201X年九年级数学下册第二十七章相似27.1图形的相似第2课时相似多边形课件 新人教版

合集下载

人教版九年级数学下册教案第二十七章《相似》

人教版九年级数学下册教案第二十七章《相似》

第二十七章 相似 27.1 图形的相似 第1课时 相似图形01 教学目标1.通过对事物图形的观察、思考和分析,认识相似的图形.2.经历动手操作的活动过程,增强学生的观察和动手能力.3.体会图形的相似在现实生活中的存在与应用,进一步提高学生的数学应用意识.02 预习反馈阅读教材P24~25,弄清楚相似图形的概念,能正确判断两个图形是否相似.并完成下列预习内容. ①把形状相同的图形叫做相似图形.②两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ③从放大镜里看到的三角板和原来的三角板相似吗? 相似.④哈哈镜中人的形象与本人相似吗? 不相似.⑤全等三角形相似吗? 相似.⑥生活中哪些地方会见到相似图形? 答案不唯一.【点拨】 研究几何主要是研究几何图形的形状、大小与位置,只要形状相同的两个图形就叫做相似图形.03 名校讲坛例1 下列各图中哪组图形是相似图形(C)A B C D 【点拨】 观察图形,要从本质入手,如C ,将小图的位置稍加旋转就可以发现它们是相似图形. 【跟踪训练1】 下列图形中,不是相似图形的是(C)A BC D【跟踪训练2】 (教材P25练习2)如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?解:(d)与(1)相似,(e)与(2)相似.04巩固训练1.如图所示各组图形中,两个图形形状不相同的是(C)A BC D2.下列图形中:①放大镜下的图片与原来的图片;②幻灯片的底片与投影在屏幕上的图象;③天空中两朵白云的照片;④卫星上拍摄的长城照片与相机拍摄的长城照片.其中相似的组数有(C)A.4组B.3组C.2组D.1组05课堂小结1.本节课学习了哪些主要内容?2.全等三角形和相似三角形有哪些区别和联系?第2课时 相似多边形与比例线段01 教学目标1.结合现实情境了解成比例线段,并能运用比例线段进行计算求值,理解并掌握相似多边形的性质以及运用相似多边形的性质解决实际问题.2.在探索过程中激发学生的求知欲,发展学生的交流合作精神.02 预习反馈阅读教材P26~27,理解并掌握“相似多边形”及“相似比”的概念,并完成下列预习内容:①对于四条线段a ,b ,c ,d ,如果其中两条线段的比等于另两条线段的比,如a b =cd (即ad =bc),那么我们就说这四条线段是成比例.②相似多边形的对应角相等,对应边成比例.③相似多边形对应边的比称为相似比,当相似比为1,这两个多边形全等.④用一个放大镜看一个四边形ABCD ,若该四边形的边长放大5倍,下列说法正确的是(B) A.角A 是原来的5倍 B.周长是原来的5倍C.每一个内角都发生了变化D.以上说法都不对03 名校讲坛例1 下列图形中,不一定相似的是(D) A.任意两个等腰直角三角形 B.任意两个等边三角形 C.任意两个正方形 D.任意两个菱形【跟踪训练1】 (《名校课堂》27.1习题)下列四组图形中,一定相似的是(D) A.正方形与矩形 B.正方形与菱形C.菱形与菱形D.正五边形与正五边形例2 (教材P26例)如图,四边形ABCD 和EFGH 相似,求角α,β的大小和EH 的长度x.【解答】 因为四边形ABCD 和EFGH 相似,所以它们的对应角相等,由此可得, α=∠C =83°,∠A =∠E =118°. 在四边形ABCD 中,∠β=360°-(78°+83°+118°)=81°. 因为四边形ABCD 和EFGH 相似,所以它们的对应边成比例,由此可得EH AD =EF AB ,即x 21=2418. 解得x =28.【点拨】 相似多边形对应边成比例,关键要理解“对应”二字.【跟踪训练2】 (《名校课堂》27.1习题)(教材P28T5的变式)如图,DE ∥BC ,DE =3,BC =9,AD =1.5,AB =4.5,AE =1.4,AC =4.2. (1)求AD AB ,AE AC ,DEBC 的值;(2)求证:△ADE 与△ABC 相似.解:(1)AD AB =1.54.5=13,AE AC =1.44.2=13, DE BC =39=13. (2)证明:∵DE ∥BC , ∴∠D =∠B ,∠E =∠C.又∵∠DAE =∠BAC ,AD AB =AE AC =DEBC,∴△ADE 与△ABC 相似.例3 已知A ,B 两地的实际距离AB =5 km ,画在地图上的距离CD =2 cm ,则这张地图的比例尺是1∶250__000. 【点拨】 图上距离与实际距离的比叫做比例尺.【跟踪训练3】 (教材P27练习1)在比例尺为1∶10 000 000的地图上,量得甲、乙两地的距离是30 cm ,求两地的实际距离.解:设两地的实际距离为x. 30x =110 000 000.解得x =300 000 000. ∵300 000 000 cm =3 000 km. ∴两地的实际距离为3 000 km.04 巩固训练1.下列各组线段中,成比例线段的是(B)A.1,2,3,4B.1,2,2,4C.3,5,9,13D.1,2,2,3 2.下列各组图形中,必定相似的是(D) A.两个等腰三角形 B.各有一个角是40°的两个等腰三角形 C.两条边之比都是2∶3的两个直角三角形 D.有一个角是100°的两个等腰三角形3.在一张由复印机出来的纸上,一个多边形的一条边由原来的1 cm 变成了4 cm ,那么这次复印的放缩比例为4∶1.4.5.已知三个数,1,2,3,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是6.在两个相似的五边形中,一个边长分别为1,2,3,4,5,另一个最大边为8,则后一个五边形的周长是多少? 解:设1,2,3,4对应边长为a ,b ,c ,d ,根据相似多边形对应边的比相等,则有a 1=b 2=c 3=d 4=85,解得a =85,b =165,c =245,d =325.所以另一个五边形的周长为:a +b +c +d +8=85+165+245+325+8=24.05 课堂小结1.本节课学习了哪些内容?2.如何根据相似多边形的概念判断多边形相似?27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 平行线分线段成比例01 教学目标1.理解相似三角形的概念.2.掌握平行线分线段成比例的基本事实及推论.3.掌握判定三角形相似的预备定理.02 预习反馈阅读教材P29~31,弄懂相似三角形的概念,理解平行线分线段成比例定理和相似三角形判定的预备定理.并完成下面的预习内容.①如果△ABC ∽△A 1B 1C 1,且相似比为k ,那么△A 1B 1C 1∽△ABC 的相似比为1k.②如图,l 1,l 2分别被l 3,l 4,l 5所截,且l 3∥l 4∥l 5,则AB 与DE 对应,BC 与EF 对应,DF 与AC 对应;AB BC =(DE )(EF ),AB (AC )=(DE )DF ,AB DE =(BC )(EF )=(AC )(DF ).③平行于三角形一边的直线与其他两边(或延长线)相交所构成的三角形与原三角形相似. 【点拨】 找准对应线段是关键.03 名校讲坛例1 (教材补充例题)如图,DE ∥BC ,则下面比例式不成立的是(B)A.AD AB =AE ACB.DE BC =EC ACC.AD DB =AE ECD.BC DE =AC AE 【跟踪训练1】 如图所示,已知AB ∥CD ∥EF ,那么下列结论正确的是(A)A.AD DF =BC CEB.BC CE =DF ADC.CD EF =BC BED.CD EF =AD AF例2 (教材补充例题)如图,ED ∥BC ,EC ,BD 相交于点A ,过A 的直线交ED ,BC 分别于点M ,N ,则图中有相似三角形(C)A.1对B.2对C.3对D.4对【跟踪训练2】 (《名校课堂》27.2.1第1课时习题)如图,在△ABC 中,点D 在BC 上,EF ∥BC ,分别交AB ,AC ,AD 于点E ,F ,G ,图中共有几对相似三角形?分别是哪几对?解:共有3对相似三角形,分别是:△AEG ∽△ABD ,△AGF ∽△ADC ,△AEF ∽△ABC.04 巩固训练1.如图所示,若△ABC ∽△DEF ,则∠E 的度数为(C)A.28°B.32°C.42°D.52°2.如图,在▱ABCD 中,点E 在边AD 上,射线CE ,BA 交于点F ,下列等式成立的是(C)A.AE ED =CE EFB.AE ED =CD AFC.AE ED =FA ABD.AE ED =FE FC 3.如图,在△ABC 中,DE ∥BC ,DE =2,BC =6,AD =3,求BD 的长.解:∵DE ∥BC , ∴△ADE ∽△ABC. ∴AD AB =DE BC ,即3AB =26. ∴AB =9.∴BD =AB -AD =9-3=6.05 课堂小结1.本节课我们学习了哪些内容?2.当平行线与三角形两边的延长线相交,所构成的三角形与原三角形相似吗?第2课时 相似三角形的判定定理1,201 教学目标掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.02 预习反馈阅读教材P32~34,理解相似三角形判定定理1与判定定理2.完成下列预习内容. ①如果两个三角形的三组边对应成比例,那么这两个三角形相似.②如果两个三角形的两组对应边的比相等,并且夹角相等,那么这两个三角形相似.③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答.判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,AC IJ ≠AB HJ ≠BCHI ,所以他们不相似.乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似.解:甲同学的说法不正确,甲同学所分析的边的比不是对应边的比,根据相似三角形的概念,甲同学的说法不正确;根据相似三角形的概念,乙同学的说法正确.【点拨】 判断三角形相似要注意对应关系,找对应边和对应角时可类比全等三角形中找对应边和对应角的方法.03 名校讲坛例1 (教材P33例1(1))根据下列条件,判断△ABC 与△A′B′C′是否相似,并说明理由: AB =4 cm ,BC =6 cm ,AC =8 cm ,A′B′=12 cm ,B′C′=18 cm ,A′C′=24 cm. 【解答】 ∵AB A′B′=412=13,BC B′C′=618=13, AC A′C′=824=13, ∴AB =BC =AC. ∴△ABC ∽△A′B′C′.【跟踪训练1】 (《名校课堂》27.2.1第2课时习题)如图,在△ABC 中,AB =25,BC =40,AC =20,在△ADE 中,AE =12,AD =15,DE =24,试判断这两个三角形是否相似,并说明理由.解:相似.理由:∵AC AE =2012=53,AB AD =2515=53,BC DE =4024=53,∴AC AE =AB AD =BC DE. ∴△ABC ∽△ADE.例2 (教材P33例1(2))根据下列条件,判断△ABC 与△A′B′C′是否相似,并说明理由:∠A =120°,AB =7 cm ,AC =14 cm , ∠A′=120°,A′B′=3 cm ,A′C′=6 cm. 【解答】 ∵AB A′B′=73,AC A′C′=146=73,∴AB A′B′=ACA′C′. 又∠A =∠A′,∴△ABC ∽△A′B′C′.