)==3,∴x=-30=150(米).答:这座电视发射塔的高度约为150米.例3 在△ABC中,sinA=(0°<A<45°),cosB=(45°<B<90°),求sinC与cosC的值.活动:本题是解三角形问题,在必修5中还作专门的探究,这里用到的仅是与三角函数诱导公式与和差公式有关的问题,难度不大,但应是学生必须熟练掌握的.同时也能加强学生的应用意识,提高学生分析问题和解决问题的能力.教师可让学生自己阅读、探究、讨论解决,对有困难的学生教师引导学生分析题意和找清三角形各角之间的内在联系,从而找出解决问题的路子.教师要提醒学生注意角的范围这一暗含条件.解:∵在△ABC中,A+B+C=180°,∴C=180°-(A+B).又∵sinA=且0°<A<45°,∴cosA=.又∵cosB=且45°<B<90°,∴sinB=.∴sinC=sin[180°-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=×+×=,cosC=cos[180°-(A+B)]=-cos(A+B)=sinAsinB-cosAcosB=×-×=.点评:本题是利用两角和差公式,来解决三角形问题的典型例子,培养了学生的应用意识,也使学生更加认识了公式的作用,解决三角形问题时,要注意三角形内角和等于180°这一暗含条件.变式训练3在△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,则△ABC是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰非直角三角形答案:C七、课堂小结<,<<,cos(-)=,sin(+)=,。

《两角和与差的正弦、余弦和正切公式》教学设计、导学案、同步练习

《两角和与差的正弦、余弦和正切公式》教学设计、导学案、同步练习

第五章三角函数《5.5.1两角和与差的正弦、余弦和正切公式》教学设计【教材分析】本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1两角和与差的正弦、余弦和正切公式。

本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。

让学生感受数形结合及转化的思想方法。

发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。

【教学目标与核心素养】【教学重难点】教学重点:掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式教学难点:两角和与差的正弦、余弦、正切公式的灵活运用。

【教学过程】合,这一性质叫做圆的旋转对称性.连接A1P1,AP.若把扇形分别与点A1,P1重合.根据圆《5.5.1 两角和与差的正弦、余弦和正切公式》导学案【学习目标】1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.会用两角和与差的正弦、余弦、正切公式进行简单的三角函数的求值、化简、计算等.4.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.【重点难点】重点:了解两角差的余弦公式的推导过程.难点:会用两角和与差的正弦、余弦、正切公式进行简单的三角函数的求值、化简、计算等【知识梳理】1两角和与差的余弦公式2 两角和与差的正弦公式3两角和与差的正切公式【学习过程】 问题探究1.两角差的余弦公式如果已知任意角α,β的正弦、余弦,能由此推出α+β,α-β的正弦、余弦吗?下面,我们来探究cos(α-β)与角α,β的正弦、 余弦之间的关系不妨令α≠2kπ+β,k ∈Z . 如图5.5.1,设单位圆与x 轴的正半轴相交于点A (1,0),以x 轴非负半轴为始边作角α,β,α—β, 它们的终边分别与单位圆相交于点A 1(cosα,sinα), P 1(cosβ,sinβ),P(cos(α-β),sin(α-β)).任意一个圆绕着其圆心旋转任意角后都与原来的圆重合,这一性质叫做圆的旋转对称性.连接A 1P 1,AP .若把扇形OAP,绕着点O 旋转β角,则点A ,P 分别与点A 1,P 1重合.根据圆的旋转对称性可知,AP ̂与A 1P 1̂ 重合,从而, 所以AP =A 1P 1 根据两点间的距离公式,得[cos (α−β)−1]2+[s in (α−β)]2=(cosα−cosβ)2+(sinα−sinβ)2, 化简得:cos (α−β)=cosαcosβ+sinαsinβ当α=2kπ+β (k ∈Z )时,容易证明上式仍然成立. 所以,对于任意角α,β有cos (α−β)=cosαcosβ+sinαsinβ (C(α-β))此公式给出了任意角α,β的正弦、余弦与其差角α-β的余弦之间的关系,称为差角的余弦公式,简记作C(α-β).典例解析例1 利用公式cos (α−β)证明:(1)cos (π2-α)= sinα ; (2)cos (π-α)= cosα.例2 已知sinα=45,α∈(π2,π), cosβ=−513,β是第三象限角,求cos (α−β)的值.由公式cos (α−β)出发,你能推导出两角和与差的三角函数的其他公式吗? 下面以公式cos (α−β)为基础来推导其他公式. 例如,比较cos (α−β)与cos (α+β),并注意到α+β与 α−β之间的联系:α+β=α−(−β)则由公式cos (α−β), 有cos (α+β)=cos[α−(−β)]=cosαcos (−β)+sinαsin (−β)=cosαcosβ−sinαsinβ于是得到了两角和的余弦公式,简记作C (α+β). cos (α+β)=cosαcosβ−sinαsinβ. 问题探究上面得到了两角和与差的余弦公式.我们知道,用诱导公式五(或六)可以实现正弦、余弦的互化.你能根据C(α+β),C(α-β)及诱导公式五(或六),推导出用任意角α,β的正弦、余弦表示sin (α+β),sin (α-β)的公式吗?通过推导,可以得到:s in (α+β)=sinαcosβ+cosαsinβ,(S (α+β)) s in (α−β)=sinαcosβ−cosαsinβ;(S (α-β))你能根据正切函数与正弦函数、余弦函数的关系,从C(α±β),S(α±β)出发,推导出用任意角α,β的正切表示tan (α+β),tan (α−β)的公式吗?通过推导,可以得到: tan (α+β)=tan α+tanβ1−tan αtanβT(α+β) tan (α−β)=tan α−tanβ1+tan αtanβT(α−β)和(差)角公式中,α,β都是任意角.如果令α为某些特殊角,就能得到许多有用的公式.你能从和(差)角公式出发推导出诱导公式吗?你还能得到哪些等式公式S(α+β),C(α+β),T(α+β)给出了任意角α,β的三角函数值与其和角α+β的三角函数值之间的关系.为方便起见,我们把这三个公式都叫做和角公式.类似地,S(α-β),C(α-β),T(α-β)都叫做差角公式. 典例解析例3.已知sinα=−35,α是第四象限角,求sin (π4−α),cos (π4+α),tan (α−π4)的值.由以上解答可以看到,在本题条件下有sin (π4−α)=cos (π4+α).那么对于任意角α,此等式成立吗?若成立,你会用几种方法予以证明?例4 利用和(差)角公式计算下列各式的值: (1)sin72°cos42°-cos72°sin42°; ( 2 ) cos20°cos70°- sin20°sin70° ; ( 3 )1+tan 15°1−tan 15°;【达标检测】1. cos 65°cos 35°+sin 65°sin 35°等于( )A .cos 100°B .sin 100°C .32D .12 2.已知α是锐角,sin α=35,则cos ⎝ ⎛⎭⎪⎫π4+α等于( )A .-210B .210C .-25D .253.已知锐角α,β满足cos α=35,cos(α+β)=-513,则cos β等于( ) A .3365 B .-3365 C .5475 D .-5475 4.计算3-tan 15°1+3tan 15°=________.5.已知α,β均为锐角,sin α=55,cos β=1010,求α-β.参考答案: 知识梳理1.cos αcos β+sin αsin βcos αcos β-sin αsin β2.sin αcos β+cos αsin βsin αcos β-cos αsin β3.tan α+tan β1-tan αtan βtan α-tan β1+tan αtan β学习过程 典例解析例1证明: (1)cos (π2-α)= cos π2cos α+sin π2sinβsinα=0+1×sinα=sinα. (2)cos (π-α)== cosπcos α+sinπsinβsinα=(-1)×cosα+o .=- cosα. 例2解:由sinα=45,α∈(π2,π),得cosα=−√1−sinα2=−√1−(45)2=−35 又由cosβ=−513,β是第三象限角,得sinβ=−√1−cosβ2=−√1−(−513)2=−1213.所以cos (α−β)=cosαcosβ+sinαsinβ=(−35) ×(−513)+(45) ×(−1213)=−3365 例3.解 : 由 sinα=−35,α是第四象限角, 得cosα=√1−sinα2=√1−(−35)2=45 所以 tanα=sin αcosα=−3545= - 34于是有sin (π4−α)=sin π4cos α−cos π4sin α=√22×45−√22×(−35)=7√210;cos (π4+α)=cos π4cos α−sin π4sin α=√22×45−√22×(−35)=7√210;tan (α−π4)=tan α−tanπ41+ tan αtanπ4= tan α−11+ tan α=−34−11+(−34)=−7例 4 分析 : 和 、 差角公式把 α ± β 的三角函数式转化成了 α , β 的三角函数式 .如果反过来 , 从右到左使用公式 , 就可以将上述三角函数式化简 . 解 :( 1 ) 由公式 S (α - β ) , 得 sin72°cos42°- cos72°sin42°=Sin(72°- 42°)=sin30°=12(2) 由公式 C (α +β ) , 得cos20°cos70°- sin20°sin70°= cos(20°+70°)=cos90°=0 (3) 由公式 T (α +β )及tan 45°=1, 得1+tan 15°1−tan 15°=tan 45°+tan 15°tan 45°−tan 15°=tan (45°+15°)=tan 60°=√3三、达标检测1. 【解析】 原式=cos(65°-35°)=cos 30°=32. 【答案】 C2.【解析】 因为α是锐角,sin α=35,所以cos α=45,所以cos ⎝ ⎛⎭⎪⎫π4+α=22×45-22×35=210.故选B . 【答案】 B3.【解析】 因为α,β为锐角,cos α=35,cos(α+β)=-513, 所以sin α=45,sin(α+β)=1213.所以cos β=cos[(α+β)-α]=cos(α+β)·cos α+sin(α+β)·sin α=-513×35+1213×45=3365.故选A .【答案】 A 4.【解析】 3-tan 15°1+3tan 15°=tan 60°-tan 15°1+tan 60°tan 15°=tan 45°=1.【答案】 15.【解】 ∵α,β均为锐角,sin α=55,cos β=1010, ∴sin β=31010,cos α=255.∵sin α<sin β,∴α<β,∴-π2<α-β<0,∴sin(α-β)=sin αcos β-cos αsin β=55×1010-255×31010=-22,∴α-β=-π4.《5.5.1 两角和与差的正弦、余弦和正切公式》同步练习一基础巩固1.的值是( ) A .B .C .D .2.已知为锐角,为第三象限角,且,,则的值为( ) A . B . C .D .3.已知,则为第三象限角,则的值等于( ) A .B .C .D . 4.若,,且,均为钝角,则的值为( ) A .B .C .D .5.已知,则的值为( )ABC .D .6.计算:______________7.,且是第四象限角,则______. 8.不用计算器,求值:。

(完整word)《 两角和与差的正弦、余弦、正切公式》教案正式版

(完整word)《 两角和与差的正弦、余弦、正切公式》教案正式版

《两角和与差的正弦、余弦、正切公式》教案一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2。

教学难点:两角和与差正弦、余弦和正切公式的灵活运用。

三、学法与教学用具学法:研讨式教学四、教学设想:(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+.这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢?提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差正弦和正切公式。

