2017年山东省潍坊市中考数学试卷(含解析版)
山东省潍坊市2017年中考数学试题(word版,含答案)
⼭东省潍坊市2017年中考数学试题(word版,含答案)秘密★启⽤前试卷类型:A2017年潍坊市初中学业⽔平考试数学试题2017.06注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第I卷为选择题,36分;第Ⅱ卷为⾮选择题,84分;共4页,120分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上⾯的项⽬填涂清楚.所有答案都必须涂、写在答题卡相应位置,答在本试卷上⼀律⽆效.第Ⅰ卷(选择题共36分)⼀、选择题(本⼤题共12⼩题,在每个⼩题给出的四个选项中,只有⼀项是正确的,请把正确的选项选出来,每⼩题选对得3分,选错、不选或选出的答案超过⼀个均记0分)1.下列计算,正确的是().A.623aaa=B.33aaa=22aaa=+ D.422aa=)(2.如图所⽰的⼏何体,其俯视图是().3.可燃冰,学名叫“天然⽓⽔合物”,是⼀种⾼效清洁、储量巨⼤的新能源,据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿⽤科学记数法可表⽰为().A.3101? B.8101000? C.11101? D.14101?4.⼩莹和⼩博⼠下棋,⼩莹执圆⼦,⼩博⼠执⽅⼦.如图,棋盘中⼼⽅⼦的位置⽤()0,1-表⽰,右下⾓⽅⼦的位置⽤()1,0-表⽰.⼩莹将第4枚圆⼦放⼊棋盘后,所有棋⼦构成⼀个轴对称图形.她放的位置是().A.()1,2-B.()1,1-C.()2,1-D.()2,1--5.⽤教材中的计算器依次按键如下,显⽰的结果在数轴上对应点的位置介于()之间.B.C与D C、E与F D、A与B6.如图,?=∠90BCD,DEAB//,则α∠与β∠满⾜()A. ?=∠+∠180βα B.?=∠-∠90αβC.αβ∠=∠3 D.?=∠+∠90βα7.甲、⼄、丙、丁四名射击运动员在选拔赛中,每⼈射击了10次、甲、⼄两⼈的成绩如表所⽰,丙、丁两⼈的成绩如图所⽰.欲选⼀名运动员参赛,从平均数和⽅差两个因丙 D. 丁8.⼀次函数baxy+=与反⽐例函数xbay-=,其中0<ab,ba、为常数,它们在同⼀坐标系中的图象可以是().9.若代数式12--xx有意义,则实数x的取值范围是().A.1≥x B.2≥x C.1>x D.2>x10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,CD AO⊥,垂⾜为E,连接BD,?=∠50GBC,则DBC∠的度数为().A.50°B.60°C.80°D.85°11.定义[]x表⽰不超过实数x的最⼤整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数的图象如图所⽰,则⽅程[]221xx=的解为().A.0或2B.0或2C.1或2- D.2或2-12.点CA、为半径是3的圆周上两点,点B为CA的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为().A.5或22 B.5或32 C.6或22第Ⅱ卷(⾮选择题共84分)说明:将第Ⅱ卷答案⽤0.5mm的⿊⾊签字笔答在答题卡的相应位置上.⼆、填空题(本⼤题共6⼩题,共18分,只要求填写最后结果,每⼩题填对得3分)13.计算:=--÷--12)111(2xxx.14.因式分解:=-+-)2(22xxx .15.如图,在ABC中,ACD、分别为边AB、AC上的点,ADAC3=,AEAB3=,点F为BC边上⼀点,添加⼀个条件: ,可以使得FDB与ADE相似.(只需写出⼀个)16.已知关于x的⼀元⼆次⽅程0122=+-xkx有实数根,则k的取值范围是 .17.如图,⾃左⾄右,第1个图由1个正六边形、6个正⽅形和6个等边三⾓形组成;第2个图由2个正六边形、11个正⽅形和10个等边三⾓形组成;第3个图由3个正六边形、16个正⽅形和14个等边三⾓形组成;…按照此规律,第n个图中正⽅形和等边三⾓形的个数之和为个.18.如图,将⼀张矩形纸⽚ABCD的边BC斜着向AD边对折,使点B落在D上,记为B',折痕为CE;再将CD边斜向下对折,使点D落在CB'上,记为D',折痕为CG,2=''DB,BCBE31=.则矩形纸⽚ABCD的⾯积为 .三、解答题(本⼤题共7⼩题,共66分.解答要写出必要的⽂字说明、证明过程或演算步骤)19.(本题满分8分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进⾏了1000⽶跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男⽣,请估计成绩未达到良好有多少名?(3)某班甲、⼄两位成绩优秀的同学被选中参加即将举⾏的学校运动会1000⽶⽐赛,预赛分为A、B、C三组进⾏,选⼿由抽签确定分组.甲、⼄两⼈恰好分在同⼀组的概率是多少?20.(本题满分8分)如图,某数学兴趣⼩组要测量⼀栋五层居民楼CD 的⾼度.该楼底层为车库,⾼2.5⽶;上⾯五层居住,每层⾼度相等.测⾓仪⽀架离地1.5⽶,在A 处测得五楼顶部点D 的仰⾓为?60,在B 处测得四楼顶部点E 的仰⾓为?30,14=AB ⽶.求居民楼的⾼度(精确到0.1⽶,参考数据:3≈1.73).21.(本题满分8分)某蔬菜加⼯公司先后两批次收购蒜薹(tai )共100吨.第⼀批蒜薹价格为4000元/吨;因蒜薹⼤量上市,第⼆批价格跌⾄1000元/吨,这两批蒜薹共⽤去16万元. (1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进⾏加⼯,分为粗加⼯和精加⼯两种粗加⼯每吨利润400元,精加⼯每吨利润1000元.要求精加⼯数量不多于粗加⼯数量的三倍.为获得最⼤利润,精加⼯数量应为多少吨?最⼤利润是多少?22.(本题满分8分)如图,AB 为半圆O 的直径,AC 是⊙O 的⼀条弦,D 为C B的中点,作AC DE ⊥,交B 的延长线于点F ,连接DA . (1)求证:EF 为半圆O 的切线;(2)若36==DF DA ,求阴影区域的⾯积.(结果保留根号和π)23.(本题满分9分)⼯⼈师傅⽤⼀块长为10dm ,宽为6dm 的矩形铁⽪制作⼀个⽆盖的长⽅体容器,需要将四⾓各裁掉⼀个正⽅形,(厚度不计)(1)在图中画出裁剪⽰意图,⽤实线表⽰裁剪线,虚线表⽰折痕;并求长⽅体底⾯⾯积为212dm 时,裁掉的正⽅形边长多⼤?(2)若要求制作的长⽅体的底⾯长不⼤于底⾯宽的五倍,并将容器进⾏防锈处理,侧⾯每平⽅分⽶的费⽤为0.5元,底⾯每平⽅分⽶的费⽤为2元,裁掉的正⽅形边长多⼤时,总费⽤最低,最低为多少?24.(本题满分12分)边长为6的等边ABC ?中,点D 、E 分别在AC 、BC 边上, AB DE //, 32=EC .(l )如图1,将DEC ?沿射线EC ⽅向平移,得到C E D '''?,边E D ''与AC 的交点为M ,边D C ''与C AC '∠的⾓平分线交于点N .当C C '多⼤时,四边形D MCN '为菱形?并说明理由.(2)如图2,将DEC ?绕点C 旋转α(?<①在旋转过程中,D A '和E B '有怎样的数量关系?并说明理由. ②连接AP ,当AP 最⼤时,求D A '的值.(结果保留根号)25.(本题满分13分)如图1,抛物线c bx ax y ++=2经过平⾏四边形ABCD 的顶点)30(,A 、)01(,-B 、)32(,D ,抛物线与x 轴的另⼀交点为E .经过点E 的直线l 将平⾏四边形ABCD 分割为⾯积相等的两部分,与抛物线交于另⼀点P .点P 为直线l 上⽅抛物线上⼀动点,设点P 的横坐标为t .(1)求抛物线的解析式;(2)当t 何值时,PFE ?的⾯积最⼤?并求最⼤值的⽴⽅根;(3)是否存在点P 使PAE ?为直⾓三⾓形?若存在,求出t 的值;若不存在,说明理由.。
2017年山东省潍坊市中考数学试卷含答案
数学试卷第1页(共20页)数学试卷第2页(共20页)绝密★启用前山东省潍坊市2017年初中学业水平考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算,正确的是()A .326a a a ⨯=B .33a a a ÷=C .224a a a +=D .224()a a =2.如图所示的几何体,其俯视图是()A B C D3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A .3110⨯B .8100010⨯C .11110⨯D .14110⨯4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用()1,0-表示,右下角方子的位置用(0,)1-表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A .()2,1-B .()1,1-C .(1,)2-D .(1,2)--5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()A .B 与C 之间B .C 与D 之间C .E 与F 之间D .A 与B 之间6.如图,90,BCD AB DE =︒∠∥,则α∠与β∠满足()A .180αβ+=︒∠∠B .90βα-=︒∠∠C .3βα=∠∠D .90αβ+=︒∠∠7.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选()甲乙平均数98方差11A .甲B .乙C .丙D .丁8.一次函数y ax b =+与反比例函数a by x-=,其中0,,ab a b <为常数,它们在同一坐标系中的图象可以是()ABCD9.若代数式21x x --有意义,则实数x 的取值范围是()A .1x ≥B .2x ≥C .1x >D .2x >10.如图,四边形ABCD 为O 的内接四边形.延长AB 与DC 相交于点G ,AO CD ⊥,垂足为E ,连接BD ,50GBC =︒∠,则DBC ∠的度数毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共20页)数学试卷第4页(共20页)为()A .50︒B .60︒C .80︒D .85︒11.定义[x ]表示不超过实数x 的最大整数,如[1.8]1=,[ 1.4-]2=-,[3-]3=-.函数y =[x ]的图象如图所示,则方程[x ]212x =的解为()A .0或2B .0或2C .1或2-D .2或2-12.点A ,C 为半径是3的圆周上两点,点B 为 AC 的中点,以线段BA ,BC 为邻边作菱形ABCD ,顶点D 恰在该圆直径的三等分点上,则该菱形的边长为()A .5或22B .5或23C .6或22D .6或23第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.计算:212111x x x -⎛⎫-÷= ⎪--⎝⎭.14.因式分解:2(22)x x x --+=.15.如图,在ABC △中,,,AB AC D E ≠分别为边,AB AC 上的点,3,3AC AD AB AE ==,点F 为BC 边上一点,添加一个条件:,可以使得FDB △与ADE △相似.(只需写出一个)16.已知关于x 的一元二次方程2210kx x +=-有实数根,则k 的取值范围是.17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;……按照此规律,第n 个图中正方形和等边三角形的个数之和为个.18.如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在AD 边上,记为B ',折痕为CE ;再将CD 边斜向下对折,使点D 落在B C '上,记为D ',折痕为1,2,3CG B D BE BC ''==.则矩形纸片ABCD 的面积为.三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分8分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分为,,A B C 三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?20.