【跟踪训练2】 如图,四边形ABCD ,CDEF ,EFGH 都是正方形. (1)△ACF 与△ACG 相似吗?说说你的理由; (2)求∠1+∠2的度数.解:(1)相似.理由:设正方形的边长为a ,则AC =a 2+a 2=2a , ∵AC CF =2a a =2,CG AC =2a 2a =2, ∴AC CF =CG AC. 又∵∠ACF =∠GCA , ∴△ACF ∽△GCA. (2)∵△ACF ∽△GCA , ∴∠1=∠CAF.∵∠CAF +∠2=45°, ∴∠1+∠2=45°.04 巩固训练1.在△ABC 和△A′B′C′中,AB =9 cm ,BC =8 cm ,CA =5 cm ,A′B′=4.5 cm ,B′C′=2.5 cm ,C′A′=4 cm ,则下列说法错误的是(D)A.△ABC 与△A′B′C′相似B.AB 与B′A′是对应边C.两个三角形的相似比是2∶1D.BC 与B′C′是对应边2.在△ABC 与△A′B′C′中,已知AB·B′C′=BC·A′B′,若使△ABC ∽△A′B′C′,还应增加的条件是(C) A.AC =A′C′ B.∠A =∠A′ C.∠B =∠B′ D.∠C =∠C′3.如图,两个三角形的关系是相似(填“相似”或“不相似”),理由是这两个三角形的三边对应成比例.4.右图中的两个三角形是否相似:不相似,说明理由:对应边不成比例.5.如图,DE 与△ABC 的边AB ,AC 分别相交于D ,E 两点,若AE =2 cm ,AC =3 cm ,AD =2.4 cm ,AB =3.6 cm ,DE =43cm ,则BC 的长为多少?解:∵AE =2 cm ,AC =3 cm ,AD =2.4 cm ,AB =3.6 cm , ∴AE AC =AD AB =23. ∵∠A =∠A , ∴△ADE ∽△ABC. ∴DE BC =AE AC. 又∵DE =43 cm ,∴43BC =23. ∴BC =2 cm.【点拨】 运用相似三角形的判定和性质可以进行边的计算.05 课堂小结1.本节课我们学习了什么内容?2.全等三角形的判定定理对相似三角形的判定定理有什么借鉴作用?第3课时 相似三角形的判定定理301 教学目标1.掌握相似三角形的判定定理3.2.了解两个直角三角形相似的判定方法.3.深化对相似三角形的三个判定方法的理解,并能够运用相似三角形的判定方法解决相似三角形的有关问题.02 预习反馈阅读教材P35~36,理解相似三角形判定定理3及直角三角形相似的判定方法.完成下列预习内容. ①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. ②如果两个直角三角形中,有一条直角边和斜边对应成比例,那么这两个直角三角形相似.③要判定两个直角三角形相似,最简单的方法就是再找除直角外的一组内角对应相等,就可以根据相似三角形的判定3,判定这两个直角三角形相似.④如图所示,已知∠ADE =∠B ,则△AED ∽△ACB.理由是两角分别相等的两个三角形相似. ⑤顶角对应相等的两个等腰三角形相似吗?为什么?解:相似,理由:根据三角形内角和,顶点对应相等的两个等腰三角形其底角也对应相等.再根据“两角分别相等的两个三角形相似”这个判定定理即可判断这两个等腰三角形相似. 【点拨】 要根据已知条件选择适当的方法判定三角形相似.03 名校讲坛例1 (教材P35例2)如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8.E 是AC 上一点,AE =5,ED ⊥AB ,垂足为D.求AD 的长.【解答】 ∵ED ⊥AB , ∴∠EDA =90°. 又∠C =90°,∠A =∠A , ∴△AED ∽△ABC. ∴AD AC =AE AB. ∴AD =AC·AE AB =8×510=4.【跟踪训练1】 如图,∠1=∠3,∠B =∠D ,AB =DE =5,BC =4. (1)△ABC ∽△ADE 吗?说明理由; (2)求AD 的长.解:(1)△ABC ∽△ADE.理由如下:∵∠1=∠3,∴∠1+∠2=∠3+∠2, ∴∠BAC =∠DAE. 又∵∠B =∠D , ∴△ABC ∽△ADE. (2)由(1),知AB AD =BC DE. ∴5AD =45. 解得AD =254.例2 (教材补充例题) 已知:如图,∠ABC =∠CDB =90°,AC =a ,BC =b ,当BD 与a ,b 之间满足怎样的关系时,这两个三角形相似?【解答】 ∵∠ABC =∠CDB =90°, (1)当BC BD =ABCD时,△ABC ∽△CDB , 此时BC BD =AB CD =AC BC ,即a b =b BD .∴BD =b 2a.即当BD =b 2a 时,△ABC ∽△CDB.(2)当AB BD =BCCD 时,△ABC ∽△BDC ,此时AB BD =BC CD =AC BC ,即AB BD =AC BC .∴a 2-b 2BD =a b ,BD =b aa 2-b 2.∴当BD =baa 2-b 2时,△ABC ∽△BDC.综上所述,即当BD =b 2a 或BD =baa 2-b 2时,这两个三角形相似.【点拨】 本题要考虑当两个三角形有一个角相等时,夹这个角的两边的比相等时有两种情况.【跟踪训练2】 (《名校课堂》27.2.1第3课时习题)在△ABC 和△A 1B 1C 1中,∠A =∠A 1=90°,添加下列条件不能判定两个三角形相似的是(D) A.∠B =∠B 1 B.AB A 1B 1=ACA 1C 1C.AB A 1B 1=BC B 1C 1D.AB B 1C 1=AC A 1C 104 巩固训练1.下列条件中,一定能判断两个等腰三角形相似的是(C) A.都含有一个40°的内角 B.都含有一个50°的内角C.都含有一个60°的内角D.都含有一个70°的内角2.在△ABC与△A′B′C′中,有下列条件:(1)ABA′B′=BCB′C′;(2)BCB′C′=ACA′C′;(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有(C)A.1组B.2组C.3组D.4组3.如图,在△ABC中,∠C=90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.证明:∵ED⊥AB,∴∠EDB=90°.∵∠C=90°,∴∠EDB=∠C.∵∠B=∠B,∴△ABC∽△EBD.4.如图,AB=AC,∠A=36°,BD是∠ABC的平分线.求证:△ABC∽△BCD.证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.∵BD是∠ABC的平分线,∴∠ABD=∠DBC=36°.∴∠A=∠CBD.又∵∠C=∠ABC,∴△ABC∽△BCD.05课堂小结1.本节课我们学习了什么内容?2.全等三角形的判定定理与相似三角形的判定定理有何区别?27.2.2 相似三角形的性质01 教学目标理解并掌握相似三角形的性质.02 预习反馈阅读教材P37~39,理解相似三角形的性质,并完成下列预习内容.(1)相似三角形对应中线的比、对应高的比、对应角平分线的比都等于相似比. (2)如图,△ABC ∽△A′B′C′,相似比为k ,AD ⊥BC 于点D ,A′D′⊥B′C′于点D′.①你能发现图中还有其他的相似三角形吗?【解答】 其他的相似三角形还有△ABD ∽△A′B′D′,△ADC ∽△A′D′C′. ②△ABC 与△A′B′C′中,C △ABC C △A′B′C′=k ,S △ABCS △A′B′C′=k 2.【点拨】 在运用相似三角形的性质时,要注意周长的比与面积的比之间的区别,不要混为一谈,另外面积的比等于相似比的平方,反过来相似比等于面积比的算术平方根.03 名校讲坛例 (教材P38例3)如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D.若△ABC 的边BC 上的高为6,面积为125,求△DEF 的边EF 上的高和面积.【解答】 在△ABC 和△DEF 中, ∵AB =2DE ,AC =2DF , ∴DE AB =DF AC =12. 又∠D =∠A ,∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为12.∵△ABC 的边BC 上的高为6,面积为125, ∴△DEF 的边EF 上的高为12×6=3,面积为(12)2×125=3 5.【跟踪训练】 如图,在▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE.若△DEF 的面积为10,则▱ABCD 的面积为多少?解:∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB ∥CE.∴△DEF ∽△CEB ,△DEF ∽△ABF. ∴S △DEF S △CEB =(DE CE )2=(DE CD +DE)2=(DE 3DE )2=19,S △DEF S △ABF =(DE AB )2=(DE CD )2=(DE 2DE )2=14.∴S △CEB =90,S △ABF =40.∴S ▱ABCD =S △ABF +S 四边形BCDF =S △ABF +S △CEB -S △DEF =40+90-10=120.04 巩固训练1.若两个相似三角形的相似比为1∶2,则它们面积的比为(C)A.2∶1B.1∶ 2C.1∶4D.1∶52.如图,在▱ABCD 中,点E 在边DC 上,DE ∶EC =3∶1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为(B)A.3∶4B.9∶16C.9∶1D.3∶13.如果△ABC ∽△DEF ,A ,B 分别对应D ,E ,且AB ∶DE =1∶2,那么下列等式一定成立的是(D) A.BC ∶DE =1∶2B.△ABC 的面积∶△DEF 的面积=1∶2C.∠A 的度数∶∠D 的度数=1∶2D.△ABC 的周长∶△DEF 的周长=1∶24.如果两个相似三角形的面积的比是4∶9,那么它们对应的角平分线的比是2∶3.5.已知△ABC ∽△A 1B 1C 1,△ABC 的周长与△A 1B 1C 1的周长的比值是32,BE ,B 1E 1分别是它们对应边上的中线,且BE =6,则B 1E 1=4.6.如图所示,Rt △ABC ∽Rt △DFE ,CM ,EN 分别是斜边AB ,DF 上的中线,已知AC =9 cm ,CB =12 cm ,DE =3 cm.(1)求CM 和EN 的长;(2)你发现CMNE的值与相似比有什么关系?得到什么结论?解:(1)在Rt △ABC 中,AB =AC 2+CB 2=92+122=15, ∵CM 是斜边AB 的中线, ∴CM =12AB =7.5.∵Rt △ABC ∽Rt △DFE , ∴DE AC =DF AB ,即39=13=DF 15. ∴DF =5.∵EN 为斜边DF 上的中线, ∴EN =12DF =2.5.(2)∵CM EN =7.52.5=31,相似比为AC DE =93=31,∴相似三角形对应中线的比等于相似比.05 课堂小结本节课我们学习了哪些内容?27.2.3 相似三角形应用举例01 教学目标1.通过本节相似三角形应用举例,发展学生综合运用相似三角形的判定方法和性质解决问题的能力,提高学生的数学应用意识,加深对相似三角形的理解与认识.2.在活动过程中使学生积累经验与成功体验,激发学生学习数学的热情与兴趣.02 预习反馈阅读教材P39~40,进一步体会从实际问题中建立数学模型,并完成下列预习内容. (1)太阳光下,同一时刻,物体的长度与其影长成正比(正比或反比).(2)太阳光下,同一时刻,物体的高度、影子、光线构成的三角形相似吗? 