2020-2021学年《平面图形的认识(一)》拓展试题
数学平面图形的认识试题答案及解析
数学平面图形的认识试题答案及解析1.在同一平面内,有两条直线都和一条直线平行,这两条直线()A.互相垂直B.互相平行C.相交,但不是互相垂直【答案】B【解析】根据平行线的定义,在同一平面内,不相交的两条直线叫做平行线,有两条直线都和一条直线平行,这两条直线互相平行,据此解答.解:由分析可知:在同一平面内,有两条直线都和一条直线平行,这两条直线互相平行;故选:B.点评:此题考查了垂直于平行的特征及性质,应注意基础知识的积累.2.下面的平面中,与直线a平行的是()A.AB.BC.C【答案】B【解析】根据平行的含义:在同一平面内,不相交的两条直线叫做平行线;据此判断即可.解:由平行的含义可知:与直线a平行的是直线B;故选:B.点评:此题考查了平行的含义,应注意理解和应用.3.下列几种情况,两条线互相垂直的是()A.两条直线相交B.不平行的两条直线C.直角的两条边【答案】C【解析】根据垂直的含义:两条直线相交成直角时,这两条直线叫做互相垂直;据此依次分析即可得出结论.解:A、两条直线相交,不一定互相垂直,只有当相交成90度时,这两条直线才互相垂直;B、同一平面内不平行的两条直线,可能相交,但相交不一定成直角,所以说法错误;C、直角的两条边,互相垂直;故选:C.点评:此题考查了垂直和平行的特征,应明确垂直和平行的含义.4.两条直线相交,如果其中一个角是直角,那么其它三个角都是()A.钝角B.锐角C.直角【答案】C【解析】两条直线相交,有两种情况,垂直或不垂直,如果其中一个角是90°,那么其它各个角都是90°,这两条直线就相互垂直.解:由垂直的含义可知:两条直线相交组成的四个角中如果有一个角是直角,那么其它三个角也是直角;故选:C.点评:此题考查了垂直的含义,注意对一些基础概念和性质的理解.5.画一个上底2cm,下底4cm,高2cm的梯形.【答案】【解析】先画一条4厘米的线段AB,再过AB上一点E作AB的2厘米长的垂线段DE,再过D 作AB的2厘米的平行线段DC,连接AD、BC,则四边形ABCD就是所要求画的梯形.解:据分析画图如下:点评:此题主要考查梯形的基本画法,需要灵活掌握过直线上一点作已知直线的垂线和过直线外一点作已知直线的平行线的方法.6.按要求画一画.(1)画一个长是4厘米、宽是3厘米的长方形.(2)画一个底是5厘米、高是4厘米的平行四边形.【答案】(1)如图:(2)如图:【解析】(1)根据长方形的画法,画出一个长是4厘米、宽是3厘米的长方形即可;(2)根据平行四边形的画法,画出平行四边形的底是6厘米、高是4厘米,据此即可画图.解:(1)如图:(2)如图:点评:此题考查画指定底和高的平行四边形的方法及长方形的画法,应灵活掌握.7.过A点画已知直线的垂线.【答案】【解析】用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.解:点评:本题考查了学生过直线外一点向已知直线作垂线的能力.8.过直线上一点画已知直线的垂线.【答案】【解析】用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和已知点重合,过已知点沿直角边向已知直线画直线即可.解:作图如下:点评:本题考查了学生过直线上一点向已知直线作垂线的能力.9.用一张正方形纸折一折,使两条折痕相交成直角.【答案】【解析】根据垂直的含义:同一平面内,当两条直线相交成直角时,这两条直线就互相垂直;据此折叠解答即可.解:折叠方法有:.点评:解决本题的关键是明确垂直的概念,再折叠出符合题意的图形.10.如图,哪两条路是互相平行的,哪两条路是互相垂直的?【答案】体育场路和凤起路,凤起路和庆春路,新华路和建国北路,体育场路和健康路,西健康路和东健康路互相平行;体育场路、凤起路、庆春路分别和新华路、建国北路、西健康路、东健康路互相垂直【解析】根据平行线和互相垂直的定义:在同一平面内,不相交的两条直线叫做平行线;在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.解:据分析可知:体育场路和凤起路,凤起路和庆春路,新华路和建国北路,体育场路和健康路,西健康路和东健康路互相平行;体育场路、凤起路、庆春路分别和新华路、建国北路、西健康路、东健康路互相垂直.点评:此题考查了平行和垂直的定义,注意基础知识的积累.11.先画一个梯形、一个平行四边形,再分别给它们的图形作一条高.【答案】【解析】根据平行四边形、梯形的特征:平行四边形的对边平行且相等,对角相等;只有一组对边平行的四边形,叫做梯形.再根据平行四边形、梯形高的意义解答即可.解:根据分析作图如下:点评:此题考查的目的是掌握梯形、平行四边形的特征,理解梯形、平行四边形高的意义,掌握高的画法.12.画出下面平行四边形和梯形底边上的高.【答案】【解析】经过平行四边形底上的一个顶点用三角板的直角边向另一底作垂线,顶点和垂足之间的线段就是平行四边形的一条高,平行四边形有无数条高,习惯上作平行四边形的高时,都从一个顶点出发向底作垂线;过梯形上底的一个顶点向下底作垂线,顶点和垂足之间的线段就是梯形形的一条高,梯形有无数条高,习惯上从上底的一个顶点向下底用三角板的直角边画垂线.解:根据分析画高如下:点评:本题是考查作平行四边形的高、梯形的高.注意作高用虚线,标出垂足.13.画出过B点的直线L的平行线.2【答案】【解析】将三角板的一条直角边与已知直线重合,另一条直角边与直尺重合,然后沿直尺向B点平移,使三角板与已知直线重合的那条边经过点B,再过B点作直线即可.解:根据题干分析画图如下:点评:此题主要考查过直线外一点作直线的平行线.14.两条直线相交所成的四个角中,如果有一个角是90度,那么这两条直线一定互相垂直..【答案】正确【解析】由垂直的定义:如果两条直线相交所构成的四个角中有一个角是直角时,那么这两条直线互相垂直;据此判断.解:由分析可知:两条直线相交所成的四个角中,如果有一个角是90度,那么这两条直线一定互相垂直;故答案为:正确.点评:本题主要考查垂直的定义,熟练掌握定义是解题的关键.15.不相交的两条直线叫做平行线.也可以说这两条直线互相平行..【答案】错误【解析】在同一个平面内两条不相交的直线叫做平行线,也可以说这两条直线互相平行.据此解答.解:据以上分析知两条不相交的直线必须在同一个平面内才互相平行.故答案为:错误.点评:本题的关键是理解在同一个平面内不相交两条直线叫做平行线.16.如图中,直线a叫做直线b的,点O叫做.【答案】垂线,垂足【解析】根据垂直的定义:如果两条直线相交成直角,其中一条直线叫作另一条直线的垂线,这两条直线的交点叫做垂足;据此解答即可.解:如图中,直线a叫做直线b的垂线,点O叫做垂足;故答案为:垂线,垂足.点评:此题考查了垂直与垂线的定义.17.画一条直线的平行线,只能画1条..(判断对错)【答案】×【解析】根据平行公理:经过直线外一点有且只有一条直线与已知直线平行;因为直线外由无数点,所以有无数条直线与已知直线平行.解:由平行公理及推论:经过直线外一点有且只有一条直线与已知直线平行;且直线外有无数个点可作已知直线的平行线.故答案为:×.点评:本题主要考查了平行公理.18. a取正整数时,方程3x=a﹣7的解是负整数.【答案】a为4,1【解析】首先解关于x的方程3x=a﹣7,解得x=;根据题意可知x=<0,解不等式组求得解集即可得到a的正整数解.解:∵3x=a﹣7∴x=∵方程3x=a﹣7的解是负整数∴<0∴a﹣7是3的倍数且小于0,∵a是正整数∴a为4,1.点评:此题考查了方程与不等式的综合应用,解题的关键是注意题目的要求.19.同一平面内与一条直线相距3厘米的直线有无数条..【答案】错误【解析】根据在同一平面内与一条直线相距3厘米的直线只有上、下两条,据此作图即可得出结论.解:如图可知:同一平面内与一条直线相距3厘米的直线只有2条;故答案为:×.点评:此题考查了垂直和平行的特征,结合题意,作出图,是解答此题的关键.20.如图,a、b、c、d分别表示平行四边形的四条边,在这四条边中、互相平行.【答案】a和c、b和d.【解析】根据平行四边形的定义:两组对边分别平行的四边形叫平行四边形;即可解答.解:根据平行四边形的含义可知:a∥c,b∥d;故答案为:a和c、b和d.点评:此题考查了平行四边形的定义.21.画出平行四边形两条不同的高.【答案】【解析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.解:作图如下:点评:本题主要是考查作平行四边形和梯形的高.若作高时画不垂直,可以用两个三角板来完成.高一般用虚线来表示,要标出垂足.22.画出下面图形的边a上的高.【答案】【解析】经过三角形的顶点(与底相对的点)向对边(底)作垂线,顶点和垂足之间的线段就是三角形的一条高,用三角板的直角可以画出三角形的高;在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高,平行四边形有无数条高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线,用三角板的直角可以画出平行四形的高;梯形两底间的距离叫做梯形的高,梯形也有无数条高,通常过上底的一个顶点作下底的垂线用三角板的直角可以画出梯形的一条高.解:作三角形、平行四边形、梯形的高如下:点评:本题是考查作三角形的高、平行四边形的高和梯形的高.注意作高用虚线,并标出垂足.23.过直线上或直线外一点画已知直线的垂线.【答案】【解析】用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.解:作图如下:点评:本题考查了学生作垂线的能力.24.【答案】【解析】(1)根据图可知,要作三角形的高,可先找到三角形的底与底对应的顶点,然后再过顶点向对边作垂线即可得到答案,画法如下:使直角三角尺的一条直角边与三角形的底平行或重合,沿着底边左右移动直角三角尺使三角形的顶点与直角三角尺的另一条直角边重合,沿着这条直角边画线,这条过三角形的顶点和底边的线段就是三角形的高.(2)我们先作梯形的下底CB的延长线,再做AE垂直这条延长线即可.解:由分析画图如下:点评:解答此题的依据是过直线外一点作已知直线的垂线的方法.25.画一个上底为2厘米,高2厘米,下底4厘米的梯形.【答案】【解析】根据梯形的性质:上下底互相平行,先画一条4厘米的线段AB,经过线段AB的中点,在线段AB的上方画一条2厘米的垂直线段,经过这条垂直线段的另一个顶点,画一条与AB的线段平行的直线,然后在这条平行线上,任意截取一段等于2厘米的线段CD,再连接AD、BC,即可得出符合题意的梯形.解:根据分析作图如下:点评:此题主要考查梯形的性质以及画已知直线的平行线和垂线的方法的灵活应用.26.下图中哪两条线互相平行?哪两条线互相垂直?(各画出一组)【答案】【解析】根据平行线和垂线的定义:在同一平面内不相交的两条直线叫做平行线;当两条直线相交成90度时,这两条直线就互相垂直;据此解答即可.解;根据平行和垂直的特征得出:;红色的线段是互相平行的,绿色的是互相垂直的.点评:此题考查了平行和垂直的定义的灵活运用.27.如图直线a叫做直线b的;直线b叫做直线a的.【答案】平行线,平行线【解析】根据平行线的含义:在同一平面内,不相交的两条直线叫做平行线;据此解答即可.解:根据分析可知,直线a和直线b互相平行;所以直线a叫做直线b的平行线;直线b叫做直线a的平行线.故答案为:平行线,平行线.点评:此题考查了平行线的含义,应注意基础知识的积累.28.同一平面内的两条直线,要么相交,要么.【答案】平行【解析】根据同一平面内,两条直线的位置关系有两种:平行和相交;据此解答即可.解:根据同一平面内,两条直线的位置关系可知:同一平面内,两条直线要么相交,要么平行;故答案为:平行.点评:此题考查了同一平面内两条直线的位置关系.29.用5个边长为1厘米的正方形拼成下面的图形.周长较长的是()A.B.C.D.【答案】D【解析】根据图形的周长计算方法,分别计算出四个选项中图形的周长,即可选择.解:A、根据长方形的周长公式可得,这个图形的周长是:(5+1)×2=12;B、把图形右下方的小线段分别向右向下平移,则这个图形的周长就等于长3宽2的长方形的周长:(3+2)×2=10;C、把图形左下方和右下方的小线段分别平移,可得这个图形的周长等于边长是3的正方形的周长:3×4=12;D、把这个图形横着的小线段向上或向下平移,竖着的小线段向左或向右平移,则这个图形的周长等于边长是5的正方形的周长:5×4=20,所以周长最长的是D.故选:D.点评:此题主要考查不规则图形的周长的计算方法,利用平移把不规则图形的周长转化到规则图形中,利用周长公式计算即可解答.30.用同样长的小棒摆一个长方形,至少要用()根.A.4B.6C.10D.12【答案】B【解析】因长方形的长和宽不相等.用同样长的小棒4根可摆成正方形,所以要变成长方形,就要再增加2根小棒,据此解答.解:因长方形的长和宽不相等.用同样长的小棒4根可摆成正方形,所以要变成长方形,就要再增加2根小棒,既4+2=6(根).如下图:故选:B.点评:本题的重点是长方形的长和宽不相等,要使长大于宽,就加上两个小棒.31.长方形有条边,相等,有个角,都是角.【答案】四,对边,四、直【解析】根据长方形的特征:有4条边,4个角,对边相等,4个角都是直角;进行解答即可.解:由分析可知,长方形有四条边,对边相等,有四个角,都是直角.故答案为:四,对边,四、直.点评:此题考查了长方形的特征.32.一根铁丝可以围成一个边长3.14厘米的正方形,用它围一个圆,这个圆的半径是厘米.【答案】2【解析】根据题意,围成正方形的周长即是围成圆的周长,可根据圆的周长公式:C=2πr,进行计算即可得到围成圆的半径的长度.解:3.14×4÷3.14÷2=12.56÷3.14÷2,=4÷2,=2(厘米);答:这个圆的半径为2厘米.故答案为:2.点评:此题主要考查的是正方形和圆的周长公式的应用.33.如图,圆的周长是12.56厘米,长方形的周长是18厘米,长方形的长是厘米.【答案】7【解析】根据圆的周长是12.56厘米,可以求出这个圆的半径,即长方形的宽,再利用长方形的周长公式,把长方形的周长除以2,再减去宽,即可得出长方形的长.解:12.56÷3.14÷2=2(厘米),18÷2﹣2,=9﹣2,=7(厘米),答:长方形的长是7厘米.故答案为:7.点评:此题主要考查圆与长方形的周长公式的计算应用.34.(2012•安徽模拟)把一个圆形纸片剪开后,拼成一个宽等于半径,面积相等的近似长方形.这个长方形的周长是16.56厘米,原来这个圆形纸片的面积是.(π取3.14)【答案】12.56平方厘米【解析】把一个圆形纸片剪开后,拼成一个宽等于半径,面积相等的近似长方形.这个近似长方形的周长就比圆的周长多了圆半径的2倍,可求出圆的半径,然后根据圆面积公式求出面积即可.解:圆的半径是:16.56÷(2+3.14×2),=16.56÷(2+6.28),=16.56÷8.28,=2(厘米);圆的面积是:3.14×22,=3.14×4,=12.56(平方厘米).答:原来这个圆形纸片的面积是12.56平方厘米.故答案是:12.56平方厘米.点评:本题考查了学生根据圆面积公式求圆面积以及把一个圆形剪开,拼成一个近似长方形.这个近似长方形的周长,就比圆的周长多了圆半径的2倍的知识.35.一个长80厘米,宽50厘米,把它剪成一个最大的正方形和一个长方形.正方形和新的长方形的周长分别是多少厘米?【答案】正方形的周长是200厘米,新长方形的周长是160厘米【解析】根据题意,剪成的最大的正方形的边长应该等于长方形的宽,新长方形的长是50厘米,宽是80﹣50=30厘米;由此列式解答.解:50×4=200(厘米);(50+30)×2=160(厘米);答:正方形的周长是200厘米,新长方形的周长是160厘米.点评:此题主要考查长方形、正方形的周长计算,直接利用公式解答即可.36.用一个长18厘米的铁丝做成一个长方形.现在规定做成的长方形的长和宽都是整厘米数.那么你做的长方形的长和宽各是多少呢?填在下表中.【答案】8、1;7、2;6、3;5、4【解析】根据题意知道长+宽=18÷2,再根据长方形的长和宽都是整厘米数,知道8+1+9,7+2=9,6+3=9,5+4=9,由此即可知道长和宽各是几.解:因为长+宽是:18÷2=9(厘米),所以8厘米+1厘米=9厘米,7厘米+2厘米=9厘米,6厘米+3厘米=9厘米,5厘米+4厘米=9厘米,所以长方形的长是8厘米、宽是1厘米;长是7厘米、宽是2厘米;长是6厘米、宽是3厘米;长是5厘米、宽是4厘米,故答案为:8、1;7、2;6、3;5、4.点评:本题主要是灵活利用长方形的周长公式求出长和宽的和,再根据长和宽的取值受限,即可得出长和宽的值.37.一个长方形的篮球场,长是100米,宽是60米.围着这个操场跑两圈,要跑多少米?【答案】640米【解析】先根据长方形的周长=(长+宽)×2,求出篮球场的周长,再乘2即可解答.解:(100+60)×2×2=160×2×2=640(米)答:要跑640米.点评:此题考查了长方形的周长公式的计算应用.38.计算阴影部分的周长.(单位:厘米)【答案】20厘米【解析】观察图得出此阴影部分的周长为边长是3厘米的正方形的周长加上4个2厘米的长度,据此解答.解:3×4+2×4=12+8=20(厘米);答:阴影部分的周长是20厘米.点评:关键是根据图得出阴影部分的周长为边长是3厘米的正方形的周长加上4个2厘米的长度,再根据正方形的周长公式S=4a解决问题.39.计算图形的周长.(1)长方形长20厘米8分米5厘米【解析】(1)根据长方形周长=(长+宽)×2计算即可;(2)根据正方形周长=边长×4计算即可.解:(1)(20+15)×2=70(厘米);(8+4)×2=24(分米);(5+3)×2=16(厘米);所以:10×4=40(米);8×4=32(厘米);所以:点评:此题主要考查正方形和长方形的周长计算公式的运用.40.量一量,算一算.【答案】【解析】(1)是长方形,计算周长需要测量出长和宽,再根据周长公式计算;(2)是正方形,需要测量边长,再根据周长公式计算.解:如图所示:经过测量,长方形的长是3厘米,宽是2厘米;正方形的边长是3厘米;.答:长方形的周长是10厘米,正方形的周长是12厘米.点评:解决本题的关键是测量出长方形的长和宽,正方形的边长,再计算各自的周长.41.把下表填完整.【答案】【解析】长方形的周长=(长+宽)×2,长方形的长=周长÷2﹣宽,长方形的宽=周长÷2﹣长;正方形的周长=边长×4,正方形的边长=周长÷4,据此代入数据即可解答.解:(1)(18+12)×2,=30×2,=60(厘米),80÷2﹣24,=40﹣24,=16(分米),94÷2﹣19,47﹣19,=28(厘米),填表如下:(2)15×4=60(厘米),76÷4=19(厘米),35×4=140(厘米),填表如下:点评:此题主要考查了长方形、正方形的周长公式的灵活应用.42.周长为8厘米的长方形,由3个一样的小正方形拼成,那么每个小正方形周长是多少?【答案】4【解析】由三个大小一样正方形拼成,应该是下图所示:由图可以看出长是宽的3倍,长方形的周长是8个小正方形的边长,由此求出小正方形的边长,进而求出每个小正方形的周长.解:大长方形的周长是8个小正方形的边长,所以小正方形的边长是:8÷8=1(厘米);小正方形的周长:1×4=4(厘米);答:每个小正方形周长是4厘米.点评:解决本题关键是找出大长方形的周长与小正方形的边长之间的关系,并由此求解.43.一卷安全隔离带长24.6米,现在要用这整卷带子围出一个长是宽的2倍的长方形来,这个长方形的长和宽各是多少米?【答案】这个长方形的长是8.2米,宽是4.1米【解析】根据长方形的特征,对边平行且相等,长方形的周长=(长+宽)×2,已知长是宽的2倍,也就是长与宽的比是2:1,根据按比例分配的方法,即可求出长和宽.解:2+1=3(份),长:24.6÷2×=12.3×=8.2(米),宽:24.6÷2×=12.3×=4.1(米).答:这个长方形的长是8.2米,宽是4.1米.点评:此题主要考查长方形的周长计算,解答关键是根据按比例分配的方法求出长和宽.44.一个正方形草坪的边长是20米.小红沿着这个草坪的四周跑了两圈.她一共跑了多少米?(5米)【答案】160【解析】因为围草坪跑一圈的长度就是正方形的周长,根据:正方形的周长=边长×4,计算出一圈长度,再乘2即可.解:20×4×2=160(米).答:她一共跑了160米.点评:解决本题的关键是明确草坪一圈的长度等于正方形的周长.45.一个正方形相框,它的边长是20厘米,用一条90厘米的彩带能给相框镶一圈吗?【答案】用一条90厘米的彩带能给相框镶一圈【解析】先根据正方形的周长=边长×4计算得出正方形相框的周长,再与90厘米相比较即可解答.解:20×4=80(厘米),80厘米<90厘米,答:用一条90厘米的彩带能给相框镶一圈.点评:此题考查正方形周长公式的计算应用.46.画一个长5厘米,宽3厘米的长方形和一个周长12厘米的正方形.长方形的周长是厘米,正方形的边长是厘米.【答案】16、3.【解析】(1)长方形的长和宽已知,依据长方形的基本画法即可画出符合要求的长方形;(2)先依据正方形的周长公式求出正方形的边长,进而就可以画出符合要求的正方形.解:(1)长方形的长和宽分别为5厘米和3厘米,所以画图如下,长方形的周长=(5+3)×2=16(厘米);(2)因为正方形的周长为12厘米,则正方形的边长为12÷4=3厘米,所以画图如下:故答案为:16、3.点评:考查学生通过长方形公式的计算,算出长和宽,培养学生的作图能力.47.画一画.用不同的方法涂色表示这个图形的.【答案】【解析】分数的意义为:将单位“1”平均分成若干份,表示这样一份或几份的数为分数;本题中是把长方形看作单位“1”,平均分成四份,取其中的三份涂上颜色即可.解:把长方形看作单位“1”,平均分成四份,取其中的三份涂上颜色如下:点评:本题通过图形考查了学生对于分数意义的理解与应用.48.用两个同样大小的正方形拼成一个长方形,长方形的周长等于正方形周长的2倍.()【答案】错误【解析】用两个同样大小的正方形拼成一个长方形,拼成后长方形的长是原正方形边长的2倍,宽是原正方形的边长.据此解答.解:用两个同样大小的正方形拼成一个长方形,拼成后长方形的长是原正方形边长的2倍,宽是原正方形的边长.设原正方形的边长为a,长方形的周长是:(a+a+a)×2,=3a×2,=6a,原正方形周长的2倍是a×4×2=8a.所以拼成的长方形的周长不等于正方形周长的2倍.故答案为:错误.点评:本题的关键是求出拼成后长方形的周长,再同正方形周长的2倍进行比较.49.用两个长5厘米、宽3厘米的小长方形,拼成一个大长方形.算一算,下面哪种拼法的大长方形周长较大?【答案】图二的周长较大【解析】两个长5厘米、宽3厘米的长方形拼成一个大长方形,有2种情况:两个长方形的长对在一起或两个长方形的宽对在一起,由此分别求出周长,再比较即可.解:①两个长方形的长对在一起:新长方形的长是:3+3=6(厘米);宽是5厘米;周长是:(6+5)×2,=11×2,。
第6章平面图形的认识(一)》单元测试卷2021-2022学年苏科版七年级数学上册