(本小题满分8分)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为60︒,在B 处测得四楼顶部点E 的仰角为30︒,14AB =米.求居民楼的高度(精确到0.1米,参考数据:3 1.73≈).21.(本小题满分8分)数学试卷第5页(共20页)数学试卷第6页(共20页)某蔬菜加工公司先后两批次收购蒜薹(t ái )共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?22.(本小题满分8分)如图,AB 为半圆O 的直径,AC 是O 的一条弦,D 为 BC的中点,作DE AC ⊥,交AB 的延长线于点F ,连接DA .(1)求证:EF 为半圆O 的切线;(2)若DA DF ==,求阴影区域的面积.(结果保留根号和π)23.(本小题满分9分)工人师傅用一块长为10dm 、宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为212dm 时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.(本小题满分12分)边长为6的等边ABC △中,点,D E 分别在,AC BC边上,,DE AB EC =∥图1图2(1)如图1,将DEC △沿射线EC 方向平移,得到D E C '''△,边D E ''与AC 的交点为M ,边C D ''与ACC '∠的角平分线交于点N .当CC '多大时,四边形MCND '为菱形?并说明理由;(2)如图2,将DEC △绕点C 旋转36(0)0αα︒︒∠<<,得到D E C ''△,连接,AD BE ''.边D E ''的中点为P .①在旋转过程中,AD '和BE '有怎样的数量关系?并说明理由;②连接AP ,当AP 最大时,求AD '的值.(结果保留根号)25.(本小题满分13分)如图,抛物线2y ax bx c =++经过平行四边形ABCD 的顶点0,3,(),0()1A B -,()2,3D ,抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点F .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t.备用图毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第7页(共20页)数学试卷第8页(共20页)(1)求抛物线的解析式;(2)当t 何值时,PFE △的面积最大?并求最大值的立方根;(3)是否存在点P 使PAE △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.山东省潍坊市2017年初中学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】解:A.原式5a =,故A 错误;B.原式2a =,故B 错误;C.原式22a =,故C 错误;故选D【提示】根据整式运算法则即可求出答案.【考点】同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,积的乘方2.【答案】D【解析】解:从上边看是一个同心圆,内圆是虚线,故选:D .【提示】根据从上边看得到的图形是俯视图,可得答案.【考点】简单几何体的三视图3.【答案】C【解析】解:将1000亿用科学记数法表示为:11.110⨯故选:C .【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】用科学记数法表示较大的数4.【答案】B【解析】解:棋盘中心方子的位置用(1,0)-表示,则这点所在的横线是x 轴,右下角方子的位置用(0,1)-,则这点所在的纵线是y 轴,则当放的位置是(1,1)--时构成轴对称图形.故选B.【提示】首先确定x 轴、y 轴的位置,然后根据轴对称图形的定义判断.【考点】轴对称图形,坐标位置的确定5.【答案】A【解析】解:在计算器上依次按键算出2-的值;计算可得结果介于2-与1-之间.故选A .【提示】此题实际是求2-的值.【考点】计算器求值,数轴6.【答案】B【解析】解:过C 作CF AB ∥,∵AB DE ∥,∴AB CF DE ∥∥,∴1α∠=∠,2180β∠=︒-∠,∵90BCD ∠=︒,∴1218090αβ∠+∠=∠+︒-∠=︒,∴90βα∠-∠=︒,故选B.【提示】过C 作CF AB ∥,根据平行线的性质得到1α∠=∠,2180β∠=︒-∠,于是得到结论.【考点】平行线的性质7.【答案】C【解析】解:丙的平均数989109891099910+++++++++==,丙的方差1[1111]0.410=+++=g ,乙的平均数898879810878.210+++++++++==,由题意可知,丙的成绩最好,故选C .【提示】求出丙的平均数、方差,乙的平均数,即可判断.数学试卷第9页(共20页)数学试卷第10页(共20页)【考点】方差,平均数,折线图8.【答案】C【解析】解:A .由一次函数图象过一、三象限,得0a >,交y 轴负半轴,则0b <,满足0ab <,∴0a b ->,∴反比例函数a by x-=的图象过一、三象限,所以此选项不正确;B .由一次函数图象过二、四象限,得0a <,交y 轴正半轴,则0b >,满足0ab <,∴0a b -<,∴反比例函数a by x-=的图象过二、四象限,所以此选项不正确;C .由一次函数图象过一、三象限,得0a >,交y 轴负半轴,则0b <,满足0ab <,∴0a b ->,∴反比例函数a by x-=的图象过一、三象限,所以此选项正确;D .由一次函数图象过二、四象限,得0a <,交y 轴负半轴,则0b <,满足0ab >,与已知相矛盾所以此选项不正确;故选C .【提示】根据一次函数的位置确定a ,b 的大小,看是否符合0ab <,计算a b -确定符号,确定双曲线的位置.【考点】一次函数与反比例函数的图象9.【答案】B【解析】解:由题意可知:2010x x -≥⎧⎨->⎩∴解得:2x ≥,故选B【提示】根据二次根式有意义的条件即可求出x 的范围;【考点】二次根式有意义的条件10.【答案】C【解析】解:如图,∵A .B .D .C 四点共圆,∴50GBC ADC ∠=∠=︒,∵AE CD ⊥,∴90AED ∠=︒,∴905040EAD ∠=︒-︒=︒,延长AE 交O e 于点M ,∵AO CD ⊥,∴¼¼C M DM =,∴280DBC EAD ∠=∠=︒.故选C.【提示】根据四点共圆的性质得:50GBC ADC ∠=∠=︒,由垂径定理得:¼¼C M DM =,则280DBC EAD ∠=∠=︒.【考点】圆内接四边形的性质,圆周角与弧度数间的关系11.【答案】A【解析】解:当12x ≤≤时,2112x =,解得12x 22x =-;当10x -≤≤时,2102x =,解得120x x ==;当21x -≤<-时,2112x =-,方程没有实数解;所以方程21[]2x x =的解为02.【提示】根据新定义和函数图象讨论:当12x ≤≤时,则2112x =;当10x -≤≤时,则2102x =,当21x -≤<-时,则2112x =-,然后分别解关于x 的一元二次方程即可.【考点】新定义运算与函数图象12.【答案】D【解析】解:过B 作直径,连接AC 交AO 于E ,∵点B 为»AC 的中点,∴BD AC ⊥,如图1,∵点D 恰在该圆直径的三等分点上,∴12323BD =⨯⨯=,∴1OD OB BD =-=,∵四边形ABCD 是菱形,∴112DE BD ==,∴2OE =,连接OD ,∵225CE OC OE -,∴边226CD DE CE +;如图2,22343BD =⨯⨯=,同理可得,1OD =,1OE =,2DE =,连接OD ,数学试卷第11页(共20页)数学试卷第12页(共20页)∵CE =,∴边CD ==,故选D.【提示】过B 作直径,连接AC 交AO 于E ,如图1,根据已知条件得到12323BD =⨯⨯=,如图2,22343BD =⨯⨯=,求得1OD =,2OE =,1DE =,连接OD ,根据勾股定理得到结论【考点】圆的性质,菱形的性质,勾股定理第Ⅱ卷二、填空题13.【答案】1x +【解析】解:21211(1)(1)2(1)(1)11111212x x x x x x x x x x x x x x ---+--+-⎛⎫-÷===+ ⎪------⎝⎭g g ,故答案为:1x +【提示】根据分式的减法和除法可以化简题目中的式子,从而可以解答本题.【考点】分式的化简14.【答案】(1)(2)x x +-【解析】解:原式(2)(2)(1)(2)x x x x x =-+-=+-.故答案是:(1)(2)x x +-.【提示】通过两次提取公因式来进行因式分解.【考点】因式分解15.【答案】A BD F ∠=∠(A BFD ∠=∠,AD E BFD ∠=∠,ADE BDF ∠=∠,DF AC ∥,BD BF EA ED =,BD BFED EA=)【解析】解:3AC AD =Q ,3AB AE =,A A ∠=∠,ADE ACB △∽△,AED B ∠=∠,ADE C ∠=∠,若使FDB △与ADE △相似可添加A BD F ∠=∠,A BFD ∠=∠,AD E BFD ∠=∠,ADE BDF ∠=∠,DF AC ∥,根据两边对应成比例及夹角相等的两三角形相似可添加BD BF EA ED =,BD BFED EA=【提示】结论:A BD F ∠=∠,A BFD ∠=∠,AD E BFD ∠=∠,ADE BDF ∠=∠,DF AC ∥,BD BF EA ED =,BD BFED EA=.根据相似三角形的判定方法一一证明即可.【考点】相似三角形的判定与性质16.【答案】1k ≤且0k ≠【解析】解:∵关于x 的一元二次方程2210kx x -+=有实数根,∴240b ac =-≥△,即:440k -≥,解得:1k ≤,∵关于x 的一元二次方程2210kx x -+=中0k ≠,故答案为:1k ≤且0k ≠【提示】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k 的不等式,解得即可,同时还应注意二次项系数不能为0.【考点】一元二次方程的定义,一元二次方程的判别式17.【答案】93n +【解析】解:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和661293=+==+;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和111021923=+==⨯+;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和161430933=+==⨯+,…,∴第n 个图中正方形和等边三角形的个数之和93n =+.故答案为:93n +【提示】根据题中正方形和等边三角形的个数找出规律,进而可得出结论.【考点】规律探究18.【答案】15【解析】解:设BE a =,则3BC a =,由题意可得,CB CB =',CD CD =',BE B E a ='=,∵2B D ''=,∴32CD a '=-,∴32CD a =-,∴3222AE a a a =--=-,∴DB '====,∴数学试卷第13页(共20页)数学试卷第14页(共20页)3A B a '=-,∵222AB AE B E '+=',∴222(3(22)a a a-+-=,解得,23a =或53a =,当23a =时,2BC =,∵2B D ''=,CB CB =',∴23a =时不符合题意,舍去;当53a =时,5BC =,323AB CD a ==-=,∴矩形纸片ABCD 的面积为:5315⨯=,故答案为:15.【提示】根据翻折变化的性质和勾股定理可以求得BC 和AB 的长,然后根据矩形的面积公式即可解答本题.【考点】翻折变化,矩形的性质三、解答题19.【答案】解:(1)抽取的学生数:1640%40÷=(人);抽取的学生中合格的人数:401216210---=,合格所占百分比:104025%÷=,优秀人数:124030%÷=,如图所示:(2)成绩未达到良好的男生所占比例为:25%5%30%+=,所以600名九年级男生中有60030%180⨯=(名);(3)如图:可得一共有9种可能,甲、乙两人恰好分在同一组的有3种,所以甲、乙两人恰好分在同一组的概率3193P ==.【提示】(1)利用良好的人数除以良好的人数所占的百分比可得抽查的人数,然后计算出合格的人数和合格人数所占百分比,再计算出优秀人数,然后画图即可;(2)计算出成绩未达到良好的男生所占比例,再利用样本代表总体的方法得出答案;(3)直接利用树状图法求出所有可能,进而求出概率.