()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-+=-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦sin cos cos sin αβαβ=+. ()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-. 通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-. 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+ 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.(二)例题讲解例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 解:因为3sin ,5αα=-是第四象限角,得4cos 5α===, 3sin 35tan 4cos 45ααα-===- , 于是有43sin sin cos cos sin 444252510πππααα⎛⎫⎛⎫-=-=--= ⎪ ⎪⎝⎭⎝⎭43cos cos cos sin sin 444252510πππααα⎛⎫⎛⎫+=-=--= ⎪ ⎪⎝⎭⎝⎭两结果一样,我们能否用第一章知识证明?3tan tan144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭ 例2、利用和(差)角公式计算下列各式的值:(1)、sin 72cos 42cos72sin 42-;(2)、cos 20cos70sin 20sin 70-;(3)、1tan151tan15+-. 解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.(1)、()1sin 72cos 42cos 72sin 42sin 7242sin 302-=-==; (2)、()cos 20cos 70sin 20sin 70cos 2070cos900-=+==; (3)、()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15++==+==--.例3x x解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)()1cos sin 30cos cos30sin 22sin 3022xx x x x x x ⎫=-=-=-⎪⎪⎭思考:是怎么得到的?=12的。

两角和与差的正弦、余弦公式教学设计(第一课))

两角和与差的正弦、余弦公式教学设计(第一课))

两角和与差的正弦、余弦公式的教学设计(第一课时)1 内容分析1.1课标要求《普通高中数学课程标准》(2017年版)“内容要求”部分对两角和与差的正弦、余弦和正切公式要求是经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。

1.2教材分析本节是人教A版(2019年)高中数学必修第一册第五章第五节第一部分的内容,主要是两角和与差的正弦、余弦和正切公式。

此前已学习了诱导公式,利用它们对三角函数式进行恒等变形,可以达到化简、求值或证明的目的。

1.3学情分析学生已经学习了诱导公式,可以对三角函数式进行恒等变形,但这只是针对特殊角,但是由于学生对这部分内容接收起来比较困难,所以要争取对已学过的内容循序渐进,比较自然地得到所要研究的新知识。

通过类比让学生进行模仿,引导利用单位圆,推导出两角差的余弦公式。

1.4核心素养及蕴含的数学思想方法数学抽象:主要是两角差的余弦公式的推导。

逻辑推理:两角差的余弦公式与两角和的余弦公式之间的联系。

数学运算:在推导出公式之后,运用公式进行解题。

1.5教学目标(1)了解两角差的余弦公式的推导过程.(2)掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.(3)熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.(4)通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。

1.6教学重点与难点教学重点:掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式 教学难点:两角和与差的正弦、余弦、正切公式的灵活运用。