第6章平面图形的认识(一)一、选择题1.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角2.∠A=60°,则∠A的补角是()A.160°B.120°C.60°D.30°3.在同一平面内的三条直线,如果要使其中两条且只有两条平行,那么它们()A.有三个交点B.只有一个交点C.有两个交点D.没有交点4.直线a、b、c是三条平行直线.已知a与b的距离为5cm,b与c的距离为2cm,则a与c 的距离为()A.2cmB.3cmC.7cmD.3cm或7cm5如图,C、D是线段AB上两点,若CB=5cm,DB=9cm,且D是AC的中点,则AC的长等于()A.6cm B.9cm C.8cm D.13cm6下面说法错误的是()A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等7一条直线截另外一条直线,形成的对顶角有()A.4对B.3对C.2对D.1对8.为了估计池塘A,B两点之间的距离,小明在池塘的一侧选取一点C,测得AC=3m,BC =6m,则A,B两点之间的距离可能是()A.11m B.9m C.7m D.3m9.如图,AB是一段高铁行驶路线图图中字母表示的5个点表示5个车站在这段路线上往返行车,需印制()种车票.A.10 B.11 C.20 D.2210.直线经过两个整点(横纵坐标都为整数的点)是该直线经过无数个整点的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题11. 22.5°=度分.12.∠α=35°,则∠α的补角为度.13.若点O是直线AB上一点,OC是一条射线,当∠AOC=50°时,则∠BOC的度数是.14.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=145°,则∠BOC= .15.如图,为了把河中的水引到处,可过点作于,然后沿开渠,这样做可使所开的渠道最短,这种设计的依据是________.16如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.17已知∠AOB=60°,过O作射线OC(不同于OA、OB),并且满足∠AOC=∠BOC,则∠AOC=度或度.18用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE与AB交于点A,∠DAB=.三、解答题19.按要求作图:如图,在同一平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.20.用适当的语句表述图中点与直线的关系.(至少4句)21.如图,已知点D是线段AB上一点,点C是线段AB的中点,若AB=8cm,BD=3cm.(1)求线段CD的长;(2)若点E是直线AB上一点,且BE=BD,点F是BE的中点,求线段CF的长.22.请你做裁判:过三点中的两点作直线,小明说有一条,小林说有三条,小红说不是一条就是三条,你认为他们三人谁的说法正确?为什么?23如图,已知直线AB以及点C、点D、点E.(1)画直线CD交直线AB于点O,画射线OE;(2)在(1)所画的图中,若∠AOE=40°,∠EOD:∠AOC=3:4,求∠AOC的度数.24.如图,已知线段AB的长度是xcm,线段BC的长度比线段AB的长度的2倍多1cm,线段AD的长度比线段BC长度的2倍少1cm,求线段BC,AD和CD的长.25.有一艘渔船上午九点在A处沿正东方向航行,在A处测得灯塔C在北偏东60°方向上,行驶2小时到达B处,测得灯塔C在北偏东15°方向,求∠C的度数.第6章平面图形的认识(一)一、选择题1.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角【考点】余角和补角;对顶角、邻补角;垂线.【专题】计算题.【答案】B【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.2.答案为:B3.答案为:C4.答案为:D5如图,C、D是线段AB上两点,若CB=5cm,DB=9cm,且D是AC的中点,则AC的长等于()A.6cm B.9cm C.8cm D.13cm【考点】两点间的距离.【答案】C【分析】先根据CB=5cm,DB=9cm求出CD的长,再根据D是AC的中点即可得出AC的长.【解答】解:∵CB=5cm,DB=9cm,∴CD=DB﹣CB=9﹣5=4cm,∵D是AC的中点,∴AC=2CD=8cm.故选:C.6下面说法错误的是()A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等【考点】直线、射线、线段;直线的性质:两点确定一条直线;余角和补角.【答案】B【分析】分别利用直线的性质以及射线的性质和余角与补角的性质分析得出答案.【解答】解:A、两点确定一条直线,正确,不合题意;B、射线AB也可以写作射线BA,错误,符合题意;C、等角的余角相等,正确,不合题意;D、同角的补角相等,正确,不合题意;故选:B.7一条直线截另外一条直线,形成的对顶角有()A.4对B.3对C.2对D.1对【考点】对顶角、邻补角.【专题】线段、角、相交线与平行线;几何直观.【答案】C【分析】根据题意的画图,由对顶角的定义可得∠1=∠3,∠2=∠4,即可得出答案.【解答】解:根据题意可得,如图,互为对顶角有:∠1=∠3,∠2=∠4,所以形成的对顶角有2对.故选:C.8.解:根据三角形的三边关系定理得:6﹣3<AB<6+3,即:3<AB<9,则A,B两点之间的距离在3和9之间,故选:C.9.解:5×(5﹣1)=20,故选:C.10.解:分两步,充分性,设直线经过(x1,y1),(x2,y2),x1、y1、x2、y2都是整数,y﹣y1=(x﹣x1),设:p=y1﹣y2,q=x1﹣x2,则直线y=(x﹣x1)+y1,当x﹣x1=nq,即x=nq+x1时,y=np+y1为整数,n=1、2、3.....所以直线经过无数个点.必要性:∵直线经过无数个整点,∴直线必经过两个整点.故选:C.11. 22.5°=度分.【考点】度分秒的换算.【答案】见试题解答内容【分析】进行度、分、秒的转化运算,注意以60为进制.【解答】解:22.5°=22°+(0.5×60)′=22°30′.故答案为:22、30.12.【答案】 145【考点】余角、补角及其性质【解析】【解答】解:180°﹣35°=145°,则∠α的补角为145°,故答案为:145.【分析】和为180º的两个角叫做互为补角,根据定义即可得出答案。
初中数学《平面图形的认识》常考题练习题及参考答案与解析(word版)
《平面图形的认识》常考题练习题及参考答案与解析一、选择题(共40小题,每小题只有一个正确选项)1.(2018春•吉安期中)如图,1∠与2∠不是同旁内角的是( )A .B .C .D .2.(2018春•城关区校级月考)如图所示,同位角共有( )A .6对B .8对C .10对D .12对3.(2018•呼和浩特一模)如图,已知直线a 、b 被直线c 所截,那么1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠4.(2019春•东至县期末)如图所示,共有 3 个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块( )A .向右平移 1 格,向下 3 格B .向右平移 1 格,向下 4 格C .向右平移 2 格,向下 4 格D .向右平移 2 格,向下 3 格5.(2018春•新罗区校级期中)将图中所示的图案平移后得到的图案是( )A .B .C .D .6.(2016春•南长区期中)在下列现象中,属于平移的是( )A .小亮荡秋千运动B .电梯由一楼升到八楼C .导弹击中目标后爆炸D .卫星绕地球运动7.(2019•香坊区模拟)如图图形中,把ABC ∆平移后能得到DEF ∆的是( )A .B .C .D .8.(2018•天津二模)如图,将周长为8的ABC ∆沿BC 方向平移1个单位得到DEF ∆,则四边形ABFD 的周长是( )A .8B .10C .12D .169.(2017•莱西市一模)如图,面积为26cm 的ABC ∆纸片沿BC 方向平移至DEF ∆的位置,平移的距离是BC 长的2倍,则ABC ∆纸片扫过的面积为( )A .218cmB .221cmC .227cmD .230cm10.(2015春•石家庄期末)如图,将ABC ∆沿射线BC 方向移动,使点B 移动到点C ,得到DCE ∆,连接AE ,若ABC ∆的面积为2,则ACE ∆的面积为( )A .2B .4C .8D .1611.(2015•宛城区模拟)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF ∆的位置,10AB =,4DO =,平移距离为6,则阴影部分面积为( )A .48B .96C .84D .4212.(2014春•台州月考)如图,把正方形ABCD的对角线AC分成n段,以每段为对角线作正方形,设这n个小正方形的周长和为P,正方形ABCD的周长为L,则P与L的关系是()A.P L<C.P L=D.P与L无关>B.P L13.(2019春•番禺区期中)下列图形不是由平移而得到的是()A.B.C.D.14.(2015秋•盐都区期末)如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.15.(2018秋•沁阳市期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形16.(2017秋•肇源县期末)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.1917.(2017秋•东莞市校级月考)如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是()A.2012边形B.2013边形C.2014边形D.2015边形18.(2014•大兴区一模)正五边形各内角的度数为()A.72︒B.108︒C.120︒D.144︒19.(2014•独山县模拟)如图,一个60︒的角的三角形纸片,剪去这个60︒角后,得到一个四边形,则12∠+∠的度数为()A.120︒B.180︒C.240︒D.300︒20.(2015春•攀枝花期末)下列说法中,正确的个数是( )①三角形的三条高都在三角形内,且都相交于一点②任意三角形的外角和都是360︒③三角形的一个外角大于任何一个内角④在ABC ∆中,当12A C ∠=∠,13B C ∠=∠时,这个三角形是直角三角形. A .1 B .2个 C .3个 D .4个21.(2019春•河南期末)小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状不可以是( )A .正三角形B .正四边形C .正五边形D .正六边形22.(2019春•北海期末)如图,下列条件中,能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AFE ACD ∠=∠C .34∠=∠D .12∠=∠23.(2017秋•雨花区校级期末)如图,能判定//AD BC 的条件是( )A .32∠=∠B .12∠=∠C .BD ∠=∠ D .1B ∠=∠24.(2016春•微山县期末)如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是( )①同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行; ④平面内垂直于同一直线的两条直线平行.A .①②③B .①②④C .①③④D .①③25.(2019•安次区一模)将一把直尺与一块三角板如图所示放置,若140∠=︒,则2∠的度数为( )A .50︒B .110︒C .130︒D .150︒26.(2017•自贡)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠= )A .45︒B .50︒C .55︒D .60︒27.(2017•安陆市模拟)如图,//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有45︒角的直角三角尺按如图所示的方式摆放,若75EMB ∠=︒,则PNM ∠等于( )A .15︒B .25︒C .30︒D .45︒28.(2019•荆州一模)如图,已知直线AB 、CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设BAE α∠=,DCE β∠=.下列各式:①αβ+,②αβ-,③βα-,④360αβ︒--,AEC ∠的度数可能是( )A .①②③B .①②④C .①③④D .①②③④29.(2019春•武昌区校级月考)下列说法:(1)两直线平行,同旁内角互补;(2)同位角相等,两直线平行;(3)内错角相等,两直线平行;(4)垂直于同一条直线的两条直线平行,其中平行线的性质是( )A .(1)B .(2)(3)C .(4)D .(1)(4)30.(2016春•新泰市期中)下列说法中,不正确的是( )A .同位角相等,两直线平行B .两直线平行,内错角相等C .两直线被第三条直线所截,同旁内角互补D .同旁内角互补,两直线平行31.(2016•重庆校级一模)如图,1B ∠=∠,220∠=︒,则(D ∠= )A .20︒B .22︒C .30︒D .45︒ 32.(2019秋•江津区期末)下列长度的三根木棒能组成三角形的是( )A .3,4,8B .4,4,8C .5,6,10D .6,7,1433.(2017秋•兰陵县期末)下列长度的三条线段能组成三角形的是( )A .1、2、3B .3、3、7C .20、15、8D .5、15、8 34.(2019秋•北仑区期末)如果三角形的两边长分别是4和9,那么第三边长可能是( ) A .1 B .5 C .8D .14 35.(2018秋•左贡县期末)把三角形的面积分为相等的两部分的是( ) A .三角形的角平分线 B .三角形的中线C .三角形的高D .以上都不对 36.(2017春•单县期末)在ABC ∆中,画出边AC 上的高,下面4幅图中画法正确的是( )A .B .C .D .37.(2015秋•莒南县期末)下列说法错误的是( )A .三角形的角平分线能把三角形分成面积相等的两部分B .三角形的三条中线,角平分线都相交于一点C .直角三角形三条高交于三角形的一个顶点D .钝角三角形的三条高所在直线的交点在三角形的外部38.(2019秋•咸丰县期末)如图所示,12∠=∠,34∠=∠,则下列结论正确的有( ) ①AD 平分BAF ∠;②AF 平分BAC ∠;③AE 平分DAF ∠;④AF 平分DAC ∠;⑤AE 平分BAC ∠.A .4个B .3个C .2个D .1个39.(2012秋•长丰县校级期中)如图,ABC ∆中,70BAC ∠=︒,40B ∠=︒,AD 是ABC ∆的角平分线,则ADC ∠度数是( )A .70︒B .75︒C .80︒D .85︒40.(2017春•渭滨区校级期中)一个三角形的三个内角中,锐角的个数最少为( )A .0B .1C .2D .3二、填空题(共30小题)41.(2018春•武冈市期末)如图,如果140∠=︒,2100∠=︒,3∠的同旁内角等于 .42.(2018春•静安区期中)如图,写出图中A ∠所有的内错角: .43.(2016春•五莲县期中)如图,有下列判断:①A ∠与1∠是同位角;②A ∠与B ∠是同旁内角;③4∠与1∠是内错角;④1∠与3∠是同位角.其中正确的是 (填序号).44.(2019春•浦东新区期中)如图,//AD BC ,AC 、BD 交于点E ,三角形ABE 的面积等于2,三角形CBE 的面积等于3,那么三角形DBC 的面积等于 .45.(2016春•威宁县期末)小明把自己的左手手印和右手手印按在同一张白纸上,左手手印 (填“能”或“不能”)通过平移与右手手印完全重合.46.(2015春•自贡期末)如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则草地的面积为 .47.(2019春•郯城县期中)如图,直径为2cm 的圆1O 平移3cm 到圆2O ,则图中阴影部分的面积为2cm .48.(2018•雁塔区校级模拟)如图,在三角形ABC中,AD BCAD=,将三角形ABC⊥,6BC=,3沿射线BC的方向平移2个单位后,得到三角形A B C''的面积为.''',连接A C',则三角形A B C49.(2018•柯桥区模拟)如图,170∠-∠=︒.∠=︒,直线a平移后得到直线b,则2350.(2017春•滑县校级月考)如图所示,两个完全相同的直角梯形重叠在一起,将其中一个直角梯形沿一腰平移,阴影部分的面积为.51.(2015春•文安县期末)如图,ABC=,则AC cm''',若3∆沿射线AC方向平移2cm得到△A B CA C'=cm.52.(2014春•无锡期末)如图,把边长为3cm的正方形ABCD先向右平移1cm,再向上平移1cm,得到正方形EFGH,则阴影部分的面积为.53.(2017秋•随县期末)若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是 边形.54.(2014•东莞模拟)从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是 .55.(2019秋•霸州市期末)小明发现交通指示牌中“停车让行标志”可以看成是正八边形,如图所示,则1∠= ︒.56.(2019秋•历下区期末)如图,若12220∠+∠=︒,则A ∠= 度.57.(2018秋•市南区期末)如图,//AB CD ,点P 为CD 上一点,EBA ∠、EPC ∠的角平分线于点F ,已知40F ∠=︒,则E ∠= 度.58.(2019秋•淅川县期末)如图,按虚线剪去长方形纸片的相邻两个角,并使1120∠=︒,AB BC ⊥,那么2∠的度数为 .59.(2019秋•峄城区期末)如图,直线////a b c ,直角三角板的直角顶点落在直线b 上.若135∠=︒,则2∠等于 .60.(2016•梅江区校级模拟)如图,已知12∠=∠,30B ∠=︒,则3∠= .61.(2015•丹东)如图,1240∠=∠=︒,MN 平分EMB ∠,则3∠= ︒.62.(2016春•虎丘区校级期末)已知ABC ∆中,B ∠是A ∠的2倍,C ∠比A ∠大20︒,则A ∠= .63.(2019秋•大冶市期末)一副分别含有30︒和45︒的两个直角三角板,拼成如图图形,其中90C ∠=︒,45B ∠=︒,30E ∠=︒.则BFD ∠的度数是 .64.(2014秋•汉阳区期中)如图,已知120BOF ∠=︒,则A B C D E F ∠+∠+∠+∠+∠+∠= .65.(2014春•宿城区校级月考)在ABC ∆中,高BD 和CE 所在直线相交于O 点,若ABC ∆不是直角三角形,且60A ∠=︒,则BOC ∠= .66.(2016秋•南阳期末)一个三角形的两边长为3和6,若第三边取奇数,则此三角形的周长为 .67.(2019秋•长白县期末)已知a 、b 、c 为ABC ∆的三边,化简:||||||a b c a b c a b c +----+-+= .68.(2017秋•秀洲区校级月考)如图,在ABC ∆中,2013AB =,2010AC =,AD 为中线,则ABD ∆与ACD ∆的周长之差= .69.(2015秋•绍兴校级期中)在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是 三角形.70.(2015秋•磴口县校级期中)在ABC ∆中,80A ∠=︒,I 是B ∠,C ∠的角平分线的交点, 则BIC ∠= ︒. 三、解答题(共31小题)71.(2014春•灌云县校级期末)如图,1∠和2∠是哪两条直线被哪一条直线所截形成的?它们是什么角?1∠和3∠是哪两条直线被哪一条直线所截形成的?它们是什么角?72.(2015•六盘水)如图,已知,12//l l ,1C 在1l 上,并且12C A l ⊥,A 为垂足,2C ,3C 是1l 上任意两点,点B 在2l 上.设1ABC ∆的面积为1S ,2ABC ∆的面积为2S ,3ABC ∆的面积为3S ,小颖认为123S S S ==,请帮小颖说明理由.73.(2019春•宛城区期末)如图,在Rt ABC ∆中,90ACB ∠=︒,33A ∠=︒,将ABC ∆沿AB 方向向右平移得到DEF ∆. (1)试求出E ∠的度数;(2)若9AE cm =,2DB cm =.请求出CF 的长度.74.(2017秋•灵石县期末)如图,已知直线//AB CD ,100A C ∠=∠=︒,E ,F 在CD 上,且满足DBF ABD ∠=∠,BE 平分CBF ∠.(1)求证://AD BC ; (2)求DBE ∠的度数;(3)若平行移动AD ,在平行移动AD 的过程中,是否存在某种情况,使BEC ADB ∠=∠?若存在,求出其度数;若不存在,请说明理由.75.(2017春•江都区月考)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出ABCA B C;∆向右平移4个单位后得到的△111(2)图中AC与A C的关系是:;11(3)画出ABC∆中AB边上的中线CD;(4)ACD∆的面积为.76.(2017春•曲阜市期中)如图,平移方格纸中的图形,使点A平移到点A'处,画出平移后的图形.77.(2019春•平昌县期末)一个多边形的内角和是它的外角和的5倍,求这个多边形的边数.78.(2019春•杜尔伯特县期末)如图,在六边形ABCDEF中,//∠=︒,AAB DE,且120AF CD,//∠的度数.∠和D∠=︒,求C80B79.(2019春•龙门县期末)如图,在四边形ABCD中,//AD BC,连接BD,点E在BC边上,点F 在DC边上,且12∠=∠.(1)求证://EF BD;(2)若DB平分ABC∠的度数.∠=︒,求2∠,130A80.(2019秋•鄂城区期中)如图所示:求A D B E C F ∠+∠+∠+∠+∠+∠的度数.81.(2015春•怀集县期末)已知:如图,AB BC ⊥,BC CD ⊥且12∠=∠,求证://BE CF .82.(2019秋•金牛区期末)如图,直线MN 分别交AB 和CD 于点E 、F ,点Q 在PM 上,EPM FQM ∠=∠,且AEP CFQ ∠=∠,求证://AB CD .83.(2014春•澄江县校级期中)如图,130∠=︒,60B ∠=︒,AB AC ⊥. 试说明//AD BC .84.(2018秋•惠来县期末)如图所示,已知12180∠+∠=︒,3B ∠=∠,试判断AED ∠与C ∠的大小关系,并对结论进行说理.85.(2014春•裕民县校级月考)如图所示,已知//DC AB ,190A ∠+∠=︒,求证:AD DB ⊥.86.(2019春•白城期中)如图,BD AC ⊥于D ,EF AC ⊥于F ,//DM BC ,12∠=∠.求证:AMD AGF ∠=∠.87.(2017秋•遂宁期末)已知:如图12∠=∠,C D ∠=∠,请证明:A F ∠=∠.88.(2019秋•罗湖区校级期末)如图,直线MN 分别与直线AC 、DG 交于点B 、F ,且12∠=∠.ABF ∠的角平分线BE 交直线DG 于点E ,BFG ∠的角平分线FC 交直线AC 于点C .(1)求证://BE CF ;(2)若35C ∠=︒,求BED ∠的度数.89.(2019秋•市北区期末)如图,180ADE BCF ∠+∠=︒,BE 平分ABC ∠,2ABC E ∠=∠. (1)AD 与BC 平行吗?请说明理由; (2)AB 与EF 的位置关系如何?为什么? (3)若AF 平分BAD ∠,试说明:90E F ∠+∠=︒.90.(2019秋•阳江期中)如图,125ABD ∠=︒,50A ∠=︒,求ACE ∠的度数.91.(2019秋•徐闻县期中)如图,求x的值.92.(2018秋•甘井子区期末)已知:如图,D是AB上一点,E是AC上的一点,BE、CD相交于点F,62ABE∠=︒,20∠=︒.求:ACDA∠=︒,35(1)BDC∠的度数;(2)BFD∠的度数.93.(2019秋•瀍河区月考)如图,ABC∆中,点D在AC上,点P在BD上,求证:AB AC BP CP+>+.94.(2019秋•瑶海区期末)如图,已知ABC∆.(1)若4AB=,5AC=,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作//∠=︒,EDE AC,交BA的延长线于点E,若55∠的度数.∠=︒,求B125ACD95.(2016秋•垦利县期末)如图,已知:AD是ABCBAC∠=︒,∆的高,60∆的角平分线,CE是ABC∠的度数.∠=︒,求ADBBCE4096.(2016秋•宁海县期中)如图,在ABC ∆中30B ∠=︒,110ACB ∠=︒,AD 是BC 边上高线,AE 平分BAC ∠,求DAE ∠的度数.97.(2019春•上蔡县期末)如图,ABC ∆中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,50CAB ∠=︒,60C ∠=︒,求DAE ∠和BOA ∠的度数.98.(2019春•南海区期末)已知:如图,在ABC ∆中,80BAC ∠=︒,AD BC ⊥于D ,AE 平分DAC ∠,60B ∠=︒;求AEC ∠的度数.99.(2016秋•南开区期中)如图,ABC ∆的三条内角平分线相交于点O ,过点O 作OE BC ⊥于E 点,求证:BOD COE ∠=∠.100.(2015秋•西区期中)如图(1)所示,称“对顶三角形”,其中,A B C D ∠+∠=∠+∠,利用这个结论,完成下列填空.①如图(2),A B C D E∠+∠+∠+∠+∠=.②如图(3),A B C D E∠+∠+∠+∠+∠=.③如图(4),123456∠+∠+∠+∠+∠+∠=.④如图(5),1234567∠+∠+∠+∠+∠+∠+∠=.参考答案与解析一、选择题(共40小题,每小题只有一个正确选项)1.(2018春•吉安期中)如图,1∠与2∠不是同旁内角的是()A.B.C.D.【知识考点】同位角、内错角、同旁内角【思路分析】根据同旁内角的概念:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.可得答案.【解答过程】解:选项A、C、B中,1∠在两直线的之间,并且在第三条直线(截线)的同∠与2旁,是同旁内角;选项D中,1∠的两条边都不在同一条直线上,不是同旁内角.∠与2故选:D.【总结归纳】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U”形.2.(2018春•城关区校级月考)如图所示,同位角共有()A.6对B.8对C.10对D.12对【知识考点】同位角、内错角、同旁内角【思路分析】在基本图形“三线八角”中有四对同位角,再看增加射线GM 、HN 后,增加了多少对同位角,求总和.【解答过程】解:如图,由AB 、CD 、EF 组成的“三线八角”中同位角有四对, 射线GM 和直线CD 被直线EF 所截,形成2对同位角; 射线GM 和直线HN 被直线EF 所截,形成2对同位角; 射线HN 和直线AB 被直线EF 所截,形成2对同位角. 则总共10对. 故选:C .【总结归纳】本题主要考查同位角的概念.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.3.(2018•呼和浩特一模)如图,已知直线a 、b 被直线c 所截,那么1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠【知识考点】同位角、内错角、同旁内角 【思路分析】根据同位角的定义,可得答案.【解答过程】解:已知直线a 、b 被直线c 所截,那么1∠的同位角是2∠, 故选:A .【总结归纳】本题考查了同位角,利用同为角的定义是解题关键.4.(2019春•东至县期末)如图所示,共有 3 个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块( )A .向右平移 1 格,向下 3 格B .向右平移 1 格,向下 4 格C .向右平移 2 格,向下 4 格D .