【考点】扇形统计图和条形统计图的应用,列表法或树状图法求概率20.【答案】18.4米【解析】解:设每层楼高为x 米,由题意得: 2.5 1.51MC MC CC '=-'=-=米,∴51DC x '=+,41x '=+,在Rt DC A ''△中,60DA C ∠''=︒,∴1)tan 603DC C A x'''==+︒,在Rt EC B ''△中,30EB C ∠''=︒,∴1)tan30EC C B x '''==+,∵A B C B C A AB ''=''-''=,∴31)(51)143x x +-+=,解得: 3.17x ≈,则居民楼高为5 3.17 2.518.4⨯+≈米.【提示】设每层楼高为x 米,由MC CC -'求出MC ′的长,进而表示出DC ′与EC ′的长,在直角三角形DC ′A ′中,利用锐角三角函数定义表示出C′A′,同理表示出C′B ′,由C B C A ''-''求出AB 的长即可.【考点】解直角三角形的应用—仰角俯角问题21.【答案】(1)第一批购进蒜薹20吨,第二批购进蒜薹80吨(2)精加工数量应为75吨,最大利润是85000元【解析】解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.由题意10040001000160000x y x y +=⎧⎨+=⎩,解得2080x y =⎧⎨=⎩,答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m 吨,总利润为w 元,则粗加工吨.由3m ≤,解得75m ≤,利润100040060040000w m m =+=+,∵6000>,∴w 随m的增大而增大,∴75m =时,w 有最大值为85000元.【提示】(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.构建方程组即可解决问题.(2)设精加工m 吨,总利润为w 元,则粗加工吨.由3m ≤,解得75m ≤,利润100040060040000w m m =+=+,构建一次函数的性质即可解决问题.数学试卷第15页(共20页)数学试卷第16页(共20页)【考点】二元一次方程组,一次函数的应用,不等式22.【答案】(1)证明:连接OD ,∵D 为»BC 的中点,∴CAD BAD ∠=∠,∵OA OD =,∴BAD ADO ∠=∠,∴CAD ADO ∠=∠,∵DE AC ⊥,∴90E ∠=︒,∴90CAD EDA ∠+∠=︒,即90ADO EDA ∠+∠=︒,∴OD EF ⊥,∴EF 为半圆O 的切线;(2)解:连接OC 与CD ,∵DA DF =,∴BAD F ∠=∠,∴BAD F CAD ∠=∠=∠,又∵90BAD CAD F ∠+∠+∠=︒,∴30F ∠=︒,60BAC ∠=︒,∵OC OA =,∴AOC△为等边三角形,∴60AOC ∠=︒,120COB ∠=︒,∵OD EF ⊥,30F ∠=︒,∴60DOF ∠=︒,在Rt ODF △中,DF =tan306OD DF =︒=g ,在Rt AED △中,DA =,30CAD ∠=︒,∴sin30DE DA =︒=g ,cos309EA DA =︒=g ,∵18060COD AOC DOF ∠=︒-∠-∠=︒,∴CD AB ∥,故ACD COD S S =△△,∴21609π66π23602AED COD S S S =-=⨯⨯⨯=-△阴影扇形.【提示】(1)直接利用切线的判定方法结合圆心角定理分析得出OD EF ⊥,即可得出答案;(2)直接利用得出ACD COD S S =△△,再利用AED COD S S S =-△阴影扇形,求出答案.【考点】切线的判定与性质,扇形面积的计算23.【答案】解:(1)如图所示:设裁掉的正方形的边长为x dm ,由题意可得(102)(62)12x x --=,即28120x x -+=,解得2x =或6x =(舍去),答:裁掉的正方形的边长为2dm ,底面积为12dm 2;(2)∵长不大于宽的五倍,∴1025(62)x x -≤-,解得0 2.5x <≤,设总费用为w 元,由题意可知220.52(164)2(102)(62)4481204(6)24w x x x x x x x =⨯-+--=-+=--,∵对称轴为6x =,开口向上,∴当0 2.5x <≤时,w 随x 的增大而减小,∴当 2.5x =时,w 有最小值,最小值为25元,答:当裁掉边长为2.5dm 的正方形时,总费用最低,最低费用为25元.【提示】(1)由题意可画出图形,设裁掉的正方形的边长为x dm ,则题意可列出方程,可求得答案;(2)由条件可求得x 的取值范围,用x 可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.【考点】一元二次方程的实际应用,二次函数的实际应用24.【答案】(1)当'CC =时,四边形MCND '是菱形,理由如下(2)①AD BE ''=,理由如下②AD '=【解析】解:(1)当'CC =时,四边形MCND '是菱形.理由:由平移的性质得,''CD C D ∥,''DE D E ∥,∵ABC △是等边三角形,∴60B ACB ∠=∠=︒,∴'180120ACC ACB ∠=︒-∠=︒,∵CN 是∠ACC '的角平分线,∴1''''602D E C ACC B ∠=∠=︒=∠,∴''''D E C NCC ∠=∠,∴''D E CN ∥,∴四边形MCND '是平行四边形,∵'''60ME C MCE ∠=∠=︒,''60NCC NC C ∠=∠=︒,∴'MCE △和'NCC △是等边三角形,∴'MC CE =,'NC CC =,∵''E C =,∵四边形MCND '是菱形,∴CN CM =,∴1'''2CC E C ==;(2)①''AD BE =,理由:当180α≠︒时,由旋转的性质得,''ACD BCE ∠=∠,由(1)知,AC BC =,''CD CE =,∴''ACD BCE △≌△,∴''AD BE =,当180α=︒时,''AD AC CD =+,''BE BC CE =+,即:''AD BE =,综上可知:''AD BE =.②如图连接CP ,在ACP △中,由三角形三边关系得,AP AC CP <+,∴当点A ,C ,数学试卷第17页(共20页)数学试卷第18页(共20页)P 三点共线时,AP 最大,如图1,在''D CE △中,由P 为D'E 的中点,得''AP D E ⊥,'PD =,∴3CP =,∴639AP =+=,在'Rt APD △中,由勾股定理得,'AD =.【提示】(1)先判断出四边形MCND '为平行四边形,再由菱形的性质得出CN CM =,即可求出CC ';(2)①分两种情况,利用旋转的性质,即可判断出''ACD BCE △≌△即可得出结论;②先判断出点A ,C ,P 三点共线,先求出CP ,AP ,最后用勾股定理即可得出结论.【考点】平行四边形的判定和性质,菱形的判定和性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理25.【答案】(1)223y x x =-++(2)当1310t =时,PEF △的面积最大,其最大值为2891710010⨯,最大值的立方根为1710=(3)1【解析】解:(1)由题意可得30423c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线解析式为223y x x =-++;(2)∵(0,3)A ,(2,3)D ,∴2BC AD ==,∵(1,0)B -,∴(1,0)C ,∴线段AC 的中点为13,22⎛⎫⎪⎝⎭,∵直线l 将平行四边形ABCD 分割为面积相等两部分,∴直线l 过平行四边形的对称中心,∵A .D 关于对称轴对称,∴抛物线对称轴为1x =,∴(3,0)E ,设直线l 的解析式为y kx m =+,把E 点和对称中心坐标代入可得132230k m k m ⎧+=⎪⎨⎪+=⎩,解得3595k m ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线l 的解析式为3955y x =-+为,联立直线l 和抛物线解析式可得2395523y x y x x ⎧=-+⎪⎨⎪=-++⎩,解得30x y =⎧⎨=⎩或255125x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴251,525F ⎛⎫- ⎪⎝⎭,如图1,作PH x ⊥轴,交l 于点M ,作FN PH ⊥,∵P点横坐标为t ,∴2(,23)P t t t -++,39,55M t ⎛⎫-+ ⎝⎭,∴2239136235555PM t t t t t ⎛⎫=-++--+=-++ ⎪⎝⎭,∴211111362()32222555PEF PFM PEM S S S PM FN PM EH PM FN EH t t ⎛⎫⎛⎫=+=+=+=-+++ ⎪⎪⎝⎭⎝⎭g g g △△△171328917101010010t ⎛⎫=--+⨯ ⎪⎝⎭,∴当1310t =时,PEF △的面积最大,其最大值为2891710010⨯,1710=;(3)由图可知90PEA ∠≠︒,∴只能有90PAE ∠=︒或90APE ∠=︒,①当90PAE ∠=︒时,如图2,作PG y ⊥轴,∵OA OE =,∴45OAE OEA ∠=∠=︒,∴45PAG APG ∠=∠=︒,∴PG AG =,∴2233t t t =-++-,即20t t -+=,解得1t =或0t =(舍去),②当90APE ∠=︒时,如图3,作PK x ⊥轴,AQ PK ⊥,则223PK t t =-++,AQ t =,3KE t =-,222332PQ t t t t =-++-=-+,∵90APQ KPE APQ PAQ ∠+∠=∠+∠=︒,∴PAQ KPE ∠=∠,且PKE PQA ∠=∠,∴PKE AQP△∽△,∴PK KEAQ PQ=,即222332t t tt t t-++-=-+,即210t t--=,解得t=或52t=<-(舍去),综上可知存在满足条件的点P,t的值为1或12+.【提示】(1)由A.B.C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A.C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH x⊥轴,交直线l于点M,作FN PH⊥,则可用t表示出PM的长,从而可表示出PEF△的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有90PAE∠=︒或90APE∠=︒两种情况,当90PAE∠=︒时,作PG y⊥轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当90APE∠=︒时,作PK x⊥轴,AQ PK⊥,则可证得PKE AQP△∽△,利用相似三角形的性质可得到关于t的方程,可求得t的值.【考点】二次函数的综合应用,待定系数法,平行四边形的性质,二次函数的性质,三角形的面积,直角三角形的性质,相似三角形的判定和性质,方程思想,分类讨论思想数学试卷第19页(共20页)数学试卷第20页(共20页)。
2017年山东省潍坊市中考数学试题及答案(word版)
试卷类型:
A
2017年潍坊市初中学业水平考试数学试题
2017.06
注意事项:
1. 本试题分第I卷和第n卷两部分.第I卷为选择题,36分;第n卷为非选择题,84分; 共4页,120分.考试时间为120分钟.
2. 答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答
题卡相应位置,答在本试卷上一律无效.
第I卷(选择题共36 分)
、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把
3. 可燃冰,学名叫“天然气水合物”,是一种高效清洁、储
量巨大的新能源,据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000
亿用科学记数法可表示为
().
3 8 11 14
A.1 10
B. 1000 10
C.1 10
D. 1 10
秘密★启用前
正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)