2.教学过程重合.根据圆的旋转对称性可知, (或说明AOP ∆≌11OP A ∆)。

3.1《两角和(差)的正弦、余弦、正切公式》教学设计

3.1《两角和(差)的正弦、余弦、正切公式》教学设计

3.1.2两角和与差的正弦、余弦和正切公式(名师:余枝)一、教学目标:(一)核心素养本节课是三角恒等变形的基础,是正弦线、余弦线、诱导公式的延伸,通过本节课的学习,了解两角和与差的正弦、余弦和正切公式的重要性,通过公式的推导,培养学生探索精神,进一步提高学生的推理能力和运算能力,使学生体会一般与特殊,换元等数学思想在三角恒等变换中的作用.(二)教学目标1.两角和的余弦公式的推导及应用;2.两角和与差的正弦公式的推导及应用;3.两角和与差的正切公式的推导及应用;4.运用公式进行化简、求值、证明.(三)学习重点1.两角和与差的正弦、余弦、正切公式的推导;2.熟练掌握公式的应用.(四)学习难点公式的推导及综合运用,合理选取公式,熟练掌握公式的逆用.二、教学过程(一)课前设计1.预习任务(1)读一读:阅读教材第128页至第131页.(2)想一想:利用两角差的余弦公式如何推导两角和的余弦公式?如何熟记和角公式与差角公式?2.预习自测(1)sin(3045)________+=..解析:【知识点】两角和的正弦公式的应用【数学思想】逻辑推理【解题过程】12sin(3045)sin 30cos 45cos30sin 452+=+=⨯=点拨:熟记公式(2)cos55cos5sin 55sin 5________-=. 答案:12. 解析:【知识点】两角差的余弦公式 【数学思想】逻辑推理【解题过程】1cos55cos5sin 55sin 5cos(555)cos 602-=+== 点拨:熟记公式(3)若tan()24a π-=,则tan _______a =.答案:3-.解析:【知识点】两角差的正切公式的应用 【数学思想】逻辑推理【解题过程】tan tantan 14tan()241tan 11tan tan 4παπααπαα---===+⨯+,所以tan 3α=- 点拨:注意公式的逆用(4)已知3sin 5α=-a 是第四象限角,求sin(),cos(),tan()444πππααα-+-的值.;7- 解析:【知识点】两角和与差的弦、切公式的应用 【数学思想】逻辑推理【解题过程】因为3sin 5α=- a 是第四象限角,所以43cos ,tan 54αα==-,利用公式可得:sin()4πα-=cos()4πα+=tan()74πα-=-点拨:熟记公式.(二)课堂设计 1.知识回顾(1)两角差的余弦公式:βαβαβαsin sin cos cos )cos(+=-的推导; (2)公式()C αβ-的应用. 2.问题探究探究一 从公式()C αβ-出发,如何探求两角和的余弦公式()C αβ+? ●活动 从公式()C αβ-出发,引导学生推导余弦公式()C αβ+我们已经知道两角差的余弦公式βαβαβαsin sin cos cos )cos(+=-,其中αβ、是任意角.大胆猜想两角和的余弦公式呢?从角αβ+与αβ-的关系进行联想,我们容易知道()+=αβαβ--,再根据诱导公式,所以[]cos()cos ()cos cos()sin sin()cos cos sin sin αβαβαβαβαβαβ+=--=-+-=- 于是我们得到了两角和的余弦公式,简记作()C αβ+:cos()cos cos sin sin αβαβαβ+=-【设计意图】引导学生发现和探究新知,培养学生探索知识的能力. 探究二 如何用αβ、的正、余弦来表示()sin αβ± ●活动① 回顾两角和与差的余弦公式和诱导公式()C αβ-:βαβαβαsin sin cos cos )cos(+=- ()C αβ+:cos()cos cos sin sin αβαβαβ+=-sin()cos ,cos()sin 22ππαααα-=-=【设计意图】引导学生思维上的转变.●活动② 利用两角和与差的余弦公式推导两角和与差的正弦公式sin()cos ()cos ()cos()cos sin()sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤+=-+=--=-+-⎢⎥⎢⎥⎣⎦⎣⎦sin cos cos sin αβαβ=+()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦得到两角和与差的正弦公式,简记作()S αβ+;()S αβ-.()S αβ+:βαβαβαsin cos cos sin )sin(+=+ ()S αβ-:βαβαβαsin cos cos sin )sin(-=-【设计意图】让学生掌握公式的推导过程. 探究三 探究如何推导两角和与差的正切公式 ●活动① 怎样用αβ、的正切表示()tan αβ±()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-当cos cos 0αβ≠时,分子和分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+ 我们得到两角和与差的正切公式,简记作()T αβ+;()T αβ-.()T αβ+:()tan tan tan 1tan tan αβαβαβ++=-()T αβ-:tan tan tan()1tan tan αβαβαβ--=+注意:)(2,2,2z ∈+≠+≠+≠+k k k a k ππβππππβα【设计意图】引导学生探究:化切为弦,化未知为已知,再化弦为切,利用单角的正切来表示和差的正切.●活动② 理解6个和、差角公式的内在联系【设计意图】借助对公式的更深入的理解,是学生能更加灵活运用公式.●活动③ 巩固基础,检查反馈例1 ①已知3cos ,(,)52πθθπ=-∈,求sin()3πθ+的值②已知12sin ,13θθ=-是第三象限角,求cos()6πθ+的值【知识点】和角公式的正确使用 【数学思想】逻辑推理【解题过程】①4sin 25πθπθ∈∴==(,)413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=②θ是第三象限角,5cos 13θ∴==-5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=【思路点拨】熟记公式 【答案】①sin()3πθ+=;②cos()6πθ+= 同类训练 已知tan 3α=,求tan()4πα+的值.【知识点】两角和的正切公式的应用 【数学思想】逻辑推理【解题过程】tan tan314tan()241311tan tan 4παπαπα+++===--⨯- 点拨:熟记公式答案:tan()24πα+=-例2 求下列各式的值:(1)sin 72cos 42cos 72sin 42- (2)cos 20cos 70sin 20sin 70-(3)1tan151tan15+-【知识点】公式的逆用 【数学思想】归纳推理【解题过程】(1)sin 72cos 42cos 72sin 42-=1sin(7242)sin 302-== (2)cos 20cos 70sin 20sin 70-=cos(2070)cos900+==(3)1tan151tan15+-=tan 45tan15tan(4515)tan 6031tan 45tan15+=+==-【思路点拨】正确认识公式的正用和逆用 【答案】12,0 同类训练 计算:(1)sin 7cos37sin 83sin 37︒︒-︒︒(2)21tan 75tan 75 -︒︒答案:12-;-解析:【知识点】和、差角公式 【数学思想】归纳推理 【解题过程】(1)sin 7cos37sin 83sin 37︒︒-︒︒=1sin 7cos37cos 7sin 37sin(737)sin(30)2︒︒-︒︒=︒-︒=-=-(2)tan 75tan(4530)2=+==原式=-点拨:利用公式可求特殊角的三角函数值 例3 化简:(1)1cos 2x x(2cos x x +【知识点】和、差角公式的逆用 【数学思想】转化思想【解题过程】1cos cos cos sin sin cos()2333x x x x x πππ-=-=+1cos cos )2(cos sin sin cos )2sin()2666x x x x x x x πππ+=+=+=+ 点拨:从题目所给是结构可以看出,它们呈现和(差)角公式的部分形态,所以可以考虑对公式进行变形使用,事实上,此处只需要进行逆用公式即可.答案:cos()3x π+;2sin()6x π+同类训练 化简(1cos )x x -(2x x -【知识点】公式的逆用 【数学思想】转化思想cos )2sin()4x x x π-=-)3x x x π-=+点拨:对和(差)角公式进行正确地逆用.事实上,对公式正确逆用,这是学好任何一个数学公式的必经之路.答案:2sin()4x π-;)3x π+●活动5 强化提升、灵活应用 例4 已知3123,cos(),sin()24135πβαπαβαβ<<<-=+=-,求cos 2α的值 答案:3365-解析:【知识点】使用和差角公式时,利用角的关系化异角为同角 【数学思想】化归思想【解题过程】33,2442ππβαππβ<<<∴-<-<- 30,42ππαβπαβ∴<-<<+<5sin()134cos()5αβαβ∴-==+= 33cos 2cos[()()]cos()cos()sin()sin()65ααβαβαβαβαβαβ∴=-++=-+--+=-点拨:常见角的变换:2()()ααβαβ=++- ()ααββ=+-2(),2()αβαβααβαβα+=++-=-+()(),()()222222αββααββααβαβ+-=---=+-+同类训练 已知αβ、是锐角,且11sin )14ααβ=+=-,求sin β解析:【知识点】合理使用和差角公式 【数学思想】转化思想【解题过程】α是锐角,且sin α=1cos 7α∴== 又11cos(),014αβαβπ+=-<+<,sin()αβ∴+==sin sin()sin()cos cos()sin βαβααβααβα∴=+-=+-+=点拨:善于抓住角的关系进行角的转化 3.课堂总结 知识梳理两角和与差的正弦、余弦、正切公式及推导()C αβ-:βαβαβαsin sin cos cos )cos(+=- ()C αβ+:cos()cos cos sin sin αβαβαβ+=-()S αβ+:βαβαβαsin cos cos sin )sin(+=+ ()S αβ-:βαβαβαsin cos cos sin )sin(-=- ()T αβ+:()tan tan tan 1tan tan αβαβαβ++=-()T αβ-:tan tan tan()1tan tan αβαβαβ--=+重难点归纳(1)利用和差角公式求一些特殊角的三角函数值; (2)利用角的变换求值;(3)能解决形如:sin cos y a x b x =+的函数问题;(4)利用两角和与差的正弦、余弦和正切公式进行三角恒等变换 (三)课后作业 基础型 自主突破1.sin(17)cos(28)sin(28)cos(17)x x x x +-+-+的值是( )A .12 B .12-C .D .答案:D解析:【知识点】公式的简单应用【解题过程】原式=2sin(1728)sin 45x x ++-== 点拨:熟记公式2.已知123cos ,(,2)132πααπ=∈,则cos()4πα+等于( )ABCD .答案:B解析:【知识点】公式的正用【解题过程】5sin 13α==-,cos()cos cos sin sin 444πππααα+=-=点拨:计算角的三角函数值时需注意角的范围3.在△ABC 中,sin sin cos cos A B A B <,则△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰三角形 答案:B解析:【知识点】公式的灵活运用 【数学思想】逻辑推理【解题过程】cos cos sin sin 0A B A B -> cos()0A B ∴+>cos()0C π∴->,即cos 0,cos 0C C -><,2C ππ∴<<点拨:利用三角形内角和定理进行角的转换 4.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的( )A .最大值为1,最小值为1-B .最大值为1,最小值为21- C .最大值为2,最小值为2-D .最大值为2,最小值为1-【知识点】公式的逆用【数学思想】归纳推理【解题过程】1()2(sin )2sin()23f x x x x π==+,[,]22x ππ∈-,则5[,]366x πππ+∈- ()f x ∴最大值为2,最小值为1-点拨:先转化成sin()y x ωϕ=+的形式答案:D5.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值( ) A .21 B .22 C .22- D .22±【知识点】公式的灵活运用【数学思想】转化的思想【解题过程】因为2tan()7,tan tan 3αβαβ+=⋅=所以tan tan tan(),1tan tan αβαβαβ++=-⋅ 7tan tan 3αβ+= 所以1tan 2,tan 3αβ==或1tan ,tan 23αβ==;所以tan()αβ-等于1或1-则cos()αβ-=点拨:利用切化弦解决问题答案:D6.已知tan()2,4πα+=则212sin cos cos ααα+的值为________. 答案:23解析:【知识点】三角函数中“1”的替换【数学思想】转化思想 【解题过程】1tan tan()241tan πααα++==- 1tan 3α∴= 222221sin cos tan 122sin cos cos 2sin cos cos 2tan 13αααααααααα++∴===+++ 点拨:熟悉齐次分式的切化弦能力型 师生共研7.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B =______. 答案:3π解析:【知识点】公式的灵活运用【数学思想】逻辑推理【解题过程】tan tan tan tan()(1tan tan )tan A B C A B AB C ++=+⨯-+ tan (1tan tan )tan tan tan tan tan tan tan tan tan C A B CC A B C C A B C =-⨯-+=-++==2tan tan tan B A C ==tan 60B B ∴=∴=点拨:熟悉公式的变形8.若13cos cos sin sin ,cos(),55αβαβαβ-=-=则tan tan _______αβ=. 答案:12解析:【知识点】利用公式进行和差化积【数学思想】转化思想【解题过程】13cos cos sin sin ,cos cos sin sin ,55αβαβαβαβ-=+= 两式相加得:2cos cos 5αβ=,两式相减得:1sin sin 5αβ=,sin sin 1tan tan cos cos 2αβαβαβ== 点拨:找到角的关系,进行恒等变换探究型 多维突破9.已知(0,)αβπ∈、且71tan ,21)tan(-==-ββα,求βα-2的值 答案:34π- 解析:【知识点】灵活运用公式【数学思想】归纳推理思想【解题过程】()1tan tan 3ααββ=-+=⎡⎤⎣⎦()tan(2)tan 1αβαβα∴-=-+=⎡⎤⎣⎦11tan tan (0,)37αβαβπ=<=->∈、 50,6622ππαβπππαβ∴<<<<∴-<-<-324παβ∴-=- 点拨:求三角函数值时要确定角的范围10.已知向量a =(cos ,sin )αα,b= (cos ,sin )ββ,|a -b |= (1)求cos()αβ-的值(2)若0,022ππαβ<<-<<,且5sin 13β=-,求sin α的值 答案:35;3365 解析:【知识点】灵活运用公式【数学思想】归纳推理思想【解题过程】由|a -b|==,即4322cos(),cos()55αβαβ--=-= 由0,022ππαβ<<-<<,得0αβπ<-<,又35cos(),sin ,513αββ-==- 所以412sin(),cos ,513αββ-==[]33sin sin ()sin()cos cos()sin 65ααββαββαββ=-+=-+-= 点拨:三角恒等变形与向量的紧密联系自助餐1.若sin()cos cos()sin ,m αβααβα---=且β为第三象限角,则cos β的值为( )AB.CD.答案:B解析:【知识点】公式的简单应用【数学思想】【解题过程】由题知:sin()sin ,cos mm αβαββ--=∴=-==点拨:正确使用诱导公式2.αβγ、、都是锐角,γβαγβα++===则,81tan ,51tan ,21tan ( ) A .3π B .4πC .π65 D .π45 答案:B解析:【知识点】两角和的正切公式【数学思想】整体代换 【解题过程】11tan ,tan 25αβ==7tan()1904αβπαβ∴+=<∴<+<tan()tan 3tan()1,(0,)1tan()tan 4αβγπαβγαβγαβγ++∴++==++∈-+ 4παβγ∴++=点拨:角的合理转化3.若A 、B 是△ABC 的内角,且(1tan )(1tan )2+A B +=,则A B +等于_____. 答案:4π解析:【知识点】两角和与差的正切公式的逆用【数学思想】转化思想【解题过程】由题知1tan tan tan tan 2+A B A B ++=,则tan tan 1tan tan A B A B +=- tan tan tan()11tan tan A B A B A B +∴+==-且A 、B 是 △ABC 的内角,故4A B π+=点拨:求角的大小可以先求这个角的某个三角函数值4.已知cos()sin 6παα-+=则7sin()________6πα+=. 答案:45- 解析:【知识点】和角公式的逆用【数学思想】建模思想【解题过程】13cos()sin sin sin sin 622πααααααα-+=++=+=14cos )sin()sin()266574sin()sin()sin()6665ππααααπππαπαα+=+=∴+=∴+=++=-+=- 点拨:学会处理sin cos y a x b x =+型的函数问题5.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π解析:【知识点】两角和与差的正弦、余弦、正切公式的灵活运用【数学思想】转化思想【解题过程】原式=sin[(3)]cos[(3)]cos(3)sin(3)242664cos(3)sin(3)cos(3)sin(3)46641sin[(3)(3)]sin()64642x x x x x x x x x x ππππππππππππππ-+⋅-+-++=++-++=+-+=-== 点拨:解题时诱导公式可帮助三角函数名的转化6.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.答案:2解析:【知识点】求根公式【数学思想】化归思想 【解题过程】设22150(2sin 50)4(sin 50)2sin(5045)x ±---==± 12sin 95cos5,sin 5cos85,x x ∴====3275tan )2tan(+==- αβ点拨:利用本章的公式进行恒等变形.。

两角和与差的正弦、余弦、正切公式说课稿

两角和与差的正弦、余弦、正切公式说课稿

3.1.2 两角和与差的正弦、余弦、正切公式说课稿一.教材分析:两角和与差的正弦、余弦、正切公式是三角恒等变换的基础,同时,它又是后面学习倍角、半角等公式的“源头”. 它对于三角变换、三角恒等式的证明和三角函数式的化简,求值等三角问题的解决有着重要的支撑作用。

本课时主要以两角差的余弦公式为基础,结合诱导公式推导两角和与差的正、余弦及正切公式以及它们的简单应用。

二.教学目标:1.知识与技能:① 让学生学会用代换法,转化法推导公式 ;② 让学生初步学会公式的简单应用和公式的逆用等基本技能。

2.过程与方法:① 通过公式的推导,着重培养学生获取数学知识的能力和数学交流的能力;② 通过公式的灵活运用,培养学生的转化思想和变换能力。

3.情感、态度与价值观:课堂中,通过对问题的自主探究,培养学生的独立思考能力;小组交流中,培养合作意识;在解决问题时,培养学生解决问题抓主要矛盾的思想。

并唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。

三.教学重难点:教学重点:两角和与差的正弦、正切公式的推导过程及运用;教学难点:灵活运用所学公式进行求值、化简。

四.教学方法:由于新课程教学内容增多,传统教学已经不能满足教学需要,根据新课程教学理念,“将课堂还给学生,让课堂焕发出生命的活力” 是我进行教学的指导思想,基于本节课的特点,利用导学案和多媒体相结合让学生自主探究的模式实现学生从被动学习到主动学习的一个转变从而创造高效课堂。

五.教学过程:一、复习准备,提出问题:1.诱导公式:奇变偶不变,符号看象限。

如:cos(2) k πα+=, cos(90) oα-=, cos() α-=, sin() α-=2. 差角的余弦公式:cos()cos cos sin sin αβαβαβ-=+3.差角的余弦公式的应用:例如:求cos15o 的值,分析:15o = 30o-, 解:cos15cos( 30) o o =-=问题提出:如何求cos()αβ+的值呢?(设计目的:唤起学生已有的知识和解题技巧。