向右平移 2 格,向下 3 格【知识考点】生活中的平移现象【思路分析】找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可. 【解答过程】解:上面的图案的最右边需向右平移 2 格才能与下面图案的最右边在一条直线上,最下边需向下平移4 格才能与下面图案的最下面重合,故选C.【总结归纳】解决本题的关键是得到两个图案重合需移动的左右距离和上下距离.5.(2018春•新罗区校级期中)将图中所示的图案平移后得到的图案是()A.B.C.D.【知识考点】生活中的平移现象【思路分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【解答过程】解:通过图案平移得到必须与图案完全相同,角度也必须相同,观察图形可知C可以通过图案平移得到.故选:C.【总结归纳】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.6.(2016春•南长区期中)在下列现象中,属于平移的是()A.小亮荡秋千运动B.电梯由一楼升到八楼C.导弹击中目标后爆炸D.卫星绕地球运动【知识考点】生活中的平移现象【思路分析】根据平移的定义,旋转的定义对各选项分析判断即可得解.【解答过程】解:A、小亮荡秋千运动是旋转,故本选项错误;B、电梯由一楼升到八楼是平移,故本选项正确;C、导弹击中目标后爆炸不是平移,故本选项错误;D、卫星绕地球运动是旋转,故本选项错误.故选:B.【总结归纳】本题考查了生活中的平移现象,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.7.(2019•香坊区模拟)如图图形中,把ABC∆的是()∆平移后能得到DEFA.B.C.D.【知识考点】平移的性质【思路分析】根据图形平移的性质对各选项进行逐一分析即可.【解答过程】解:A、DEF∆由ABC∆平移而成,故本选项正确;B、DEF∆由ABC∆对称而成,故本选项错误;C 、DEF ∆由ABC ∆旋转而成,故本选项错误;D 、DEF ∆由ABC ∆对称而成,故本选项错误.故选:A .【总结归纳】本题考查的是平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.8.(2018•天津二模)如图,将周长为8的ABC ∆沿BC 方向平移1个单位得到DEF ∆,则四边形ABFD 的周长是( )A .8B .10C .12D .16【知识考点】平移的性质【思路分析】根据平移的基本性质,得出四边形ABFD 的周长 11AD AB BF DF AB BC AC =+++=++++即可得出答案.【解答过程】解:根据题意,将周长为8个单位的ABC ∆沿边BC 向右平移1个单位得到DEF ∆,1AD ∴=,1BF BC CF BC =+=+,DF AC =;又8AB BC AC ++=Q ,∴四边形ABFD 的周长1110AD AB BF DF AB BC AC =+++=++++=.故选:B .【总结归纳】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF AD =,DF AC =是解题的关键.9.(2017•莱西市一模)如图,面积为26cm 的ABC ∆纸片沿BC 方向平移至DEF ∆的位置,平移的距离是BC 长的2倍,则ABC ∆纸片扫过的面积为( )A .218cmB .221cmC .227cmD .230cm【知识考点】平移的性质【思路分析】根据平移的性质可以知道四边形ACED 的面积是三个ABC ∆的面积,依此计算即可. 【解答过程】解:Q 平移的距离是边BC 长的两倍, BC CE EF ∴==,∴四边形ACED 的面积是三个ABC ∆的面积;∴四边形ABED 的面积26(13)24cm =⨯+=,ABC ∴∆纸片扫过的面积26(23)30cm =⨯+=,故选:D .【总结归纳】考查了平移的性质,本题的关键是得出四边形ACED 的面积是三个ABC ∆的面积.然后根据已知条件计算.10.(2015春•石家庄期末)如图,将ABC ∆沿射线BC 方向移动,使点B 移动到点C ,得到DCE ∆,连接AE ,若ABC ∆的面积为2,则ACE ∆的面积为( )A .2B .4C .8D .16【知识考点】平移的性质【思路分析】首先根据平移的性质,可得BC CE =;然后根据两个三角形的高相等时,面积和底成正比,可得ACE ∆的面积等于ABC ∆的面积,据此解答即可.【解答过程】解:Q 将ABC ∆沿射线BC 方向移动,使点B 移动到点C ,得到DCE ∆, BC CE ∴=,ACE ∆Q 和ABC ∆底边和高都相等,ACE ∴∆的面积等于ABC ∆的面积,又ABC ∆Q 的面积为2, ACE ∴∆的面积为2.故选:A .【总结归纳】(1)此题主要考查了平移的性质和应用,要熟练掌握,解答此题的关键是要明确:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.(2)此题还考查了三角形的面积的求法,要熟练掌握,解答此题的关键是要明确:两个三角形的高相等时,面积和底成正比.11.(2015•宛城区模拟)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF ∆的位置,10AB =,4DO =,平移距离为6,则阴影部分面积为( )A .48B .96C .84D .42【知识考点】平移的性质【思路分析】根据平移的性质得出6BE =,10DE AB ==,则6OE =,则阴影部分面积ODFC ABEO S S ==四边形梯形,根据梯形的面积公式即可求解.【解答过程】解:由平移的性质知,6BE =,10DE AB ==,ABC DEF S S ∆∆=, 1046OE DE DO ∴=-=-=,()()1110664822DEF EOC ABC EOC ODFC ABEO S S S S S S AB OE BE ∆∆∆∆∴=-=-==+⋅=+⨯=四边形梯形. 故选:A .【总结归纳】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO 的面积相等是解题的关键.12.(2014春•台州月考)如图,把正方形ABCD 的对角线AC 分成n 段,以每段为对角线作正方形,设这n 个小正方形的周长和为P ,正方形ABCD 的周长为L ,则P 与L 的关系是( )A .P L >B .P L <C .P L =D .P 与L 无关【知识考点】平移的性质【思路分析】运用平移的方法,发现:所有的小正方形的周长的和等于大正方形的周长. 【解答过程】解:将小正方形的上边平移至AB 所在直线,根据平移的性质,所有小正方形的上边长度和为AB ,同理可得,所有小正方形左边长度和为AD , 所有小正方形右边长度和为BC , 所有小正方形下边长度和为CD , 所以,P L =. 故选:C .【总结归纳】此题主要考查了平移的性质和应用.13.(2019春•番禺区期中)下列图形不是由平移而得到的是( ) A .B .C .D .【知识考点】利用平移设计图案【思路分析】根据平移定义:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移可得A 、B 、C 都是平移得到的,选项D 中的对应点的连线不平行,两个图形需要经过旋转才能得到.【解答过程】解:A、图形是由平移而得到的,故此选项不合题意;B、图形是由平移而得到的,故此选项不合题意;C、图形是由平移而得到的,故此选项不合题意;D、图形是由旋转而得到的,故此选项符合题意;故选:D.【总结归纳】此题主要考查了图形的平移,关键是掌握平移的定义.14.(2015秋•盐都区期末)如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【知识考点】利用平移设计图案【思路分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【解答过程】解:A、可以由一个“基本图案”旋转得到,不可以由一个“基本图案”平移得到,故本选项不符合题意;B、是轴对称图形,不是基本图案的组合图形,故本选项不符合题意;C、不可以由一个“基本图案”平移得到,故本选项不符合题意;D、可以由一个“基本图案”平移得到,故本选项符合题意;故选:D.【总结归纳】本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.15.(2018秋•沁阳市期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【知识考点】多边形【思路分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【解答过程】解:一个四边形沿对角线截一刀后得到的多边形是三角形,一个四边形沿平行于边的直线截一刀后得到的多边形是四边形,一个四边形沿除上述两种情况的位置截一刀后得到的多边形是五边形,故选:A.【总结归纳】本题考查了多边形,能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键.16.(2017秋•肇源县期末)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.19【知识考点】多边形【思路分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(1)n+边形或(1)n-边形.【解答过程】解:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选:A.【总结归纳】此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.17.(2017秋•东莞市校级月考)如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是()A.2012边形B.2013边形C.2014边形D.2015边形【知识考点】多边形的对角线【思路分析】经过n边形的一个顶点的所有对角线把多边形分成(2)n-个三角形,根据此关系式求边数.【解答过程】解:设多边形有n条边,则22011n-=,解得:2013n=.所以这个多边形的边数是2013.故选:B.【总结归纳】本题考查了多边形的对角线,解决此类问题的关键是根据多边形过一个顶点的对角线与分成的三角形的个数的关系列方程求解.18.(2014•大兴区一模)正五边形各内角的度数为()A.72︒B.108︒C.120︒D.144︒【知识考点】多边形内角与外角【思路分析】方法一:先根据多边形的内角和公式(2)180g求出内角和,然后除以5即可;n-︒方法二:先根据正多边形的每一个外角等于外角和除以边数,再根据每一个内角与相邻的外角是邻补角列式计算即可得解.【解答过程】解:方法一:(52)180540g,-︒=︒︒÷=︒;5405108方法二:360572︒÷=︒,︒-︒=︒,18072108所以,正五边形每个内角的度数为108︒.故选:B.【总结归纳】本题考查了正多边形的内角与外角的关系,注意两种方法的使用,通常利用外角和与每一个外角的关系先求外角的度数更简单一些.19.(2014•独山县模拟)如图,一个60︒的角的三角形纸片,剪去这个60︒角后,得到一个四边形,则12∠+∠的度数为()。
七年级上册数学 平面图形的认识(一)单元测试卷附答案
一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值. 3.感知:如图①,∠ACD为△ABC的外角,易得∠ACD=∠A+∠B(不需证明) ;(1)探究:如图②,在四边形ABDC中,试探究∠BDC与∠A、∠B.、∠C之间的关系,并说明理由;(2)应用:如图③,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ 恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=________度;(直接填答案,不需证明) (3)拓展:如图④,BE平分∠ABD,CE平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC=________度. (直接填答案,不需证明)【答案】(1)解:如图5,连接AD并延长至点F.∵∠BDF为△ABD的外角,∴∠BDF=∠BAD+∠B,同理可得∠CDF=∠CAD+∠C,∴∠BDF+∠CDF=∠BAD+∠B+∠CAD+∠C,即∠BDC=∠BAC+∠B+∠C;(2)40°(3)125°【解析】【解答】解:(2)由题意可得∠BXC=90°,由(1)中结论可得∠BXC=∠A+∠ABX+∠ACX,∵∠A=50°,∴∠ABX+∠ACX=90°-50°=40°;(3)如图6,∵∠A=100°,∠BDC=150°,∠BDC=∠A+∠ABD+∠ACD,∴∠ABD+∠ACD=150°-100°=50°,∵BE平分∠ABD,CE平分∠ACD,∴∠ABE+∠ACE= (∠ABD+∠ACD)=25°,又∵∠BEC=∠A+∠ABE+∠ACE,∴∠BEC=100°+25°=125°.【分析】(1)如图5,连接AD并延长至F,然后利用三角形外角的性质进行分析证明即可得到∠BDC=∠BAC+∠B+∠C;(2)由题意可知∠BXC=90°,结合∠A=50°和(1)中所得结论即可得到∠ABX+∠ACX=90°-50°=40°;(3)如图6,利用(1)中所得结论结合已知条件进行分析解答即可.4.如图(1),将两块直角三角板的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想∠ACB与∠DCE的数量关系,并说明理由;(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)【答案】(1)解:∠ACE=∠BCD,理由如下:∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,∴∠ACE=∠BCD(2)解:若∠DCE=30°,∠ACD=90°,∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,∵∠BCE=90°且∠ACB=∠ACE+∠BCE,∠ACB=90°+60°=150°(3)解:猜想∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°(4)解:成立【解析】【分析】(1)根据同角的余角相等即可求证;(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;(4)根据重叠的部分实质是两个角的重叠可得。
2020-2021学年苏科版七年级数学上册期末专题复习:第5章《平面图形的认识(一)》试题精选(1)
第5章《平面图形的认识(一)》试题精选(1)一.选择题(共2小题)1.(2019秋•江都区期末)将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B ′、D ′,若∠B ′AD ′=16°,则∠EAF 的度数为( )A .40°B .45°C .56°D .37°2.(2019秋•扬州期末)下列生活实例中,数学原理解释错误的一项是( )A .从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B .两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C .把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D .从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短二.填空题(共9小题)3.(2019秋•南京期末)已知线段AB ,点C 、点D 在直线AB 上,并且CD =8,AC :CB =1:2,BD :AB =2:3,则AB = .4.(2019秋•高邮市期末)一个角的余角比这个角补角的15大10°,则这个角的大小为 .5.(2019秋•崇川区期末)已知射线OA ,从O 点再引射线OB ,OC ,使∠AOB =67°31′,∠BOC =48°39′,则∠AOC 的度数为6.(2019秋•高新区期末)已知线段AB =5cm ,点C 在直线AB 上,且BC =3cm ,则线段AC = cm .7.(2019秋•淮安区期末)如图,直线AB ,CD 相交于点O ,若∠AOC +∠BOD =100°,则∠AOD 等于 度.8.(2019秋•句容市期末)如图,∠AOB =90°,∠AOC =2∠BOC ,则∠BOC = °.9.(2019秋•句容市期末)如图,在∠AOB 的内部有3条射线OC 、OD 、OE ,若∠AOC =60°,∠BOE =1n∠BOC ,∠BOD =1n ∠AOB ,则∠DOE = °.(用含n 的代数式表示)10.(2019秋•泰兴市期末)如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.11.(2019秋•建湖县期末)如图,直线AB和直线CD相交于点O,∠BOE=90°,有下列结论:①∠AOC 与∠COE互为余角;①∠AOC=∠BOD;①∠AOC=∠COE;①∠COE与∠DOE互为补角;①∠AOC与∠DOE互为补角;①∠BOD与∠COE互为余角.其中错误的有.(填序号)三.解答题(共26小题)12.(2019秋•东海县期末)如图,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=13∠EOC.(1)若OE⊥AC,垂足为O点,则∠BOE的度数为°,∠BOD的度数为°;在图中,与∠AOB相等的角有;(2)若∠AOD=32°,求∠EOC的度数.13.(2019秋•工业园区期末)如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.14.(2019秋•镇江期末)如图1,点C为线段AB延长线上的一点,点D是AC的中点,且点D不与点B 重合,AB=8,设BC=x.(1)①若x=6,如图2,则BD=;①用含x的代数式表示CD,BD的长,直接写出答案;CD=,BD=;(2)若点E为线段CD上一点,且DE=4,你能说明点E是线段BC的中点吗?15.(2019秋•高邮市期末)如图,已知∠AOB=150°,将一个直角三角形纸片(∠D=90°)的一个顶点放在点O处,现将三角形纸片绕点O任意转动,OM平分斜边OC与OA的夹角,ON平分∠BOD.(1)将三角形纸片绕点O转动(三角形纸片始终保持在∠AOB的内部),若∠COD=30°,则∠MON =;(2)将三角形纸片绕点O转动(三角形纸片始终保持在∠AOB的内部),若射线OD恰好平分∠MON,若∠MON=8∠COD,求∠COD的度数;(3)将三角形纸片绕点O从OC与OA重合位置顺时针转动到OD与OA重合的位置,猜想在转动过程中∠COD和∠MON的数量关系?并说明理由.16.(2019秋•沭阳县期末)(1)如图①,OC是∠AOE内的一条射线,OB是∠AOC的平分线,OD是∠COE 的平分线,∠AOE=120°,求∠BOD的度数;(2)如图①,点A、O、E在一条直线上,OB是∠AOC的平分线,OD是∠COE的平分线,请说明OB ⊥OD.17.(2019秋•鼓楼区期末)如图,点O在直线AB上,OC、OD是两条射线,OC⊥OD,射线OE平分∠BOC.(1)若∠DOE=150°,求∠AOC的度数.(2)若∠DOE=α,则∠AOC=.(请用含α的代数式表示)18.(2019秋•秦淮区期末)【探索新知】如图1,点C在线段AB上,图中共有3条线段:AB、AC、和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)【深入研究】如图2,点A表示数﹣10,点B表示数20,若点M从点B,以每秒3cm的速度向点A运动,当点M到达点A时停止运动,设运动的时间为t秒.(2)点M在运动过程中表示的数为(用含t的代数式表示);(3)求t为何值时,点M是线段AB的“二倍点”;(4)同时点N从点A的位置开始,以每秒2cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.19.(2019秋•太仓市期末)如图,直线AB,CD,EF相交于点O,OG⊥CD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.20.(2019秋•兴化市期末)如图,直线AB,CD相交于点O,OF⊥CD,OE平分∠BOC.(1)若∠BOE=60°,求∠AOF的度数;(2)若∠BOD:∠BOE=4:3,求∠AOF的度数.21.(2019秋•赣榆区期末)如图,已知线段AB,延长AB到C,点D是线段AB的中点,点E是线段BC 的中点.(1)若BD=5,BC=4,求线段EC、AC的长;(2)试说明:AC=2DE.22.如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠BOC=80°,∠AOC=40°,求∠DOE的度数;(2)若∠BOC=α,∠AOC=50°,求∠DOE的度数;(3)若∠BOC=α,∠AOC=β,试猜想∠DOE与α、β的数量关系并说明理由.23.(2019秋•扬州期末)如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).(1)若∠BEC的补角是它的余角的3倍,则∠BEC=度;(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;(3)若射线EF平分∠AED,∠FEG=100°(如图2),则∠AEG﹣∠CEG=度.24.(2019秋•南京期末)已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b,|a﹣17|+(b﹣5.5)2=0,求线段AB、CE的长;(2)如图1,在(1)的条件下,求线段DE的长;(3)如图2,若AB=20,AD=2BE,求线段CE的长.25.(2019秋•崇川区期末)如图,已知直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=36°.(1)求∠AOG的度数;(2)若OG是∠AOF的平分线,那么OC是∠AOE的平分线吗?说明你的理由.26.(2019秋•东台市期末)如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图①,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图①所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图①所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.27.(2019秋•淮安区期末)如图:已知直线AB、CD相交于点O,∠COE=90°(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数.28.(2019秋•清江浦区期末)如图,C为线段AB上一点,D在线段AC上,且AD=23AC,E为BC的中点.(1)若AC=6,BE=1,求线段AB、DE的长;(2)试说明:AB+BD=4DE.29.(2019秋•张家港市期末)如图,线段AB的中点为M,C点将线段MB分成MC:CB=1:3的两段,若AC=10,求AB的长.30.(2019秋•高新区期末)如图,O为直线AB上一点,∠AOC=48°,OD平分∠AOC,∠DOE=90°.(1)图中有个小于平角的角;(2)求出∠BOD的度数;(3)试判断OE是否平分∠BOC,并说明理由.31.(2019秋•江都区期末)如图,直线AB与CD相交于点O,∠AOC=48°,∠DOE:∠BOE=5:3,OF平分∠AOE.(1)求∠BOE的度数;(2)求∠DOF的度数.32.(2019秋•建湖县期末)如图,直线AB和CD相交于点O,OE把∠AOC分成两部分,且∠AOE:∠EOC=2:3,(1)如图1,若∠BOD=75°,求∠BOE;(2)如图2,若OF平分∠BOE,∠BOF=∠AOC+12°,求∠EOF.33.(2019秋•常熟市期末)已知,OM平分∠AOC,ON平分∠BOC.(1)如图1,若OA⊥OB,∠BOC=60°,求∠MON的度数;(2)如图2,若∠AOB=80°,∠MON:∠AOC=2:7,求∠AON的度数.34.(2019秋•南京期末)已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD内旋转时,∠MON=度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC 绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕O点以每秒2°的速度逆时针旋转t 秒,如图3,若∠AOM:∠DON=2:3,求t的值.35.(2019秋•沛县期末)已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=14∠AOE时,求∠BOD的度数.(4)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.36.(2019秋•清江浦区期末)如图,点O是直线AB上的一点,将一直角三角板如图摆放,过点O作射线OE平分∠BOC.