1.下列计算,正确的是().
3 2 6 3 . 3
A. a a a
B. a " = a
2 2 4
C. a a a
2 4
a
& D.。
2017年山东省潍坊市中考真题数学
2017年山东省潍坊市中考真题数学一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列算式,正确的是( )A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4D.(a2)2=a4解析:根据整式运算法则即可求出答案.答案:D.2.如图所示的几何体,其俯视图是( )A.B.C.D.解析:根据从上边看得到的图形是俯视图,可得答案.答案:D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为( )A.1×103B.1000×108C.1×1011D.1×1014解析:将1000亿用科学记数法表示为:1×1011.答案:C.4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是( )A.(-2,1)B.(-1,1)C.(1,-2)D.(-1,-2)解析:首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.答案:B.5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A.B与CB.C与DC.E与FD.A与B解析:在计算器上依次按键转化为算式为;计算可得结果介于-2与-1之间.答案:A.6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足( )A.∠α+∠β=180°B.∠β-∠α=90°C.∠β=3∠αD.∠α+∠β=90°解析:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°-∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°-∠β=90°,∴∠β-∠α=90°.答案:B.7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选( )A.甲B.乙C.丙D.丁解析:求出丙的平均数、方差,乙的平均数,即可判断.答案:C.8.一次函数y=ax+b与反比例函数y=a bx,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是( ) A.B.C.D.解析:根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.答案:C.9.x的取值范围是( )A.x≥1B.x≥2C.x>1D.x>2解析:根据二次根式有意义的条件即可求出x的范围.答案:B.10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )A.50°B.60°C.80°D.90°CM DM,则∠DBC=2解析:根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得:=∠EAD=80°.答案:C.11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y=[x]的图象如图所示,则方程[x]=12x2的解为( ).A.0B.0或2C.1或解析:根据新定义和函数图象讨论:当1≤x≤2时,则12x2=1;当-1≤x≤0时,则12x2=0,当-2≤x<-1时,则12x2=-1,然后分别解关于x的一元二次方程即可.答案:A.12.点A、C为半径是3的圆周上两点,点B为AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为( )解析:过B 作直径,连接AC 交AO 于E ,①如图①,根据已知条件得到BD=13×2×3=2,如图②,BD=23×2×3=4,求得OD=1,OE=2,DE=1,连接OD ,根据勾股定理得到结论.答案:D.二、填空题(共6小题,每小题3分,满分18分.只要求填写最后结果,每小题全对得3分) 13.计算:212111x x x -⎛⎫-÷ ⎪--⎝⎭=_____. 解析:根据分式的减法和除法可以化简题目中的式子,从而可以解答本题. 答案:x+1.14.因式分解:x 2-2x+(x-2)=_____.解析:通过两次提取公因式来进行因式分解. 答案:(x+1)(x-2).15.如图,在△ABC 中,AB ≠AC.D 、E 分别为边AB 、AC 上的点.AC=3AD ,AB=3AE ,点F 为BC 边上一点,添加一个条件:_____,可以使得△FDB 与△ADE 相似.(只需写出一个)解析:结论:DF ∥AC ,或∠BFD=∠A.根据相似三角形的判定方法一一证明即可. 答案:DF ∥AC ,或∠BFD=∠A.16.若关于x 的一元二次方程kx 2-2x+1=0有实数根,则k 的取值范围是_____. 解析:根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k 的不等式,解得即可,同时还应注意二次项系数不能为0.答案:k≤1且k≠0.17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为_____个.解析:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…,∴第n个图中正方形和等边三角形的个数之和=9n+3.答案:9n+3.18.如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落在AD边上,记为B′,折痕为CE,再将CD边斜向下对折,使点D落在B′C边上,记为D′,折痕为CG,B′D′=2,BE=13BC.则矩形纸片ABCD的面积为_____.解析:根据翻折变化的性质和勾股定理可以求得BC和AB的长,然后根据矩形的面积公式即可解答本题.答案:15.三、解答题(共7小题,满分66分.解答要写出必要的文字说明、证明过程或演算步骤)19.本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?解析:(1)利用良好的人数除以良好的人数所占的百分比可得抽查的人数,然后计算出合格的人数和合格人数所占百分比,再计算出优秀人数,然后画图即可;(2)计算出成绩未达到良好的男生所占比例,再利用样本代表总体的方法得出答案;(3)直接利用树状图法求出所有可能,进而求出概率.答案:(1)抽取的学生数:16÷40%=40(人);抽取的学生中合格的人数:40-12-16-2=10,合格所占百分比:10÷40=25%,优秀人数:12÷40=30%,如图所示:(2)成绩未达到良好的男生所占比例为:25%+5%=30%,所以600名九年级男生中有600×30%=180(名);(3)如图:可得一共有9种可能,甲、乙两人恰好分在同一组的有3种,所以甲、乙两人恰好分在同一组的概率P=31 93 .20.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶点E 的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参≈1.73)解析:设每层楼高为x 米,由MC-CC ′求出MC ′的长,进而表示出DC ′与EC ′的长,在直角三角形DC ′A ′中,利用锐角三角函数定义表示出C ′A ′,同理表示出C ′B ′,由C ′B ′-C ′A ′求出AB 的长即可. 答案:设每层楼高为x 米,由题意得:MC ′=MC-CC ′=2.5-1.5=1米, ∴DC ′=5x+1,EC ′=4x+1,在Rt △DC ′A ′中,∠DA ′C ′=60°,∴C ′A ′=tan 603DC '=︒(5x+1), 在Rt △EC ′B ′中,∠EB ′C ′=30°,∴C ′B ′=tan 30EC '=︒,∵A ′B ′=C ′B ′-C ′A ′=AB ,3(5x+1)=14, 解得:x ≈3.17,则居民楼高为5×3.17+2.5≈18.4米.21.某蔬菜加工公司先后两批次收购蒜薹(t ái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜苔共用去16万元. (1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?解析:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.构建方程组即可解决问题.(2)设精加工m 吨,总利润为w 元,则粗加工(100-m)吨.由m ≤3(100-m),解得m ≤75,利润w=1000m+400(100-m)=600m+40000,构建一次函数的性质即可解决问题. 答案:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨. 由题意10040001000160000x y x y +=⎧⎨+=⎩,解得2080 xy=⎧⎨=⎩,答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m吨,总利润为w元,则粗加工(100-m)吨.由m≤3(100-m),解得m≤75,利润w=1000m+400(100-m)=600m+40000,∵600>0,∴w随m的增大而增大,∴m=75时,w有最大值为85000元.22.如图,AB为半圆O的直径,AC是⊙O的一条弦,D为BC的中点,作DE⊥AC,交AB的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若.(结果保留根号和π)解析:(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED-S扇形COD,求出答案.答案:(1)证明:连接OD,∵D为BC的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;(2)解:连接OC与CD,∵DA=DF , ∴∠BAD=∠F ,∴∠BAD=∠F=∠CAD ,又∵∠BAD+∠CAD+∠F=90°, ∴∠F=30°,∠BAC=60°, ∵OC=OA ,∴△AOC 为等边三角形,∴∠AOC=60°,∠COB=120°, ∵OD ⊥EF ,∠F=30°, ∴∠DOF=60°,在Rt △ODF 中, ∴OD=DF ·tan30°=6,在Rt △AED 中,CAD=30°,∴DE=DA ·sin30,EA=DA ·cos30°=9, ∵∠COD=180°-∠AOC-∠DOF=60°, ∴CD ∥AB , 故S △ACD =S △COD ,∴S 阴影=S △AED -S 扇形COD =12×9×60360π×62=2-6π.23.工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm 2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?解析:(1)由题意可画出图形,设裁掉的正方形的边长为xdm ,则题意可列出方程,可求得答案;(2)由条件可求得x的取值范围,用x可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.答案:(1)如图所示:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2;(2)∵长不大于宽的五倍,∴10-2x≤5(6-2x),解得0<x≤2.5,设总费用为w元,由题意可知w=0.5×2x(16-4x)+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w随x的增大而减小,∴当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.24.边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,(1)如图1,将△DEC沿射线方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)解析:(1)先判断出四边形MCND′为平行四边形,再由菱形的性质得出CN=CM,即可求出CC′;(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE′即可得出结论;②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.