答:相似.03 名校讲坛例1 (教材P40例5)如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 共线且直线PS 与河垂直,接着在过点S 且与PS 垂直的直线a 上选择适当的点T ,确定PT 与过点Q 且垂直PS 的直线b 的交点R.已测得QS =45 m ,ST =90 m ,QR =60 m ,请根据这些数据,计算河宽PQ.【解答】 ∵∠PQR =∠PST =90°,∠P =∠P , ∴△PQR ∽△PST. ∴PQ PS =QR ST, 即PQ PQ +QS =QR ST ,PQ PQ +45=6090,PQ ×90=(PQ +45)×60. 解得PQ =90 m.答:河宽大约为90 m.【跟踪训练1】 (《名校课堂》27.2.3习题)(菏泽中考)如图,M ,N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M ,N 两点之间的直线距离,选择测量点A ,B ,C ,点B ,C 分别在AM ,AN 上,现测得AM =1千米,AN =1.8千米,AB =54米,BC =45米,AC =30米,求M ,N 两点之间的直线距离.解:连接MN. ∵AC AM =301 000=3100,AB AN =541 800=3100,∴AC AM =ABAN. 又∵∠BAC =∠NAM , ∴△BAC ∽△NAM. ∴BC MN =3100,即45MN =3100.∴MN =1 500. 答:M ,N 两点之间的直线距离为1 500米.例2 小刚用下面的方法来测量学校大楼AB 的高度.如图,在水平地面上的一面平面镜,镜子与教学大楼的距离EA =21 m ,当他与镜子的距离CE =2.5 m 时,他刚好能从镜子中看到教学大楼的顶端B ,已知他的眼睛距地面高度DC =1.6 m ,请你帮助小刚计算出教学大楼的高度AB 是多少m ?(注意:根据光的反射定律,反射角等于入射角)【解答】 根据反射角等于入射角,则有∠DEF =∠BEF ,而FE ⊥AC , ∴∠DEC =∠BEA.又∵∠DCE =∠BAE =90°, ∴△DEC ∽△BEA. ∴CD AB =EC EA . 又∵DC =1.6,EC =2.5,EA =21, ∴1.6AB =2.521. ∴AB =13.44.答:建筑物AB 的高度为13.44 m.【点拨】 从实际问题的情景中,找出相似三角形是解决本类题型的关键.【跟踪训练2】 如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上.已知DE =0.5米,EF =0.25米,目测点D 到地面的距离DG =1.5米,到旗杆的水平距离DC =20米,求旗杆的高度.解:由题意可得,△DEF ∽△DCA ,则DE DC =EF AC, ∵DE =0.5米,EF =0.25米,DG =1.5米,DC =20米, ∴0.520=0.25AC. 解得AC =10.故AB =AC +BC =AC +DG =10+1.5=11.5(米).答:旗杆的高度为11.5米.04 巩固训练1.如图,小明在打网球时,击球点距球网的水平距离为8 m ,已知网高为0.8 m ,要使球恰好能打过网,而且落在离网4 m 的位置,则球拍击球时的高度h 为2.4m.2.如图,测得BD =120 m ,DC =60 m ,EC =50 m ,求河宽.解:由题意,可得∠B =∠C =90°,∠ADB =∠EDC , ∴△ADB ∽△EDC. ∴AB EC =BD CD, 即AB =BD·EC CD =120×5060=100(m).答:河宽AB 为100 m.【点拨】 证明相似三角形的方法很多,要根据实际情况,选择最简单、合适的一种.3.亮亮和颖颖住在同一幢住宅楼,两人用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰好在一条直线上时,两人分别标定自己的位置C ,D ,然后测出两人之间的距离CD =1.25 m ,颖颖与楼之间的距离DN =30 m(C ,D ,N 在一条直线上),颖颖的身高BD =1.6 m ,亮亮蹲地观测时眼睛到地面的距离AC =0.8 m ,你能根据以上测量数据帮助他们求出住宅楼的高度吗?解:过点A 作CN 的平行线交BD 于点E ,交MN 于点F.由已知可得,FN =ED =AC =0.8 m ,AE =CD =1.25 m ,EF =DN =30 m ,BD =1.6 m , ∠AEB =∠AFM =90°. 又∵∠BAE =∠MAF , ∴△ABE ∽△AMF. ∴BE MF =AE AF, 即1.6-0.8MF = 1.251.25+30. 解得MF =20.∴MN =MF +FN =20+0.8=20.8(m). 答:住宅楼的高度为20.8 m.05 课堂小结利用相似三角形进行测量的一般步骤:(1)因地制宜,构造相似三角形;(2)测量与所求线段对应的边的长以及另外任意一组对应边的长;(3)根据相似三角形的对应边成比例进行计算.27.3位似第1课时位似图形的概念及画法01教学目标1.正确理解位似图形等有关概念,能够按照要求利用位似将图形进行放大或缩小以及能够正确地作出位似图形的位似中心.2.在实际操作和探究活动中,让学生感受、体会到几何图形之美,提高对数学美的认识层次,陶冶美育情操,激发学习热情.02预习反馈阅读教材P47~48,完成下列预习内容.(1)两个多边形不仅相似,而且对应点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心.(2)下列说法正确的是(D)A.两个图形如果是位似图形,那么这两个图形一定全等B.两个图形如果是位似图形,那么这两个图形不一定相似C.两个图形如果是相似图形,那么这两个图形一定位似D.两个图形如果是位似图形,那么这两个图形一定相似(3)用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可能在(D)A.原图形的外部B.原图形的内部C.原图形的边上D.任意位置【点拨】位似的三要素即是判定位似的依据,也是位似图形的性质.03名校讲坛例1如图,作出一个新图形,使新图形与原图形对应线段的比为2∶1.【解答】 1.在原图形上取点A,B,C,D,E,F,G,在图形外任取一点P;2.作射线AP,BP,CP,DP,EP,FP,GP;3.在这些射线上依次取A′,B′,C′,D′,E′,F′,G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=2PD,PE′=2PE,PF′=2PF,PG′=2PG;4.顺次连接点A′,B′,C′,D′,E′,F′,G′,A′.所得到的图形就是符合要求的图形.【点拨】作位似图形的步骤:(1)按要求作出各点的对应点后,(2)连线.注意:不要连错对应点之间的连线.【跟踪训练1】(《名校课堂》27.3习题)如图,请在8×8的网格中,以点O为位似中心,作出△ABC的一个位似图形△A′B′C′,使△A′B′C′与△ABC的相似比为2∶1.解:如图所示,△A′B′C′为所求的三角形.例2请画出如图所示两个图形的位似中心.图1图2【解答】如图所示的点O1,就是图1的位似中心.如图所示的点O2,就是图2的位似中心.【点拨】正确地作出位似中心,是解位似图形的关键,可以根据位似中心的定义,位似图形的对应点连线的交点就是位似中心.【跟踪训练2】找出下列图形的位似中心.04巩固训练1.在下列图形中,不是位似图形的是(D)A BC D2.如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF的面积比为1∶9,则AB∶DE的值为(A)A.1∶3B.1∶2C.1∶ 3D.1∶93.如图,以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,则四边形ABCD和四边形A′B′C′D′的周长的比为1∶2.4.如图,△DEF 是△ABC 经过位似变换得到的,位似中心是点O ,请确定点O 的位置,如果OC =3.6 cm ,OF =2.4 cm ,求它们的相似比.解:连接AD ,CF 交于点O ,则点O 即为所求.∵OC =3.6 cm ,OF =2.4 cm ,∴OC ∶OF =3∶2.∴△ABC 与△DEF 的相似比为3∶2.5.如图,图中的小方格都是边长为1的小正方形,△ABC 与△A′B′C′是以点O 为位似中心的位似图形,它们的顶点都是在小正方形的顶点上.(1)找出位似中心点O ;(2)△ABC 与△A′B′C′的位似比为2∶1;(3)按(2)中的位似比,以点O 为位似中心画出△ABC 的另一个位似图形△A″B″C″.解:(1)如图所示,点O 即为所求.(2)∵AC A′C′=21, ∴△ABC 与△A′B′C′的位似比为:2∶1.故答案为:2∶1.(3)如图所示,△A″B″C″即为所求.05 课堂小结1.本节课我们学习了哪些内容?2.位似图形与一般相似图形相比,有哪些特殊性?3.利用位似作图的步骤有哪些?第2课时 平面直角坐标系中的位似01 教学目标1.让学生理解掌握位似图形在平面直角坐标系上的应用,即会根据相似比,求位似图形顶点,以及根据位似图形对应点坐标,求位似图形的相似比和在平面直角坐标系上作出位似图形.2.让学生在应用有关知识解决问题的过程中,提高应用意识,体验数形结合的思想方法在解题中的运用.02 预习反馈阅读教材P48~50,以原点为位似中心的两个位似图形对应顶点的坐标规律,并完成下列预习内容.(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为13,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现?答:线段缩小后,点A ,B 的坐标与其对应点的坐标的比为13. (2)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点坐标的比为k.(3)△ABC 和△A 1B 1C 1关于原点位似且点A(-3,4),它的对应点A 1(6,-8),则△ABC 和△A 1B 1C 1的相似比是12. (4)已知△ABC 三个顶点的坐标分别为A(1,2),B(1,0),C(3,3),以原点O 为位似中心,相似比为2,把△ABC 放大得到其位似图形△A 1B 1C 1,则△A 1B 1C 1各顶点的坐标分别为A 1(2,4),B 1(2,0),C 1(6,6).03 名校讲坛例 (教材P49例)如图,△ABO 三个顶点的坐标分别为A(-2,4),B(-2,0),O(0,0).以原点O 为位似中心,画出一个三角形,使它与△ABO 的相似比为32.【解答】 如图,利用位似中对应点的坐标的变化规律,分别取点A′(-3,6),B′(-3,0),O(0,0).顺次连接点A′,B′,O ,所得△A′B′O 就是要画的一个图形.【点拨】 作位似变换时,要先弄清点的坐标的变化情况,求出变换后对应的坐标.然后在坐标中描出对应点,连线即可.【跟踪训练】 在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(2,-4),B(3,-2),C(6,-3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点M 为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2∶1.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求.。