(1)如图1,如果∠AOC=40°,依题意补全图形,写出求∠DOE度数的思路(不必写出完整的推理过程);(2)当直角三角板绕点O顺时针旋转一定的角度得到图2,使得直角边OC在直线AB的上方,若∠AOC =α,其他条件不变,请你直接用含α的代数式表示∠DOE的度数;(3)当直角三角板绕点O继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现∠AOC与∠DOE (0°≤∠AOC≤180°,0°≤∠DOE≤180°)之间有怎样的数量关系?请直接写出你的发现.37.(2019秋•句容市期末)已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.第5章《平面图形的认识(一)》试题精选(1)参考答案与试题解析一.选择题(共2小题)1.【答案】D【解答】解:设∠EAD′=α,∠F AB′=β,根据折叠可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=16°,∴∠DAF=16°+β,∠BAE=16°+α,∵四边形ABCD是正方形,∴∠DAB=90°,∴16°+β+β+16°+16°+α+α=90°,∴α+β=21°,∴∠EAF=∠B′AD′+∠D′AE+∠F AB′=16°+α+β=16°+21°=37°.则∠EAF的度数为37°.故选:D.2.【答案】A【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.二.填空题(共9小题)3.【答案】见试题解答内容【解答】解:分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=23 AB,∵BD:AB=2:3,∴BD=23nn,∴CD=BC+BD=43nn=8,∴AB=6;①当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;①当点C在线段AB的反向延长线,点D在线段AB的延长线时,∵AC:CB=1:2,BD:AB=2:3,∴AB=38nn=3,故AB=6或3.故答案为:6或34.【答案】见试题解答内容【解答】解:设这个角为∠α,则90°﹣∠α=15(180°﹣∠α)+10°,解得:∠α=55°,故答案为:55°.5.【答案】见试题解答内容【解答】解:如右图所示,①OC在OA、OB之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB﹣∠BOC,=67°31′﹣48°39′,=66°91′﹣48°39′,=18°52′;①OB在OA、OC之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB+∠BOC=67°31′+48°39′=115°70′=116°10′;故答案是18°52′或116°10′.6.【答案】见试题解答内容【解答】解:当点C在线段AB上时,则AC+BC=AB,所以AC=5cm﹣3cm=2cm;当点C在线段AB的延长线上时,则AC﹣BC=AB,所以AC=5cm+3cm=8cm.故答案为8或2.7.【答案】见试题解答内容【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD,又∵∠AOC+∠BOD=100°,∴∠AOC=50°.∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣50°=130°.故答案为:130.8.【答案】见试题解答内容【解答】解:∵∠AOB=90°,∠AOC=2∠BOC,∴∠AOC+∠BOC=90°,即2∠BOC+∠BOC=90°,∴∠BOC=30°故答案为:30°.9.【答案】见试题解答内容【解答】解:设∠BOE =x °,∵∠BOE =1n ∠BOC ,∴∠BOC =nx ,∴∠AOB =∠AOC +∠BOC =60°+nx ,∵∠BOD =1n ∠AOB =1n (60°+nx )=60°n +x ,∴∠DOE =∠BOD ﹣∠BOE =60°n +x ﹣x =60°n ,故答案为:60n .10.【答案】见试题解答内容【解答】解:如图:∵OE 平分∠AOC ,∴∠AOE =∠COE ,设∠DOE =x ,∵∠COD =40°,∴∠AOE =∠COE =x +40°,∴∠BOC =∠AOB ﹣∠AOC =150°﹣2(x +40°)=70°﹣2x ,∴2∠BOE ﹣∠BOD =2(70°﹣2x +40°+x )﹣(70°﹣2x +40°)=140°﹣4x +80°+2x ﹣70°+2x ﹣40°=110°,故答案为:110.11.【答案】见试题解答内容【解答】解:∵∠BOE =90°,∴∠AOE =180°﹣∠BOE =180°﹣90°=90°=∠AOC +∠COE ,因此①不符合题意;由对顶角相等可得①不符合题意;∵∠AOE =90°=∠AOC +∠COE ,但∠AOC 与∠COE 不一定相等,因此①符合题意;∠COE +∠DOE =180°,因此①不符合题意;∠EOC +∠DOE =180°,但∠AOC 与∠COE 不一定相等,因此①符合题意;∠BOD =∠AOC ,且∠COE +∠AOC =90°,因此①不符合题意;故答案为:①①三.解答题(共26小题)12.【答案】见试题解答内容【解答】解:(1)∵OE ⊥AC ,∴∠AOE =∠COE =90°,∵∠BOE =13∠EOC ,∴∠BOE =13×90°=30°;∴∠AOB =90°﹣30°=60°,∵OD 平分∠AOB ,∴∠BOD =12nAOB =30°; ∴∠DOE =∠BOD +∠BOE =60°,∴∠AOB =∠DOE ;故答案为:30,30,∠EOD ;(2)∵OD 平分∠AOB ,∴∠AOB =2∠AOD .∵∠AOD=32°,∴∠AOB=64°.∴∠COB=180°﹣∠AOB=116°.∵∠BOE=13∠EOC,∴∠EOC=34∠COB=34×116°=87°.13.【答案】见试题解答内容【解答】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE ∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.14.【答案】见试题解答内容【解答】解:①∵BC=6,AB=8,∴AC=AB+BC=14,∵点D是AC的中点,∴AD=DC=12AC=7,∴BD=AB﹣AD=8﹣7=1;故答案为1;①用含x的代数式表示:CD=12(8+x)=4+12x,BD=|8﹣(4+12x)|=|4−12x|,故答案为:4+12x,|4−12x|;(2)能说明点E是线段BC的中点.理由如下:如图所示:∵AB=8,设BC=x,∴AC=AB+BC=8+x,DE=4,∵点D是AC的中点,∴AD=DC=12AC=4+12x,∴CE=DC﹣DE=4+12x﹣4=12x,BE=DE﹣DB=4﹣(AB﹣AD)=4﹣(4−12 x)=1 2x.∴CE=BE.所以点E是线段BC的中点.15.【答案】见试题解答内容【解答】解:(1)∵∠AOB=150°,∠COD=30°,∴∠AOC+∠BOD=∠AOB﹣∠COD=150°﹣30°=120°,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠BON=12nBOD,∴∠AOM+∠BON=12(∠AOC+∠BOD)=60°,∴∠MON=∠AOB﹣(∠AOM+∠BON)=90°,故答案为:90°;(2)∵∠MON=8∠COD,∴设∠COD=α,则∠MON=8α,∵OD平分∠MON,∴∠DOM=∠DON=4α,∴∠COM=3α,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOC=2∠COM=6α,∠BOD=2∠DON=8α,∵∠AOB=∠AOC+∠COD+∠BOD=6α+α+8α=150°,∴α=10°,∴∠COD=10°;(3)∠COD+150°=2∠MON或2∠COD=210°﹣∠MON,理由:①三角形纸片在∠AOB的内部,如图1,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠BON=12nnnn,∵∠AOM+∠BON=150°﹣∠MON,∠COD=150°﹣2(∠AOM+∠BON),∴∠COD=150°﹣2(150°﹣∠MON),∴∠COD+150°=2∠MON;①如图2,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠DON=12nnnn,∵∠AOM+∠DON=150°+∠BOD﹣∠MON,∴∠AOM﹣∠DON=150°﹣∠MON,∵∠COD=∠BOC+∠BOD=150°﹣∠AOC+∠BOD=150°﹣2(∠AOM﹣∠DON),∴∠COD=150°﹣2(150°﹣∠MON),∴∠COD+150°=2∠MON;①三角形纸片在∠AOB的外部,如图3,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=∠COM=12∠AOC,∠BON=∠DON=12nnnn,∵∠AOM+∠BON=360°﹣150°﹣∠MON,∠COD=∠AOM+∠BON﹣∠MON=360°﹣150°﹣2(∠MOC+∠DON)=210°﹣2(∠MON+∠COD)∴3∠COD=210°﹣2∠MON,综上所述,∠COD+150°=2∠MON或2∠COD=210°﹣2∠MON.16.【答案】见试题解答内容【解答】解:(1)∵OB是∠AOC的平分线∴∠nnn=12nnnn同理,∠nnn=12nnnn∴∠BOD=∠BOC+∠DOC=12∠AOC+12∠EOC=12(∠AOC+∠EOC)=12∠AOE,∵∠AOE=120°∴∠nnn=12×120°=60°(2)由(1)可知∠nnn=12nnnn∵∠AOE=180°∴∠nnn=12×180°=90°∴OB⊥OD.17.【答案】见试题解答内容【解答】解:(1)∵OC⊥OD,∠DOE=150°,∴∠COE=∠DOE﹣∠COD=150°﹣90°=60°,∵射线OE平分∠BOC.∴∠COE=∠BOE=60°,∴∠AOC=180°﹣∠COE﹣∠BOE=180°﹣60°﹣60°=60°,(2))∵OC⊥OD,∠DOE=α,∴∠COE=∠DOE﹣∠COD=α﹣90°,∵射线OE平分∠BOC.∴∠COE=∠BOE=α﹣90°,∴∠AOC=180°﹣∠COE﹣∠BOE=180°﹣(α﹣90°)﹣(α﹣90°)=360°﹣2α,故答案为:360°﹣2α.18.【答案】见试题解答内容【解答】解:(1)因为线段的中点把该线段分成相等的两部分,该线段等于2倍的中点一侧的线段长.所以一条线段的中点是这条线段的“二倍点”故答案为:是(2)点M 在运动过程中表示的数为20﹣3t ,故答案为:20﹣3t ;(3)当AM =2BM 时,30﹣3t =2×3t ,解得:t =103;当AB =2AM 时,30=2×(30﹣3t ),解得:t =5;当BM =2AM 时,3t =2×(30﹣3t ),解得:t =203;答:t 为103或5或203时,点M 是线段AB 的“二倍点”; (4)当AN =2MN 时,2t =2[2t ﹣(30﹣3t )],解得:t =152;当AM =2NM 时,30﹣3t =2[2t ﹣(30﹣3t )],解得:t =9013;当MN =2AM 时,2t ﹣(30﹣3t )=2(30﹣3t ),解得:t =9011; 当AN =2MN 时,2t =2[2t ﹣(30﹣3t )],解得:t =152;答:t 为152或9013或9011或152时,点M 是线段AN 的“二倍点”.19.【答案】见试题解答内容【解答】解:(1)∵OG ⊥CD .∴∠GOC =∠GOD =90°,∵∠AOC =∠BOD =38°12′,∴∠BOG =90°﹣38°12′=51°48′,(2)OG 是∠EOB 的平分线,理由:∵OC 是∠AOE 的平分线,∴∠AOC =∠COE =∠DOF =∠BOD ,∵∠COE +∠EOG =∠BOG +∠BOD =90°,∴∠EOG =∠BOG ,即:OG 平分∠BOE .20.【答案】见试题解答内容【解答】解:(1)∵OE平分∠BOC,∠BOE=60°,∴∠BOC=2∠BOE=120°,∴∠AOC=180°﹣120°=60°,又∵OF⊥CD,∴∠COF=90°,∴∠AOF=90°﹣∠AOC=90°﹣60°=30°;(2)∵OE平分∠BOC,∴∠BOE=∠COE,∵∠BOD:∠BOE=4:3,∴∠BOD:∠BOE:∠EOC=4:3:3,∴∠BOD=180°×44+3+3=72°=∠AOC,又∵OF⊥CD,∴∠COF=90°,∴∠AOF=90°﹣∠AOC=90°﹣72°=18°.21.【答案】见试题解答内容【解答】解:(1)∵D是线段AB的中点,BD=5,∴AB=2BD=10,∵E是线段BC的中点,BC=4,∴EC=12BC=2,∴AC=AB+BC=10+4=14;(2)∵D是线段AB的中点,∴AB=2BD,∵E是线段BC的中点,∴BC=2BE,∴AC=AB+BC=2BD+2BE=2DE.22.【答案】见试题解答内容【解答】解:(1)∵OD、OE分别平分∠AOB、∠AOC,∠AOC=40°,∴∠AOE=∠EOC=12∠AOC=20°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:80°=40°+2∠COD,∴∠COD=20°,∴∠DOE=∠COD+∠COE=20°+20°=40°;(2)∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=12∠AOC=25°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=50°+2∠COD,∴∠COD=n−50 2,∴∠DOE=∠COD+∠COE=n−502+25°=n2;(3)∠nnn=n2,与β无关∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=12∠AOC=n2,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=β+2∠COD,∴∠COD=n−n 2,∴∠DOE=∠COD+∠COE=n−n2+n2=n2;23.【答案】见试题解答内容【解答】解:(1)设∠BEC的度数为x,则180﹣x=3(90﹣x),x=45°,∴∠BEC=45°,故答案为:45;(2)∵∠BEC=45°,∴∠AEC=135°,设∠AEG=x°,则∠CEG=x﹣25,由∠AEC=135°,得x+(x﹣25)=135,解得x=80°,∴∠AEG=80°;(3)∵射线EF平分∠AED,∴∠AEF=∠DEF,∵∠FEG=100°,∴∠AEG+∠AEF=100°,∵∠CEG=180°﹣100°﹣∠DEF=80°﹣∠DEF,∴∠AEG﹣∠CEG=100°﹣∠AEF﹣(80°﹣∠DEF)=20°,故答案为:20.24.【答案】见试题解答内容【解答】解:(1)∵|a﹣17|+(b﹣5.5)2=0,∴|a﹣17|=0,(b﹣5.5)2=0,解得:a=17,b=5.5,∵AB=a,CE=b,∴AB=17,CE=5.5(2)如图1所示:∵点C为线段AB的中点,∴AC=12nn=12×17=172,又∵AE=AC+CE,∴AE=172+112=14,∵点D为线段AE的中点,∴DE=12AE=12×14=7;(3)如图2所示:∵C为线段AB上的点,AB=20,∴AC=BC=12nn=12×20=10,又∵点D为线段AE的中点,AD=2BE,∴AE=4BE,DE=12nn,又∵AB=AE+BE,∴4BE+BE=20,∴BE=4,AE=16,又∵CE=BC﹣BE,∴CE=10﹣4=6.25.【答案】见试题解答内容【解答】解:(1)∵AB、CD相交于点O,∴∠AOC=∠BOD=36°,∵OG⊥CD,∴∠COG=90°,即∠AOC+∠AOG=90°,∴∠AOG=90°﹣∠AOC=90°﹣36o=54o;(2)OC是∠AOE的平分线.理由∵OG是∠AOF的角平分线,∴∠AOG=∠GOF,∵OG⊥CD,∴∠COG=∠DOG=90°,∴∠COA=∠DOF,又∵∠DOF=∠COE,∴∠AOC=∠COE,∴OC平分∠AOE.26.【答案】见试题解答内容【解答】解:当射线OC在∠AOB的内部时,∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=12∠AOC,∠EOC=12∠BOC,∴∠DOE=∠DOC+∠EOC=12(∠AOC+∠BOC)=12∠AOB,(1)若∠AOB=80°,则∠DOE的度数为40°.故答案为:40;(2)∠DOE=∠DOC+∠EOC=12∠AOC+12∠BOC=∠BOE+∠DOA.(3)当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:∵OD、OE分别是∠AOC、∠BOC的角平分线∴∠COD=12∠AOC,∠EOC=12∠BOC,∠DOE=∠COD﹣∠EOC=12∠AOC−12∠BOC=∠AOD﹣∠BOE.(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOD,∠EOC=∠BOE,∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.故答案为:∠DOE=∠BOE+∠DOA.27.【答案】见试题解答内容【解答】解:(1)∠BOE=180°﹣∠AOC﹣∠COE=180°﹣36°﹣90°=54°;(2)∵∠BOD:∠BOC=1:5,∠BOD+∠BOC=180°,∴∠BOD=30°,∵∠BOD=∠AOC,∴∠AOC=30°,∴∠AOE=∠COE+∠AOC=90°+30°=120°.28.【答案】见试题解答内容【解答】解:(1)∵E为BC的中点,BE=1,∴BC=2BE=2,CE=BE=1,∵AC=6,∴AB=AC+BC=6+2=8,∵AD=23AC,AC=6,∴AD=4,∴DC=6﹣4=2,∴DE=DC+CE=2+1=3;(2)∵AB=AC+BC,BD=BC+CD,∴AB+BD=AC+BC+BC+CD,∵AD=23AC,E为BC的中点,∴AC=3CD,BC=2CE,∴AB+BD=3CD+2CE+2CE+CD=4CD+4CE=4(CD+CE)=4DE.29.【答案】见试题解答内容【解答】解:设MC=x,∵MC:CB=1:3∴BC=3x,MB=4x.∵M为AB的中点.∴AM=MB=4x.∴AC=AM+MC=4x+x=10,即x=2.所以AB=2AM=8x=16.故AB的长为16.30.【答案】见试题解答内容【解答】解:(1)小于平角的角有:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB共有9个.故答案是:9;(2)∵OD平分∠AOC,∴∠AOD=∠COD=12∠AOC=12×48°=24°,∴∠BOD=180°﹣∠AOD=180°﹣24°=156°;(3)∵∠COE=∠DOE﹣∠COD=90°﹣24°=66°,∠BOE=180°﹣∠AOD﹣∠DOE=180°﹣24°﹣90°=66°,∴∠COE=∠BOE,∴OE平分∠BOC.31.【答案】见试题解答内容【解答】解:(1)∵∠DOE:∠BOE=5:3,∴∠BOE=38∠BOD=38∠AOC=38×48°=18°,∠DOE=58∠BOD=58∠AOC=58×48°=30°,(2)∠AOE=180°﹣∠BOE=180°﹣18°=162°,∵OF平分∠AOE.∴∠AOF=∠EOF=12∠AOE=81°,∴∠DOF=∠EOF﹣∠DOE=81°﹣30°=51°.32.【答案】见试题解答内容【解答】解:(1)∵∠AOC=∠BOD=75°,∠AOE:∠EOC=2:3,∴∠BOC=180°﹣∠BOD=180°﹣75°=105°,∠COE=35∠AOC=35×75°=45°,∴∠BOE=∠BOC+∠COE=105°+45°=150°;(2)∵OF平分∠BOE,∴∠EOF=∠BOF,∵∠BOF=∠AOC+12°=∠EOF,∴∠FOC+∠COE=∠AOE+∠COE+12°,即:∴∠FOC=∠AOE+12°,设∠AOE=x°,则∠FOC=(x+12)°,∠COE=32 x°,∵∠AOE+∠EOF+∠BOF=180°∴x+(x+12+32x)×2=180,解得,x=26,∴∠EOF=∠COE+∠COF=32x°+x°+12°=77°33.【答案】见试题解答内容【解答】解:(1)∵OA⊥OB,∴∠AOB=90°,∵∠AOC=∠AOB+∠BOC,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,∴∠COM=12∠AOC=75°,∵ON平分∠BOC,∴∠CON=12∠BOC=12×60°=30°,∴∠MON=∠COM﹣∠CON=75°﹣30°=45°;(2)∵∠COM=12∠AOC,∠CON=12∠BOC,∴∠MON=12(∠AOC﹣∠BOC)=12∠AOB=40°,∵∠MON:∠AOC=2:7,∴∠AOC=140°,∵OM平分∠AOC,∴∠AOM=12∠AOC=70°,∴∠AON=∠AOM+∠MON=70°+40°=110°34.【答案】见试题解答内容【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12(∠AOB+∠BOD)=12∠AOD=80°,故答案为:80;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOB+∠BOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=1 2×180°﹣20°=70°;(3)∵∠AOM=12(10°+2t+20°),∠DON=12(160°﹣10°﹣2t),又∵∠AOM:∠DON=2:3,∴3(30°+2t)=2(150°﹣2t),得t=21.答:t为21秒.35.【答案】见试题解答内容【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠BOC=50°,∴∠COE=40°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=4x°,∵∠DOE=90°,∠BOC=50°,∴5x=40,∴x=8,即∠COD=8°∴∠BOD=58°.(4)如图,分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O旋转了140°,5t=140,t=28;当OE与射线OC重合时,三角板绕点O旋转了320°,5t=320,t=64.所以当t=28秒或64秒时,OE与直线OC重合.综上所述,t的值为28或64.故答案为:40°.36.【答案】见试题解答内容【解答】解:(1)如图1,补全图形;解题思路如下:①由∠AOC+∠BOC=180°,∠AOC=40°,得∠BOC=140°;①由OE平分∠BOC,得∠COE=70°;①由直角三角板,得∠COD=90°;①由∠COD=90°,∠COE=70°,得∠DOE=20°.(2)①由∠AOC+∠BOC=180°,∠AOC=α,得∠BOC=180°﹣α;①由OE平分∠BOC,得∠COE=90°−12α;①由直角三角板,得∠COD=90°;①由∠COD=90°,∠COE=90°−12α,得∠DOE=n 2.(3)∠DOE=12∠AOC(0°≤∠AOC≤180°),∠DOE=180°−12∠AOC(0°≤∠DOE≤180°).37.【答案】见试题解答内容【解答】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×11+5=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°;(3)如图1,∠EOF=120°﹣90°=30°,或如图2,∠EOF=360°﹣120°﹣90°=150°.故∠EOF的度数是30°或150°.。
数学平面图形的认识试题答案及解析