答案:(1)当CC′时,四边形MCND′是菱形.理由:由平移的性质得,CD∥C′D′,DE∥D′E′,∵△ABC是等边三角形,∴∠B=∠ACB=60°,∴∠ACC ′=180°-∠ACB=120°, ∵CN 是∠ACC ′的角平分线, ∴∠D ′E ′C ′=12∠ACC ′=60°=∠B , ∴∠D ′E ′C ′=∠NCC ′, ∴D ′E ′∥CN ,∴四边形MCND ′是平行四边形,∵∠ME ′C ′=∠MCE ′=60°,∠NCC ′=∠NC ′C=60°, ∴△MCE ′和△NCC ′是等边三角形, ∴MC=CE ′,NC=CC ′,∵E ′C ′ ∵四边形MCND ′是菱形, ∴CN=CM ,∴CC ′=12E ′C ′ (2)①AD ′=BE ′,理由:当α≠180°时,由旋转的性质得,∠ACD ′=∠BCE ′, 由(1)知,AC=BC ,CD ′=CE ′, ∴△ACD ′≌△BCE ′, ∴AD ′=BE ′,当α=180°时,AD ′=AC+CD ′,BE ′=BC+CE ′, 即:AD ′=BE ′,综上可知:AD ′=BE ′. ②如图连接CP ,在△ACP 中,由三角形三边关系得,AP <AC+CP , ∴当点A ,C ,P 三点共线时,AP 最大, 如图1,在△D ′CE ′中,由P 为D ′E 的中点,得AP ⊥D ′E ′,PD ′∴CP=3,∴AP=6+3=9,在Rt△APD′中,由勾股定理得,AD′=25.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(-1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.解析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM 的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.答案:(1)由题意可得3423ca b ca b c=⎧⎪-+=⎨⎪++=⎩,解得123abc=-⎧⎪=⎨⎪=⎩,∴抛物线解析式为y=-x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(-1,0),∴C(1,0),∴线段AC的中点为(12,32),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l 的解析式为y=kx+m ,把E 点和对称中心坐标代入可得132230k m k m ⎧+=⎪⎨⎪+=⎩,解得3595k m ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线l 的解析式为y=-35x+95, 联立直线l 和抛物线解析式可得2395523y x y x x ⎧=-+⎪⎨⎪=-++⎩,解得30x y =⎧⎨=⎩或255125x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴F(-25,5125), 如图1,作PH ⊥x 轴,交l 于点M ,作FN ⊥PH ,∵P 点横坐标为t ,∴P(t ,-t 2+2t+3),M(t ,-35t+95), ∴PM=-t 2+2t+3-(-35t+95)=-t 2+135t+65, ∴S △PEF =S △PFM +S △PEM =12PM ·FN+12PM ·EH=12PM ·(FN+EH)=12(-t 2+135t+65)(3+25)=-1710(t-1310)+2891710010⨯, ∴当t=1310时,△PEF 的面积最大,其最大值为2891710010⨯,1710; (3)由图可知∠PEA ≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG ⊥y 轴,∵OA=OE ,∴∠OAE=∠OEA=45°, ∴∠PAG=∠APG=45°, ∴PG=AG ,∴t=-t 2+2t+3-3,即-t 2+t=0,解得t=1或t=0(舍去), ②当∠APE=90°时,如图3,作PK ⊥x 轴,AQ ⊥PK ,则PK=-t 2+2t+3,AQ=t ,KE=3-t ,PQ=-t 2+2t+3-3=-t 2+2t , ∵∠APQ+∠KPE=∠APQ+∠PAQ=90°, ∴∠PAQ=∠KPE ,且∠PKE=∠PQA , ∴△PKE ∽△AQP ,∴PK KE AQ PQ =,即222332t t t t t t -++-=-+,即t 2-t-1=0,解得t=12+或t=12<-52(舍去),综上可知存在满足条件的点P ,t 的值为1或12.。
2017年山东省潍坊市中考数学试卷
2017年山东省潍坊市中考数学试卷一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a42.(3分)如图所示的几何体,其俯视图是()A. B.C.D.3.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.(3分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B6.(3分)如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°7.(3分)甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()A.甲B.乙C.丙D.丁8.(3分)一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.(3分)若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.(3分)如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.(3分)定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()A.0或B.0或2 C.1或D.或﹣12.(3分)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2二、填空题(共6小题,每小题3分,满分18分。
2017年山东省潍坊市中考数学试卷解析版
2017年山东省潍坊市中考数学试卷解析版.)解析版2017年山东省潍坊市中考数学试卷(一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选分)0或选出的答案超过一个均记) 1.下列算式,正确的是(33226324224=a..aa×a=a( +aa=a)B.a D÷a=aC A.【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式运算法则即可求出答案.5,故A)原式=a错误;【解答】解:(A2,故B=a错误;(B)原式2错误;(C)原式=2a,故C)D故选() 2.如图所示的几何体,其俯视图是(... B. CDA:简单几何体的三视图.U1【考点】【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,內圆是虚线,.故选:D3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用)科学记数法可表示为(页)25页(共2第14113810.1×10×. B1000×10D C.1A.1×10:科学记数法—表示较大的数.【考点】1I n的形式,其中1≤|a|<10,n【分析】科学记数法的表示形式为a×10为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.11.×10解:将1000亿用科学记数法表示为:1【解答】故选:C.4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆)子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是(),﹣2D.(﹣1( C.1,﹣2))(﹣)(﹣A.2,1 B.1,1:坐标确定位置.D3【考点】P6:坐标与图形变化﹣对称;【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.【解答】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置)时构成轴对称图形.1是(﹣1,.故选B5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于页(共第325页))之间.(A.B与C B.C与D C.E与F D.A与B【考点】25:计算器—数的开方;29:实数与数轴.的值.此题实际是求﹣【分析】解:在计算器上依次按键转化为算式为﹣;=【解答】计算可得结果介于﹣2与﹣1之间..故选A6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°【考点】JA:平行线的性质.【分析】过C作CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到结论.【解答】解:过C作CF∥AB,,DEAB∥∵∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,.B故选第4页(共25页)次,甲、乙.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了107两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从)平均数与方差两个因素分析,应选(乙甲平均数 9 8 1 方差 1.丁.丙 D B.乙 C.甲A:加权平均数.:折线统计图;W2:方差;【考点】W7VD求出丙的平均数、方差,乙的平均数,即可判断.【分析】=均的平数解丙 =9,的方差=【答】解:丙,[1+1+1=1]=0.4,=8.2乙的平均数=由题意可知,丙的成绩最好,.故选Cy=与反比例函数为常数,它们在a、b.一次函数8y=ax+b,<,其中ab0)同一坐标系中的图象可以是(255第页(共页).C.. B A. D【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a﹣b确定符号,确定双曲线的位置.【解答】解:A、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b,<0满足ab<0,,∴a﹣b>0的图象过一、三象限,∴反比例函数y=所以此选项不正确;B、由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,,<0a∴﹣b的图象过二、四象限,y=∴反比例函数所以此选项不正确;C、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,,>0b∴a﹣的图象过一、三象限,y=∴反比例函数所以此选项正确;D、由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,第625页(共页),与已知相矛盾0ab>满足所以此选项不正确;.C故选.若代数式9的取值范围是()有意义,则实数x 1x≥AB.x≥2.>C.x1D.x>2:二次根式有意义的条件.【考点】72【分析】根据二次根式有意义的条件即可求出x的范围;解:由题意可知:【解答】2∴解得:x≥)故选(B10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为().90°DC.80° A.50° B.60°:圆内接四边形的性质.M6【考点】∠ADC=50°,由垂径定理得:,GBC=【分析】根据四点共圆的性质得:∠∠EAD=80°.则∠DBC=2【解答】解:如图,∵A、B、D、C四点共圆,∠ADC=50°,∴∠GBC=,AE∵⊥CD 257第页(共页)∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M,,CDAO⊥∵,∴∴∠DBC=2∠EAD=80°..