高二数学 两角和与差的正弦、余弦和正切公式教案

高二数学 两角和与差的正弦、余弦和正切公式教案

第三章三角恒等变换一、课标要求:本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.1. 了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;2. 理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;3. 运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用.二、编写意图与特色1.本章的内容分为两节:“两角和与差的正弦、余弦和正切公式”,“简单的三角恒等变换”,在学习本章之前我们学习了向量的相关知识,因此作者的意图是选择两角差的余弦公式作为基础,运用向量的知识来予以证明,降低了难度,使学生容易接受;2.本章是以两角差的余弦公式作为基础来推导其它的公式;3.本章在内容的安排上有明暗两条线,明线是建立公式,学会变换,暗线是发展推理和运算的能力,因此在本章全部内容的安排上,特别注意恰时恰点的提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,强化运用数学思想方法指导设计变换思路的意识;4.本章在内容的安排上贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末叶的内容”的理念,严格控制了三角恒等变换及其应用的繁、难程度,尤其注意不以半角公式、积化和差、和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习.三、教学内容及课时安排建议本章教学时间约8课时,具体分配如下:3.1两角和与差的正弦、余弦、和正切公式约3课时3.2简单的恒等变换约3课时复习约2课时§3.1 两角和与差的正弦、余弦和正切公式一、课标要求:本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用.二、编写意图与特色本节内容可分为四个部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明及初步应用.三、教学重点与难点1.重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;2.难点:两角差的余弦公式的探索与证明.两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、学法与教学用具1. 学法:启发式教学2. 教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家可以猜想,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-=(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处. 思考:()cos ?αβ+=,()()cos cos αβαβ+=--⎡⎤⎣⎦,再利用两角差的余弦公式得出()()()()cos cos cos cos sin sin cos cos sin sin αβαβαβαβαβαβ+=--=-+-=-⎡⎤⎣⎦(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值.解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 3022224=+=-=⨯-=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯= 点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===- 所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.(四)小结:α、β的象限,也就是符号问题,学会灵活运用.(五)作业:15012.P T T -。

《两角和与差的正弦余弦和正切公式》教学设计范文

《两角和与差的正弦余弦和正切公式》教学设计范文

《两角和与差的正弦余弦和正切公式》教学设计
《两角和与差的正弦余弦和正切公式》教学设计范文
三角函数式的化简
化简要求:
1)能求出值应求值?
2)使三角函数种类最少
3)项数尽量少
4)尽量使分母中不含三角函数
5)尽量不带有根号
常用化简方法:
线切互化,异名化同名,异角化同角,角的变换,通分,逆用三角公式,正用三角公式。

例1、
三角函数式给值求值:
给值求值是三角函数式求值的重点题型,解决给值求值问题关键:找已知式与所求式之间的角、运算以及函数的差异,角的变换是常用技巧,
给值求值问题往往带有隐含条件,即角的范围,解答时要特别注意对隐含条件的`讨论。

例2、
三角函数给值求角
此类问题是三角函数式求值中的难点,一是确定角的范围,二是选择适当的三角函数。

解决此类题的一般步骤是:
1)求角的某一三角函数值
2)确定角的范围
3)求角的值
例3.
总结:
解决三角函数式求值化简问题,要遵循“三看”原则:
①看角,通过角之间的差别与联系,把角进行合理拆分,尽量向特殊? 角和可计算角转化,从而正确使用公式。

②看函数名,找出函数名称之间的差异,把不同名称的等式尽量化成同名或相近名称的等式,常用方法有切化弦、弦化切。

③看式子结构特征,分析式子的结构特征,看是否满足三角函数公式,若有分式,应通分,可部分项通分,也可全部项通分。

“一看角,二看名,三是根据结构特征去变形”。

两角和与差的正弦、余弦、正切公式 教案

两角和与差的正弦、余弦、正切公式 教案

两角和与差的正弦、余弦、正切公式教案
三维教学目标
1.知识与技能
能从两角差的余弦公式导出两角和的余弦公式,以及两角和与差的正弦、正切公式,了解公式间的内在联系. 能应用公式解决比较简单的有关应用的问题.
2.过程与方法
通过层层探究体会数学思维的形成特点.
3.情感目标与价值观
通过公式变形体会转化与化归的思想方法.
教学重点:推导两角和的余弦公式及两角和与差的正弦、正切公式,并能区别两角和与差的正弦、余弦、正切公式.
教学难点:两角和与差的正弦、余弦、正切公式的理解和灵活运用.
突破措施:学生在前面诱导公式及两角差的余弦公式的基础上,比较自然的推出
两角和的余弦公式,以及两角和与差的正弦、正切公式.
学情分析:三角函数是高考的重点内容,本节主要是公式的推导和应用,难度不大,要让学生加强记忆,且熟练应用.
教学设计:
=
cos15_____
情景导入
有了两角差的余弦公式,我们能解决一些问题,但范围有
限,因此自然想得到两角差的正弦、正切公式,以及两角和的
72cos 42cos72sin 42
-20cos70sin 20sin 70-;(3).1tan15
1tan15
+-
练习:求下列各式的值:
72
cos18cos72sin18
tan12tan 33tan12tan 33
++
34sin 26cos34cos 2620cos 40cos 20cos50
-+
)
131cos sin 22
x x - (2)cos x -
板书设计:。

数学5.4两角和与差的余弦、正弦和正切余弦公式教案1沪教版高中一级第二学期

数学5.4两角和与差的余弦、正弦和正切余弦公式教案1沪教版高中一级第二学期

5.4 (1)两角和与差的余弦公式一、教学内容分析两角和与差的余弦是三角恒等式的起始课,是本章中一系列的三角恒等式的基础,因此对两角和与差的余弦公式的掌握必须扎实.两角和与差的余弦公式的推导是本节课的重点和难点.这一推导过程难度较大也比较复杂,教师可以通过设置问题情景,提出如何用两角的三角比表示两角差的余弦三角比.在猜测公式和实例检验的过程中激发学生探求公式的兴趣,在具体的推导过程中,引导学生想到借助单位圆来研究任意角三角比的基本方法,运用数形结合完成推导.对学生在推导过程中出现的问题,例如任意角的准确表示等,教师需指出或以引导的方式加以更正.在得到公式之后,需要观察和总结公式的特点和规律,便于记忆.在练习时要注意公式的逆用和其它变式的求值及化简问题,应用所学的公式证明三角恒等式的练习在本节课中不宜太难.二、教学目标设计探求两角和与差的余弦公式的推导,经历公式推导的过程,并在此过程中,进一步形成严密而准确的数学思维方法.初步掌握公式,并会应用它们解决一些简单的有关三角的求值问题与证明问题;三、教学重点及难点两角和与差的余弦公式的推导;掌握和应用两角和与差的余弦公式.四、教学流程设计五、教学过程设计一、讲授新课1、实例引入(1)2160cos =︒、2245cos =︒ ,而︒-︒=︒456015,那么等式︒-︒=︒45cos 60cos 15cos 是否成立?(2)对于任意角α、β,βα-的余弦如何用α和β的三角比来表示?[说明](1)045cos 60cos <︒-︒,而015cos >︒,所以等式不成立.(2)对学生所提出的猜想,用具体的数加以检验.通过检验发现)cos(βα-不能用简单的βαcos cos -或是βαcos cos +等来表示.从而明确余弦运算不满足分配律.2、公式推导设α、β是两个任意角.在直角坐标系的单位圆中作出两角α、β,射线OA 、OB 分别为其终边,与单位圆相交于A 、B 两点,其坐标分别为)sin ,(cos ααA ,)sin ,(cos ββB . 方法一、将角的终边OA 、OB 都绕O 旋转β-角,分别转到A O '和B O '的位置,则))sin(),(cos(βαβα--'A ,)0,1(B '.根据两点间距离公式,有)sin sin cos (cos 22)sin (sin )cos (cos ||22βαβαβαβα+-=-+-=AB)cos(22)(sin ]1)[cos(||222βαβαβα--=-+--=''B A因为AOB ∆绕O 旋转β-角得到B O A ''∆,所以||||B A AB ''=从而βαβαβαsin sin cos cos )cos(+=- 也可以将角的终边OA 、OB 都绕O 旋转α-角,则同理可得αβαβαβsin sin cos cos )cos(+=-,一方面由诱导公式可知)cos()cos(βααβ-=-,所以得到βαβαβαsin sin cos cos )cos(+=-.另一方面,由于α、β表示任意角,所以用α替换β,β替换α公式仍成立.从而得到βαβαβαsin sin cos cos )cos(+=-. O x y A)sin ,(cos αα)sin ,(cos ββB )0,1(B '))sin(),(cos(βαβα--'A O xy这个公式叫做两角差的余弦公式, 它对任意角α和β都成立.在两角差的余弦公式中,用β-代替β.可得到两角和的余弦公式:βαβαβαs i n s i n c o s c o s )c o s (-=+.3、强调特征两角和与差的余弦公式在结构上的特征为:1、公式左边是复角的余弦,右边是单角的余弦之积以及正弦之积的和与差;2、左右两边的加减号互异.4、例题解析例1、利用两角和与差的余弦公式,求︒15cos 、︒75cos 的值. 解:42615cos +=︒、42675cos -=︒ [说明]可以选择不同的角及公式,例如,)4560cos(15cos ︒-︒=︒、)3045cos(15cos ︒-︒=︒;)45120cos(75cos ︒-︒=︒、)3045cos(75cos ︒+︒=︒例2、化简:)60sin(sin )60cos(cos αααα-︒--︒解:1cos cos(60)sin sin(60)cos(60)cos602αααααα︒--︒-=+-==[说明]两角差的余弦公式逆用.例3、求︒︒+︒︒40cos 10cos 50cos 80cos 的值.解:原式2330cos 50sin 80sin 50cos 80cos =︒=︒︒+︒︒= [说明]公式变式训练.例4已知三角形ABC ,求证:B A B A C cos cos sin sin cos -=[说明]cos cos[()]C A B π=-+三、巩固练习课本第54页 练习5.4(1):1/(2);2四、课堂小结(1)本节课使用数形结合的数学思想方法,借助单位圆推导了两角差的余弦公式.还通过变量替换的方法,得到了两角和的余弦公式.(2)能够应用所学公式进行求值运算和化简,以及简单三角恒等式证明.五、课后作业思考题:求证下列恒等式:(1)ααπsin )2cos(=-;(2)ααπcos )2sin(=-课本第54页 练习5.4(1)3;4六、教学设计说明两角差的余弦公式的推导是这堂课的教学难点.一方面,这一推导本身比较复杂,需要学生对任意角有较好的理解.另一方面是来自于学生对待公式推导和证明的认识上.学生其实很清楚,从课本上所学的命题都是被证明过的,是真的.所以认为在课堂学习时,再证明一次并没有多大意义.他们会自觉地重视公式的应用,不自觉地忽视公式的推导.所以要做好证明教学是这堂课成功与否的关键,让学生在探寻、思考、构造的过程中将证明变成真正有意义的学习活动.所以,在设计教学过程时,将公式的证明变形为开放式的探求.探求的起点是合理的联想:)cos(βα-等于什么?一定是与α、β角的三角比有关.学生很容易联想到乘法分配律:mb ma b a m +=+)(,于是猜测βαβαcos cos )cos(-=-.经过实例检验说明上式只对个别角度成立,不具有一般性,从而与乘法分配律区分开.再猜测、再检验…,从这样的过程中一方面培养学生逻辑思考的能力,激励学生探求公式的兴趣,另一方面,发现公式的形式不会太简单,于是转化思路,以求代猜.其基点便是任意角的概念:在直角坐标中由旋转而形成.而研究任意角三角比需借助单位圆的力量.让学生体会到数形结合这一数学思想的美妙.而在单位圆中作出角α、β时,很容易忽略了两角的任意性,将它们表示为:从而没能使接下去的证明涵盖到任意角.这里是教师训练学生逻辑思维和思维严密性的发力点,教师可以通过提问的形式,引导学生自己发现这一问题,想办法补救,使得推导严密准确,适用于任意角度.经历这样一个过程,不但使得学生对公式的任意性有了更好的认识,对变量替换思想有更好的理解,更使得学生的证明能力得到提高,数学的思维方法得到了培养.在得到公式后,教师应对该公式的重要性加以肯定和突出.不仅能加强学生对公式的重视,更能使学生感到其努力是有价值的,从中体验到成就感. αβ将课本的例题4作为思考题留给学生,除了课堂时间有限这一因素之外,也作为与下一堂课的衔接.。