初中数学人教版九年级下册优质说课稿27-1第2课时《相似多边形》

初中数学人教版九年级下册优质说课稿27-1第2课时《相似多边形》

初中数学人教版九年级下册优质说课稿27-1 第2课时《相似多边形》一. 教材分析《相似多边形》是初中数学人教版九年级下册第27-1章第2节的内容。

本节课主要介绍相似多边形的定义、性质和判定方法。

教材通过生活中的实例引入相似多边形的概念,使学生能够从实际问题中抽象出数学模型,培养学生的数学素养。

同时,本节课的内容也为后续学习相似三角形的性质和应用打下基础。

二. 学情分析九年级的学生已经掌握了多边形的基本知识,具备一定的空间想象能力和逻辑思维能力。

但是,对于相似多边形的概念和性质,学生可能较为抽象,难以理解和掌握。

因此,在教学过程中,需要注重引导学生从具体实例中发现规律,培养学生的抽象思维能力。

三. 说教学目标1.知识与技能:理解相似多边形的定义,掌握相似多边形的性质和判定方法,能够运用相似多边形的性质解决实际问题。

2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学与生活的紧密联系。

四. 说教学重难点1.重点:相似多边形的定义、性质和判定方法。

2.难点:相似多边形的性质和判定方法的灵活运用。

五. 说教学方法与手段1.教学方法:采用问题驱动、合作交流、启发引导的教学方法,让学生在探究中学习,培养学生的数学素养。

2.教学手段:利用多媒体课件、实物模型、黑板等教学手段,辅助学生直观地理解相似多边形的概念和性质。

六. 说教学过程1.导入:通过展示生活中的一些相似图形,如门窗、钥匙等,引导学生观察并提出问题:“这些图形有什么共同特点?”从而引出相似多边形的概念。

2.新课导入:介绍相似多边形的定义、性质和判定方法。

通过实例讲解,使学生理解相似多边形的基本概念,并能够运用判定方法判断两个多边形是否相似。

3.合作探究:学生分组讨论,探究相似多边形的性质。

教师引导学生从具体实例中发现规律,并总结出相似多边形的性质。

数学下册第二十七章相似.2相似三角形.2.1相似三角形的判定第1课时平行线分线段成比例教学课件(新版

数学下册第二十七章相似.2相似三角形.2.1相似三角形的判定第1课时平行线分线段成比例教学课件(新版

A1
A2 A3
B1 a
B2 b B3 c
想一想:
1. 如何理解“对应线段〞?
2.“对应线段〞成比例都有哪些表达形式?
练一练
D
如图,AlC1∥l2B∥D l3,以下A比C 例 式BD中错误的选项是 ( ) A. CE DF B. AE BF
C. C E D F AE BF
D. AE BD BF AC
通过度量,我们发现△ADE∽△ABC,
且只要DE∥BC,这个结论恒成立.
A
D
E
B
C
想一想:
我们通过度量三角形的边长,知道△ADE∽
△ABC,但要用相似的定义去证明它,我们需要
证明什么?
由前面的结论,我们可以得 到什么?还需证明什么?
A
D
E
B
C
由前面的结论可得 A D A E ,需要证明的是
AB AC
三角形相似的两种常见类型:
A
D
E
D
E
A
B
C
B
“A 〞型
C “X 〞型
练一练
1. :如图,AB∥EF∥CD,图中共有___对3相似
三角形.
相似具有传递性
A
B
2. 假设 △ABC 与 △A′B′C′ 相似, E 一组对应边的长为AB =3 cm, C A′B′=4 cm,那么△A′B′C′与 △ABC 的相似比是_4_︰__3_.
AD AE DE ,而除 DE 外,其他的线段都在 AB AC BC
△ABC 的边上,要想利用前面学
到的结论来证明三角形相似, 需要怎样做呢?
A
D
E
可以将 DE 平移到
BC 边上去

201X春九年级数学下册第二十七章相似27.1图形的相似课件 新人教版

201X春九年级数学下册第二十七章相似27.1图形的相似课件 新人教版

精选ppt
22
5. 填空: (1) 如图①是两个相似的四边
形,则x= 2.5 ,y = 1.5 ,
3 80°
x
6 65╰° 80°
5
α= 90°;
╮125°
α╭
(2) 如图②是两个相似的矩形,
y 图①
3
x= 22.5 .
20
x
精选ppt
30 图②
15
23
6. 如图,把矩形 ABCD 对折,折痕为 EF,若矩形

a1
a2
a3
an
分析:已知等边三角形的每个角都为60°, 三边都相
等. 所以满足边数相等,对应角相等,以及对应边的
比相等.
精选ppt
13

a1
a2
a3
an
同理,任意两个正方形都相似.
归纳:任意两个边数相等的正多边形都相似.
精选ppt
14
思考: 任意的两个菱形(或矩形)是否相似?为什么?
精选ppt
比例?
精选ppt
11
归纳: ◑相似多边形的定义: 各角分别相等、各边成比例的两个多边形 叫做相似多边形.
◑相似多边形的特征: 相似多边形的对应角相等,对应边成比例.
◑相似比: 相似多边形的对应边的比叫作相似比.
精选ppt
12
议一议
任意两个等边三角形相似吗?任意两个正方形 呢?任意两个正 n 边形呢?
解得:a=3,b=4.5,c=4,d=6.
所以未知边a,b,c,d的长度分别为3,4.5,4,6.
精选ppt
19
当堂练习
1. 下列图形中能够确定相似的是
( ABDF )
A.两个半径不相等的圆 B.所有的等边三角形

九年级数学下册27、1图形的相似第2课时相似多边形习题新版新人教版 (1)

九年级数学下册27、1图形的相似第2课时相似多边形习题新版新人教版 (1)

7.【教材P27练习T3变式】一个多边形的边长依次为2,3, 4,5,6,另一个和它相似的多边形的最长边长为24,则 另一个多边形的最短边长为( B ) A.6 B.8 C.10 D.12
8.【教材P57复习题T4改编】【中考·重庆】制作一块3 m×2 m的长方形广告牌的成本是120元,在每平方米制
∴AEDF=FADB,即1x=x-1 1,解得 x1=1+2 5,x2=1-2 5(舍去).
经检验,x=1+2 5是原方程的解且符合题意.
∴AD=1+2
5 .
11.【教材P28习题T6变式】如图,矩形ABCD的长AB=30, 宽BC=20.
(1)如图①,若在矩形ABCD的内部沿四周有宽为1的环形区 域,则矩形A′B′C′D′与矩形ABCD相似吗?请说明理由.
5.相似多边形的对应角__相__等______,对应边__成__比__例____, 对应边的比叫做___相__似__比___.
6.如图,正五边形FGHMN和正五边形ABCDE相似.若 AB∶FG=2∶3,则下列结论中正确的是( B ) A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F
(1)每块矩形地砖的长与宽分别为多少? 解:设每块矩形地砖的长为a cm,宽为b cm, 由题图可知4b=60,即b=15. ∵a+b=60,∴a=60-b=45. ∴每块矩形地砖的长为45 cm,宽为15 cm.
(2)这样的地砖与所铺成的每一部分矩形是否相似?试说 明理由.
解:不相似.理由如下: ∵所铺成的每一部分矩形的长为2×45=90(cm),宽为60 cm, ∴长宽=9600=32. 而地地砖砖的的长宽=4155=31,32≠31, 即所铺成的每一部分矩形的长与宽和地砖的长与宽不成比例, ∴它们不相似.

最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿

最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿

《相似三角形的判定》说课稿各位评委老师:大家好!我今天说课的内容是《相似三角形的判定》,下面我将从说教材、说学生、说教学方法、说教学过程、板书设计五个大板块来给大家阐述我的教学思路和教学设计。

一、说教材首先进入我的第一个大板块“说教材”。

我把说教材这个板块分为三个小环节来进行,它们分别是教材分析、教学目标、教学重难点。

1、教材分析本节课《相似三角形的判定》是选自新人教版九年级下册第二十七章第二节第二课时的内容。

是在学习了第一节相似多边形的概念、第一课时平行线分线段成比例的定理及推论后,研究相似三角形的定义以及三角形一边的平行线的判定定理。

本节课是判定三角形相似的起始课,是本章的重点之一。

一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且还是证明其他三种判定定理的主要根据,所以把它叫做相似三角形判定定理的“预备定理”。

因此,这节课在本章中有着举足轻重的地位。

2、教学目标根据教学大纲的要求和贯彻全面发展的教育方针,我制定了如下的教学目标:(1)知识与技能:理解相似三角形的定义,掌握相似三角形判定定理的“预备定理”。

(2)过程与方法:让学生经历观察---探索----猜想----验证----运用----巩固的过程,渗透类比的思想方法,培养学生探究新知识、提高分析问题和解决问题的能力。

(3)情感态度和价值观:通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,通过主动探究、合作交流,在学习活动中体验获得成功的喜悦。

3、教学重难点为了达到以上的教学目标,我制定了以下的教学重难点:教学重点:相似三角形的定义,判定两个三角形相似的预备定理。

教学难点:探究两个三角形相似的预备定理的过程。

二、说学生说完了教材,我想跟大家分析一下我所授课的学生所具有的特点,也就是学情分析。

老师们,我们都知道九年级的学生接受能力相比七八年级强,想得到老师的鼓励。

九年级数学下册 第二十七章 相似 27.1 图形的相似教学

九年级数学下册 第二十七章 相似 27.1 图形的相似教学
教学 课件 (jiāo xué)
数学(shùxué) 九年级下册 RJ
12/11/2021
第一页,共二十一页。
第二十七章 相似(xiānɡ sì)
27.1 图形的相似
12/11/2021
第二页,共二十一页。
1.了解相似(xiānɡ sì)图形和相似(xiānɡ sì)比的概念



2.能根据多边形相似(xiānɡ sì)进行相关的计算(重点)
C.所有的等腰三角形 D.所有的正方形
E.所有的等腰梯形
F.所有的正六边形
2.若△ABC与△ A′B′C′ 相似(xiānɡ sì),且AB:A′B′=1:2,
则△ABC与△ A′B′C′的相似比是 △ A′B′C′与△ABC的相似比是
,1
2
.2
2021/12/11
第十七页,共二十一页。
当堂(dānɡ tánɡ)练习
2021/12/11
特征
对应角相等
识别
对应边成的比相等
第二十页,共二十一页。
内容 总结 (nèiróng)
教学课件。1.了解相似图形和相似比的概念。形状、大小都相同的图形称为全等图形。形状相同的图 形叫做相似图形.。(2)全等图形是相似图形的特殊情况.。两个图形相似,其中一个图形可以看作由另一
No 个图形放大或缩小得到.。相似多边形与相似比。多边形ABCDEF是显示在电脑屏幕上的,而多边形
A1B1C1D1E1F1是投射到银幕上的.。∵四边形ABCD∽四边形A′B′C′D′,。对应角相等,对应边的比相等.。 相似多边形的特征(tèzhēng)和识别:
Image
12/11/2021
第二十一页,共二十一页。
与另两条线段的比相等,

人教版九年级数学下册第二十七章27.1图形的相似(教案)