数学平面图形的认识试题答案及解析1.过一点可以画出()条直线与已知直线垂直.A.一条B.两条C.三条D.无数条【答案】A【解析】过直线外一点有并且只有一条直线与已知直线垂直.据此解答.解:过直线外一点只有一条直线与已知直线垂直.故选:A.点评:本题考查了学生过直线外一点有并且只有一条直线与已知直线垂直的知识.2.在同一个平面内,一条直线用a 表示,另一条直线用b 表示.如果直线a 和直线b是不相交的,那么下面说法正确的是()A.a 是平行线B.a和b互相平行C.b是平行线D.a和b互相垂直【答案】B【解析】因为在同一个平面内,两条直线只有两种位置关系,相交和平行,据此判断即可.解:因为在同一个平面内,两条直线只有两种位置关系,相交和平行,如果直线a 和直线b是不相交的,那么这两条直线一定平行.所以a和b互相平行.故选:B.点评:解决本题的关键是明确:在同一个平面内,两条直线只有两种位置关系,相交和平行.3.画一条线段,把这个梯形分成一个三角形和一个平行四边形.【答案】【解析】利用过直线外一点作已知直线的平行线的方法,过梯形的上底的一个端点A,作腰CD的平行线AE即可.解:如图所示,AE即为所要求作的线段:.点评:此题主要考查过直线外一点作已知直线的平行线的方法.4.判断:读数时,只要从高位起,依次读出每级的数字就行.10cm的直线比8cm的射线长2cm.三位数乘两位数,积可能是五位数,也可能是两位数.两条直线同时垂直于第三条直线,那么这两条直线互相平行..【答案】错误;错误;错误;正确【解析】(1)根据整数的读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续几个0都只读一个零.即读多位数时,应先读亿级,再读万级,最后读个级,万级和亿级的数要按照个级的数的读法来读,再在后面加读“万或亿”字.(2)直线没有端点,它向两方无限延伸,无法量得其长度;射线只有一个端点,它向一方无限延伸,也无法量得其长度;据此解答即可.(3)根据题意,可以假设这个两位数和三位数都是最小的数,然后再进行判断即可;(4)由垂直和平行的特征和性质可知:平面内,垂直于同一条直线的两条直线互相平行;据此判断即可.解:(1)解:读多位数时,应先读亿级,再读万级,最后读个级,万级和亿级的数要按照个级的数的读法来读,再在后面加读“万或亿”字.所以读数时,只要从高位起,依次读出每级的数字就行.是错误的;(2)因为直线没有端点,它向两方无限延伸,无法量得其长度;射线只有一个端点,它向一方无限延伸,也无法量得其长度;所以10cm的直线比8cm的射线长2cm,是错误的;(3)根据题意,假设这个两位数和三位数都是最小的数,即分别是10、100,那么,10×100=1000,因为1000是四位数,与题意不符,所以,三位数乘两位数,积可能是五位数,也可能是两位数,是错误的;(4)由垂直和平行的特征和性质可知:平面内,垂直于同一条直线的两条直线互相平行;所以两条直线同时垂直于第三条直线,那么这两条直线互相平行.是正确的.故答案为:错误;错误;错误;正确.点评:本题主要考查整数的读法,注意读亿级和万级数时要按照个级数的读法去读,区别是最后再加读“万或亿”字.此题主要考查直线和射线的含义,应注意基础知识的灵活运用.三位数乘两位数,积是几位数取决于两个因数的大小.三位数乘两位数的积最少是四位数,最多是五位数.此题考查了垂直和平行的特征和性质,应注意理解和灵活运用.5.在如图的平行线中画一个最大的正方形.【答案】【解析】先在两条平行线中画出一条垂线段,量出长度,然后以这条垂线段的两个端点为正方形的两个顶点,在两条平行线上分别截取和垂线段相等的两条线段,连接截取的另两个端点即可得出平行线里最大的正方形.解:由分析作图如下:点评:解答此题应明确:所作出的正方形的边长等于这两条平行线之间的垂线段的长度.6.和如图的直线相距1cm的平行线你能画几条?试着画一画吧.【答案】【解析】与已知直线相距1厘米的点能找出2个,在直线的两侧各一个,因为过直线外一点画已知直线答平行线只能画一条,所以经过这两个点可以画出两条平行线,据此回答即可.解:如图,距离已知直线的距离为1厘米的点能找出两个,所以能画出两条平行线,如下图:点评:此题主要考查点到直线的距离以及平行线的画法.7.画出图形指定底的高.【答案】【解析】根据梯形的高的意义,梯形的上下底之间的距离叫做梯形的高.由此解答.解:作梯形上下底的垂线段即可.如下图:点评:此题的解答主要明确梯形的高的意义,根据作垂线的方法解决问题.8.画出两个图形的一条高.【答案】【解析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.习惯上作平行四边形的高时都从一个顶点出发作一边的垂线;同样在梯形中,从一底的任一点作另一底的垂线,这点与垂足间的距离叫做梯形的高.习惯上作梯形的高时都从上底(较短的底)一个顶点出发作下底的垂线.解:如图所示:.点评:本题主要是考查作平行四边形和梯形的高.很多同学作高时画不垂直,可以用两个三角板来完成.高一般用虚线来表示,要标出垂足.9.想一想,选一选.A.互相平行 B.互相垂直 C.都有可能(1)在同一平面内两条直线都平行于一条直线,这两条直线的位置关系是.(2)在同一平面内两条直线都垂直于一条直线,这两条直线的位置关系是.【答案】A,A【解析】(1)根据平行线的定义,在同一平面内,不相交的两条直线叫做平行线,有两条直线都和一条直线平行,这两条直线互相平行,据此解答.(2)根据垂直定义得出∠CMB=∠ENB=90°,根据平行线的判定求出即可.解:(1)由分析可知:在同一平面内,有两条直线都和一条直线平行,这两条直线互相平行;(2)因为CD⊥AB,EF⊥AB,所以∠CMB=∠ENB=90°,所以CD∥EF.所以在同一平面内两条直线都垂直于一条直线,这两条直线的位置关系是平行;故答案为:A,A.点评:此题考查了垂直于平行的特征及性质,应注意基础知识的积累.10.两条笔直的铁轨互相.【答案】平行【解析】根据平行的含义:在同一平面内,不相交的两条直线叫做平行线;据此判断即可.解:根据平行的含义可知:两条笔直的铁轨互相平行;故答案为:平行.点评:此题考查了平行的含义,应注意理解和应用.11. x的3倍与4的差是非负数,列不等式是.【答案】3x﹣4≥0【解析】关键描述语是:差是非负数.最后算的差应大于或等于0.解:根据题意,得3x﹣4≥0.点评:读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.12.已知不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,则代数式4a﹣的值为.【答案】代入代数式4a﹣=4×﹣=14﹣4=10【解析】先求得不等式3(x﹣2)+5<4(x﹣1)+6的解集,可求得x的最小整数解是﹣2,也就是方程2x﹣ax=3的解是x=﹣2,把x=﹣2代入2x﹣ax=3,求出a=,代入代数式4a﹣即可求解.解:因为3(x﹣2)+5<4(x﹣1)+6,去括号得3x﹣6+5<4x﹣4+6移项得3x﹣4x<﹣4+6+6﹣5合并同类项得﹣x<3系数化为1得x>﹣3,所以x的最小整数解是﹣2,也就是方程2x﹣ax=3的解是x=﹣2,把x=﹣2代入2x﹣ax=3,得到a=,代入代数式4a﹣=4×﹣=14﹣4=10.点评:注意理解最小整数既可以是正整数,0,也可以是负整数.解题关键是先求出不等式的解,再代入方程求出a的值,最后把a的值代入代数式求值.13.在同一平面内的两条直线不平行就一定垂直..【答案】错误【解析】因为在同一平面内的两条直线不平行就相交,垂直只是相交情况中的一种,据此判断即可.解:由分析可知:在同一平面内,不平行的两条直线一定垂直.…,说法错误;故答案为:×.点评:此题主要考查在同一平面内的两条直线的位置关系,明确垂直只是相交的一种特殊情况.14.过P点画出AB的平行线,画出BC的垂线.【答案】【解析】(1)把三角板的一条直角边与已知直线AB重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和AB重合的直角边和P点重合,过P点沿三角板的直角边画直线即可.(2)把三角板的一条直角边与已知直线BC重合,沿直线移动三角板,使三角板的另一条直角边和P点重合,过P点沿三角板的直角边向已知直线画直线即可.解:据分析作图如下:点评:本题考查了学生作平行线和垂线的方法,培养学生的作图能力.15.过B点画出角两边的平行线.【答案】【解析】把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和B点重合,过B点沿三角板的直角边画直线即可.解:由分析画图如下:点评:本题考查了学生画平行线的能力.16.过点A分别画直线的平行线.【答案】【解析】把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.解:作图如下:点评:本题考查了学生利用直尺和三角板作平行线的能力.17.要划船从A点到河的对岸,把最短的线路画出来,然后过B点画出与河流平行的直线.【答案】【解析】(1)把河的对岸看做一条直线,依据垂线段最短,作出A点到直线的垂线段即可解答.(2)将河岸的一条边当作已知直线,B点是已知直线外一点,根据过直线外一点画已知直线的平行线的方法画出过B点与河流平行的直线即可.解:如图所示:,红色垂线段即为所求最短路线;过B点的直线即为所求与河流平行的直线.点评:本题考查了学生对点到直线距离知识的掌握和画垂线段、平行线的能力.18.过顶点C作AB的平行线,再过B点作AC的垂线.【答案】【解析】(1)把三角板的一条直角边与AB重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和AB重合的直角边和C点重合,过C点沿三角板的直角边画直线即可.(2)用三角板的一条直角边的AC重合,沿AC平移三角板,使三角板的另一条直角边和B点重合,过B沿直角边向AC画直线即可.解:根据分析:(1)过C点画AB的平行线,(2)过B点画AC的垂线.画图如下:点评:本题考查了学生画垂线和平行线的作图能力.19.你能在下面的平行线里画一个最大的正方形吗?【答案】【解析】先在两条平行线中画出一条垂线段,量出长度,然后以这条垂线段的两个端点为正方形的两个顶点,在两条平行线上分别截取和垂线段相等的两条线段,连接截取的另两个端点即可得出平行线里最大的正方形.解:由分析作图如下:点评:解答此题应明确:所作出的正方形的边长等于这两条平行线之间的垂线段的长度.20.请你用画平行线的方法,把图形画成一个长方形.【答案】【解析】把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和顶点重合,过顶点沿三角板的直角边画直线即可.解:作图如下:点评:本题考查了学生利用平行线作长方形的能力.21.画出下面图形指定底的高.【答案】【解析】在图形中标上字母,如下图,从A点做AE⊥BC,交BC于E,则AE即为所求.解:从A点做AE⊥BC,交BC于E,则AE即为所求.点评:此题考查了学生作图能力,考查了画出图形指定底的高.22.作一个长3厘米、宽2厘米的长方形.【答案】【解析】已知长方体的长为3厘米,宽2厘米,据已知条件用直尺及三角尺作图即可.解:点评:作正方形及长方形要用到直尺及三角尺.23.(2013•华亭县模拟)过已知直线外的一点A(1)作直线的平行线(2)作直线的垂线.【答案】【解析】(1)用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.(2)把三角板的一条直角边与已知直L重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.解:画图如下:点评:本题考查了学生过直线外一点作已知直线的平行线和垂线的画图能力.24.下列各组直线,组互相平行,组互相垂直.【答案】②,③【解析】根据平行线和垂线的定义:在同一平面内不相交的两条直线叫做平行线;当两条直线相交成90度时,这两条直线就互相垂直;据此解答即可.解:下列各组直线,②组互相平行,③组互相垂直;故答案为:②,③.点评:此题考查了平行和垂直的定义.25.小明绕水池边走一圈,走了多少米?【答案】小明绕水池边走一圈,走了210米【解析】依据平面图形的周长的意义,将组成这个图形的所有线段加在一起即可得解.解:60+30+15+60+30+15=(60+30+15)×2=105×2=210(米);答:小明绕水池边走一圈,走了210米.点评:解答此题的主要依据是:平面图形的周长的意义.26.平行四边形的高有()条.A.1B.2C.8D.无数条【答案】D【解析】根据平行四边形高的含义:平行四边形的高是指对边之间的距离,那么,两组对边之间都可以画无数条垂直线段,所以,有无数条高,即可选择.解:由分析可知,平行四边形有无数条高,故选:D.点评:此题考查了平行四边形高的含义.27.用两个边长为3厘米的正方形拼成一个长方形,这个长方形的周长是()A.24厘米B.18厘米C.12厘米【答案】B【解析】用2个边长3厘米的小正方形拼成一个长方形,方法只有一种,拼成后的长方形的长是(3×2)厘米,宽是3厘米,然后根据长方形的周长公式求出它的周长.据此解答.解:拼成后长方形的长是:3×2=6(厘米),拼成后长方形的宽是3厘米,拼成后长方形的周长是:(6+3)×2,=9×2,=18(厘米),答:它的周长是18厘米.故答案选:B.点评:本题的关键是求出拼成后长方形的长和宽,再根据长方形的周长公式进行计算.28.一个长方形的周长是24厘米,如把它平均分成两个正方形,每个正方形的周长是12cm..【答案】错误【解析】如图所示,先依据长方形的周长公式求出其长和宽的和,由题意可知,长方形的长应等于其宽的2倍,从而依据正方形的周长公式即可求解.解:设长方形的宽为a,则其长为2a,a+2a=24÷2,3a=12,a=4,4×4=16(厘米);答:每个正方形的周长是16厘米.故答案为:错误.点评:此题主要考查长方形和正方形的周长的计算方法的灵活应用.29.(2012•通川区模拟)长方形、正方形和梯形都是特殊的平行四边形..【答案】错误【解析】根据平行四边形的特征:两组对边平行且相等;则得出:长方形、正方形是特殊的平行四边形,而梯形是只有一组对边平行的四边形,另一组对边不平行;进行解答即可.解:长方形、正方形是特殊的平行四边形,而梯形是只有一组对边平行的四边形,另一组对边不平行;故答案为:错误.点评:此题考查了平行四边形的特征和性质,应注意基础知识的积累.30.如图,用2条线段可以把一个边长为10厘米的正方形分割成面积相等的4部分,这两条分割线的长度总和是20厘米(如图),现在请你用不超过4条的线段将一个边长为10厘米的正方形分割成面积相等的5部分,要求找出3种不同的分割方法,其分割线的长度总和必须小于40厘米,在图中画分割线并在每个图下面的横线上写上分割线的长度总和.【答案】【解析】首先一个一个边长10厘米的正方形面积为100平方厘米,分成相等的五份,每份面积应为20平方厘米;第一种方法:把它分为一个长为10厘米,宽为2厘米的长方形和四个长为5厘米,宽为4厘米的长方形;第二种方法:把它分为一个长为10厘米,宽为2厘米的长方形和四个底边为5厘米,高为8厘米直角三角形;第三种方法:把它分成中间一个正方形和四个角上四个直角三角形,如下图所示.解:根据分析画图如下:点评:本题先把每一个正方形的两条对边都5等分是解答的关键确定分割线长度总和最短是难点.31.一块长方形布料长5米,宽比长短2米,这块布料的周长是多少米?【答案】这块布料的周长是16米【解析】首先求出它的宽,再根据长方形的周长公式:c=(a+b)×2,把数据代入公式解答即可.解:(5+5﹣2)×2,=8×2,=16(米);答:这块布料的周长是16米.点评:此题主要考查长方形的公式的灵活运用.32.农业科技小组有块劳动基地(如图),他们要在四周扎上围栏,他们需要扎多长的围栏?【答案】他们需要扎104米长的围栏【解析】由题意得出:四周扎上围栏的长度等于正方形的周长,根据正方形周长=边长×4即可解答.解:26×4=104(米),答:他们需要扎104米长的围栏.点评:此题主要考查正方形周长的计算.33.如图是中心小学操场示意图.小刚绕操场周边跑一圈,跑多少米?【答案】90.84米【解析】由题意得操场一周是由长方形和圆周组成的,圆的直径为30﹣24=6米,半径为6÷2=3米,长方形的长是24米,宽为18﹣3×2=12米,根据圆的周长=πd,长方形周长=长×2+宽×2,把圆周的长和长方形四条边相加即可求出操场的长度.解:圆的半径为:(30﹣24)÷2=3(米),所以操场的周长为:(18﹣2×3)×2+24×2+3.14×(30﹣24),=24+48+18.84,=90.84(米).答:跑90.84米.点评:解决本题的关键是分析得出整个操场的组成部分.34.下面的图形有周长吗?如果有请用彩笔描出来.【答案】【解析】封闭图形一周的长度,叫做这个图形的周长,只有封闭的平面图形才有周长,据此判断出哪些图形有周长,再用彩笔沿图形的一周描出图形的周长即可.解:围成一个图形的所有边长的总和叫做这个图形的周长,由此可知,从左数1、2、3、4、6、8、9有周长,用彩笔描出如下:点评:此题考查了周长的定义,要注意掌握判断什么图形有周长的方法.35.一块正方形菜地边长为40米,把它的边长缩小为原来的一千分之一,缩小后的图形周长是多少?【答案】0.16米【解析】根据比例尺,先求出缩小后的边长,再利用正方形的周长公式计算即可.解:40×=0.04(米),0.04×4=0.16(米),答:缩小后的图形的周长是0.16米.点评:此题主要考查正方形的周长以及利用比例尺的计算应用.36.一个正方形果园,边长是340米,如果要用篱笆把果园的四周围起来,求篱笆的长是多少米?【答案】1360米【解析】此题要求四周篱笆的长度,就是求这个边长为340米的正方形果园的周长,根据正方形的周长公式即可列式求篱笆长.解:340×4=1360(米).答:篱笆的长是1360米.点评:本题考查了正方形的周长=边长×4的应用,是基础题型.37.周长是80厘米的长方形,它的长是28厘米,宽是多少厘米?【答案】12【解析】因为长方形周长=(长+宽)×2,所以周长除以2就是一条长和宽的长度之和,再减去长就是宽的长度.解:80÷2﹣28,=40﹣28,=12(厘米).答:宽是12厘米.点评:此题主要考查长方形周长公式的灵活运用.38.先测量,再算出他们的周长.【答案】长方形的周长是8.8厘米,平行四边形的周长是7.4厘米【解析】首先测量出长方形的长和宽,平行四边形的底和它的邻边的长度,根据长方形(平行四边形)的周长公式:c=(a+b)×2,把数据代入公式解答.解:(2.4+2)×2,=4.4×2,=8.8(厘米);(2.1+1.6)×2,=3.7×2,=7.4(厘米);答:长方形的周长是8.8厘米,平行四边形的周长是7.4厘米.点评:此题考查的目的在掌握长度测量方法以及长方形、平行四边形的周长的计算方法.39.用两个长8厘米、宽4厘米的长方形,分别拼成一个长方形和一个正方形.(1)计算这个长方形的周长.(2)计算这个正方形的周长.【答案】拼成后长方形的周长是36厘米,拼成后正方形的周长是32厘米【解析】用两个长8厘米,宽4厘米的长方形,拼成一个大长方形这个大长方形的长是(8+8)厘米,宽是2厘米,拼成正方形的边长是(4+4)厘米,然后根据它们的周长公式进行计算.据此解答.解:拼成长方形的周长是:(8+8+2)×2,=18×2,=36(厘米).拼成后正方形的周长是:(4+4)×4,=8×4,=32(厘米).答:拼成后长方形的周长是36厘米,拼成后正方形的周长是32厘米.点评:本题的关键是先求出拼成后图形的边长,再根据它们的周长公式进行计算.40.已知一个长方形的周长和圆的周长相等,长方形的长是10厘米,宽比长少43%,则圆的面积是多少?【答案】圆的面积是78.5平方厘米【解析】根据“宽比长少43%”,知道宽是长的(1﹣43%),由此先求出长方形的宽,再根据长方形的周长公式,C=(a+b)×2,求出长方形的周长,即圆的周长;再由圆的周长公式的变形,求出圆的半径,最后根据圆的面积公式,S=πr2,求出面积即可.解:长方形的宽:10×(1﹣43%)=5.7(厘米),圆的周长:(10+5.7)×2,=15.7×2,=31.4(厘米),圆的半径:31.4÷3.14÷2=5(厘米),面积是:3.14×5×5,=15.7×5,=78.5(平方厘米),答:圆的面积是78.5平方厘米.点评:解答此题的关键是,根据要求问题,一步一步的确定要求的量,分别根据相应的公式和公式的变形,列式解决问题.41.有两个同样的长方形,长是8分米,宽是4分米.如果把它们拼成一个长方形,这个长方形的周长是多少分米?如果拼成一个正方形,这个正方形的周长是多少分米?【答案】这个长方形的周长是40分米;这个正方形的周长是32分米【解析】(1)要拼成一个长方形,必须两个同样的长方形的宽重合在一起,如下图,再根据长方形的周长公式C=(a+b)×2,即可求出拼成的长方形的周长;(2)要拼成一个正方形,必须两个同样的长方形的长重合在一起,如下图,再根据正方形的周长公式C=4a,即可求出拼成的正方形的周长.解:(1)拼成的长方形的长是:8+8=16(分米),拼成的长方形的周长:(16+4)×2,=20×2,=40(分米);(2)拼成的正方形的边长是8分米,拼成的正方形的周长是:8×4=32(分米);答:这个长方形的周长是40分米;这个正方形的周长是32分米.点评:关键是知道如何将两个同样的长方形拼成一个长方形或正方形,再根据相应的公式解决问题.42.足球场是一个长方形,长100米,宽75米,小明沿着足球场跑了2圈,跑了多少米?【答案】700【解析】根据长方形的周长公式C=(a+b)×2,先求出小明沿着足球场跑了1圈的米数,再乘2即可求出小明沿着足球场跑了2圈的米数.解:(100+75)×2×2,=175×2×2,=175×4,=700(米);答:小明沿着足球场跑了2圈,跑了700米.点评:此题主要考查了长方形的周长公式C=(a+b)×2的实际应用.43.下面都是由边长1厘米的正方形组成的图形,数一数这些图形的周长是多少?(1)厘米;(2)厘米;(3)厘米.【答案】14、12、10【解析】数清楚每个图形的周长由多少个小正方形的边长组成,问题即可得解.解:(1)1×14=14(厘米);(2)1×12=12(厘米);(3)1×10=10(厘米);答:三个图形的周长分别是14厘米、12厘米和10厘米.故答案为:14、12、10.点评:解答此题的关键是:数清楚每个图形的周长由多少个小正方形的边长组成.。
{word试卷}2020-2021苏科版七年级数学上册第6章平面图形的认识(一)章末培优训练卷
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:2020-2021苏科版七年级数学上册第6章平面图形的认识(一) 章末培优训练卷(2)一、选择题1、下列说法正确的( )A .连接两点的线段叫做两点之间的距离B .射线AB 与射线BA 表示同一条射线C .若AC =BC ,则C 是线段AB 的中点D .两点之间,线段最短2、如图,点D 是线段AB 的中点,点C 在线段BD 上,且BC =AB ,CD =1,则线段AB 的长为( )A .4B .6C .9D .83、已知线段AB =4cm ,点C 是直线AB 上一点(不同于点A 、B ).下列说法:①若点C 为线段AB 的中点,则AC =2cm ;②若AC =1cm ,则点C 为线段AB 的四等分点;③若AC +BC =4cm ,则点C 一定在线段AB 上;④若AC +BC >4cm ,则点C 一定在线段AB 的延长线上;⑤若AC +BC =8cm ,则AC =2cm .其中正确的个数有( )A .1个B .2个C .3个D .4个4、如图,AM 为∠BAC 的平分线,下列等式错误的是( )A .12∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC5、如图,∠AOB=∠COD=90°,OE平分∠BOD.若∠AOD∶∠BOC=5∶1,则∠COE的度数为( )A.30° B.40° C.50° D.60°6、如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线.其中结论正确的个数是()A.4个B.3个C.2个D.1个7、已知∠A与∠B互余,∠B与∠C互余,则∠A与∠C()A.互余B.相等C.互补D.差为90°8、直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是()A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°(8)9、如图,OA⊥OC,OB⊥OD,有下列结论:①∠AOB=∠COD;②∠AOB=∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.其中正确的是()A.①②③ B.①②④C.①③④ D.②③④10、下列说法中,正确的个数是 ( )(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内,不相交的两条射线是平行线;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A.1个B.2个 C.3个D.4个11、若一个角的两边分别平行于另一个角的两边,则这两个角 ( )A.相等B.互补 C.相等或互补D.以上都不对12、如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是()A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°二、填空题13、已知线段AB,点C、点D在直线AB上,并且CD=8,AC:CB=1:2,BD:AB=2:3,则AB=.14、把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是15、如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是_______(15) (16)16、如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于_____度.17、(1)若∠α=35°,则∠α的补角为____,∠α的余角为____,∠α的补角与余角的差为____;(2)若∠α的补角为76°28′,则∠α=____.(3)一个角是70°39′,则它的余角的度数是____.18、如图,直线AB,CD,EF交于一点O.(1)∠EOB的对顶角是________;(2)________是∠AOE的对顶角;(3)若∠AOC=76°,则∠BOD的度数为________.(18) (19)19、如图,已知直线AB和DF相交于点O(∠AOD为锐角),∠COB=90°,OE平分∠AOF.则2∠EOF﹣∠COD=°.20、在如图所示的直三棱柱中,互相平行的棱有_______对21、如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.则∠2的度数是.(21) (22)22、如图,OB⊥CD,∠1∶∠2=2∶5,则∠AOB等于__________23、(1)已知∠AOB=30°,OC⊥OA,OD⊥OB,则∠COD的度数为____________.