公式延续,思维拓展——“两角和与差的正弦、余弦、正切公式”教学设计

公式延续,思维拓展——“两角和与差的正弦、余弦、正切公式”教学设计

2024年3月上半月㊀教学导航㊀㊀㊀㊀公式延续,思维拓展两角和与差的正弦㊁余弦㊁正切公式 教学设计◉江苏省宿迁中学㊀王嘉琨1教材分析两角和与差的正弦㊁余弦㊁正切公式 是高中数学新教材(人教A版)必修第一册5.5.1的第2课时,是在第1课时 两角差的余弦公式 基础上的延续与拓展,也为后续三角恒等变换公式体系奠定基础.2学情分析学生在前面已经学习了诱导公式㊁两角差的余弦公式等,初步具备了三角函数式中 变角 与 变名 思维,这都为本节课研究两角和与差的正弦㊁余弦㊁正切公式提供了知识㊁方法和思想上的准备.3教学目标(1)以两角差的余弦公式作为基础,自主发现推导两角和与差的正弦.余弦㊁正切公式,并理解这些公式之间的内在联系.(2)通过例题的训练,加深对公式的理解和应用.4重点㊁难点(1)教学重点:两角和与差的正弦㊁余弦㊁正切公式的推导及其应用.(2)教学难点:灵活运用公式进行三角函数式的化简㊁求值等.5教学过程(1)复习回顾,问题引入问题1㊀上一节课我们学习了两角差的余弦公式C(α-β),你能说出这个公式以及它的推导过程吗?利用圆的旋转不变性来推导的,具体步骤如下:第一步,在坐标系中画出角度α,β,α-β与单位圆,并标出终边与单位圆的交点;第二步,根据三角函数的定义写出各点的坐标;第三步,利用圆的旋转不变性得到等量关系;第四步,代入化简得到公式.问题2㊀除了公式C(α-β)外,你还能提出一些新的研究问题吗?你打算如何研究这些问题?师生活动:教师引导学生提出新的研究问题,学生思考研究新问题的方法.引导语:对于其他几个公式,也可以利用单位圆来研究.不过,本书不采用这这种研究方法,而是利用公式C(α-β)来推导其他公式.数学上把这种将新问题转化成已经解决的问题的方法叫作化归与转化的思想方法.设计意图:通过问题1帮助学生回顾利用圆的旋转不变性推导两角差的余弦公式的过程,明确研究公式C(α-β)的方法.(2)公式探究,发现问题问题3㊀你能利用公式C(α-β)推导出两角和的余弦公式吗?师生活动:先让学生独立思考,然后请学生回答推导思路,鼓励学生用多种方法解决.方案一:注意到α+β与α-β之间的关系,即α+β=α-(-β),再由公式C(α-β)推导;方案二:可以利用换元的观点来推导,用 -β 替换公式C(α-β)中的 β 也能获得公式c o s(α+β)=c o sαc o sβ-s i nαs i nβ.设计意图:从加减法的关系和整体代换的方法体现了数学中的化归与转化以及换元的数学思想方法.(3)深入拓展,公式推导问题4㊀由C(α+β)能推导出s i n(α+β)的公式吗?师生活动:学生独立思考后,教师可以根据学生的反应追问下列问题.思考1㊀如何建立正弦与余弦值之间的关系呢?预设答案:利用诱导公式五(或六),即可实现正弦㊁余弦之间的相互转化.思考2㊀如何得到s i n(α+β)的公式呢?预设答案:s i n(α+β)=c o sπ2-(α+β)éëêêùûúú=c o s(π2-α)-βéëêêùûúú=c o s(π2-α)c o sβ+s i n(π2-α) s i nβ=s i nαc o sβ+c o sαs i nβ.设计意图:利用两角和的余弦公式和诱导公式推导两角和的正弦公式.问题5㊀如何得到s i n(α-β)的公式呢?师生活动:学生独立完成,教师邀请学生展示和点评.预设答案:用 -β 来替换s i n(α+β)中的 β ,则有s i n(α-β)=s i nαc o s(-β)+c o sαs i n(-β)=s i nαc o sβ-c o sαs i nβ.72教学导航2024年3月上半月㊀㊀㊀引导语:把以上两角和的正弦公式和两角差的正弦公式分别记为S (α+β)和S (α-β).设计意图:通过整体化思维,以及化归与转化思想,利用两角和的正弦公式来推导两角差的正弦公式.问题6㊀已知任意角α,β的正切,你能推导出t a n (α+β)和t a n (α-β)吗?师生活动:学生独立完成,教师邀请学生展示和点评.预设答案:由正切与正弦㊁余弦的关系,可知t a n (α+β)=s i n (α+β)c o s (α+β)=s i n αc o s β+c o s αs i n βc o s αc o s β-s i n αs i n β,分子㊁分母同时除以c o s αc o s β,整理得t a n (α+β)=t a n α+t a n β1-t a n αt a n β.同理t a n (α-β)=t a n α-t a n β1+t a n αt a n β.引导语:把以上两角和的正切公式和两角差的正切公式分别记为T (α+β)和T (α-β).设计意图:利用正弦㊁余弦㊁正切之间的关系推导两角和与差的正切公式.问题7㊀和(差)角公式和我们以前学习的诱导公式之间有什么关系吗请用图示说明.师生活动:学生独立思考后,和同学交流自己的想法,教师展示图示,揭示它们之间的内在联系.诱导公式是和(差)角公式的特殊情况,如用S (α-β)推导诱导公式如图1所示.图1设计意图:比较和(差)角公式和诱导公式的异同,构建知识间的内在联系,加深对公式的理解.(4)公式应用,熟练掌握例1㊀已知s i n α=-35,α是第四象限的角,求s i n (π4-α),c o s (π4+α),t a n (α-π4)的值.思考1:你打算如何求解?请说说你的思维过程.思考2:如果去掉 α是第四象限的角 这个条件,结果和求解过程会有什么变化思考3:在以上解答中我们可以看到,在本题条件下,s i n(π4-α)=c o s (π4+α),那么对于任意角α,上式还成立吗你能想到几种方法来证明?预设答案:方案一:等式左右两边均使用和差公式展开.方案二:寻找π4-α与π4+α之间的内在联系,再结合诱导公式来转化与处理,即s i n (π4-α)=s i n π2-(π4+α)éëêêùûúú=c o s (π4+α).例2㊀利用和(差)角公式计算下列各式的值:①si n 72ʎc o s 42ʎ-c o s 72ʎs i n 42ʎ;②c o s 20ʎc o s 70ʎ-s i n 20ʎs i n 70ʎ;③1+t a n 15ʎ1-t a n 15ʎ.思考4:从例1和例2可以看出和(差)角公式有什么作用?(预设答案:求值或化简.)设计意图:例1步步递进,逐层深入,充分展示数学思维的发散性;例2强化公式的理解和应用,规范解题格式,训练有序思维和逆向思维.(5)系统归纳,总结提升问题8㊀你能用图式来回顾本节课5个和(差)角公式的推导过程吗?师生活动:学生独立完成(如图2)后与同学交流.图2问题9㊀在和(差)角公式的推导过程中用到了什么数学思想方法预设答案:化归与转化的思想整体代换的思想等.设计意图:用框图回顾推导过程,建立知识之间的内在联系,归纳总结本节课的数学思想方法等.6教学反思(1)公式延续,深入应用本节课以两角差的余弦公式为基础,利用角的变换和函数名之间的转换,将要推导的公式转化为熟悉的公式来解决.整个推导过程不但能够培养学生逻辑推理数学素养,还能让学生领悟知识之间的内在联系,初步体会三角恒等变换的特点以及转化与化归思想在数学研究中的应用价值.(2)关注应用,能力提升我们应该改变以往公式教学中 轻过程㊁重应用 的方式,在关注公式的理解和应用的同时,更应该让学生全程参与到公式的发现和推导中来,因为推导过程所承载的数学育人功能是不可能只通过 公式的应用 来实现的;还可以鼓励学生课后选择一个公式作为基础,采用不同的研究路径重新研究这一过程,再一次经历解决问题的过程.Z82。

两角和与差的正弦余弦正切公式教学案

两角和与差的正弦余弦正切公式教学案

两角和与差的正弦余弦正切公式教学案一、教学目标:1.知识与技能目标:掌握两角和与差的正弦、余弦、正切公式。

2.过程与方法目标:鼓励学生积极思考、合作学习,培养学生的逻辑推理能力。

3.情感与态度目标:培养学生的数学兴趣,增强对数学的自信心。

二、教学重、难点:1.教学重点:学习正弦、余弦、正切两角和与差的公式,能够正确地应用到解题中。

2.教学难点:正弦、余弦、正切两角和与差的公式的推导与应用。

三、教学准备:1.教师准备:教案、笔记、教辅资料、教学媒体等。

2.学生准备:学习笔记、作业本。

四、教学步骤:Step 1 引入新课1.教师展示一幅图形,引导学生观察图形中的三角形,并提问:对于一个任意的三角形ABC,如何求角A和角C的两角和与差的正弦、余弦和正切?2.引导学生思考,并提醒学生复习正弦、余弦、正切的定义和性质。