故选C11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=2的解为()y=[x]的图象如图所示,则方程#N[x]= x.﹣3.函数或﹣或 D..或 B0或2 C.1A.0【考点】A8:解一元二次方程﹣因式分解法;2A:实数大小比较;E6:函数的图象.2=1;当﹣1≤时,则xx≤0≤【分析】根据新定义和函数图象讨论:当1x≤222=﹣1x时,则,然后分别解关于x的一元二次方<﹣≤,当﹣时,则x=02x1程即可.页)25页(共8第2;﹣=,时, xx=1,解得x=【解答】解:当1≤x≤2212;,解得x=x当﹣1≤x≤0=0时, x=0212=﹣1时, x2≤x<﹣1,方程没有实数解;当﹣2.的解为所以方程0[x]= x或为B为半径是3的圆周上两点,点12.点A、BC的中点,以线段BA、为邻C边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()2.2或 2 CD.或A.或或2 B.:菱形的性质.:圆心角、弧、弦的关系;L8【考点】M4BD=根据已知条件得到×E,①如图①,AO过B作直径,连接AC交于【分析】BD=×2×3=4,求得OD=1,OE=2,DE=1,连接2×3=2,如图②,OD,根据勾股定理得到结论,【解答】解:过B作直径,连接AC交AO于E,为的中点,∵点B,AC⊥∴BD①如图①,恰在该圆直径的三等分点上,∵点DBD=×2×3=2∴,,OD=OB﹣BD=1∴是菱形,ABCD∵四边形,DE=∴BD=1∴OE=2,,连接OD,CE=∵=;=∴边CD=第9页(共25页),×3=4如图②,×BD=2,OE=1,DE=2同理可得,OD=1,,连接OD,CE==∵=2,=2∴边=CD=.故选D二、填空题(共6小题,每小题3分,满分18分。
山东省潍坊市2017年中考数学试题(word版,含答案)
秘密★启用前 试卷类型:A2017年潍坊市初中学业水平考试数 学 试 题 2017.06注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第I 卷为选择题,36分;第Ⅱ卷为非选择题,84分;共4页,120分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答 题卡相应位置,答在本试卷上一律无效.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分) 1.下列计算,正确的是( ).A.623a a a =⨯B.33a a a =÷C.422a a a =+D.422a a =)( 2.如图所示的几何体,其俯视图是( ).3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源,据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为( ).A.3101⨯B.8101000⨯C.11101⨯D.14101⨯4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用()0,1-表示,右下角方子的位置用()1,0-表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( ). A.()1,2- B.()1,1- C.()2,1- D.()2,1--5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A.B 与CB.C 与D C 、E 与F D 、A 与B6.如图,︒=∠90BCD ,DE AB //,则α∠与β∠满足( )A. ︒=∠+∠180βα B.︒=∠-∠90αβ C.αβ∠=∠3 D.︒=∠+∠90βα7.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选丙 D. 丁8.一次函数b ax y +=与反比例函数xba y -=,其中0<ab ,b a 、为常数,它们在同一坐标系中的图象可以是( ).9.若代数式12--x x 有意义,则实数x 的取值范围是( ). A.1≥x B.2≥x C.1>x D.2>x10.如图,四边形ABCD 为⊙O 的内接四边形.延长AB 与DC 相交于点G ,CD AO ⊥,垂足为E ,连接BD ,︒=∠50GBC ,则DBC ∠的度数为( ). A.50° B.60° C.80° D.85°11.定义[]x 表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数的图象如图所示,则方程[]221x x =的解为( ). A.0或2 B.0或2 C.1或2- D.2或2-12.点C A 、为半径是3的圆周上两点,点B 为C A 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆直径的三等分点上,则该菱形的边长为( ).A.5或22B.5或32C.6或22D.6或32第Ⅱ卷(非选择题 共84分)说明:将第Ⅱ卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上. 二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.计算:=--÷--12)111(2x x x . 14.因式分解:=-+-)2(22x x x .15.如图,在ABC ∆中,AC AB ≠,E D 、分别为边AB 、AC 上的点,AD AC 3=,AE AB 3=,点F 为BC 边上一点,添加一个条件: ,可以使得FDB ∆与ADE ∆相似.(只需写出一个)16.已知关于x 的一元二次方程0122=+-x kx 有实数根,则k 的取值范围是 . 17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为 个.18.如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在D 上,记为B ',折痕为CE ;再将CD 边斜向下对折,使点D 落在CB '上,记为D ',折痕为CG ,2=''D B ,BC BE 31=.则矩形纸片ABCD 的面积为 .三、解答题(本大题共7小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛,预赛分为A 、B 、C 三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?20.(本题满分8分)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为︒60,在B 处测得四楼顶部点E 的仰角为︒30,14=AB 米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73).21.(本题满分8分)某蔬菜加工公司先后两批次收购蒜薹(tai )共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨,这两批蒜薹共用去16万元. (1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少? 22.(本题满分8分)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为C B的中点,作AC DE ⊥,交B 的延长线于点F ,连接DA . (1)求证:EF 为半圆O 的切线;(2)若36==DF DA ,求阴影区域的面积.(结果保留根号和π)23.(本题满分9分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形,(厚度不计) (1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为212dm 时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.(本题满分12分)边长为6的等边ABC ∆中,点D 、E 分别在AC 、BC 边上, AB DE //, 32=EC .(l )如图1,将DEC ∆沿射线EC 方向平移,得到C E D '''∆,边E D ''与AC 的交点为M ,边D C ''与C AC '∠的角平分线交于点N .当C C '多大时,四边形D MCN '为菱形?并说明理由.(2)如图2,将DEC ∆绕点C 旋转α(︒<<︒3600α),得到C ED ''∆,连接D A '、E B ',边E D ''的中点为P .①在旋转过程中,D A '和E B '有怎样的数量关系?并说明理由. ②连接AP ,当AP 最大时,求D A '的值.(结果保留根号) 25.(本题满分13分)如图1,抛物线c bx ax y ++=2经过平行四边形ABCD 的顶点)30(,A 、)01(,-B 、)32(,D ,抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点P .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的解析式;(2)当t 何值时,PFE ∆的面积最大?并求最大值的立方根;(3)是否存在点P 使PAE ∆为直角三角形?若存在,求出t 的值;若不存在,说明理由.。
2017年山东省潍坊市中考数学试卷及解析答案word版
2017年山东省潍坊市中考数学试卷一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)下列计算,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a42.(3分)如图所示的几何体,其俯视图是()A. B.C.D.3.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.(3分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B6.(3分)如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°7.(3分)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()A.甲B.乙C.丙D.丁8.(3分)一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.(3分)若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.(3分)如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.(3分)定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()A.0或B.0或2 C.1或D.或﹣12.(3分)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2二、填空题(共6小题,每小题3分,满分18分。
2017年山东省潍坊市中考数学试卷