(2)如果点A,B都在直线l的同一条垂线上,点A到直线l的距离等于8cm,点B到直线l的距离等于6cm,那么线段AB的长为____________cm.24、(1)如图1,AO⊥OC,∠1=∠2,则OB与OD的位置关系是____________.(2)将一张长方形纸片按如图2所示的方式折叠,BC,BD为折痕,则BC与BD的位置关系为_____图1 图2三、解答题25、如图,C,D是线段AB上的两点,且满足AC:CD:DB=3:2:1,M,N分别为AC和CB的中点.(1)若AB=24,求DN的长度;(2)证明:5MN=6(CD+DN).26、如图,点A、O、B在一条直线上,OD平分∠COA,OE平分∠BOC,∠BOF=2∠COF,∠EOF=22°.(1)求∠DOE的度数;(2)求∠FOC的度数.27、如图所示,∠AOB是平角,OM,ON分别是∠AOC,∠BOD的平分线.(1)当∠MON=140°时,则∠COD=;(2)当∠AOC=30°,∠BOD=60°时,求∠MON的度数;(3)当∠COD=α时,求∠MON的度数.28、如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角有;(2)若∠COD=30°,求∠DOE的度数;(3)当∠AOD=α°时,请直接写出∠DOE的度数.29、如图,已知直线AB与CD交于点O,OE平分∠BOD,OF平分∠AOB.(1)若∠BOE=40°,求∠AOF与∠COF的度数;(2)若∠BOE=x(x<45°),请用含x的代数式表示∠COF的度数.30、(1)画一画:在图①中,以P为顶点画∠P(∠P为锐角),使∠P的两边分别和∠1的两边平行;再在图②中,以P为顶点画∠P(∠P为钝角),使∠P的两边分别和∠1的两边平行.(2)量一量:∠1和∠P的度数,它们之间的数量关系是__________________.(3)猜一猜:如果一个角的两边分别与另一个角的两边平行,那么这两个角的数量关系是________(4)做一做:如果一个角的两边分别平行于另一个角的两边,且这个角为30°,求另外一个角的度数.31、如图,直线EF,CD相交于点O,OA⊥OB,且CO平分∠AOF,若∠AOE=n°,求∠BOD的度数.(用含n的代数式表示)2020-2021苏科版七年级数学上册第6章平面图形的认识(一)章末培优训练卷(2)(答案)一、选择题1、下列说法正确的()A.连接两点的线段叫做两点之间的距离B.射线AB与射线BA表示同一条射线C.若AC=BC,则C是线段AB的中点D.两点之间,线段最短解:A、连接两点的线段的长度叫做两点之间的距离,故选项错误;B、射线AB的端点是A,射线BA的端点是B,故不是同一条射线,故选项错误;C、若AC=BC,则点C是线段AB的中点,错误,因为点A、B、C不一定共线;故选项错误;D、两点之间,线段最短,正确.故选:D.2、如图,点D是线段AB的中点,点C在线段BD上,且BC=AB,CD=1,则线段AB的长为()A.4B.6C.9D.8解:设BC为x,那么AB为 3x,∵D为AB中点,∴AD=BD=1.5x,CD=BD﹣BC=0.5x,又∵CD=0.5x=1,∴x=2,∴AB=3×2=6.故选:B.3、已知线段AB=4cm,点C是直线AB上一点(不同于点A、B).下列说法:①若点C为线段AB的中点,则AC=2cm;②若AC=1cm,则点C为线段AB的四等分点;③若AC+BC=4cm,则点C一定在线段AB上;④若AC+BC>4cm,则点C一定在线段AB 的延长线上;⑤若AC+BC=8cm,则AC=2cm.其中正确的个数有()A.1个B.2个C.3个D.4个解:(1)如图1所示:∵点C为线段AB的中点,∴AC=BC=,又∵AB=4cm,∴AC=2cm,∴结论①正确;(2)如图2所示:∵AC 1=1,AB =4,∴,∴点C 1为线段AB 的四等分点 又∵AC 2=1,∴, 又∵点C 2在AB 的反向延长线上,∴点C 2不是线段AB 的四等分点,∴结论②错误;(3)如图3所示:点C 为线段AB 上的一动点,∴AB =AC +BC ,又∵AB =4cm ,∴AC +BC =4cm ,∴结论③正确;(4)如图4所示:若点C 在AB 的延长线上时,AC 1+BC 1>AB , ∵AB =4,∴AC 1+BC 1>4cm ,若点在AB 的反向延长线上时,AC 2+BC 2>AB ,∵AB =4, ∴AC 2+BC 2>4cm ,∴结论④错误;(5)如图5所示:若点C 在线段AB 的延长线时,且BC 1=2cm ,有AC 1+BC 1=8cm ,若点C 在线段AB 的反向延长线时,且BC 2=2cm ,有AC 2+BC 2=8cm ,∴结论⑤错误.综合所述;正确结论是①、③, 故选:B .4、如图,AM 为∠BAC 的平分线,下列等式错误的是(C )A .12∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC5、如图,∠AOB =∠COD =90°,OE 平分∠BOD .若∠AOD ∶∠BOC =5∶1,则∠COE 的度数为(A )A.30° B.40° C.50° D.60°6、如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线.其中结论正确的个数是()A.4个B.3个C.2个D.1个解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD=90°,∴∠AOB =∠COD;②∠AOB+∠COD=90°不一定和是90°;③若OB平分∠AOC,则∠AOB=∠BOC=45°,∴∠COD=45°,∴OC平分∠BOD;④∵∠AOB=∠COD,∴∠BOE=∠COE,∴∠AOE=∠DOE,∴∠AOD的平分线与∠BOC的平分线是同一条射线.∴①③④正确,故选:B.7、已知∠A与∠B互余,∠B与∠C互余,则∠A与∠C(B)A.互余B.相等C.互补D.差为90°8、直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是(C)A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°9、如图,OA⊥OC,OB⊥OD,有下列结论:①∠AOB=∠COD;②∠AOB=∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.其中正确的是(C)A.①②③ B.①②④C.①③④ D.②③④10、下列说法中,正确的个数是 ( )(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内,不相交的两条射线是平行线;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A.1个B.2个 C.3个D.4个【答案】A【解析】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选:A.11、若一个角的两边分别平行于另一个角的两边,则这两个角 ( )A.相等B.互补 C.相等或互补D.以上都不对【答案】C【解析】如图所示,∠1和∠2,∠1和∠3两对角符合条件.根据平行线的性质,得到∠1=∠2.结合邻补角的定义,得∠1+∠3=∠2+∠3=180°.故选C.12、如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是(C)A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°二、填空题13、已知线段AB,点C、点D在直线AB上,并且CD=8,AC:CB=1:2,BD:AB=2:3,则AB=.解:分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=AB,∵BD:AB=2:3,∴BD=,∴CD=BC+BD=,∴AB=6;②当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;③当点C在线段AB的反向延长线,点D在线段AB的延长线时,∵AC:CB=1:2,BD:AB=2:3,∴AB=,故AB=6或3.故答案为:6或314、把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,故答案为:两点之间线段最短.15、如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是_______解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.16、如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于_135 ____度.17、(1)若∠α=35°,则∠α的补角为____,∠α的余角为____,∠α的补角与余角的差为____;(2)若∠α的补角为76°28′,则∠α=____.(3)一个角是70°39′,则它的余角的度数是____.【答案】(1) 145°; 55°; 90°(2) 103°32′;(3) 19°21′18、如图,直线AB,CD,EF交于一点O.(1)∠EOB的对顶角是________;(2)________是∠AOE的对顶角;(3)若∠AOC=76°,则∠BOD的度数为________.答案:(1)∠AOF(2)∠BOF(3)76°19、如图,已知直线AB和DF相交于点O(∠AOD为锐角),∠COB=90°,OE平分∠AOF.则2∠EOF﹣∠COD=°.【解析】∵OE平分∠AOF,∴∠AOF=2∠EOF,∵∠AOF=∠BOD,∠COB=90°,∴2∠EOF﹣∠COD=∠AOF﹣∠COD=∠BOD﹣∠COD=∠COB=90°.故答案为:90.20、在如图所示的直三棱柱中,互相平行的棱有_______对【解】AB∥A′B′,AC∥A′C′,BC∥B′C′,AA′∥BB′,AA′∥CC′,BB′∥CC′,共6对.21、如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.则∠2的度数是.【解析】∵直线AB、EF相交于O点,∠1=28°,∴∠3=∠1=28°(对顶角相等),又∵AB⊥CD,∴∠2+∠3=90°,∴∠2=90°﹣∠3=90°﹣28°=62°,故答案为62°.22、如图,OB⊥CD,∠1∶∠2=2∶5,则∠AOB等于_____126°_____23、(1)已知∠AOB=30°,OC⊥OA,OD⊥OB,则∠COD的度数为____________.(2)如果点A,B都在直线l的同一条垂线上,点A到直线l的距离等于8cm,点B到直线l的距离等于6cm,那么线段AB的长为____________cm.【解析】分点A,B在直线l的同侧或异侧两种情况讨论:同侧:AB=8-6=2(cm),异侧:AB=8+6=14(cm).答案:(1)30°或150°(2)2或1424、(1)如图1,AO⊥OC,∠1=∠2,则OB与OD的位置关系是____________.(2)将一张长方形纸片按如图2所示的方式折叠,BC,BD为折痕,则BC与BD的位置关系为_____图1 图2答案:(1)垂直(2)BC⊥BD三、解答题25、如图,C,D是线段AB上的两点,且满足AC:CD:DB=3:2:1,M,N分别为AC和CB的中点.(1)若AB=24,求DN的长度;(2)证明:5MN=6(CD+DN).解:(1)∵AB=24,AC:CD:DB=3:2:1,∴CD=AB=8,DB=AB=4∴CB=CD+DB=12∵N是CB的中点, ∴CN=CB=6, ∴ND=CD﹣CN=8﹣6=2;(2)证明:M,N分别为AC和CB的中点∴MC=AC,CN=CB, ∴MN=MC+CN=AC+CB=AB∵AC:CD:DB=3:2:1, ∴CD=AB=AB, DB=AB∴CB=CD+DB=AB, ∴CN=CB=AB∴DN=CD﹣CN=AB﹣AB=AB∴6(CD+DN)=6(AB+AB)=AB∵5MN=5×AB=AB, ∴5MN=6(CD+DN).26、如图,点A、O、B在一条直线上,OD平分∠COA,OE平分∠BOC,∠BOF=2∠COF,∠EOF=22°.(1)求∠DOE的度数;(2)求∠FOC的度数.解:(1)∵OD平分∠COA,OE平分∠BOC,∴,,∴;(2)设∠FOC=x,∵OE平分∠BOC,∠BOF=2∠COF,∴2x﹣22°=x+22°,解得x=44°.27、如图所示,∠AOB是平角,OM,ON分别是∠AOC,∠BOD的平分线.(1)当∠MON=140°时,则∠COD=100°;(2)当∠AOC =30°,∠BOD =60°时,求∠MON 的度数;(3)当∠COD =α时,求∠MON 的度数.解:(2)因为∠AOB 是平角,所以∠AOB =180°.因为OM ,ON 分别是∠AOC ,∠BOD 的平分线,所以∠AOM =∠COM =12∠AOC =15°,∠BON =∠DON =12∠BOD =30°. 所以∠MON =180°-15°-30°=135°.(3)∠MON =∠MOC +∠COD +∠DON =12∠AOC +12∠BOD +∠COD =12(180°-∠COD)+∠COD =90°+12α.28、如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC .(1)填空:与∠AOE 互补的角有 ;(2)若∠COD=30°,求∠DOE 的度数;(3)当∠AOD=α°时,请直接写出∠DOE 的度数.【答案】解:(1)∵OE 平分∠BOC ,∴∠BOE=∠COE ;∵∠AOE+∠BOE=180°,∴∠AOE+∠COE=180°,∴与∠AOE 互补的角是∠BOE 、∠COE ;故答案为∠BOE 、∠COE ;(2)∵OD 、OE 分别平分∠AOC 、∠BOC ,∴∠COD=∠AOD=30°,∠COE=∠BOE=∠BOC,∴∠AOC=2×30°=60°,∴∠BOC=180°﹣60°=120°,∴∠CO E=∠BOC=60°,∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=α°时,∠DOE=90°.29、如图,已知直线AB与CD交于点O,OE平分∠BOD,OF平分∠AOB.(1)若∠BOE=40°,求∠AOF与∠COF的度数;(2)若∠BOE=x(x<45°),请用含x的代数式表示∠COF的度数.解:(1)∵OE平分∠BOD,∴∠BOE=12∠BOD.∵∠BOE=40°,∴∠BOD=80°,∴∠BOC=100°.∵OF平分∠AOB,∴∠AOF=∠BOF=90°,∴∠COF=100°-90°=10°.(2)∠COF=180°-2x-90°=90°-2x.30、(1)画一画:在图①中,以P为顶点画∠P(∠P为锐角),使∠P的两边分别和∠1的两边平行;再在图②中,以P为顶点画∠P(∠P为钝角),使∠P的两边分别和∠1的两边平行.(2)量一量:∠1和∠P的度数,它们之间的数量关系是__________________.(3)猜一猜:如果一个角的两边分别与另一个角的两边平行,那么这两个角的数量关系是________(4)做一做:如果一个角的两边分别平行于另一个角的两边,且这个角为30°,求另外一个角的度数.解:(1)如图所示.(答案不唯一)(2)∠1=∠P 或∠1+∠P =180°(3)相等或互补(4)另一个角为30°或150°.31、如图,直线EF ,CD 相交于点O ,OA ⊥OB ,且CO 平分∠AOF ,若∠AOE =n °,求∠BOD 的度数.(用含n 的代数式表示)解法一:∵∠AOF +∠AOE =180°,∴∠AOF =180°-∠AOE =180°-n °.∵OC 平分∠AOF ,∴∠AOC =12∠AOF =90°-12n °.又∵OA ⊥OB ,∴∠AOB =90°,∴∠BOD =180°-∠AOB -∠AOC =180°-90°-(90°-12n °)=12n °. 解法二:作OH 平分∠AOE ,则OH ⊥OC.∵OA ⊥OB ,∴∠DOH =∠BOA =90°,∴∠BOD =∠AOH =12∠AOE =12n °.。
第六章《平面图形的认识(一)》综合测试卷(含解析)
第六章《平面图形的认识(一)》综合测试卷一.选择题1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°3.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.1cm B.11cm C.1cm或11cm D.2cm或11cm 4.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC∠AOBA.1个B.2个C.3个D.4个5.在所给的:①15°、②65°、③75°、④135°、⑤145°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④6.上午8点整时,钟表表面的时针与分针的夹角是()A.30°B.45°C.90°D.120°7.线段AB=9,点C在线段AB上,且有AC AB,M是AB的中点,则MC等于()A.3 B.C.D.8.某教科局提出开展“三有课堂”,某中学在一节体现“三有课堂”公开展示课上,李老师展示一幅图,条件是:C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各个小组经过讨论后得到以下结论:①∠ACF与∠BCH互余②∠FCG与∠HCG互补③∠ECF与∠GCH互补④∠ACD﹣∠BCE=90°,聪明的你认为哪些组的结论是正确的,正确的有()个.A.1 B.2 C.3 D.49.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间10.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°11.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个12.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间13.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条二.填空题14.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.15.如图,点C在线段AB上,且AC:BC=2:3,点D在线段AB的延长线上,且BD=AC,E为AD的中点,若AB=40cm,则线段CE=.16.如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.17.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,OD是OB的反向延长线.(1)射线OC的方向是;(2)∠COD的度数是.18.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.19.如图,∠AOC和∠BOD都是直角,且∠DOC=30°,OM是∠DOC平分线,ON是∠COB的平分线,则∠MON的度数是.20.线段AB=12cm,点C在线段AB上,且AC BC,M为BC的中点,则AM的长为cm.21.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为22.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.23.已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=.24.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.①若∠BOC=40°,∠MON=80°,则∠AOD的度数为度;②若∠AOD=x°,∠MON=80°,则∠BOC的度数为度(用含x的代数式表示).25.一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k =1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,∠BOF=度;(2)若∠BOF=36°,∠AOC=度.三.解答题27.已知点O是直线AB上一点,∠COD是直角.(1)如图(1),若OE平分∠AOD,∠BOD=40°,求∠COE的度数.(2)在图(1)中,若OE平分∠AOD,∠BOD=a,请直接写出∠COE的度数(用含a的代数式表示).(3)将图(1)中的∠COD按顺时针方向旋转至图(2)所示的位置,且OF平分∠BOC,其他条件不变,探究∠AOC与∠DOF的度数之间的等量关系,写出你的结论,并说明理由.28.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.29.如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD=∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.30.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,求∠ACE的度数;(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.当CA落在∠DCF内部时,直接写出∠ACD与∠BCF之间的数量关系.31.已知O为直线AB上的一点,射线OA表示正北方向,∠COE=90°,射线OF平分∠AOE.(1)如图1,若∠BOE=110°,求∠COF的度数.(2)若将∠COE绕点O旋转至图2的位置,试判断∠COF和∠BOE之间的数量关系,并证明你的结果.(3)若将∠COE绕点O旋转至图3的位置,求满足:4∠COF﹣3∠BOE=20°时,∠EOF 的度数.32.已知点O为直线AB上的一点,∠BOC=∠DOE=90°.(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;①∠COD和∠BOE相等吗?②∠BOD和∠COE有什么关系?(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?一.选择题1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【解答】C【解析】根据两条直线相交,才能构成对顶角进行判断,A、B、D都不是由两条直线相交构成的图形,错误,C是由两条直线相交构成的图形,正确,故选C.2.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°【解答】D【解析】∵∠AOB=60°,射线OC平分∠AOB,∴∠AOC=∠BOC AOB=30°,又∠COP=15°①当OP在∠BOC内,∠BOP=∠BOC﹣∠COP=30°﹣15°=15°,②当OP在∠AOC内,∠BOP=∠BOC+∠COP=30°+15°=45°,综上所述:∠BOP=15°或45°.故选D.3.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.1cm B.11cm C.1cm或11cm D.2cm或11cm【解答】C【解析】如图,设较长的木条为AB=12cm,较短的木条为BC=10cm,∵M、N分别为AB、BC的中点,∴BM=6cm,BN=5cm,①如图1,BC不在AB上时,MN=BM+BN=6+5=11cm,②如图2,BC在AB上时,MN=BM﹣BN=6﹣5=1cm,综上所述,两根木条的中点间的距离是1cm或11cm,故选C.4.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC∠AOBA.1个B.2个C.3个D.4个【解答】A【解析】①由∠AOC=∠BOC能确定OC平分∠AOB;②如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;③∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;④如图2,∠BOC∠AOB,不能确定OC平分∠AOB;所以只有①能确定OC平分∠AOB;故选A.5.在所给的:①15°、②65°、③75°、④135°、⑤145°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④【解答】D【解析】①45°﹣30°=15°,可以用一副三角板画出来;②65°不可以用一副三角板画出来;③45°+30°=75°,可以用一副三角板画出来;④90°+45°=135°,可以用一副三角板画出来;⑤145°不可以用一副三角板画出来;故选D.6.上午8点整时,钟表表面的时针与分针的夹角是()A.30°B.45°C.90°D.120°【解答】D【解析】如图,上午8点整时,钟表表面的时针与分针的夹角是4×30°=120°故选D.7.线段AB=9,点C在线段AB上,且有AC AB,M是AB的中点,则MC等于()A.3 B.C.D.【解答】B【解析】∵AB=9,∴AC AB=3,∵M是AB的中点,∴AM AB∴MC=AM﹣AC3故选B.8.