Step 2 探究与讨论1.教师以角A和角C的两角和为例,引导学生分析角A和角C的三角函数之间可能存在的关系,并引导学生探究和讨论。

2.学生合作讨论,提出各自的思考结果并互相交流。

Step 3 运用公式解题1.教师给出两具体的角A和角C的数值,并提问学生如何求其两角和与差的正弦、余弦和正切的值。

2.学生运用公式计算,并与他人交流讨论结果,互相纠正错误。

Step 4 归纳总结1.教师总结学生的讨论结果,整理归纳出正弦、余弦、正切两角和与差的公式。

2.指导学生将这些公式整理成归纳表格或表格。

Step 5 拓展应用1.教师给出一些拓展应用题目,要求学生利用所学知识解答。

2.学生独立完成练习题,并互相交流讨论。

Step 6 小结与反思1.教师对本节课的内容进行小结,并引导学生参与总结。

2.向学生征求反馈意见,以便以后教学改进。

五、教学评价:1.学生通过合作探究和讨论,积极参与课堂活动。

2.学生能够利用正弦、余弦、正切两角和与差的公式解决实际问题。

3.学生对角度与三角函数之间的关系有了更深入的了解。

4.学生对本节课的教学内容和方式进行评价。

《3.5两角和与差的正弦、余弦、正切公式》 教案

《3.5两角和与差的正弦、余弦、正切公式》  教案

教学过程复习预习1、用五点法画y=A sin(ωx+φ)一个周期内的简图的方法;2、函数y=sin x的图象变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤:法一法二知识讲解考点1 两角和与差的正弦、余弦、正切公式sin(α±β)=sin_αcos_β±cos_αsin_βcos(α±β)=cos_αcos_β∓sin_αsin_βtan(α±β)=tan α±tan β1∓tan αtan β考点2 二倍角的正弦、余弦、正切公式sin 2α=2sin_αcos_αcos 2α=cos2α-sin2α=2cos2α-1=1-2sin2αtan 2α=2tan α1-tan2α三、例题精析【例题1】【题干】化简下列各式:(1)(sin α+cos α-1)(sin α-cos α+1)sin 2α;(2)sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°.【解析】 (1)原式=⎝ ⎛⎭⎪⎫2sin α2cos α2-2sin 2α2⎝ ⎛⎭⎪⎫2sin α2cos α2+2sin 2α24sin α2cos α2cos α=⎝ ⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2sin α2cos α2cos α=⎝ ⎛⎭⎪⎫cos 2α2-sin 2α2sin α2cos α2cos α=cos αsin α2cos α2cos α=tan α2.(2)∵sin 50°(1+3tan 10°)=sin 50°·cos 10°+3sin 10°cos 10°=sin 50°·2sin 40°cos 10°=1, cos 80°1-cos 20°=sin 10°2sin 2 10°=2sin 210°. ∴sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°=1-cos 20°2sin 210°= 2.【例题2】【题干】已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.【解析】∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝ ⎛⎭⎪⎫α2-β=53,sin ⎝ ⎛⎭⎪⎫α-β2= 1-cos 2⎝ ⎛⎭⎪⎫α-β2=459,∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β =⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.【例题3】【题干】已知cos α=17,cos(α-β)=1314,且0<β<α<π2.(1) 求tan 2α的值;(2)求β.【解析】 (1)由cos α=17,0<α<π2,得sin α=1-cos 2α= 1-⎝ ⎛⎭⎪⎫172=437.故tan α=sin αcos α=437×71=4 3.于是tan 2α=2tan α1-tan 2α=2×431-(43)2=-8347.(2)由0<β<α<π2,得0<α-β<π2.又∵cos(α-β)=1314,∴sin(α-β)=1-cos 2(α-β)= 1-⎝ ⎛⎭⎪⎫13142=3314.由β=α-(α-β),得cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12. ∴β=π3.【例题4】【题干】 (天津高考)已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的定义域与最小正周期;(2)设α∈⎝ ⎛⎭⎪⎫0,π4,若f ⎝ ⎛⎭⎪⎫α2=2cos 2α,求α的大小.【解析】(1)由2x +π4≠π2+k π,k ∈Z ,得x ≠π8+k π2,k ∈Z , 所以f (x )的定义域为⎩⎨⎧⎭⎬⎫x ∈R |x ≠π8+k π2,k ∈Z .f (x )的最小正周期为π2. (2)法一:由f ⎝ ⎛⎭⎪⎫α2=2cos 2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos 2α,sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=2(cos 2α-sin 2α), 整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).∵α∈⎝ ⎛⎭⎪⎫0,π4,所以sin α+cos α≠0.∴(cos α-sin α)2=12,即sin 2α=12. 由α∈⎝ ⎛⎭⎪⎫0,π4,得2α∈⎝ ⎛⎭⎪⎫0,π2,∴2α=π6,即α=π12. 法二:∵由f ⎝ ⎛⎭⎪⎫α2=2cos 2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos 2α, 即tan ⎝ ⎛⎭⎪⎫α+π4=2sin ⎝ ⎛⎭⎪⎫π2+2α=2sin2⎝ ⎛⎭⎪⎫π4+α,∴sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=4sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α.又∵α∈⎝ ⎛⎭⎪⎫0,π4,∴sin ⎝ ⎛⎭⎪⎫α+π4≠0.∴1cos ⎝ ⎛⎭⎪⎫α+π4=4cos ⎝ ⎛⎭⎪⎫π4+α.∴cos 2⎝⎛⎭⎪⎫π4+α=14.∵α∈⎝ ⎛⎭⎪⎫0,π4,∴π4+α∈⎝ ⎛⎭⎪⎫π4,π2.∴cos ⎝ ⎛⎭⎪⎫π4+α=12,π4+α=π3.即α=π3-π4=π12.课堂运用【基础】1.(2012·辽宁高考)已知sin α-cos α=2,α∈(0,π),则tan α=()A.-1B.-2 2C.22D.1解析:选A 由sin α-cos α=2sin ⎝ ⎛⎭⎪⎫α-π4=2,α∈(0,π),解得α=3π4,所以tan α=tan 3π4=-1.2.已知α为第二象限角,sin α+cos α=33,则cos 2α=()A.-53B.-59C.59 D.53解析:选A将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)·(cos α+sin α)=-53.3.已知α+β=π4,则(1+tan α)(1+tan β)的值是() A.-1 B.1C.2 D.4解析:选C ∵α+β=π4,tan(α+β)=tan α+tan β1-tan αtan β=1, ∴tan α+tan β=1-tan αtan β.∴(1+tan α)(1+tan β)=1+tan α+tan β+tan αtan β =1+1-tan αtan β+tan αtan β=2.【巩固】4 . 3-sin 70°2-cos210°=________.解析:3-sin 70°2-cos210°=3-cos 20°2-cos210°=3-210°-2-cos210°=2.答案:25.(2013·南通模拟)设f (x )=1+cos 2x 2sin ⎝ ⎛⎭⎪⎫π2-x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4的最大值为2+3,则常数a =________.解析:f (x )=1+2cos 2x -12cos x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4=cos x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4 =2sin ⎝ ⎛⎭⎪⎫x +π4+a 2sin ⎝ ⎛⎭⎪⎫x +π4=(2+a 2)sin ⎝ ⎛⎭⎪⎫x +π4. 依题意有2+a 2=2+3,故a =±3.答案:±3【拔高】6.已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝ ⎛⎭⎪⎫0,π2. (1)求sin θ和cos θ的值;(2)若sin(θ-φ)=1010,0<φ<π2,求cos φ的值.解:(1)∵a ⊥b ,∴sin θ-2cos θ=0,又∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴sin θ=255,cos θ=55. (2)∵sin(θ-φ)=1010,∴cos(θ-φ)=31010或-31010.当cos(θ-φ)=31010时,cos φ=cos[θ-(θ-φ)]=cos θ·cos(θ-φ)+sin θ·sin(θ-φ)=55×31010+255×1010=22.当cos(θ-φ)=-31010时,cos φ=cos[θ-(θ-φ)]=cos θ·cos(θ-φ)+sin θ·sin(θ-φ)=-55×31010+255×1010=-210<0.∵φ∈⎝ ⎛⎭⎪⎫0,π2,∴cos φ<0不合题意,舍去.∴cos φ的值等于22.7.(2013·岳阳模拟)已知向量a =(sin ωx ,cos ωx ),b =(cos φ,sin φ),函数f (x )=a·b ⎝ ⎛⎭⎪⎫ω>0,π3<φ<π的最小正周期为2π,其图象经过点M ⎝ ⎛⎭⎪⎫π6,32. (1)求函数f (x )的解析式;(2)已知α,β∈⎝ ⎛⎭⎪⎫0,π2,且f (α)=35,f (β)=1213,求f (2α-β)的值.解:(1)依题意有f (x )=a·b =sin ωx cos φ+cos ωx sin φ=sin(ωx +φ).∵函数f (x )的最小正周期为2π,∴2π=T =2πω,解得ω=1.将点M ⎝ ⎛⎭⎪⎫π6,32代入函数f (x )的解析式,得sin ⎝ ⎛⎭⎪⎫π6+φ=32. ∵π3<φ<π,∴π6+φ=2π3,∴φ=π2.故f (x )=sin ⎝ ⎛⎭⎪⎫x +π2=cos x . (2)依题意有cos α=35,cos β=1213,而α,β∈⎝ ⎛⎭⎪⎫0,π2, ∴sin α= 1-⎝ ⎛⎭⎪⎫352=45,sin β= 1-⎝ ⎛⎭⎪⎫12132=513, ∴sin 2α=2425,cos 2α=cos 2α-sin 2α=925-1625=-725,∴f (2α-β)=cos(2α-β)=cos 2αcos β+sin 2αsin β=-725×1213+2425×513=36325.课程小结1.两角和与差的三角函数公式的理解:(1)正弦公式概括为“正余,余正符号同”.“符号同”指的是前面是两角和,则后面中间为“+”号;前面是两角差,则后面中间为“-”号.(2)余弦公式概括为“余余,正正符号异”.(3)二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成已知角、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.。

两角和与差的正弦、余弦、正切公式教学设计与反思

两角和与差的正弦、余弦、正切公式教学设计与反思

两角和与差的正弦、余弦、正切公式教学设计与反思教材分析本节教材在高中三角函数中占有很重要的地位,因为它与前面所学习的两角差的余弦公式有着密切的联系,是在两角差的余弦公式的基础上推导出来的结果,而且与更早之前学习的诱导公式、同角三角函数关系有着密切的联系;同时又是后面将要学习二倍角公式的基础,因此学好本节内容知识,不仅可对以前所学的相关知识进行加深理解和巩固,而且为后面将要学习的知识作了很好的铺垫作用。

教学目标(1)知识与技能使学生能由两角差的余弦公式推导出两角和的余弦,并进而推得两角和与差的正弦公式、正切公式;使学生能进行简单的三角函数式的化简、求值和恒等变形;培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力。

(2)过程与方法通过教学活动,使学生理解两角和与差正弦、余弦、正切公式的形成过程;探究推导两角和与差正弦、余弦、正切公式的方法。

(3)情感态度与价值观通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质。

教学重点、难点:重点:两角和与差正弦、余弦、正切公式的推导及记忆;难点:灵活运用所学公式进行求值、化简及证明。

教学方法本节教学采用启发式教学,辅以观察法、发现法、讲练结合法。

采用这种方法的原因是本校高一学生的领会思想的能力比较差,回顾旧知的能力不足,通过师生的配合,共同进行探究活动,使其理解并掌握本节知识。

教学过程(一)课堂引入首先引导学生回顾一下两角差的余弦公式:cos(α-β)=cosαcosβ+sinαsinβ问题1:计算:(1)cos105。

cos15。

+ sin105。

sin15。

(2)-cos(θ+21。

)cos(θ-24。

)-sin(θ+21。

)sin(θ-24。

)思考:如果此处是求"cosαcosβ-sinαsinβ"的值呢?如何处理(引导学生去猜想可能就是"cos(α+β)")?教师指出这便是本节所要探讨的内容之一,由此引入新课。

两角和与差的正弦、余弦、正切公式教案

两角和与差的正弦、余弦、正切公式教案

两角和与差的余弦、正弦、正切教学目标知识目标:两角和的正切公式;两角差的正切公式能力目标:掌握T (α+β),T (α-β)的推导及特征;能用它们进行有关求值、化简情感态度:提高学生简单的推理能力;培养学生的应用意识;提高学生的数学素质 教学重点两角和与差的正切公式的推导及特征教学难点灵活应用公式进行化简、求值。