人教版九年级数学下册第二十七章27.1图形的相似(教案)
-对于相似图形的周长比和面积比的概念,学生可能难以理解其本质,容易混淆。
举例:
(1)难点解释:学生可能不清楚在什么情况下可以使用AA相似定理,什么情况下不能。需要通过具体例题,如两个等腰三角形的底角相等,但顶角不等,不能直接判定相似,来帮助学生理解。
(2)难点突破:针对实际问题,如地图比例尺问题,教师需要引导学生将地图上的实际距离和图上距离建立相似关系,理解比例尺的意义。
实践活动环节,同学们分组讨论和实验操作的过程非常积极,但我也观察到有的小组在解决问题时思路不够清晰,对相似知识的应用还不够熟练。这让我意识到,在实践活动的设计上,我需要更加注重引导学生思考和探索,提供更多提示和帮助,以便他们能够更好地将理论知识应用到实际问题中。
此外,学生小组讨论的环节也让我看到了同学们的潜力。他们在讨论相似图形在实际生活中的应用时,提出了很多有趣的观点和创意。但在分享成果时,有的小组表达不够清晰,这也提醒我在今后的教学中要加强对学生表达能力的培养。
(3)难点澄清:对于相似图形的面积比,学生可能会误认为面积比等于周长比。需要通过具体图形的面积计算和证明,使学生明白面积比是相似比的平方。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体形状相似的情况?”比如,放大镜下的图像和原图形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似图形的奥秘。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

2019版九年级数学下册第二十七章相似27.1图形的相似教案(新版)新人教版

2019版九年级数学下册第二十七章相似27.1图形的相似教案(新版)新人教版

第二十七章相像27.1图形的相像【教课目的】知识技术目标:1. 使学生理解并掌握两个图形相像的观点.2.掌握相像多边形的特色 .3. 会依据相像多边形的特色辨别两个多边形能否相像, 并会运用其性质进行有关的计算.过程性目标 :在研究相像多边形特色的过程中, 进一步发展学生的概括、类比、反省、沟通的能力, 提升数学思想水平.感情态度目标:1.联合本课教课特色 , 培育学生察看能力 , 向学生进行美育浸透 .2.激发学生研究、发现数学识题的兴趣和欲念.【要点难点】要点 : 理解并掌握相像多边形的特色.难点 : 运用相像多边形的特色进行有关的计算.【教课过程】一、创建情境教师挂上大小不同样的两张中国国旗及两张大小不同的长城图片, 供同学察看 , 提出问题 :这几组图片有什么同样的地方呢?我们一同来看看这几组图片 , 这些图片大小固然不同样 , 可是形状同样 . 我们把这些形状同样的图形叫做相像图形 .教师出示问题, 教师增补校订 .学生察看思虑, 试试回答以下问题 .二、研究概括问题研究一什么是相像图形?●活动 1师生互动,研究新知察看与思虑 : 请察看下边几组图片: 你能发现它们有什么特色吗?想想 : 你能再举出一些相像的图形的例子吗?学生举例研究与思虑 : 什么是相像图形?指引学生概括 .进而得出 : 拥有同样形状的图形叫相像形.( 出示课题——图形的相像)●活动 2应用练习1.思虑教科书第 25 页思虑取的问题 , 哈哈镜里看到的不同镜像它们相像吗?解 : ∵哈哈镜改变了形状 , ∴它们不相像.2.如图 , 图形 (a) ~ (f) 中 , 哪些是与图形 (1) 或 (2) 相像的 ?解 : 与 (1) 相像的是 :(d);与(2)相像的是:(e).3.如图 , 从放大镜里看到的三角尺和本来的三角尺相像吗?解 : 它们形状同样, 所以是相像的 .问题研究二什么是成比率线段?●活动 1如图,设小方格的边长为1, 四边形 ABCD与四边形EFGH的极点都在格点上, 那么 AB,AD,EF,EH 的长度分别是多少?分别计算,,,的值.解 : 如图 , 由图可知 AM=2,DM=6,∴AD====2.同理可得EH=.又∵ AB=8,EF=4,∴==2,==2,==,=.●活动 2例题解说 , 成比率线段的应用例 1: 已知 a=2,b=4.1,c=4,d=8.2,下边选项正确的选项是()A.d,b,a,c成比率B.a,d,b,c成比率C.a,c,b,d成比率D.a,d,c,b成比率解 : 选 C. 由 a∶c=2∶4=1∶2,b ∶d=4.1 ∶8.2=1 ∶2,∴a∶c=b∶d.点拨 : 四条线段成比率是有次序性的.例 2: 以下各组中的四条线段成比率的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1解 : 选 C. 由 a∶b=2∶,c ∶d=2∶=2∶,∴a∶b=c∶d, 线段 a,b,c,d 是成比率线段 .问题研究三什么是相像多边形?相像多边形有如何的性质?●活动 1从特别图形下手, 合作研究思虑图中的两个相像的正三角形和两个相像的正六边形的对应边和对应角的关系.∵正△ ABC与正△ A1B1C1相像 ,∴∠ A=∠ A1=60°, ∠ B=∠ B1=60°, ∠ C=∠ C1=60°.设△ ABC的边长为a, △ A1B1C1的边长为b,∴= ,= ,=.让学生独立思虑并分组沟通议论, 而后请学生有条理说明.概括 : 特别三角形的对应角相等, 对应边成比率.●活动 2由特别到一般进行研究研究 : 如图中的两个相像三角形和相像四边形, 它们的对应角和对应边有什么关系?利用量角器 , 直尺胸怀角及边长 . 教师先演示胸怀白板功能正确丈量三角形的角与边的度数及长度, 而后请学生登台胸怀. 学生感觉比较新鲜 . 而且经过电子 , 进一步考证相像三角形的对应角相等 , 对应边的比相等这个性质 , 及相像比这个观点.概括 : 相像多边形的性质: 相像多边形的对应角相等, 对应边成比率.三、新知应用例 : 如图 , 四边形 ABCD和 EFGH相像 , 求∠α和∠β的大小 ,EH 的长度 x.解 : 由于四边形 ABCD和 EFGH相像 , 所以它们的对应角相等 ,由此可得∠α =∠C=83°, ∠ A=∠E=118°.在四边形 ABCD中 , ∠β =360° - (78 °+83°+118°)=81 °.由于四边形 ABCD和 EFGH相像 , 所以它们的对应边成比率 ,由此可得=,即=.解得 x=28.360°求角的度数; 利用相像多边形的对应边成比点拨 : 利用相像多边形的对应角相等和四边形内角和等于例求边长 .四、检测反应1. 以下各线段的长度成比率的是( C )A.1 cm,2.5 cm,3 cm,4 cmB.2 cm,4 cm,6 cm,8 cmC.3 cm,6 cm,9 cm,18 cmD.3 cm,5 cm,8 cm,15 cm2.以下图形必定是相像图形的是( B )A. 两个平行四边形B. 两个正三角形C. 两个矩形D. 两个菱形3.若四边形 ABCD∽四边形A′B′C′D′, 且 AB∶A′B′=2∶5, 已知 BC=14,则 B′C′的长是 ( B )A.28B.35C.50D.70分析 : 由相像多边形的对应边成比率, 得=, 有= , ∴B′C′=35.4.Rt△ ABC的两条直角边分别5 cm,12 cm,与它相像的Rt △A′B′C′的斜边为39 cm,那么Rt △A′B′C′为的周长为( A )A.90 cmB.80 cmC.60 cmD.30 cm分析 : 由 Rt△ ABC的两条直角边分别为 5 cm、 12 cm, 可得其斜边为 13 cm, 又知与它相像的 Rt△A′B′C′的斜边为 39 cm, 可得 Rt △ ABC与 Rt △A′B′C′的相像比为 13∶39=1∶3, 依据相像多边形的性质“相像多边形对应边成比率”可得Rt△A′B′C′的两条直角边分别为15 cm、 36 cm, 所以 Rt△A′B′C′的周长为 :15+36+39=90 cm.五、讲堂小结指引学生梳理本节所学知识, 获取稳固和发展.1. 相像图形的定义——同样形状的图形;2.判断两个图形能否相像 ;3.相像多边形的性质特色 : 对应角相等 , 对应边成比率 ;4.利用相像放大或减小图形 ;5.能用相像的性质解决实质问题 .六、板书设计课题 :27.1图形的相像(一) 图形展现( 四) 由相像图形的性质引出新观点( 经过多媒体展现师生采集的图片) 1.相像多边形( 二 ) 相像图形观点 2.相像比1.重申边角的对应关系 3.成比率线段2.辨析相像和全等的关系( 五) 稳固应用( 三 ) 相像图形性质的研究( 六) 简单的相像作图。

人教版数学九年级下册数学:第27章 相似 同步教案(全章)

人教版数学九年级下册数学:第27章  相似   同步教案(全章)