A . (- 2, 1)B . (- 1 , 1)5. (3分)用教材中的计算器依次按键如下, 之间.FI m M I =A .B 与 CB .C 与 DC . (1,- 2)D . (- 1,- 2)显示的结果在数轴上对应点的位置介于()C . E 与 FD . A 与 B 2017年山东省潍坊市中考数学试卷、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项个均记0分)可表示为((3分)小莹和小博士下棋,小莹执圆子,小博士执方子•如图,棋盘中心方子的位置用 (-1, 0)表示,右下角方子的位置用(0,- 1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形•她放的位置是(是正确的,请把正确的选项选出来, 每小题选对得 3分,选错、 不选或选出的答案超过一1.(3分)下列计算,正确的是( A . a 3x a 2= a 6a 3+a = aC . 2 2 4a +a = aD . (a 2) 2= a 42.(3分)如图所示的几何体, 其俯视图是( 3.分)可燃冰,学名叫“天然气水合物”道, 仅我国可燃冰预测远景资源量就超过了C .是一种高效清洁、 储量巨大的新能源.据报 1000亿吨油当量.将1000亿用科学记数法A . 1X 103B . 1000 X10811C . 1 X 10D . 1 X 10144.(3121456789 躅£ 数一坐标系中的图象可以是(甲乙 平均数 9 8 方差11个因素分析,应选() 7./ 3_Z a=D ./ a + / 3=90 °(3分)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了 10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示. 欲选一名运动员参赛,从平均数与方差两A .甲B .乙C .丙D .丁(3分)一次函数y = ax+b 与反比例函数,其中ab v 0, a 、b 为常数,它们在同8I-9i » ■ «需写出一个)第3页(共27页)9.(3分)若代数式 有意义, 则实数x 的取值范围是(10. ( 3分)如图,四边形 ABCD 为O O 的内接四边形.延长 AB 与DC 相交于点G , AO 丄CD ,垂足为E ,连接BD ,/ GBC = 50°,则/ DBC 的度数为( )A . 50°B . 60°C . 80°D . 90°11. (3分)定义[x]表示不超过实数 x 的最大整数,如[1.8] = 1, [ - 1.4] =- 2, [ - 3] =- 3.函2数y =[x]的图象如图所示,则方程[x] -x 2的解为( )D . 一或作菱形ABCD ,顶点D 恰在该圆直径的三等分点上,则该菱形的边长为()二、填空题(共 6小题,每小题3分,满分18分。
山东省潍坊市2017年中考数学真题试题(含答案)【中考真题】
6.如图, BCD 90 , AB // DE ,则 与 满足( )
A. 180
B. 90
C. 3
D. 90
7.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了 10 次、甲、乙 两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛, 从平均数和方差两个因素分析,应选( ).
21.(本题满分 8 分) 某蔬菜加工公司先后两批次收购蒜薹(tai)共 100 吨.第一批蒜薹价格为 4000 元/吨;因蒜薹大量上
市,第二批价格跌至 1000 元/吨,这两批蒜薹共用去 16 万元. (1)求两批次购进蒜薹各多少吨? (2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种粗加工每吨利润 400 元,精加工每吨利润 1000 元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多 少? 22.(本题满分 8 分)
甲
乙
平均数
9
8
பைடு நூலகம்方差
1
1
A.甲
B. 乙
C. 丙
D. 丁
ab 8.一次函数 y ax b 与反比例函数 y ,其中 ab 0 , a、b 为常数,它们在同一坐标系中的图象
x
可以是( ).
x2
9.若代数式
有意义,则实数 x 的取值范围是( ).
x 1
A. x 1
B. x 2 C. x 1
D. x 2
个.
18.如图,将一张矩形纸片 ABCD 的边 BC 斜着向 AD 边对折,使点 B 落在 D
上,记为 B ,折痕为 CE ;再将 CD 边斜向下对折,使点 D 落在 BC 上,记为 D ,
1 折痕为 CG , BD 2 , BE BC .则矩形纸片 ABCD 的面积
山东省潍坊市2017年中学考试数学真题试卷和问题详解
山东省潍坊市2017年中考数学真题试卷和答案一、选择题(每小题3分,满分36分)。
1.下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a42.如图所示的几何体,其俯视图是()A.B. C.D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠α D.∠α+∠β=90°7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()A.甲B.乙C.丙D.丁8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= x2的解为()#N.A.0或B.0或2 C.1或D.或﹣12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2二、填空题(每小题3分,共18分)。
2017年中考数学试题(含答案解析) (27)
2017年山东省潍坊市中考数学试卷(解析版)一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a4【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式运算法则即可求出答案.【解答】解:(A)原式=a5,故A错误;(B)原式=a2,故B错误;(C)原式=2a2,故C错误;故选(D)2.如图所示的几何体,其俯视图是()A. B.C.D.【考点】U1:简单几何体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,內圆是虚线,故选:D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1000亿用科学记数法表示为:1×1011.故选:C.4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【考点】P6:坐标与图形变化﹣对称;D3:坐标确定位置.【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.【解答】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置是(﹣1,1)时构成轴对称图形.故选B.5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B【考点】25:计算器—数的开方;29:实数与数轴.【分析】此题实际是求﹣的值.【解答】解:在计算器上依次按键转化为算式为﹣=;计算可得结果介于﹣2与﹣1之间.故选A.6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°【考点】JA:平行线的性质.【分析】过C作CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到结论.【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,故选B.7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()甲乙平均数98方差11A.甲B.乙C.丙D.丁【考点】W7:方差;VD:折线统计图;W2:加权平均数.【分析】求出丙的平均数、方差,乙的平均数,即可判断.【解答】解:丙的平均数==9,丙的方差= [1+1+1=1]=0.4,乙的平均数==8.2,由题意可知,丙的成绩最好,故选C.8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a﹣b确定符号,确定双曲线的位置.【解答】解:A、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a﹣b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B、由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a﹣b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a﹣b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D、由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.9.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>2【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出x的范围;【解答】解:由题意可知:∴解得:x≥2故选(B)10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°【考点】M6:圆内接四边形的性质.【分析】根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得:,则∠DBC=2∠EAD=80°.【解答】解:如图,∵A、B、D、C四点共圆,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M,∵AO⊥CD,∴,∴∠DBC=2∠EAD=80°.故选C.11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()#N.A.0或B.0或2 C.1或 D.或﹣【考点】A8:解一元二次方程﹣因式分解法;2A:实数大小比较;E6:函数的图象.【分析】根据新定义和函数图象讨论:当1≤x≤2时,则x2=1;当﹣1≤x≤0时,则x2=0,当﹣2≤x<﹣1时,则x2=﹣1,然后分别解关于x的一元二次方程即可.【解答】解:当1≤x≤2时,x2=1,解得x1=,x2=﹣;当﹣1≤x≤0时,x2=0,解得x1=x2=0;当﹣2≤x<﹣1时,x2=﹣1,方程没有实数解;所以方程[x]=x2的解为0或.12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2【考点】M4:圆心角、弧、弦的关系;L8:菱形的性质.【分析】过B作直径,连接AC交AO于E,①如图①,根据已知条件得到BD=×2×3=2,如图②,BD=×2×3=4,求得OD=1,OE=2,DE=1,连接OD,根据勾股定理得到结论,【解答】解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,①如图①,∵点D恰在该圆直径的三等分点上,∴BD=×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,连接OD,∵CE==,∴边CD==;如图②,BD=×2×3=4,同理可得,OD=1,OE=1,DE=2,连接OD,∵CE===2,∴边CD===2,故选D.二、填空题(共6小题,每小题3分,满分18分。
2017年山东省潍坊市中考数学试卷-答案