教学过程Ⅰ。

复习回顾首先,我们来回顾一下前面所推导两角和与差的余弦、正弦公式.(学生作答,老师板书)sin (α+β)=sin αcos β+cos αsin β(S (α+β))sin (α-β)=sin αcos β-cos αsin β(S (α-β))cos(α+β)=cos αcos β-sin αsin β(C (α+β))cos(α-β)=cos αcos β+sin αsin β(C (α-β))要准确把握上述各公式的结构特征.Ⅱ.讲授新课一、推导公式[师]上述公式结合同角三角函数的基本关系式,我们不难得出:当cos (α+β)≠0时tan (α+β)=βαβαβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin(a -+=++ 如果cos αcos β≠0,即cos α≠0且cos β≠0,我们可以将分子、分母都除以cos αcos β,从而得到:tan (α+β)=βαβαtan tan 1tan tan -+ 不难发现,这一式子描述了两角α与β的和的正切与这两角的正切的关系。

同理可得:tan (α-β)=βαβαtan tan 1tan tan +- 或将上式中的β用-β代替,也可得到此式.这一式子又描述了两角α与β的差的正切与这两角的正切的关系。

所以,我们将这两式分别称为两角和的正切公式、两角差的正切公式,简记为T (α+β),T (α-β)。

但要注意:运用公式T (α±β)时必须限定α、β、α±β都不等于2π+k π(k ∈Z )。

两角和与差的正弦余弦与正切公式说课稿

两角和与差的正弦余弦与正切公式说课稿

值的符号。
练习:已知 sin 15 , ( , ) ,求 cos( )
17
2
3
例 2、求值 cos80°cos20°+sin80°sin20°。(解略)
解题回顾:通过观察式子结构,学会逆用公式。
练习: (1)cos215°-sin215°,为二倍角公式埋下伏笔。
(2) (20XX 年陕西高考)Cos43°cos77°+sin43°cos167°,逐步学会把不符合
公式结构变形使之符合。
(3)
(2004
全国高考题)设
0,
2
,若
cos
3 5
,则
2
cos
4
_____

利用高考题的引用让学生串连三角函数的相关知识。
[注] 逆用公式是学生认识和掌握公式的重要标志。通过步步加深的练习,加强学生对
公式的理解和应用,引导学生积极参与思维,培养学生观察,比较等思维能力。同时渗透了
[说课稿] 两角和与差的正弦、余弦、正切(第一课时) 两角和与差的余弦这一节,分两个课时,我现在要说的是第一课时,重点是公式的推导, 其次是它的基础一些的简单应用。至于结合同角三角公式的应用、公式的变用、活用等提高 练习则留在第二课时进行。 一、 教材分析 教材的地位和作用:本节课教学内容是高一(下)第四章 4.6 节第一课时(两角和与差的余 弦)。本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时, 它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重 要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有 着重要的支撑作用。本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及它 们的简单应用。这节内容在高考中不但是热点,而且一般都是中、低档题,是一定要拿到分 的题。 教学重点:两角和与差的余弦公式的推导与运用。 教学难点:余弦和角公式的推导以及应用,学会恰当代换、逆用公式等技能。 二、教学目标 (一)知识目标: 1、掌握利用平面内两点间的距离公式进行 C(α+β)公式的推导; 2、能用代换法推导 C(α-β)公式; 3、初步学会公式的简单应用和逆用公式等基本技能。 (二)能力目标: 1、通过公式的推导,在培养学生三大能力的基础上,着重培养学生获得数学知识的能力 和数学交流的能力;

高中数学3.1.3两角和与差的正弦、余弦和正切公式教案新人教A版必修4

高中数学3.1.3两角和与差的正弦、余弦和正切公式教案新人教A版必修4

§3.1.3 二倍角的正弦、余弦、正切公式一、教学目标:1.知识与技能:使学生能记住二倍角公式,会运用二倍角公式进行求值、化简,同时使学生懂得在运用当中所起到的用途。

2.过程与方法:培养学生观察分析问题的能力,寻找数学规律的能力,同时注意渗透由一般到特殊到化归的数学思想及问题转化的数学思想。

3.情感、态度与价值观:课堂中,通过对问题的自主探究,培养学生的独立思考能力;小组交流中,培养合作意识;培养学生认真参与,积极交流的主体意识。

锻炼学生善于发现问题的规律和及时解决问题的态度。

二.教学重难点:教学重点:记住二倍角公式,运用二倍角公式进行求值,化简。

教学难点:在运用当中如何正确恰当的运用所学公式进行求值、化简。

三.教学方法:“将课堂还给学生,让课堂焕发出生命的活力” 是我进行教学的指导思想,启发学生自主性学习,有效的渗透数学思想方法,提高学生素质。

基于本节课的特点,我采用“引导发现法”和“讲练结合法”。

四.教学过程知识回顾(你已做好知识准备了吗?你一定还记得以下知识吧!)回忆两角和与差的正弦、余弦、正切公式1. :)(βα±S =±)sin(βα:)(βα±C =±)cos(βα:)(βα±T =±)tan(βα2.填空:若βα,为第二象限角,且53cos ,53sin -==βα则()=+βαsin ; 问题探究1:若第二象限角α满足53sin =α,则=α2sin 。

新授课问题1:你能利用S (βα±)、C (βα±)、T (βα±)推导sin2α,cos2α,tan2α的公式吗?sin2α= ; (α2S )cos2α= ; (α2C )tan2α= 。

)(2αT注意:1.公式S 2α,C 2α中α为任意角,在T 2α中αZ k k k ∈≠+≠,24,2ππαππ+且 2.二倍角是相对的.如:4α是2α的二倍角,α是2α的二倍角等。