第二十七章相似27.1 图形的相似第1课时相似图形教学目标1.通过对事物图形的观察、思考和分析,认识相似的图形.2.经历动手操作的活动过程,增强学生的观察和动手能力.3.体会图形的相似在现实生活中的存在与应用,进一步提高学生的数学应用意识.预习反馈阅读教材P24~25,弄清楚相似图形的概念,能正确判断两个图形是否相似.并完成下列预习内容.①把形状相同的图形叫做相似图形.②两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.③从放大镜里看到的三角板和原来的三角板相似吗?相似.④哈哈镜中人的形象与本人相似吗?不相似.⑤全等三角形相似吗?相似.⑥生活中哪些地方会见到相似图形?答案不唯一.【点拨】研究几何主要是研究几何图形的形状、大小与位置,只要形状相同的两个图形就叫做相似图形.例题讲解:例1下列各图中哪组图形是相似图形(C)A BC D【点拨】观察图形,要从本质入手,如C,将小图的位置稍加旋转就可以发现它们是相似图形.【跟踪训练1】下列图形中,不是相似图形的是(C)A BC D【跟踪训练2】(教材P25练习2)如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?解:(d)与(1)相似,(e)与(2)相似.巩固训练1.如图所示各组图形中,两个图形形状不相同的是(C)A BC D2.下列图形中:①放大镜下的图片与原来的图片;②幻灯片的底片与投影在屏幕上的图象;③天空中两朵白云的照片;④卫星上拍摄的长城照片与相机拍摄的长城照片.其中相似的组数有(C)A.4组B.3组C.2组D.1组课堂小结1.本节课学习了哪些主要内容?2.全等三角形和相似三角形有哪些区别和联系?第2课时相似多边形与比例线段教学目标1.结合现实情境了解成比例线段,并能运用比例线段进行计算求值,理解并掌握相似多边形的性质以及运用相似多边形的性质解决实际问题.2.在探索过程中激发学生的求知欲,发展学生的交流合作精神.预习反馈阅读教材P26~27,理解并掌握“相似多边形”及“相似比”的概念,并完成下列预习内容:①对于四条线段a,b,c,d,如果其中两条线段的比等于另两条线段的比,如ab=cd(即ad=bc),那么我们就说这四条线段是成比例.②相似多边形的对应角相等,对应边成比例.③相似多边形对应边的比称为相似比,当相似比为1,这两个多边形全等.④用一个放大镜看一个四边形ABCD,若该四边形的边长放大5倍,下列说法正确的是(B)A.角A是原来的5倍B.周长是原来的5倍C.每一个内角都发生了变化D .以上说法都不对 例题讲解:例1 下列图形中,不一定相似的是(D) A .任意两个等腰直角三角形 B .任意两个等边三角形 C .任意两个正方形 D .任意两个菱形【跟踪训练1】 下列四组图形中,一定相似的是(D) A .正方形与矩形 B .正方形与菱形C .菱形与菱形D .正五边形与正五边形例2 (教材P26例)如图,四边形ABCD 和EFGH 相似,求角α,β的大小和EH 的长度x.【解答】 因为四边形ABCD 和EFGH 相似,所以它们的对应角相等,由此可得,α=∠C =83°,∠A =∠E =118°.在四边形ABCD 中,∠β=360°-(78°+83°+118°)=81°.因为四边形ABCD 和EFGH 相似,所以它们的对应边成比例,由此可得EH AD =EF AB ,即x 21=2418.解得x =28.【点拨】 相似多边形对应边成比例,关键要理解“对应”二字.【跟踪训练2】 如图,DE ∥BC ,DE =3,BC =9,AD =1.5,AB =4.5,AE =1.4,AC =4.2. (1)求AD AB ,AE AC ,DEBC 的值;(2)求证:△ADE 与△ABC 相似.解:(1)AD AB =1.54.5=13,AE AC =1.44.2=13,DE BC =39=13.(2)证明:∵DE ∥BC , ∴∠D =∠B ,∠E =∠C.又∵∠DAE =∠BAC ,AD AB =AE AC =DEBC,∴△ADE 与△ABC 相似. 例3 已知A ,B 两地的实际距离AB =5 km ,画在地图上的距离CD =2 cm ,则这张地图的比例尺是1∶250__000. 【点拨】 图上距离与实际距离的比叫做比例尺.【跟踪训练3】 (教材P27练习1)在比例尺为1∶10 000 000的地图上,量得甲、乙两地的距离是30 cm ,求两地的实际距离.解:设两地的实际距离为x.30x =110 000 000. 解得x =300 000 000.∵300 000 000 cm =3 000 km.∴两地的实际距离为3 000 km.巩固训练 1.下列各组线段中,成比例线段的是(B)A .1,2,3,4B .1,2,2,4C .3,5,9,13D .1,2,2,3 2.下列各组图形中,必定相似的是(D) A .两个等腰三角形B .各有一个角是40°的两个等腰三角形C .两条边之比都是2∶3的两个直角三角形D .有一个角是100°的两个等腰三角形3.在一张由复印机出来的纸上,一个多边形的一条边由原来的1 cm 变成了4 cm ,那么这次复印的放缩比例为4∶1.4.把矩形对折后得到的矩形和原来的矩形相似,那么这个矩形的长与宽之比为2.5.已知三个数,1,2,3,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是23. 6.在两个相似的五边形中,一个边长分别为1,2,3,4,5,另一个最大边为8,则后一个五边形的周长是多少?解:另一个五边形的周长为24. 课堂小结1.本节课学习了哪些内容?2.如何根据相似多边形的概念判断多边形相似?27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 平行线分线段成比例教学目标1.理解相似三角形的概念.2.掌握平行线分线段成比例的基本事实及推论. 3.掌握判定三角形相似的预备定理. 预习反馈阅读教材P29~31,弄懂相似三角形的概念,理解平行线分线段成比例定理和相似三角形判定的预备定理.并完成下面的预习内容.①如果△ABC ∽△A 1B 1C 1,且相似比为k ,那么△A 1B 1C 1∽△ABC 的相似比为1k.②如图,l 1,l 2分别被l 3,l 4,l 5所截,且l 3∥l 4∥l 5,则AB 与DE 对应,BC 与EF 对应,DF 与AC 对应;AB BC =(DE )(EF ),AB (AC )=(DE )DF ,AB DE =(BC )(EF )=(AC )(DF ).③平行于三角形一边的直线与其他两边(或延长线)相交所构成的三角形与原三角形相似. 【点拨】 找准对应线段是关键. 例题讲解:例1 (教材补充例题)如图,DE ∥BC ,则下面比例式不成立的是(B)A.ADAB=AEACB.DEBC=ECACC.ADDB=AEECD.BCDE=ACAE【跟踪训练1】如图所示,已知AB∥CD∥EF,那么下列结论正确的是(A)A.ADDF=BCCEB.BCCE=DFADC.CDEF=BCBED.CDEF=ADAF例2(教材补充例题)如图,ED∥BC,EC,BD相交于点A,过A的直线交ED,BC分别于点M,N,则图中有相似三角形(C)A.1对B.2对C.3对D.4对【跟踪训练2】如图,在△ABC中,点D在BC上,EF∥BC,分别交AB,AC,AD于点E,F,G,图中共有几对相似三角形?分别是哪几对?解:共有3对相似三角形,分别是:△AEG∽△ABD,△AGF∽△ADC,△AEF∽△ABC.巩固训练1.如图所示,若△ABC∽△DEF,则∠E的度数为(C)A.28°B.32°C.42° D.52°2.如图,在▱ABCD中,点E在边AD上,射线CE,BA交于点F,下列等式成立的是(C)A.AE ED =CE EFB.AE ED =CD AFC.AE ED =FA ABD.AE ED =FE FC3.如图,在△ABC 中,DE ∥BC ,DE =2,BC =6,AD =3,求BD 的长.解:∵DE ∥BC , ∴△ADE ∽△ABC. ∴AD AB =DE BC ,即3AB =26. ∴AB =9.∴BD =AB -AD =9-3=6. 课堂小结1.本节课我们学习了哪些内容?2.当平行线与三角形两边的延长线相交,所构成的三角形与原三角形相似吗?第2课时 相似三角形的判定定理1,2教学目标掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理. 预习反馈阅读教材P32~34,理解相似三角形判定定理1与判定定理2.完成下列预习内容. ①如果两个三角形的三组边对应成比例,那么这两个三角形相似.②如果两个三角形的两组对应边的比相等,并且夹角相等,那么这两个三角形相似.③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答.判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,AC IJ ≠AB HJ ≠BCHI ,所以他们不相似.乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似.解:甲同学的说法不正确,甲同学所分析的边的比不是对应边的比,根据相似三角形的概念,甲同学的说法不正确;根据相似三角形的概念,乙同学的说法正确.【点拨】 判断三角形相似要注意对应关系,找对应边和对应角时可类比全等三角形中找对应边和对应角的方法.例题讲解:例1 (教材P33例1(1))根据下列条件,判断△ABC 与△A ′B ′C ′是否相似,并说明理由: AB =4 cm ,BC =6 cm ,AC =8 cm ,A ′B ′=12 cm ,B ′C ′=18 cm ,A ′C ′=24 cm.【解答】 ∵AB A ′B ′=412=13,BC B ′C ′=618=13,AC A ′C ′=824=13,∴AB A ′B ′=BC B ′C ′=ACA ′C ′.∴△ABC ∽△A ′B ′C ′.【跟踪训练1】 如图,在△ABC 中,AB =25,BC =40,AC =20,在△ADE 中,AE =12,AD =15,DE =24,试判断这两个三角形是否相似,并说明理由.解:相似.理由:∵AC AE =2012=53,AB AD =2515=53,BC DE =4024=53,∴AC AE =AB AD =BCDE.∴△ABC ∽△ADE. 例2 (教材P33例1(2))根据下列条件,判断△ABC 与△A ′B ′C ′是否相似,并说明理由: ∠A =120°,AB =7 cm ,AC =14 cm ,∠A ′=120°,A ′B ′=3 cm ,A ′C ′=6 cm.【解答】 ∵AB A ′B ′=73,AC A ′C ′=146=73,∴AB A ′B ′=ACA ′C ′.又∠A =∠A ′,∴△ABC ∽△A ′B ′C ′.【跟踪训练2】 如图,四边形ABCD ,CDEF ,EFGH 都是正方形.(1)△ACF 与△ACG 相似吗?说说你的理由; (2)求∠1+∠2的度数.解:(1)相似.理由:设正方形的边长为a ,则AC =a 2+a 2=2a ,∵AC CF =2a a =2,CG AC =2a 2a =2,∴AC CF =CGAC.又∵∠ACF =∠GCA ,∴△ACF ∽△GCA. (2)∵△ACF ∽△GCA ,∴∠1=∠CAF.∵∠CAF +∠2=45°,∴∠1+∠2=45°. 巩固训练1.在△ABC 和△A ′B ′C ′中,AB =9 cm ,BC =8 cm ,CA =5 cm ,A ′B ′=4.5 cm ,B ′C ′=2.5 cm ,C ′A ′=4 cm ,则下列说法错误的是(D)A .△ABC 与△A ′B ′C ′相似 B .AB 与B ′A ′是对应边C .两个三角形的相似比是2∶1D .BC 与B ′C ′是对应边2.在△ABC 与△A ′B ′C ′中,已知AB ·B ′C ′=BC ·A ′B ′,若使△ABC ∽△A ′B ′C ′,还应增加的条件是(C)A .AC =A ′C ′B .∠A =∠A ′C .∠B =∠B ′D .∠C =∠C ′3.如图,两个三角形的关系是相似(填“相似”或“不相似”),理由是这两个三角形的三边对应成比例.4.右图中的两个三角形是否相似:不相似,说明理由:对应边不成比例.5.如图,DE 与△ABC 的边AB ,AC分别相交于D ,E 两点,若AE =2 cm ,AC =3 cm ,AD =2.4 cm ,AB =3.6 cm ,DE =43cm ,则BC 的长为多少?