某教科局提出开展“三有课堂”,某中学在一节体现“三有课堂”公开展示课上,李老师展示一幅图,条件是:C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各个小组经过讨论后得到以下结论:①∠ACF与∠BCH互余②∠FCG与∠HCG互补③∠ECF与∠GCH互补④∠ACD﹣∠BCE=90°,聪明的你认为哪些组的结论是正确的,正确的有()个.A.1 B.2 C.3 D.4【解答】C【解析】∵CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,∴∠ACF=∠FCD∠ACD,∠DCH=∠HCB∠DCB,∠BCG=∠ECG∠BCE,∵∠ACB=180°,∠DCE=90°,∴∠FCH=90°,∠HCG=45°,∠FCG=135°∴∠ACF+∠BCH=90°,∠FCG+∠HCG=180°,故①②正确,∵∠ECF=∠DCE+∠FCD=90°+∠FCD,∠FCD+∠DCH=90°,∴∠ECF+∠DCH=180°,∵∠HCG≠∠DCH,∴∠ECF与∠GCH不互补,故③错误,∵∠ACD﹣∠BCE=180°﹣∠DCB﹣∠BCE=90°,故④正确.故选C.9.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间【解答】A【解析】∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A 区.故选A.10.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°【解答】C【解析】①如图1,OC在∠AOB内,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB﹣∠COB=50°﹣30°=20°;②如图2,OC在∠AOB外,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB+∠COB=50°+30°=80°;综上所述,∠AOC的度数是20°或80°.故选C.11.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个【解答】B【解析】①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故①正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE 和∠ADC互补,故②正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=90°+90°+90°+40°=310°,故③错误;④当F在线段CD上,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=11,当F和E重合,则点F到点B、C、D、E的距离之和最大为FB+FE+FD+FC=8+0+6+3=17,故④错误.故选B.12.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【解答】A【解析】①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选A.13.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条【解答】D【解析】如图,共有5条.故选D.二.填空题14.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.【解答】25°或45°【解析】(1)若射线OD在OC的下方时,如图1所示:∵OC平分∠AOB,∴∠AOC,又∵∠AOB=70°,∴∠AOC35°,又∵∠AOC=∠COD+∠AOD,∠COD=10°,∴∠AOD=35°﹣10°=25°;(2)若射线OD在OC的上方时,如图2所示:同(1)可得:∠AOC=35°,又∵∠AOD=∠AOC+∠COD,∴∠AOD=35°+10°=45°;综合所述∠AOD的度数为25°或45°,故答案为25°或45°.15.如图,点C在线段AB上,且AC:BC=2:3,点D在线段AB的延长线上,且BD=AC,E为AD的中点,若AB=40cm,则线段CE=.【解答】12cm【解析】∵AC:BC=2:3,BD=AC,∴设AC=BD=2x,BC=3x,∵AC+BC=2x+3x=40,解得:x=8,∴AC=BD=16cm,BC=24cm,∵E为AD的中点,∴AE=ED(16×2+24)=28cm,∴EC=AE﹣AC=28﹣16=12cm.故答案为12cm.16.如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.【解答】45°【解析】由折叠得,∠ABE=∠DBE,∠CBF=∠DBF,∵∠ABE+∠DBE+∠CBF+∠DBF=∠ABC=90°,∴∠ABE+∠CBF∠ABC90°=45°,故答案为45°.17.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,OD是OB的反向延长线.(1)射线OC的方向是;(2)∠COD的度数是.【解答】(1)北偏东70°;(2)70°【解析】(1)由图知:∠AOB=15°+40°=55°,∴∠AOC=55°∴∠NOC=∠NOA+∠AOC=15°+55°=70°∴射线OC在北偏东70°方向上.故答案为北偏东70°;(2)∵∠BOC=∠AOB+∠AOC=55°×2=110°,∴∠COD=180°﹣∠BOC=180°﹣110°=70°故答案为70°18.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.【解答】45【解析】两条直线相交最多有1个交点,三条直线相交最多有1+2=3个交点,四条直线相交最多有1+2+3=6个交点,五条直线相交最多有1+2+3+4=10个交点,……十条直线相交最多有1+2+3+4+5+6+7+8+9=45个交点;故答案为45.19.如图,∠AOC和∠BOD都是直角,且∠DOC=30°,OM是∠DOC平分线,ON是∠COB的平分线,则∠MON的度数是.【解答】45°【解析】∵OM是∠DOC平分线,ON是∠COB的平分线,∴∠COM=∠DOM∠COD,∠BON=∠CON∠BOC,∵∠BOC+∠COD=∠BOD=90°,∴∠COM+∠CON∠BOD=45°=∠MON,故答案为45°20.线段AB=12cm,点C在线段AB上,且AC BC,M为BC的中点,则AM的长为cm.【解答】7.5【解析】如图,∵点C在线段AB上,AC BC,即BC=3AC,∴AC+BC=AB=12即4AC=12AC=3∴BC=9∵M为BC的中点,∴CM BC=4.5∴AM=AC+CM=7.5cm.故答案为7.5.21.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为【解答】18°52′或116°10′【解析】如右图所示,①OC在OA、OB之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB﹣∠BOC,=67°31′﹣48°39′,=66°91′﹣48°39′,=18°52′;②OB在OA、OC之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB+∠BOC=67°31′+48°39′=115°70′=116°10′;故答案是18°52′或116°10′.22.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.【解答】110【解析】如图:∵OE平分∠AOC,∴∠AOE=∠COE,设∠DOE=x,∵∠COD=40°,∴∠AOE=∠COE=x+40°,∴∠BOC=∠AOB﹣∠AOC=150°﹣2(x+40°)=70°﹣2x,∴2∠BOE﹣∠BOD=2(70°﹣2x+40°+x)﹣(70°﹣2x+40°)=140°﹣4x+80°+2x﹣70°+2x﹣40°=110°,故答案为110.23.已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=.【解答】110°或70°【解析】分两种情况进行讨论:①如图1所示,若OM在AC上方,∵OD平分∠BOC,∴∠COD=∠BOD,∵4∠BOE+∠BOC=180°,∠AOB+∠BOC=180°,∴∠AOB=4∠BOE,即∠AOE=3∠BOE,设∠BOE=α,则∠AOE=3α,∠BOD=70°﹣α=∠COD,∵∠AOC为平角,∴∠AOE+∠DOE+∠COD=180°,即3α+70°+70°﹣α=180°,解得α=20°,∴∠BOE=20°,又∵OM⊥OB,∴∠MOB=90°,∴∠MOE=∠BOE+∠MOB=20°+90°=110°;②如图2所示,若OM在AC下方,同理可得,∠BOE=20°,又∵OM⊥OB,∴∠MOB=90°,∴∠MOE=∠MOB﹣∠BOE=90°﹣20°=70°;综上所述,∠MOE的度数为110°或70°.故答案为110°或70°.24.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.(1)若∠BOC=40°,∠MON=80°,则∠AOD的度数为度;(2)若∠AOD=x°,∠MON=80°,则∠BOC的度数为度(用含x的代数式表示).【解答】(1)120°;(2)(160﹣x)【解析】(1)∵∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∴∠BOM+∠CON=80°﹣40°=40°,∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM,∠DON=∠CON,∴∠AOM+∠DON=40°,∴∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°,故答案为120°;(2)∵∠AOD=x°,∠MON=80°,∴∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∵∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°,故答案为(160﹣x).25.一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k =1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.【解答】150【解析】假设车站距离1号楼x米,则总距离S=|x|+2|x﹣50|+3|x﹣100|+4|x﹣150|+5|x﹣200|,①当0≤x≤50时,S=2000﹣13x,最小值为1350;②当50≤x≤100时,S=1800﹣9x,最小值为900;②当100≤x≤150时,S=1200﹣3x,最小值为750(此时x=150);当150≤x≤200时,S=5x,最小值为750(此时x=150).∴综上,当车站距离1号楼150米时,总距离最小,为750米.故答案为150.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,∠BOF=度;(2)若∠BOF=36°,∠AOC=度.【解答】(1)33;(2)72【解析】(1)∵∠DOB和∠AOC是对顶角,∴∠DOB=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠EOB∠DOB=38°,∴∠COE=180°﹣∠DOE=142°,∵OF平分∠COE,∴∠COF=∠FOE∠COE=71°,∴∠BOF=∠FOE﹣∠EOB=33°.故答案为33°.(2))∵∠DOB和∠AOC是对顶角,∴∠DOB=∠AOC,∵OE平分∠BOD,∴∠DOE=∠EOB∠DOB,∵OF平分∠COE,∴∠COF=∠FOE∠COE,∵∠AOC=180°﹣∠COF﹣∠BOF=180°﹣(∠EOB+∠BOF)﹣∠BOF=108°﹣∠EOB=108°∠AOC∴∠AOC=72°.故答案为72°.三.解答题27.已知点O是直线AB上一点,∠COD是直角.(1)如图(1),若OE平分∠AOD,∠BOD=40°,求∠COE的度数.(2)在图(1)中,若OE平分∠AOD,∠BOD=a,请直接写出∠COE的度数(用含a的代数式表示).(3)将图(1)中的∠COD按顺时针方向旋转至图(2)所示的位置,且OF平分∠BOC,其他条件不变,探究∠AOC与∠DOF的度数之间的等量关系,写出你的结论,并说明理由.【解答】(1)20°;(2);(3)见解析【解析】(1)∵∠BOD=40°,∠AOD+∠BOD=180°,∴∠AOD=180°﹣40°=140°,∵OE平分∠AOD,∴∠DOE∠AOD=70°,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=90°﹣70°=20°;(2)∠COE.∵∠BOD=a,∠AOD+∠BOD=180°,∴∠AOD=180°﹣a,∵OE平分∠AOD,∴∠DOE∠AOD,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=90°﹣();(3)∠AOC=360°﹣2∠DOF.理由:∵OF平分∠BOC,∴∠BOC=2∠COF,∵∠COD=90°,∴∠COF=∠DOF﹣90°,∵∠AOC+∠BOC=∠AOC+2∠COF=180°,∴∠AOC=180°﹣2∠COF,∴∠AOC=180°﹣2(∠DOF﹣90°)=360°﹣2∠DOF.28.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.【解答】(1)78°;(2);(3)t或【解析】(1)∵∠AOD=156°,∠BOD=96°,∴∠AOB=156°﹣96°=60°,∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=30°,∠BON=48°,∴∠MON=∠BOM+∠BON=78°;(2)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM∠AOB,∠BON∠BOD,∵∠MON=∠BOM+∠BON(∠AOB+∠BOD)∠AOD,∴;(3)∵∠BOC在∠AOD内绕点O以2°/秒的速度逆时针旋转t秒时,∴∠AOC=(52+2t)°,∠BOD(126﹣2t)°,∵OM平分∠AOC,ON平分∠BOD,∴∠AOM═(26+t)°,∠DON=(63﹣t)°,当∠AOM=2∠DON时,26+t=2(63﹣t),则t;当∠DON=2∠AOM时,63﹣t=2(26+t),则t.故当t或时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,29.如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD=∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.【解答】(1)30;(2)50;(3)见解析【解析】(1)∵∠COD=∠AOB.即∠AOC+∠BOC=∠BOC+∠BOD,∴∠AOC=∠BOD,∵∠AOD=120°,∠AOB=75°,∴∠AOC=∠BOD=120°﹣75°=45°,∴∠BOC=∠AOB﹣∠AOC=75°﹣45°=30°,故答案为30,(2)设∠BOD=x°,由(1)得∠AOC=∠BOD=x°,则∠BOC=75°﹣x°由∠AOD=5∠BOC得,75+x=5(75﹣x),解得,x=50,即:∠BOD=50°,故答案为50;(3)不变;∵∠COD=∠AOB=75°,∠AOC=∠BOD,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=75°×2=150°,答:当∠COD绕着点O旋转时,∠AOD+∠BOC=150°,其值不变.30.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,求∠ACE的度数;(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.当CA落在∠DCF内部时,直接写出∠ACD与∠BCF之间的数量关系.【解答】(1)45°;(2)∠ACE=∠BCF;(3)45°【解析】(1)∵CF平分∠ACB,∴∠BCF=∠ACF∠ACB90°=45°,∴∠ACE=∠ECF﹣∠ACF=90°﹣45°=45°;(2)∠ACE=∠BCF,∵∠BCF+∠ACF=90°=∠ACE+ACF,∴∠ACE=∠BCF;(3)∠BCF﹣∠ACD=45°,∵∠ACF+∠BCF=90°,∠ACD+∠ACF=∠DCF=45°,∴(∠ACF+∠BCF)﹣(∠ACD+∠ACF)=90°﹣45°,即:∠BCF﹣∠ACD=45°.31.已知O为直线AB上的一点,射线OA表示正北方向,∠COE=90°,射线OF平分∠AOE.(1)如图1,若∠BOE=110°,求∠COF的度数.(2)若将∠COE绕点O旋转至图2的位置,试判断∠COF和∠BOE之间的数量关系,并证明你的结果.(3)若将∠COE绕点O旋转至图3的位置,求满足:4∠COF﹣3∠BOE=20°时,∠EOF 的度数.【解答】(1)55°;(2)∠BOE=2∠COF;(3)20°【解析】(1)∵∠BOE=110°,∴∠AOE=180°﹣∠BOE=70°∵OF平分∠AOE∴∠EOF AOE=35°∵∠COE=90°∴∠COF=∠COE﹣∠EOF=55°答:∠COF的度数为55°;(2)∠COF和∠BOE之间的数量关系为:∠BOE=2∠COF,理由如下:∵OF平分∠AOE∴∠AOE=2∠AOF∴∠BOE=180°﹣∠AOE=180°﹣2∠AOF=180°﹣2(∠AOC+∠COF)=180°﹣2(90°﹣∠BOE+∠COF)=2∠BOE﹣2∠COF∴∠BOE=2∠COF;答:∠COF和∠BOE之间的数量关系为:∠BOE=2∠COF;(3)∵OF平分∠AOE∴∠FOE=∠AOF∴4∠COF﹣3∠BOE=20°4(∠COE+∠EOF)﹣3(180°﹣∠EOA)=20°4(90°+∠EOF)﹣3(180°﹣2∠EOF)=20°∴∠EOF=20°答:∠EOF的度数为20°.32.已知点O为直线AB上的一点,∠BOC=∠DOE=90°.(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;①∠COD和∠BOE相等吗?②∠BOD和∠COE有什么关系?(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?【解答】(1)①相等,②∠BOD+∠COE=180°;(2)①相等,②依然成立【解析】(1)①∠COD=∠BOE,∵∠BOC=∠DOE=90°,∴∠BOC+∠BOD=∠DOE+∠BOD,即:∠COD=∠BOE,②∠BOD+∠COE=180°,∵∠DOE=90°,∠AOE+∠DOE+∠BOD=∠AOB=180°,∴∠BOD+∠AOE=180°﹣90°=90°,∴∠BOD+∠COE=∠BOD+∠AOE+∠AOC=90°+90°=180°,(2)①∠COD=∠BOE,∵∠COD+∠BOD=∠BOC=90°=∠DOE=∠BOD+∠BOE,∴∠COD=∠BOE,②∠BOD+∠COE=180°,∵∠DOE=90°=∠BOC,∴∠COD+∠BOD=∠BOE+∠BOD=90°,∴∠BOD+∠COE=∠BOD+∠COD+∠BOE+∠BOD=∠BOC+∠DOE=90°+90°=180°,因此(1)中的∠BOD和∠COE的关系仍成立.。
数学平面图形的认识试题答案及解析
数学平面图形的认识试题答案及解析1.如果两根小棒都和第三根小棒垂直,那么这两根小棒()A.互相平行B.互相垂直C.不能确定【答案】C【解析】由垂直和平行的特征和性质可知:平面内,垂直于同一条直线的两条直线互相平行;由于本题不一定是在同一平面内,所以无法确定;据此选择即可.解:如果两根小棒都和第三根小棒垂直,那么这两根小棒不能确定;故选:C.点评:解答此题应明确:该题两根小棒平行的条件,必须是在同一平面内.2.有两条直线都与同一条直线平行,则这两条直线一定()A.互相垂直B.互相平行C.相交【答案】B【解析】根据平行的性质:两条直线都与同一条直线平行,则这两条直线一定互相平行;据此解答即可.解:根据平行的性质可得:有两条直线都与同一条直线平行,则这两条直线一定互相平行;故选:B.点评:此题考查了平行的性质,应注意灵活运用.3.两条平行线间可以画()条垂线.A.1B.2C.3D.无数【答案】D【解析】根据平行和垂直的性质和特征可知:两条平行线中可以画无数条垂线,这些线段的长度相等;进而解答即可.解:两条平行线间可以画无数条垂线;故选:D.点评:此题应根据垂直和平行的特征和性质进行解答.4.我是小画家.(1)过A点画直线l的垂线.(2)过A点画直线l的平行线.【答案】(1)(2)【解析】(1)用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.(2)把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和A点重合,过点沿三角板的直角边画直线即可.解:根据题干分析画图如下:(1)(2)点评:本题主要考查了学生画平行线和画垂线的能力.5.看图填一填.(各写一组)(1)相互平行的线段有:(2)相互垂直的线段有:.【答案】(1)相互平行的线段有:⑤∥⑥,①∥③(2)相互垂直的线段有:⑤⊥③,⑥⊥③,⑤⊥①,⑥⊥①【解析】根据平行线的特征:在同一平面内,永不相交的两条直线叫做平行线;两条直线相交成直角,这两条直线就互相垂直,据此解答即可.解:根据分析可知,(1)相互平行的线段有:⑤∥⑥,①∥③(2)相互垂直的线段有:⑤⊥③,⑥⊥③,⑤⊥①,⑥⊥①.故答案为:⑤∥⑥,①∥③;⑤⊥③,⑥⊥③,⑤⊥①,⑥⊥①.点评:此题主要考查平行线和垂线的特征.6.过点A作直线l的垂线,过点B作直线l的平行线.【答案】【解析】(1)把三角板的一条直角边与已知直线重合,沿直线移动三角板,使三角板的另一条直角边和A点重合,过A点沿三角板的直角边,向已知直线画直线即可.(2)把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和B点重合,过B点沿三角板的直角边画直线即可.解:根据题干分析画图如下:点评:本题考查了学生平行线和垂线的作法,培养学生的作图能力.7.用三角尺画出75°的角,过角内的一点A画出角一边的平行线,另一边的垂线.【答案】【解析】(1)利用三角尺中45°+30°=75°的角即可作出;(2)①把三角板的一条直角边与已知角的一边重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知角的一边重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.②用三角板的一条直角边的已知角的另一边重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可,.解:根据题干分析画图如下:点评:本题考查了学生画角、画平行线和垂线的能力.8.画出两个图形的一条高.【答案】【解析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.习惯上作平行四边形的高时都从一个顶点出发作一边的垂线;同样在梯形中,从一底的任一点作另一底的垂线,这点与垂足间的距离叫做梯形的高.习惯上作梯形的高时都从上底(较短的底)一个顶点出发作下底的垂线.解:如图所示:.点评:本题主要是考查作平行四边形和梯形的高.很多同学作高时画不垂直,可以用两个三角板来完成.高一般用虚线来表示,要标出垂足.9.过A点画直线的垂线,过B点画直线的平行线.【答案】【解析】(1)用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和 A点重合,过A沿直角边向已知直线画直线即可,(2)把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和B点重合,过B点沿三角板的直角边画直线即可.解:如图所示:.点评:本题考查了学生画平行线和垂线的能力.10.在右面梯形中画一条线段,把它分割成一个平行四边形和一个三角形.【答案】【解析】将三角板的一条直角边和直尺的上边缘都与梯形的一个腰重合,然后平移直尺,当直尺的上边缘正好与梯形上底的另一个端点重合时,过这个端点沿直尺上边缘画线段,与梯形的下底交于一点,此线段即为平行于梯形腰的线段,从而可以得到符合要求的平行四边形和三角形.解:如图所示,即为所要求作的线段:.点评:此题主要考查:过直线外一点作已知直线的平行线的方法.11.在下面这条直线中画垂线.(至少画三条)【答案】【解析】把三角板的一条直角边与已知直线重合,使三角板的另一条直角边和已知直线上任意一点重合,过这点沿三角板的直角边,向已知直线画直线即可画出已知直线的一条垂线,用同样的方法可以画出两位两条.解:根据题干分析:点评:本题考查了学生垂线的作法,培养学生的作图能力,一条直线的垂线有无数条.12.过点A,画直线L的垂线和平行线.【答案】【解析】(1)用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.(2)把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.解:作图如下:点评:本题考查了学生利用直尺和三角板作垂线和作平行线的能力.13.过点B画a的平行线和b的垂线.【答案】【解析】(1)把三角板的一条直角边与已知直线a重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线a重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.