山东省潍坊市2017年初中学业水平考试 数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】解:A.原式5a =,故A 错误;B.原式2a =,故B 错误;C.原式22a =,故C 错误;故选D【提示】根据整式运算法则即可求出答案.【考点】同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,积的乘方2.【答案】D【解析】解:从上边看是一个同心圆,内圆是虚线,故选:D .【提示】根据从上边看得到的图形是俯视图,可得答案.【考点】简单几何体的三视图3.【答案】C【解析】解:将1000亿用科学记数法表示为:11.110⨯故选:C .【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】用科学记数法表示较大的数4.【答案】B【解析】解:棋盘中心方子的位置用(1,0)-表示,则这点所在的横线是x 轴,右下角方子的位置用(0,1)-,则这点所在的纵线是y 轴,则当放的位置是(1,1)--时构成轴对称图形.故选B .【提示】首先确定x 轴、y 轴的位置,然后根据轴对称图形的定义判断.【考点】轴对称图形,坐标位置的确定5.【答案】A∴1218090αβ∠+∠=∠+︒-∠=︒,∴90βα∠-∠=︒,故选B .9.【答案】B【解析】解:由题意可知:2010x x -≥⎧⎨->⎩∴解得:2x ≥,故选B 【提示】根据二次根式有意义的条件即可求出x 的范围;【考点】二次根式有意义的条件10.【答案】C【解析】解:如图,∵A .B .D .C 四点共圆,∴50GBC ADC ∠=∠=︒,∵AE CD ⊥,∴90AED ∠=︒,∴905040EAD ∠=︒-︒=︒,延长AE 交O e 于点M ,∵AO CD ⊥,∴¼¼CMDM =,∴280DBC EAD ∠=∠=︒.故选C .如图所示:60030%180⨯=(名);(3)如图:可得一共有9种可能,甲、乙两人恰好分在同一组的有3种,所以甲、乙两人恰好分在同一组的概率3193P==.23602【提示】(1)直接利用切线的判定方法结合圆心角定理分析得出OD EF ⊥,即可得出答案;(2)直接利用得出ACD COD S S =△△,再利用AED COD S S S =-△阴影扇形,求出答案.【考点】切线的判定与性质,扇形面积的计算23.【答案】解:(1)如图所示:2【提示】(1)由A .B .C 三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A .C 坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E 点坐标,从而可求得直线EF 的解析式,作PH x ⊥轴,交直线l 于点M ,作F N P H ⊥,则可用t 表示出PM 的长,从而可表示出PEF △的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有90PAE ∠=︒或90APE ∠=︒两种情况,当90PAE ∠=︒时,作PG y ⊥轴,利用等腰直角三角形的性质可得到关于t 的方程,可求得t 的值;当90APE ∠=︒时,作PK x ⊥轴,AQ PK ⊥,则可证得PKE AQP △∽△,利用相似三角形的性质可得到关于t 的方程,可求得t 的值.【考点】二次函数的综合应用,待定系数法,平行四边形的性质,二次函数的性质,三角形的面积,直角三角形的性质,相似三角形的判定和性质,方程思想,分类讨论思想11 / 11。
2017山东省潍坊市中考数学真题及答案
2017山东省潍坊市中考数学真题及答案一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4D.(a2)2=a42.如图所示的几何体,其俯视图是()A.B.C.D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()甲乙平均数9 8方差 1 1A.甲B.乙C.丙D.丁8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C.D.9.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()#N.A.0或B.0或2 C.1或D.或﹣12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2二、填空题(共6小题,每小题3分,满分18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年山东省潍坊市中考数学试卷一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a42.如图所示的几何体,其俯视图是()A.B.C.D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()A.甲B.乙C.丙D.丁8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO ⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()#N.A.0或B.0或2 C.1或D.或﹣12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2二、填空题(共6小题,每小题3分,满分18分。
只要求填写最后结果,每小题全对得3分)13.计算:(1﹣)÷=.14.因式分解:x2﹣2x+(x﹣2)=.15.如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:,可以使得△FDB与△ADE相似.(只需写出一个)16.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是.17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为个.18.如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落在AD边上,记为B′,折痕为CE,再将CD边斜向下对折,使点D落在B′C边上,记为D′,折痕为CG,B′D′=2,BE=BC.则矩形纸片ABCD的面积为.三、解答题(共7小题,满分66分.解答要写出必要的文字说明、证明过程或演算步骤)19.本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?20.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:≈1.73)21.某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜苔共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?22.如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)23.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=2(1)如图1,将△DEC沿射线方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)25.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.2017年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a4【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式运算法则即可求出答案.【解答】解:(A)原式=a5,故A错误;(B)原式=a2,故B错误;(C)原式=2a2,故C错误;故选(D)2.如图所示的几何体,其俯视图是()A. B.C.D.【考点】U1:简单几何体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,內圆是虚线,故选:D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1000亿用科学记数法表示为:1×1011.故选:C.4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【考点】P6:坐标与图形变化﹣对称;D3:坐标确定位置.【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.【解答】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置是(﹣1,1)时构成轴对称图形.故选B.5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B【考点】25:计算器—数的开方;29:实数与数轴.【分析】此题实际是求﹣的值.【解答】解:在计算器上依次按键转化为算式为﹣=;计算可得结果介于﹣2与﹣1之间.故选A.6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°【考点】JA:平行线的性质.【分析】过C作CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到结论.【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,故选B.7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均)A.甲B.乙C.丙D.丁【考点】W7:方差;VD:折线统计图;W2:加权平均数.【分析】求出丙的平均数、方差,乙的平均数,即可判断.【解答】解:丙的平均数==9,丙的方差= [1+1+1=1]=0.4,乙的平均数==8.2,由题意可知,丙的成绩最好,故选C.8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a﹣b 确定符号,确定双曲线的位置.【解答】解:A、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b <0,满足ab<0,∴a﹣b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B、由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a﹣b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a﹣b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D、由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.9.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>2【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出x的范围;【解答】解:由题意可知:∴解得:x≥2故选(B)10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO ⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°【考点】M6:圆内接四边形的性质.【分析】根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得:,则∠DBC=2∠EAD=80°.【解答】解:如图,∵A、B、D、C四点共圆,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M,∵AO⊥CD,∴,∴∠DBC=2∠EAD=80°.故选C.11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()#N.A.0或B.0或2 C.1或D.或﹣【考点】A8:解一元二次方程﹣因式分解法;2A:实数大小比较;E6:函数的图象.【分析】根据新定义和函数图象讨论:当1≤x≤2时,则x2=1;当﹣1≤x≤0时,则x2=0,当﹣2≤x<﹣1时,则x2=﹣1,然后分别解关于x的一元二次方程即可.【解答】解:当1≤x≤2时,x2=1,解得x1=,x2=﹣;当﹣1≤x≤0时,x2=0,解得x1=x2=0;当﹣2≤x<﹣1时,x2=﹣1,方程没有实数解;所以方程[x]=x2的解为0或.12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2【考点】M4:圆心角、弧、弦的关系;L8:菱形的性质.【分析】过B作直径,连接AC交AO于E,①如图①,根据已知条件得到BD=×2×3=2,如图②,BD=×2×3=4,求得OD=1,OE=2,DE=1,连接OD,根据勾股定理得到结论,【解答】解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,①如图①,∵点D恰在该圆直径的三等分点上,∴BD=×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,连接OD,∵CE==,∴边CD==;如图②,BD=×2×3=4,同理可得,OD=1,OE=1,DE=2,连接OD,∵CE===2,∴边CD===2,故选D.二、填空题(共6小题,每小题3分,满分18分。