解:∵AE =2 cm ,AC =3 cm ,AD =2.4 cm ,AB =3.6 cm , ∴AE AC =AD AB =23. ∵∠A =∠A ,∴△ADE ∽△ABC. ∴DE BC =AE AC. 又∵DE =43 cm ,∴43BC =23.∴BC =2 cm. 【点拨】 运用相似三角形的判定和性质可以进行边的计算. 课堂小结1.本节课我们学习了什么内容?2.全等三角形的判定定理对相似三角形的判定定理有什么借鉴作用?第3课时 相似三角形的判定定理3教学目标1.掌握相似三角形的判定定理3.2.了解两个直角三角形相似的判定方法.3.深化对相似三角形的三个判定方法的理解,并能够运用相似三角形的判定方法解决相似三角形的有关问题.预习反馈阅读教材P35~36,理解相似三角形判定定理3及直角三角形相似的判定方法.完成下列预习内容. ①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. ②如果两个直角三角形中,有一条直角边和斜边对应成比例,那么这两个直角三角形相似.③要判定两个直角三角形相似,最简单的方法就是再找除直角外的一组内角对应相等,就可以根据相似三角形的判定3,判定这两个直角三角形相似.④如图所示,已知∠ADE =∠B ,则△AED ∽△ACB .理由是两角分别相等的两个三角形相似.⑤顶角对应相等的两个等腰三角形相似吗?为什么?解:相似,理由:根据三角形内角和,顶点对应相等的两个等腰三角形其底角也对应相等.再根据“两角分别相等的两个三角形相似”这个判定定理即可判断这两个等腰三角形相似.【点拨】 要根据已知条件选择适当的方法判定三角形相似.例题讲解:例1 (教材P35例2)如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8.E 是AC 上一点,AE =5,ED ⊥AB ,垂足为D.求AD 的长.【解答】 ∵ED ⊥AB , ∴∠EDA =90°.又∠C =90°,∠A =∠A , ∴△AED ∽△ABC. ∴AD AC =AE AB .∴AD =AC ·AE AB =8×510=4. 【跟踪训练1】 如图,∠1=∠3,∠B =∠D ,AB =DE =5,BC =4. (1)△ABC ∽△ADE 吗?说明理由; (2)求AD 的长.解:(1)△ABC ∽△ADE.理由如下:∵∠1=∠3,∴∠1+∠2=∠3+∠2, ∴∠BAC =∠DAE. 又∵∠B =∠D , ∴△ABC ∽△ADE. (2)由(1),知AB AD =BCDE .∴5AD =45.解得AD =254. 例2 (教材补充例题)已知:如图,∠ABC =∠CDB =90°,AC =a ,BC =b ,当BD 与a ,b 之间满足怎样的关系时,这两个三角形相似?【解答】 ∵∠ABC =∠CDB =90°, (1)当BC BD =ABCD 时,△ABC ∽△CDB ,此时BC BD =AB CD =AC BC ,即a b =b BD .∴BD =b 2a.即当BD =b2a 时,△ABC ∽△CDB.(2)当AB BD =BCCD 时,△ABC ∽△BDC ,此时AB BD =BC CD =AC BC ,即AB BD =AC BC. ∴a 2-b 2BD =a b ,BD =b a a 2-b 2.∴当BD =b aa 2-b 2时,△ABC ∽△BDC.综上所述,即当BD =b 2a 或BD =b aa 2-b 2时,这两个三角形相似.【点拨】 本题要考虑当两个三角形有一个角相等时,夹这个角的两边的比相等时有两种情况.【跟踪训练2】 在△ABC 和△A 1B 1C 1中,∠A =∠A 1=90°,添加下列条件不能判定两个三角形相似的是(D) A .∠B =∠B 1 B.AB A 1B 1=ACA 1C 1C.AB A 1B 1=BC B 1C 1 D.AB B 1C 1=AC A 1C 1巩固训练 1.下列条件中,一定能判断两个等腰三角形相似的是(C) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角 D .都含有一个70°的内角 2.在△ABC 与△A ′B ′C ′中,有下列条件:(1)AB A ′B ′=BC B ′C ′;(2)BC B ′C ′=ACA ′C ′;(3)∠A =∠A ′;(4)∠C =∠C ′,如果从中任取两个条件组成一组,那么能判断△ABC ∽△A ′B ′C ′的共有(C)A .1组B .2组C .3组D .4组3.如图,在△ABC 中,∠C =90°,E 是BC 上一点,ED ⊥AB ,垂足为D.求证:△ABC ∽△EBD.证明:∵ED ⊥AB , ∴∠EDB =90°. ∵∠C =90°, ∴∠EDB =∠C.∵∠B =∠B , ∴△ABC ∽△EBD. 课堂小结1.本节课我们学习了什么内容?2.全等三角形的判定定理与相似三角形的判定定理有何区别?27.2.2 相似三角形的性质教学目标理解并掌握相似三角形的性质. 预习反馈阅读教材P37~39,理解相似三角形的性质,并完成下列预习内容.(1)相似三角形对应中线的比、对应高的比、对应角平分线的比都等于相似比.(2)如图,△ABC ∽△A ′B ′C ′,相似比为k,AD ⊥BC 于点D ,A ′D ′⊥B ′C ′于点D ′.①你能发现图中还有其他的相似三角形吗?【解答】 其他的相似三角形还有△ABD ∽△A ′B ′D ′,△ADC ∽△A ′D ′C ′.②△ABC 与△A ′B ′C ′中,C △ABCC △A ′B ′C ′=k ,S △ABCS △A ′B ′C ′=k 2.【点拨】 在运用相似三角形的性质时,要注意周长的比与面积的比之间的区别,不要混为一谈,另外面积的比等于相似比的平方,反过来相似比等于面积比的算术平方根.例题讲解:例 (教材P38例3)如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D.若△ABC 的边BC 上的高为6,面积为125,求△DEF 的边EF 上的高和面积.【解答】 在△ABC 和△DEF 中, ∵AB =2DE ,AC =2DF , ∴DE AB =DF AC =12.又∠D =∠A , ∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为12.∵△ABC 的边BC 上的高为6,面积为125,∴△DEF 的边EF 上的高为12×6=3,面积为(12)2×125=3 5.【跟踪训练】 如图,在▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE.若△DEF 的面积为10,则▱ABCD 的面积为多少?解:∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB ∥CE.∴△DEF ∽△CEB ,△DEF ∽△ABF.∴S△DEFS△CEB=(DECE)2=(DECD+DE)2=(DE3DE)2=19,S△DEFS△ABF=(DEAB)2=(DECD)2=(DE2DE)2=14.∴S△CEB=90,S△ABF=40.∴S▱ABCD=S△ABF+S四边形BCDF=S△ABF+S△CEB-S△DEF=40+90-10=120.巩固训练1.若两个相似三角形的相似比为1∶2,则它们面积的比为(C)A.2∶1 B.1∶ 2C.1∶4 D.1∶52.如图,在▱ABCD中,点E在边DC上,DE∶EC=3∶1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为(B)A.3∶4 B.9∶16 C.9∶1 D.3∶13.如果△ABC∽△DEF,A,B分别对应D,E,且AB∶DE=1∶2,那么下列等式一定成立的是(D)A.BC∶DE=1∶2B.△ABC的面积∶△DEF的面积=1∶2C.∠A的度数∶∠D的度数=1∶2D.△ABC的周长∶△DEF的周长=1∶24.如果两个相似三角形的面积的比是4∶9,那么它们对应的角平分线的比是2∶3.5.已知△ABC∽△A1B1C1,△ABC的周长与△A1B1C1的周长的比值是32,BE,B1E1分别是它们对应边上的中线,且BE=6,则B1E1=4.6.如图所示,Rt△ABC∽Rt△DFE,CM,EN分别是斜边AB,DF上的中线,已知AC=9 cm,CB=12 cm,DE=3 cm.(1)求CM和EN的长;(2)你发现CMNE的值与相似比有什么关系?得到什么结论?解:(1)在Rt△ABC中,AB=AC2+CB2=92+122=15,∵CM是斜边AB的中线,∴CM=12AB=7.5.∵Rt△ABC∽Rt△DFE,∴DEAC=DFAB,即39=13=DF15.∴DF=5.∵EN为斜边DF上的中线,∴EN=12DF=2.5.(2)∵CMEN=7.52.5=31,相似比为ACDE=93=31,∴相似三角形对应中线的比等于相似比.课堂小结本节课我们学习了哪些内容?27.2.3 相似三角形应用举例教学目标1.通过本节相似三角形应用举例,发展学生综合运用相似三角形的判定方法和性质解决问题的能力,提高学生的数学应用意识,加深对相似三角形的理解与认识.2.在活动过程中使学生积累经验与成功体验,激发学生学习数学的热情与兴趣.预习反馈阅读教材P39~40,进一步体会从实际问题中建立数学模型,并完成下列预习内容.(1)太阳光下,同一时刻,物体的长度与其影长成正比(正比或反比).(2)太阳光下,同一时刻,物体的高度、影子、光线构成的三角形相似吗?答:相似.例题讲解:例1(教材P40例5)如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.已测得QS=45 m,ST=90 m,QR=60 m,请根据这些数据,计算河宽PQ.【解答】∵∠PQR=∠PST=90°,∠P=∠P,∴△PQR∽△PST.∴PQPS=QRST,即PQPQ+QS=QRST,PQPQ+45=6090,PQ×90=(PQ+45)×60.解得PQ=90 m.答:河宽大约为90 m.【跟踪训练1】(菏泽中考)如图,M,N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M,N两点之间的直线距离,选择测量点A,B,C,点B,C分别在AM,AN上,现测得AM=1千米,AN=1.8千米,AB=54米,BC=45米,AC=30米,求M,N两点之间的直线距离.解:连接MN.∵ACAM=301 000=3100,ABAN=541 800=3100,∴ACAM=ABAN.又∵∠BAC=∠NAM,∴△BAC∽△NAM.∴BCMN=3100,即45MN=3100.∴MN=1 500.答:M,N两点之间的直线距离为1 500米.例2小刚用下面的方法来测量学校大楼AB的高度.如图,在水平地面上的一面平面镜,镜子与教学大楼的距离EA=21 m,当他与镜子的距离CE=2.5 m时,他刚好能从镜子中看到教学大楼的顶端B,已知他的眼睛距地面高度DC=1.6 m,请你帮助小刚计算出教学大楼的高度AB是多少m?(注意:根据光的反射定律,反射角等于入射角)【解答】 根据反射角等于入射角,则有∠DEF =∠BEF ,而FE ⊥AC , ∴∠DEC =∠BEA.又∵∠DCE =∠BAE =90°, ∴△DEC ∽△BEA.∴CD AB =ECEA .又∵DC =1.6,EC =2.5,EA =21, ∴1.6AB =2.521.∴AB =13.44. 答:建筑物AB 的高度为13.44 m.【点拨】 从实际问题的情景中,找出相似三角形是解决本类题型的关键.【跟踪训练2】 如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上.已知DE =0.5米,EF =0.25米,目测点D 到地面的距离DG =1.5米,到旗杆的水平距离DC =20米,求旗杆的高度.解:由题意可得,△DEF ∽△DCA ,则DE DC =EFAC ,∵DE =0.5米,EF =0.25米,DG =1.5米,DC =20米, ∴0.520=0.25AC.解得AC =10. 故AB =AC +BC =AC +DG =10+1.5=11.5(米). 答:旗杆的高度为11.5米. 巩固训练1.如图,小明在打网球时,击球点距球网的水平距离为8 m ,已知网高为0.8 m ,要使球恰好能打过网,而且落在离网4 m 的位置,则球拍击球时的高度h 为2.4m.2.