两角和与差的正弦、余弦和正切公式(两角差的余弦公式)教案 高一上学期数学人教A版(2019)必修

两角和与差的正弦、余弦和正切公式(两角差的余弦公式)教案 高一上学期数学人教A版(2019)必修

第五章三角函数5.5.1 两角和与差的正弦、余弦和正切公式(1)(1课时)【教学内容】两角差的余弦公式推导;两角差的余弦公式;两角差的余弦公式的应用.【教学目标】1.经历探索两角差余弦公式的过程.(数学抽象、逻辑推理、直观想象)2.熟记两角差的余弦公式的形式及符号特征,并能利用公式进行简单的化简、求值.(数学运算、数学建模)【教学重难点】教学重点:得到差角的余弦公式;公式的形式与符号的特征;公式的简单应用(正用).教学难点:发现差角余弦公式与圆的旋转对称性间的联系.【教学过程】(说明:本环节包括新授、小结、布置作业等)一、引入本节我们主要的研究内容是:三角恒等变换,即在不改变含有三角函数的式子的值的前提下,对式子变形.三角恒等变形在求值、化简、证明中有着十分广泛的应用.之前我们学习过的同角三角关系和诱导公式,都是三角恒等变换的重要工具.今天我们在此基础上学习新的恒等变换公式.问题1:如何计算cos15︒?如何求cos(α-β) ?cos(α-β) = cosα- cosβ成立吗?利用单位圆推导cos(α-β) 的公式.二、新知探究问题2:首先在单位圆中画出角α、β、α-β,为了简便起见,我们首先不妨先看0 <β<α< 2π的情况.(x - x )2 + ( y - y )2 2 1 2 1 PA = P 1 A 1流程图:追问 1:由三角函数的定义,点 A ,P 1,A 1,P 的坐标如何表示? 答 案 :A (1, 0) , P 1(cos α,sin α) , A 1(cos β, s in β) ,P (cos(α- β), sin(α- β)) .追问 2:我们的目标是cos(α- β) = 点 P 的横坐标,已知的是点 A 、A 1、P 1 的坐标,如何用已知来表 示目标?——利用距离建立等式 AP = A 1P 1 .已知平面直角坐标系任意两点 P 1 ( x 1 , y 1 ) ,P 2 ( x 2 , y 2 ) ,则点 P 1 , P 2 之间的距离 P 1P 2 = .目标:cos(α- β) 定义 cos(α- β) = 点 P 的横坐标 能否利用已知点 A ,P 1,A 1的坐标来表示目标? 距离-α α+ α 追问 3:借助以上“两点间的距离公式”, 结合 AP = A 1P 1 ,你能得到什么结论?根据两点间距离公式,结合 P 1 A 1 = PA ,有 ,=整理得cos(α- β) = cos αcos β+ sin αsin β .当α,β的终边相同时,容易证明上式仍然成立.事实上,对于任意角都有 PA = P 1 A 1 ,从而对于任意角α,β有cos(α- β) = cos αcos β+ sin αsin β此公式给出了任意角α,β的正弦、余弦与其差角α- β的余弦之间的关系,称为差角的余弦公式,简记作C (α-β) = C αC β + S αS β .三、典型例题例1 利用公式C (α-β) 证明:(1) cos( π-α)= sin α; (2) cos(π-α)= - cos α2 证明:(1) cos( π π π)=cos cos sin sin 2 2 2= 0 + 1⨯ sin α= sin α.(2) cos(π-α)=cos πcos α+ sin πsin α= (-1) ⨯cos α+ 0= - cos α例 2 借助公式C (α-β) ,解答以下题目:(1) 计算cos15 的值; (2) 已知sin α= 4,α∈ ⎛ π , π ⎫ , cos β= - 5, β是第三象限角,求cos(α- β) 的值. 5 2 ⎪ 13⎝ ⎭(cos α- cos β)2 + (sin α-sin β)2[cos(α- β) -1]2 +[sin(α- β) - 0]22 3 2 6 + 2 2 3 2 2 + 6 1 1 cos ( + 答案:对于(1),我们可以把15 化成我们熟悉的30 , 45 , 60 等特殊角之中某两角的差的形式,再借助公式C (α-β) 求解;对于(2),可以借助同角三角关系求出 cos α, sin β,进而利用公式C (α-β) 求解 cos(α- β) .解:(1)(解法一) cos15 =cos(45 - 30 ) = cos 45 cos 30 + sin 45 sin 30= ⋅ + ⋅ = ; 2 2 2 2 4(解法二) cos15 =cos(60 - 45 ) = cos 60 cos 45 + sin 60 sin 45= ⋅ + ⋅ = ; 2 2 2 2 4 (2)因为α∈ ⎛ π , π ⎫ ,故cos α= - 1- sin 2 α = - 3 , 2 ⎪ 5⎝ ⎭ 因为β是第三象限角,故sin β= - 1- cos 2 β = - 12 , 13 因此cos(α- β) = cos αcos β+ sin αsin β= - 3 ⨯⎛ - 5 ⎫ + 4 ⨯⎛ - 12 ⎫ = - 33 . 5 13 ⎪ 5 13 ⎪ 65⎝ ⎭ ⎝ ⎭π 3 π 例 3 已知cos( +α)= 4 5 , 0 < α< ,求cos α的值. 2 π 解: 因为0 < α< ,故 π < π 3π +α< , 2 4 4 4π π 4所以sin( +α) = 1- 2 α) = , 4 4 5 π π π π π π 因此cos α= cos[( +α) - ] = cos( +α) cos + sin( +α) sin4 4 4 4 4 4= 3 ⨯ 2 + 4 ⨯ 2 = 7 25 2 5 2 10四、归纳小结1. 利用单位圆、三角函数定义、两点间的距离公式推导出cos(α- β) = cos αcos β+ sin αsin β公式.2. 已知一个角的正弦(或余弦)值,求该角的余弦 (或正弦)值时,要注意该角所在的象限,从而确定该角的三角函数值符号.3.熟悉角的拆分与组合,看到α+β,α,β想到凑角α=(α+β) -β,β=(α+β) -α等.五、答疑课程重点:得到差角的余弦公式;公式的形式与符号的特征;公式的简单应用(正用).难点:发现差角余弦公式与圆的旋转对称性间的联系.思想方法:整体代换思想,转化思想数学核心素养:1.经历探索两角差余弦公式的过程体现数学抽象、逻辑推理、直观想象;2. 熟记两角差的余弦公式的形式及符号特征,并能利用公式进行简单的化简、求值体现数学运算、数学建模.易错点:已知一个角的正弦(或余弦)值,求该角的余弦(或正弦)值时,要注意该角所在的象限,从而确定该角的三角函数值符号.六、作业【目标检测题】(见资源包)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《两角和与差的正弦、余弦、正切公式》教学设计一、教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等.2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的.二、三维目标1.知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.三、教学重、难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.四、教学用具三角板,彩色粉笔,幻灯片五、教学方法教法:引导探究,归纳总结学法:合作讨论,自主学习六、教学过程1.导入新课(问题导入)教师出示问题,先让学生计算以下几个题目,既可以复习回顾上节所学公式,又为本节新课作准备.若sinα=,α∈(0,),cosβ=,β∈(0,),求cos(α-β),cos(α+β)的值.学生利用公式C(α-β)很容易求得cos(α-β),但是如果求cos(α+β)的值就得想法转化为公式C(α-β)的形式来求,此时思路受阻,从而引出新课题,并由此展开联想探究其他公式.2.推进新课提出问题①还记得两角差的余弦公式吗?请一位同学到黑板上默写出来.②在公式C(α-β)中,角β是任意角,请学生思考角α-β中β换成角-β是否可以?此时观察角α+β与α-(-β)之间的联系,如何利用公式C(α-β)来推导cos(α+β)=?③分析观察C(α+β)的结构有何特征?④在公式C(α-β)、C(α+β)的基础上能否推导sin(α+β)=?sin(α-β)=?⑤公式S(α-β)、S(α+β)的结构特征如何?⑥对比分析公式C(α-β)、C(α+β)、S(α-β)、S(α+β),能否推导出tan(α-β)=? tan(α+β)=?⑦分析观察公式T(α-β)、T(α+β)的结构特征如何?⑧思考如何灵活运用公式解题?活动:对问题①,学生默写完后,教师播放幻灯片,然后引导学生观察两角差的余弦公式,点拨学生思考公式中的α,β既然可以是任意角,是怎样任意的?你会有些什么样的奇妙想法呢?鼓励学生大胆猜想,引导学生比较cos(α-β)与cos(α+β)中角的内在联系,学生有的会发现α-β中的角β可以变为角-β,所以α-(-β)=α+β〔也有的会根据加减运算关系直接把和角α+β化成差角α-(-β)的形式〕.这时教师适时引导学生转移到公式C(α-β)上来,这样就很自然地得到cos(α+β)=cos[α-(-β)]=cosαcos(-β)+sinαsin(-β)=cosαcosβ-sinαsinβ. 所以有如下公式:cos(α+β)=cosαcosβ-sinαsinβ我们称以上等式为两角和的余弦公式,记作C(α+β).对问题②,教师引导学生细心观察公式C(α+β)的结构特征,可知“两角和的余弦,等于这两角的余弦积减去这两角的正弦积”,同时让学生对比公式C(α-β)进行记忆,并填空:cos75°=cos(_________)==__________=___________.对问题③,上面学生推得了两角和与差的余弦公式,教师引导学生观察思考,怎样才能得到两角和与差的正弦公式呢?我们利用什么公式来实现正、余弦的互化呢?学生可能有的想到利用诱导公式⑸⑹来化余弦为正弦(也有的会想到利用同角的平方和关系式sin2α+cos2α=1来互化,此法让学生课下进行),因此有sin(α+β)=cos[-(α+β)]=cos[(-α)-β]=cos(-α)cosβ+sin(-α)sinβ=sinαcosβ+cosαsinβ.在上述公式中,β用-β代之,则sin(α-β)=sin[α+(-β)]=sinαcos(-β)+cosαsin(-β)=sinαcosβ-cosαsinβ. 因此我们得到两角和与差的正弦公式,分别简记为S(α+β)、S(α-β).sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.对问题④⑤,教师引导学生观察公式的结构特征并结合推导过程进行记忆,同时进一步体会本节公式的探究过程及公式变化特点,体验三角公式的这种简洁美、对称美.为强化记忆,教师可让学生填空,如sin(θ+φ)=___________,sin=_____. 对问题⑥,教师引导学生思考,在我们推出了公式C(α-β)、C(α+β)、S(α+β)、S(α-β)后,自然想到两角和与差的正切公式,怎么样来推导出tan(α-β)=?,tan(α+β)=?呢?学生很容易想到利用同角三角函数关系式,化弦为切得到.在学生探究推导时很可能想不到讨论,这时教师不要直接提醒,让学生自己悟出来.当cos(α+β)≠0时,tan(α+β)=如果cosαcosβ≠0,即cosα≠0且cosβ≠0时,分子、分母同除以cosαcosβ得tan(α+β)=,据角α、β的任意性,在上面的式子中,β用-β代之,则有tan(α-β)=由此推得两角和、差的正切公式,简记为T(α-β)、T(α+β).tan(α+β)=tan(α-β)=对问题⑥,让学生自己联想思考,两角和与差的正切公式中α、β、α±β的取值是任意的吗?学生回顾自己的公式探究过程可知,α、β、α±β都不能等于+kπ(k∈Z),并引导学生分析公式结构特征,加深公式记忆.对问题⑦⑧,教师与学生一起归类总结,我们把前面六个公式分类比较可得C(α+β)、S(α+β)、T(α+β)叫和角公式;S(α-β)、C(α-β)、T(α-β)叫差角公式.并由学生归纳总结以上六个公式的推导过程,从而得出以下逻辑联系图.可让学生自己画出这六个框图.通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式.同时教师应提醒学生注意:不仅要掌握这些公式的正用,还要注意它们的逆用及变形用.如两角和与差的正切公式的变形式tanα+tanβ=tan(α+β)(1-tanαtanβ),tanα-tanβ=tan(α-β)(1+tanαtan β),在化简求值中就经常应用到,使解题过程大大简化,也体现了数学的简洁美.对于两角和与差的正切公式,当tanα,tanβ或tan(α±β)的值不存在时,不能使用T(α±β)处理某些有关问题,但可改用诱导公式或其他方法,例如:化简tan(-β),因为tan的值不存在,所以改用诱导公式tan(-β)=来处理等.应用示例例1 已知sinα=,α是第四象限角,求sin(-α),cos(+α),tan(-α)的值.活动:教师引导学生分析题目中角的关系,在面对问题时要注意认真分析条件,明确要求.再思考应该联系什么公式,使用公式时要有什么准备,准备工作怎么进行等.例如本题中,要先求出cosα,tanα的值,才能利用公式得解,本题是直接应用公式解题,目的是为了让学生初步熟悉公式的应用,教师可以完全让学生自己独立完成.解:由sinα=,α是第四象限角,得cosα=.∴tanα==.于是有sin(-α)=sin cosα-cos sinα=cos(+α)=cos cosα-sin sinα=tan(α-)===.点评:本例是运用和差角公式的基础题,安排这个例题的目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯.变式训练11.不查表求cos75°,tan105°的值.解:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=,tan105°=tan(60°+45°)= =-(2+).2.设α∈(0,),若sinα=,则2sin(α+)等于( )A. B. C.D.4答案:A例2 已知sinα=,α∈(,π),cosβ=,β∈(π,),求sin(α-β),cos(α+β),tan(α+β).活动:教师可先让学生自己探究解决,对探究困难的学生教师给以适当的点拨,指导学生认真分析题目中已知条件和所求值的内在联系.根据公式S(α-β)、C(α+β)、T(α+β)应先求出cosα、sinβ、tanα、tanβ的值,然后利用公式求值,但要注意解题中三角函数值的符号.解:由sinα=,α∈(,π),得cosα==-=,∴tanα=.又由cosβ=,β∈(π,).sinβ==,∴tanβ=.∴sin(α-β)=sinαcosβ-cosαsinβ=×()-(.∴cos(α+β)=cosαcosβ-sinαsinβ=()×()-×()=∴tan(α+β)==.点评:本题仍是直接利用公式计算求值的基础题,其目的还是让学生熟练掌握公式的应用,训练学生的运算能力.变式训练2引导学生看章头图,利用本节所学公式解答课本章头题,加强学生的应用意识.解:设电视发射塔高CD=x米,∠CAB=α,则sinα=,在Rt△ABD中,tan(45°+α)=tanα.于是x=,又∵sinα=,α∈(0,),∴cosα≈,tanα≈.tan(45°+α)==3,∴x=-30=150(米).答:这座电视发射塔的高度约为150米.例3 在△ABC中,sinA=(0°<A<45°),cosB=(45°<B<90°),求sinC与cosC的值.活动:本题是解三角形问题,在必修5中还作专门的探究,这里用到的仅是与三角函数诱导公式与和差公式有关的问题,难度不大,但应是学生必须熟练掌握的.同时也能加强学生的应用意识,提高学生分析问题和解决问题的能力.教师可让学生自己阅读、探究、讨论解决,对有困难的学生教师引导学生分析题意和找清三角形各角之间的内在联系,从而找出解决问题的路子.教师要提醒学生注意角的范围这一暗含条件.解:∵在△ABC中,A+B+C=180°,∴C=180°-(A+B).又∵sinA=且0°<A<45°,∴cosA=.又∵cosB=且45°<B<90°,∴sinB=.∴sinC=sin[180°-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=×+×=,cosC=cos[180°-(A+B)]=-cos(A+B)=sinAsinB-cosAcosB=×-×=.点评:本题是利用两角和差公式,来解决三角形问题的典型例子,培养了学生的应用意识,也使学生更加认识了公式的作用,解决三角形问题时,要注意三角形内角和等于180°这一暗含条件.变式训练3在△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,则△ABC是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰非直角三角形答案:C七、课堂小结1.学生提纲契领:学生回顾本节课都学到了哪些数学知识和数学方法,有哪些收获与提高,在公式推导中你悟出了什么样的数学思想?对于这六个公式应如何对比记忆?其中正切公式的应用有什么条件限制?怎样用公式进行简单三角函数式的化简、求值与恒等式证明。

相关文档
最新文档