如图,测得BD =120 m ,DC =60 m ,EC =50 m ,求河宽.解:由题意,可得∠B =∠C =90°,∠ADB =∠EDC ,∴△ADB ∽△EDC. ∴AB EC =BD CD ,即AB =BD ·EC CD =120×5060=100(m). 答:河宽AB 为100 m.【点拨】 证明相似三角形的方法很多,要根据实际情况,选择最简单、合适的一种.课堂小结利用相似三角形进行测量的一般步骤:(1)因地制宜,构造相似三角形;(2)测量与所求线段对应的边的长以及另外任意一组对应边的长;(3)根据相似三角形的对应边成比例进行计算.27.3 位似第1课时位似图形的概念及画法教学目标1.正确理解位似图形等有关概念,能够按照要求利用位似将图形进行放大或缩小以及能够正确地作出位似图形的位似中心.2.在实际操作和探究活动中,让学生感受、体会到几何图形之美,提高对数学美的认识层次,陶冶美育情操,激发学习热情.预习反馈阅读教材P47~48,完成下列预习内容.(1)两个多边形不仅相似,而且对应点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心.(2)下列说法正确的是(D)A.两个图形如果是位似图形,那么这两个图形一定全等B.两个图形如果是位似图形,那么这两个图形不一定相似C.两个图形如果是相似图形,那么这两个图形一定位似D.两个图形如果是位似图形,那么这两个图形一定相似(3)用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可能在(D)A.原图形的外部 B.原图形的内部C.原图形的边上 D.任意位置【点拨】位似的三要素即是判定位似的依据,也是位似图形的性质.例题讲解:例1如图,作出一个新图形,使新图形与原图形对应线段的比为2∶1.【解答】 1.在原图形上取点A,B,C,D,E,F,G,在图形外任取一点P;2.作射线AP,BP,CP,DP,EP,FP,GP;3.在这些射线上依次取A′,B′,C′,D′,E′,F′,G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=2PD,PE′=2PE,PF′=2PF,PG′=2PG;4.顺次连接点A′,B′,C′,D′,E′,F′,G′,A′.所得到的图形就是符合要求的图形.【点拨】作位似图形的步骤:(1)按要求作出各点的对应点后,(2)连线.注意:不要连错对应点之间的连线.【跟踪训练1】如图,请在8×8的网格中,以点O为位似中心,作出△ABC的一个位似图形△A′B′C′,使△A′B′C′与△ABC的相似比为2∶1.解:如图所示,△A′B′C′为所求的三角形.例2请画出如图所示两个图形的位似中心.图1 图2【解答】如图所示的点O1,就是图1的位似中心.如图所示的点O2,就是图2的位似中心.【点拨】正确地作出位似中心,是解位似图形的关键,可以根据位似中心的定义,位似图形的对应点连线的交点就是位似中心.【跟踪训练2】找出下列图形的位似中心.巩固训练1.在下列图形中,不是位似图形的是(D)A BC D2.如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF的面积比为1∶9,则AB∶DE的值为(A)A.1∶3 B.1∶2 C.1∶ 3 D.1∶9第2题图第3题图3.如图,以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,则四边形ABCD 和四边形A′B′C′D′的周长的比为1∶2.4.如图,△DEF是△ABC经过位似变换得到的,位似中心是点O,请确定点O的位置,如果OC=3.6 cm,OF=2.4 cm,求它们的相似比.解:连接AD,CF交于点O,则点O即为所求.∵OC=3.6 cm,OF=2.4 cm,∴OC ∶OF =3∶2.∴△ABC 与△DEF 的相似比为3∶2.5.如图,图中的小方格都是边长为1的小正方形,△ABC 与△A ′B ′C ′是以点O 为位似中心的位似图形,它们的顶点都是在小正方形的顶点上.(1)找出位似中心点O ;(2)△ABC 与△A ′B ′C ′的位似比为2∶1;(3)按(2)中的位似比,以点O 为位似中心画出△ABC 的另一个位似图形△A ″B ″C ″.解:(1)如图所示,点O 即为所求. (2)∵AC A ′C ′=21, ∴△ABC 与△A ′B ′C ′的位似比为:2∶1.故答案为:2∶1. (3)如图所示,△A ″B ″C ″即为所求. 课堂小结1.本节课我们学习了哪些内容?2.位似图形与一般相似图形相比,有哪些特殊性? 3.利用位似作图的步骤有哪些?第2课时 平面直角坐标系中的位似教学目标1.让学生理解掌握位似图形在平面直角坐标系上的应用,即会根据相似比,求位似图形顶点,以及根据位似图形对应点坐标,求位似图形的相似比和在平面直角坐标系上作出位似图形.2.让学生在应用有关知识解决问题的过程中,提高应用意识,体验数形结合的思想方法在解题中的运用. 预习反馈阅读教材P48~50,以原点为位似中心的两个位似图形对应顶点的坐标规律,并完成下列预习内容.(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为13,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现?答:线段缩小后,点A ,B 的坐标与其对应点的坐标的比为13.(2)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点坐标的比为k . (3)△ABC 和△A 1B 1C 1关于原点位似且点A(-3,4),它的对应点A 1(6,-8),则△ABC 和△A 1B 1C 1的相似比是12.(4)已知△ABC 三个顶点的坐标分别为A(1,2),B(1,0),C(3,3),以原点O 为位似中心,相似比为2,把△ABC 放大得到其位似图形△A 1B 1C 1,则△A 1B 1C 1各顶点的坐标分别为A 1(2,4),B 1(2,0),C 1(6,6).例题讲解:例 (教材P49例)如图,△ABO 三个顶点的坐标分别为A(-2,4),B(-2,0),O(0,0).以原点O 为位似中心,画出一个三角形,使它与△ABO 的相似比为32.【解答】 如图,利用位似中对应点的坐标的变化规律,分别取点A ′(-3,6),B ′(-3,0),O(0,0).顺次连接点A ′,B ′,O ,所得△A ′B ′O 就是要画的一个图形.【点拨】 作位似变换时,要先弄清点的坐标的变化情况,求出变换后对应的坐标.然后在坐标中描出对应点,连线即可.【跟踪训练】 在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(2,-4),B(3,-2),C(6,-3). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点M 为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2∶1.解:(1)如图所示,△A 1B 1C 1即为所求. (2)如图所示,△A 2B 2C 2即为所求. 巩固训练1.某个图形上各点的横、纵坐标都变成原来的12,连接各点所得图形与原图形相比(C)A .完全没有变化B .扩大成原来的2倍C .面积缩小为原来的14D .关于纵轴成轴对称2.如图所示的△ABC ,以A 点为位似中心,放大为原来的2倍,画出一个相应的图形,并写出相应的点的坐标.解:根据题意,图中的△AB 1C 1就是满足题意的三角形,其中A 点的坐标不变,仍是(-3,-1),B 1,C 1的坐标分别为(3,-3),(1,3).课堂小结1.本节课学习了什么内容?2.想一想位似作图与平移作图、轴对称作图、旋转作图有什么共同点?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选
16
方法总结
利用相似多边形的性质求线段长及相似比的方法: 先找出与已知边、未知边相关的四条对应线段,再通过 设未知数并用含未知数的式子表示其中的部分线段,最 后通过相似多边形的对应边成比例建立方程进行计算. 这种巧用方程思想的方法在相似多边形的计算中经常 运用.
精选
17
变式训练
B
精选
18
随堂检测
边形是相似多边形
精选
9
课堂探究
知识点 2 相似多边形的性质
相似多边形的性质:相似多边形的对应边的比相等,对应角 相等. 作用:常用来求相似多边形中未知的边的长度和角的度数.
精选
10
例题解析
例2 如图,四边形ABCD和EFGH相似,求角α,β的大小和EF的长度x.
精选
11
方法总结
利用相似多边形的性质求边长或角度,关键扣住 “对应”二字,找准对应边和对应角是解决问题的关 键.需要注意的是对应边是比相等,而对应角是直接 相等.
以上的角分别相等,边成比例这两个条件是判定相 似多边形必备的条件,缺一不可.
精选
5
例题解析
例1 如图,G是正方形ABCD对角线AC上一点,作GE⊥AD, GF⊥AB,垂 足分别为点E,F. 求证:四边形AFGE与四边形ABCD相似.
精选
6
方法总结
判断两个多边形是否相似,既要看它们的角是否分别相 等,也要看边是否成比例,两者缺一不可.例如:两个矩形不 一定相似,两个菱形也不一定相似,两个正方形一定相似.
精选
7
变式训练
1 如图所示的两个三角形相似吗?为什么?
解:相似. 由已知条件可知它们的角分别相等, 边 成比例.
精选
8
2 下列说法中正确的是( D ) A.对应角相等的多边形一定是相似多边形 B.对应边的比相等的多边形是相似多边形 C.边数相同的多边形是相似多边形 D.对应角相等、对应边成比例的两个边数相同的多
对应角相等
∠A = ∠A´ ∠B = ∠B´ ∠C = ∠C´
△ABC ∽△A´B´C´
对应边成比例
AB A´B´
=
BC B´C´
=
AC A´C´
= 相似比
相似比的定义:相似多边形对应边的比称为相似比.
精选
15
例题解析
例3 如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD 相似,已知AB=4. (1)求AD的长; (2)求矩形DMNC与矩形ABCD的相似比.
A.2DE=3MN C.3∠A=2∠F
B.3DE=2MN
D.2∠A=3∠F
精选
21
C
精选
22
5 【中考·济宁】如图,在长为8 cm、宽为4 cm的矩形 中,截去一个矩形,使得留下的矩形(图中阴影部分)与原 矩形相似,则留下的矩形的面积是( C )
A.2 cm2 C.8 cm2
B.4 cm2 D.16 cm2
精选
25
布置作业 书面作业:完成本节相关作业
精选
26
再见
精选
27
精选
23
6【中考·通辽】志远要在报纸上刊登广告,一块10
cm×5 cm的长方形版面要付广告费180元,他要把该
版面的边长都扩大为原来的3倍,在每平方厘米版面广
告费相同的情况下,他该付广告费(C )
A.540元
B.1 080元
C.1 620元
D.1 800元
精选
24
课堂小结
相似相似形的性质: (1)对应角 相等 ; (2)对应边的比等于 相似比 ;
精选
12
变式训练
1 如图所示的两个五边形相似,求a,b,c,d的值.
解:a=3,b=4.5,c=4,d=6.
精选
13
2 若一个三角形的三边之比为3:5:7,与它相似的
三角形的最长边的长为21,则最短边的长为( C )A.15来自B.10C.9
D.3
精选
14
课堂探究
知识点 3 相似多边形的性质应用
若△ABC ∽△A´B´C´
27.1 图形的相似
第2课时 相似多边形
九年级下册
精选
1
温故知新
把下面相似的图形用线连起来.
A BC
精选
D
E
F
2
课堂探究
知识点 1 相似多边形的定义
精选
3
归纳总结
如果两个多边形的角分别相等,边成比例, 那么这两个多边形叫做相似多边形.
精选
4
判定相似多边形的条件: (1)所有的角分别相等; (2)所有的边成比例.
1 如图,在三个矩形中,相似的是( A )
A.甲和丙 C.乙和丙
B.甲和乙 D.甲、乙和丙
精选
19
2 下列四组图形中,一定相似的是( D) A.正方形与矩形 B.正方形与菱形 C.菱形与菱形 D.正五边形与正五边形
精选
20
3 如图,正五边形FGHMN与正五边形ABCDE相似,若 AB:FG=2:3,则下列结论正确的是( B )
相关文档
最新文档