(2)把三角板的一条直角边与已知直线b重合,沿直线移动三角板,使三角板的另一条直角边和A点重合,过A点沿三角板的直角边,向已知直线b画直线即可.解:作图如下:点评:本题考查了学生平行线和垂线的作法,培养学生的作图能力.14.过A点画出已知直线的垂线.过B点画出已知直线的平行线.【答案】【解析】(1)用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.(2)把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和B点重合,过B点沿三角板的直角边画直线即可.解:画图如下:点评:本题考查了学生利用直尺和三角板作垂线和作平行线的能力.15.(1)用量角器量出∠A=°、∠B=°、∠C=°(2)过A点作BC边的平行线.【答案】(1)经测量,∠A=40°、∠B=92°、∠C=48°.(2)如图:【解析】(1)用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.据此解答.(2)把三角板的一条直角边与已知直线BC重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板和已知直线BC重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.解:(1)经测量,∠A=40°、∠B=92°、∠C=48°.(2)如图:.故答案为:40,92,48.点评:本题主要考查了学生测量角的能力以及学生利用三角板和直尺,过直线外一点作已知直线的平行线和垂线的画图能力.16.图中有几组互相垂直的线段?组.【答案】6【解析】两条直线相交成直角时,这两条直线叫做互相垂直,只要数出直角的个数,即互相垂直线段的组数;据此数出即可.解:因为有6个直角,所以有6组互相垂直的线段;故答案为:6.点评:解答此题的关键:明确垂直的含义,并能结合题目进行灵活运用.17.过角内一点A分别作角的一边的平行线和另一边的垂线.【答案】【解析】(1)把三角板的一条直角边与已知角的一边重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知角的一边重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.(2)用三角板的一条直角边的已知角的另一边重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可,解:根据题干分析,画图如下:点评:本题考查了学生画平行线和垂线的能力.18.两条平行线之间只能作一条垂线..【答案】错误【解析】两条平行线之间的距离处处相等,这就说明了两条平行线之间可以做无数条垂线,由此判定即可.解:两条平行线,可以在其中一条直线上找出无数个点作另一条直线的垂线,故答案为:错误.点评:此题主要考查作垂线的条件和平行线之间的距离,由此解决问题即可.19.给一条直线作两条垂线,这两条垂线的位置关系是互相.【答案】平行【解析】根据垂直和平行的性质:给一条直线作两条垂线,这两条垂线互相平行;据此解答.解:如图:这两条垂线互相平行;故答案为:平行.点评:此题考查了垂直和平行的特征及性质,应注意基础知识的灵活运用.20.画出平行四边形底边上的高【答案】【解析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高,平行四边形有无数条高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线,用三角板的直角可以画出平行四形的高;长方形宽就是以长为底的高,长就是以宽为底的高.解:作平行四边形的高如下:故答案为:点评:本题是考查作平行四边形.注意作高用虚线,并标出垂足.21.做一做.(1)请你试着用肢体语言表示出垂直或平行,并请同桌判断.(2)把一张纸对折两次,使折痕互相垂直.(3)把一张纸对折两次,产生三条折痕,并使折痕互相平行.【答案】(1)将两条手臂向前放平伸出,即为平行;将一条手臂向侧方向平伸出,即为与身体垂直;(2)操作如下:(3)操作如下:【解析】(1)根据平行线和互相垂直的定义:在同一平面内,不相交的两条直线叫做平行线;在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.(2)实际操作一下即可完成;(3)实际操作一下即可完成;解:(1)将两条手臂向前放平伸出,即为平行;将一条手臂向侧方向平伸出,即为与身体垂直;(2)操作如下:(3)操作如下:点评:此题考查了平行和垂直的定义,注意基础知识的积累.22.画出CD边上的高.【答案】【解析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高,平行四边形有无数条高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线,用三角板的直角可以画出平行四形的高.解:作平行四边形的高如下:故答案为:点评:注意,平行四边形的底是对对应的高来说的,底不同,高也不同.23.过B点画已知直线的垂线.【答案】【解析】用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和B点重合,过B沿直角边向已知直线画直线即已知直线的垂线.解:画图如下:点评:本题主要考查了学生作垂线的画图能力.24.过O点分别画出AB、AC的垂线.【答案】【解析】用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和O点重合,过O沿直角边向已知直线画直线即可.解:根据题干分析画图如下:点评:本题考查了学生画垂线的能力.25.画出指定底上的高或过指定点画高.【答案】【解析】从三角形的顶点向对边作垂线,顶点和垂足之间的距离叫做三角形的高;从平行四边形的某一个角的顶点向对边作垂线,顶点和垂足之间的距离叫做平行四边形的高;梯形的上下底之间的距离叫做梯形的高;由此解答.解:根据分析,如图:点评:此题主要考查三角形、平行四边形、梯形的高的意义及画法.26.(1)画出梯形的高.(2)把梯形按2:1的比例缩小.【答案】(1)作图如下:(2)作图如下:【解析】(1)从梯形的一个顶点向对边引垂线,顶点到垂足之间的线段是梯形的高,据此可画梯形的高.(2)把梯形按2:1的比例缩小,先量出梯形下底的长度,根据比例算出应画梯形的底边的长度,再量出梯形底边的顶点到所作高与底边交点的长度,根据比例算出长度,从应画梯形的刚作的边的端点量出这个长度,然后过这点作垂线段,所作垂线段的长是原梯形高长度的一半.过另一点作底边的平行线,长度等于原梯形上底的一半,然后边线即可.解:(1)作图如下:(2)作图如下:点评:本题考查了学生作高和根据比例作图的能力.作2:1的梯形有难度.27.请用直尺和三角板画出下列四个图形中的AB边上的高.【答案】【解析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高,习惯上作平行四边形的高时都从底对边一个顶点出发作底的垂线;过梯形上底的一个顶点向下底作垂线,顶点和垂足之间的线段就是梯形形的一条高;经过三角形的顶点(与底相对的点)向对边(底)或对边的延长线作垂线,顶点和垂足之间的线段就是三角形的一条高;解:由分析作高如下:点评:作图形的高时,要用虚线,并标出垂直符号.当底不够长时要作底的延长线,向底的延长线作高.28.已知:直线L和L外一点P,过 P点作L的垂线和平行线.【答案】【解析】(1)用三角板的一条直角边的直线L重合,沿重合的直线L平移三角板,使三角板的另一条直角边和P点重合,过P沿直角边向已知直线画直线即可.(2)把三角板的一条直角边与直线L重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和直线L重合的直角边和P点重合,过P点沿三角板的直角边画直线即可.解:根据分析画图如下:点评:本题考查了学生画平行线和垂线的能力.29.如图,能找到组互相平行的线段.【答案】24.【解析】根据平行的含义:同一平面内,不相交的两条直线,叫做平行线;据此解答即可.解:如图:AB∥FG;AB∥GH;AB∥FH;AB∥CE;AB∥DE;AB∥CD;FG∥CE;FG∥DE;FG∥CD;FH∥CE;FH∥DE;FH∥CD;GH∥ED;GH∥CE;GH∥CD;AF∥BG;AF∥GE;AF∥BE;FC∥GE;FC∥BG,FC∥BE,AC∥BG,AC∥EG,AC∥BE;共有24对;故答案为:24.点评:理解平行的含义是解答此题的关键.30.在同一平面内,直线a垂直于直线b,直线b垂直于直线c,那么a与c的关系是互相.【答案】平行【解析】由垂直和平行的特征和性质可知:同平面内,垂直于同一条直线的两条直线互相平行;据此判断即可.解:由垂直和平行的特征和性质可知:直线a、b、c在同一平面里,a与b互相垂直,b与c互相垂直,那么a与c互相平行;故答案为:平行.点评:此题考查了垂直和平行的特征和性质,应注意理解和灵活运用.31.当两条直线成时,这两条直线叫做互相垂直,这两条直线的交点叫做.【答案】直角,垂足【解析】根据垂直的定义:如果两条直线相交成直角,其中一条直线叫作另一条直线的垂线,这两条直线的交点叫做垂足;据此解答即可.解:如果两条直线相交成直角时,这两条直线叫作互相垂直,其中一条直线叫作另一条直线的垂线,这两条直线的交点叫做垂足.故答案为:直角,垂足.点评:此题考查了垂直与垂线的定义.32.在同一平面内,两条直线不是互相平行,就是互相垂直..【答案】错误【解析】同一平面内两条直线的位置关系有两种:平行、相交.据此解答.解:在同一平面内,两条直线只有相交和平行两种位置关系,垂直是一种特殊的相交;故答案为:错误.点评:此题主要考查在同一平面内,两条直线的位置关系.33.下面四组直线中,两条直线互相平行的是第组和第组,两条直线相交的是第组和第组.【答案】①、④,②、③【解析】依据同一平面内,线段之间的相交和平行的意义,即可解答.解:两条直线互相平行的是①、④,两条直线相交的是②、③;故答案为:①、④,②、③.点评:本题考查空间内的平行与相交问题,根据具体实例做比较容易.34.一条直线的垂线有无数条..【答案】正确【解析】根据垂直和平行的含义可知:在同一个平面内,过一点可以作一条直线和已知直线垂直,因为一条直线上有无数个点,所以一条直线的垂线有无数条;据此判断.解:一条直线的垂线有无数条;故答案为:√.点评:此题考查了垂直和平行的含义.35.(对的打“√”,错的打“×”)①只有一组对边平行的图形叫梯形.;②正方形和长方形都是平行四边形.;③三角形和平行四边形都具有稳定性.;④平行四边形可以画出两条不同的高.;⑤梯形的上底一定比下底短.;⑥梯形的高一定比腰长.;⑦平行四边形是特殊的长方形..【答案】×,√,×,√,×,×【解析】①、⑤、⑥根据梯形的定义进行解答;②、③、④、⑦根据平行四边行、正方形、长方形和三角形的定义及特点进行解答.解:①、只有一组对边平行的“四边”形叫梯形,所以不正确;②、正方形和长方形的两组对边平行且相等,符合平行四边形的定义,所以正确;③、三角形具有稳定性,但是平行四边行不具有稳定性,所以不正确;④、平行四边行可以分别在两组对边上作高,所以正确;⑤、梯形的定义中只说到了上底和下底平行,没有说上底一定比下底短,所以不正确;⑥、梯形的高要比腰短,所以不正确;⑦、这句话正好说倒了,长方形是特殊的平行四边行,所以不正确.故答案为:×,√,×,√,×,×.点评:此题考查了平行四边行、正方形、长方形、梯形和三角形的定义入特点.36.在比例尺为1:500000的地图上,量得一正方形的实验基地边长是1.2cm,实际上这个基地的周长是千米.【答案】24【解析】图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出实验基地的边长的实际长度,进而利用正方形的周长公式即可求解.解:1.2÷=600000(厘米)=6(千米),6×4=24(千米);答:实际上这个基地的周长是24千米.故答案为:24.点评:此题主要考查图上距离、实际距离和比例尺的关系以及正方形的周长的计算方法.37.王大妈想在一个长为20米的长方形地里,先画出一个最大的正方形地种菜,剩下的地用篱笆围起来养鸡.共需篱笆米.【答案】40【解析】如图所示,由题意可知,在菜地中划出的最大正方形的边长应等于原长方形的宽,剩下的是一个长方形,这个长方形的周长就是所需的篱笆的长度;于是很明显就可以看出:所需篱笆的长度就是原长方形的两个长的和,从而问题得解.解:由图可知:所需的篱笆:20×2=40(米);答:共需篱笆40米.故答案为:40.点评:此题主要考查正方形的特征及长方形的周长公式,解答的关键是利用直观图形很轻松就能得解.38.一个长80厘米,宽50厘米,把它剪成一个最大的正方形和一个长方形.正方形和新的长方形的周长分别是多少厘米?【答案】正方形的周长是200厘米,新长方形的周长是160厘米【解析】根据题意,剪成的最大的正方形的边长应该等于长方形的宽,新长方形的长是50厘米,宽是80﹣50=30厘米;由此列式解答.解:50×4=200(厘米);(50+30)×2=160(厘米);答:正方形的周长是200厘米,新长方形的周长是160厘米.点评:此题主要考查长方形、正方形的周长计算,直接利用公式解答即可.39.左边的图形是由右边哪几个图形组成的?【答案】正方形由2和5组成,长方形由3和5组成【解析】依据长方形和正方形的特征即可作答.解:由题目可以看出,正方形由2和5组成;长方形由3和5组成.答:正方形由2和5组成,长方形由3和5组成.点评:此题主要考查长方形和正方形的特征及性质.40.有一块地,形状如下图.【答案】120米【解析】此块地的周长和边长是30米的正方形的周长相等.据此解答.解:如图:30×4=120(米).答:周长是120米.点评:本题的关键是让学生理解这块地的周长和边长30米的正方形的周长相等.41.计算下面各图形的周长.【答案】(1)5+6+7+4=22(厘米);(2)(10+5)×2=30(厘米);(3)8×4=32(厘米)【解析】(1)依据平面图形的周长的意义,将围成图形的线段的长度,加在一起,即可得解;(2)长方形的周长C=(a+b)×2,据此代入数据即可求解;(3)正方形的周长C=4a,据此代入数据即可求解.解:(1)5+6+7+4=22(厘米);(2)(10+5)×2=30(厘米);(3)8×4=32(厘米).点评:此题主要考查长方形、正方形的周长的计算方法的实际应用.42. 操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q .探究:设A 、P 两点间的距离为x(1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到的结论;(2)当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析式,并写出函数的自变量取值范围;(3)当点P 在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由.【答案】(1)PB=PQ ;(2)x 的取值范围是0≤x <;(3)x=1【解析】(1)过点P 作PE ⊥BC 于E ,作PF ⊥CD 于F ,根据正方形的对角线平分一组对角可得AC 平分∠BCD ,根据角平分线上的点到角的两边的距离相等可得PE=PF ,然后求出∠EPF=90°,根据同角的余角相等求出∠1=∠2,然后利用“角边角”证明△BPE 和△QPF 全等,根据全等三角形对应边相等即可得证;(2)先求出四边形PECF 是正方形,再根据全等三角形的面积相等得到四边形PBCQ 的面积等于正方形PECF 的面积,然后根据正方形的性质表示出PC ,再根据正方形的面积等于对角线平方的一半列式整理即可得解;(3)延长BP 交CD 于G ,根据点Q 在DC 的延长线上判断出∠PCQ >90°,从而得到PC=QC ,根据等边对等角可得∠1=∠2,然后根据同角的余角相等求出∠3=∠5,再根据两直线平行,内错角相等可得∠4=∠5,根据等角对等边的想可得AB=AP ,从而得解.解:(1)结论:PQ=PB .证明:如图1,过点P 作PE ⊥BC 于E ,作PF ⊥CD 于F ,∵正方形ABCD ,∴∠BCD=90°,AC 平分∠BCD ,又∵PE ⊥BC 于E ,PF ⊥DC 于F ,∴PE=PF , ∵PE ⊥BC ,PF ⊥DC ,∠BCD=90°, ∴∠EPF=90°, ∴∠2+∠EPQ=90°,又∵∠1+∠EPQ=∠BPQ=90°,∴∠1=∠2,∵在△BPE 和△QPF 中∴△BPE ≌△QPF (ASA ), ∴PB=PQ ;(2)解:∵∠PEC=∠PFC=∠ECF=90°,∴四边形PECF 是矩形,又∵PE=PF ,∴四边形PECF 是正方形, ∵正方形ABCD ,AB=1, ∴AC=, ∵AP=x , ∴PC=﹣x ,由(1)知△BPE ≌△QPF ,∴S △BPE =S △QPF ,∴S 四边形PBCQ=S 正方形PECF ,∴S 四边形PBCQ =PC 2=(﹣x )2=x 2﹣x+1,即y=x 2﹣x+1,。
第6章平面图形的认识(一)(压轴必刷30题7种题型专项训练)(原卷版)
第6章平面图形的认识(压轴必刷30题7种题型专项训练)一.直线、射线、线段(共2小题)1.(2022秋•海陵区校级期末)如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个2.(2021秋•泰兴市期末)如图,已知A、B、C、D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.(1)画线段AB;(2)画直线AC;(3)过点D画AC的垂线,垂足为E;(4)在直线AC上找一点P,使得PB+PD最小.二.两点间的距离(共9小题)3.(2021秋•阜宁县期末)如图,点C为线段AD上一点,点B为CD的中点,且AD=13cm,BC=3cm.(1)图中共有条线段;(2)求AC的长;(3)若点E在直线AD上,且EA=4cm,求BE的长.4.(2022秋•如皋市校级月考)如图,点C、D在线段AB上,且AC=CD=DB,点E是线段AC的中点,若ED=12cm,求AB的长度.5.(2022秋•东台市校级月考)如图,C是线段AB上一点,AB=16cm,BC=6cm.(1)AC=cm;(2)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B;点Q以1cm/s 的速度沿BA向左运动,终点为A.当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C、P、Q三点,有一点恰好是以另两点为端点的线段的中点?6.(2021秋•姜堰区期中)【阅读】已知m、n两个数在数轴上对应的点为M、N,其中m>n,求M、N两点之间的距离MN.小明利用绝对值的概念,结合数轴,进行探索:解:因为m>n,所以有以下情况:情况1:若m>0,n>0,如图①,M、N两点之间的距离MN=|m|﹣|n|=m﹣n;情况2:若m≥0,n<0,如图②,M、N两点之间的距离MN=|m|+|n|=m﹣n;情况3:若m<0,n<0,如图③,M、N两点之间的距离MN=|n|﹣|m|=m﹣n.由此小明得出结论:若m、n两个数在数轴上对应的点为M、N,其中m>n,则M、N两点之间的距离MN=m﹣n.【应用】在数轴上,点A表示的数为a,点B表示的数为b,点C对应的数为c.(1)若b=1,AB=2,则a=.(2)若a=﹣2,b=4,点C到点A的距离是点C到点B距离的n(n>0)倍.①当n=时,求c的值;②对于任意一个n的值,满足条件的点C的个数始终有2个,请直接写出n取值范围.(3)若a+b=﹣5,且a、b为整数,当ab的值最大时,求A、B两点之间的距离AB.7.(2020秋•高新区期末)已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是直线AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.8.(2022秋•启东市校级期末)如图所示,点A在线段CB上,AC=AB,点D是线段BC的中点.若CD =3,求线段AD的长.9.(2022秋•盐都区月考)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.10.(2020秋•新吴区月考)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t>6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)11.(2020秋•宜兴市月考)如图,已知线段AB=12cm,点C是AB的中点,点D在直线AB上,且AB=4BD.求线段CD的长.三.角平分线的定义(共2小题)12.(2022秋•海门市期末)点O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE与∠AOC的度数之间的关系,写出你的结论,并说明理由.13.(2021秋•相城区校级月考)如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.(1)若AC=4cm,则EF=cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.四.角的计算(共9小题)14.(2021秋•秦淮区期末)一副三角板AOB与COD如图1摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON平分∠COB,OM平分∠AOD.当三角板COD绕O点顺时针旋转(从图1到图2).设图1、图2中的∠NOM的度数分别为α,β,α+β=度.15.(2021春•大连期末)如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.16.(2022秋•兴化市校级期末)(1)如图①,过平角AOB的顶点O画射线OC,OD、OE分别是∠AOC、∠BOC的平分线.射线OD与OE之间有什么特殊的位置关系?为什么?(2)如图②,∠AOB是直角,OC是∠AOB内的一条射线,OD、OE分别是∠AOC、∠BOC的平分线.∠DOE的度数是多少?为什么?(3)∠AOB是直角,OC是∠AOB外的一条射线,OD、OE分别是∠AOC、∠BOC的平分线.∠DOE 的度数是多少?为什么?17.(2021秋•姑苏区校级期末)定义:从一个角的顶点出发把这个角分成1:2的两个角的射线叫做这个角的一条三等分线.例如,如图①,∠BOC=2∠AOC,则OC是∠AOB的一条三等分线.显然,一个角的三等分线有两条.(1)如图②,已知∠AOB=75°,OC、OD是∠AOB的两条三等分线,则∠COD的度数为;(2)在(1)的条件下,若以点O为旋转中心将射线OD顺时针旋转n°(0<n<75)得到射线OD'.①当OA恰好为∠COD'的三等分线时,求n的值;②在旋转过程中,若∠COD'+∠AOD′>35°,求n的取值范围.18.(2020秋•高新区期末)已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则①∠AOC+∠BOD=;②∠BOC﹣∠AOD=.(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.19.(2020秋•崇川区校级月考)如图,已知O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC,∠DOE=70°,求∠EOC的度数.20.(2021秋•滨海县期末)【阅读理解】射线OC是∠AOB内部的一条射线,若∠COA=∠AOB,则我们称射线OC是射线OA的“友好线”.例如,如图1,∠AOB=60°,∠AOC=∠COD=∠BOD=20°,则∠AOC=∠AOB,称射线OC是射线OA的友好线;同时,由于∠BOD=∠AOB,称射线OD是射线OB的友好线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的友好线,则∠AOM=°;(2)如图3,∠AOB=180°,射线OC与射线OA重合,并绕点O以每秒2°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒3°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止;①是否存在某个时刻t(秒),使得∠COD的度数是40°,若存在,求出t的值,若不存在,请说明理由;②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是另一条射线的友好线.(直接写出答案)21.(2020秋•镇江期末)[阅读]材料1:如图1,在透明纸上画一个角,把这个角对折,使角的两边重合,再展平纸片,折痕把这个角分成两个相等的角.我们称这条折痕所在直线l平分这个角.材料2:如图2中,三角板OAB绕点O顺时针旋转60°到三角板OCD的位置,这时,三角板的边OA、OB绕点O顺时针旋转60°到OC、OD的位置;如图3中,三角板OAB绕点O逆时针旋转90°到三角板OCD的位置,这时,三角板的边OA、OB绕点O逆时针旋转90°到OC、OD的位置.[问题解决](1)将两个大小一样的含30°角的直角三角板按图3的方式摆放(顶点A、C重合).现在将三角板OCD 固定不动,从起始位置(图4)开始,将三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°.设三角板OAB转动的时间为t秒.①当三角板OAB转动到图5的位置时,它的一边OA平分∠COD,求t的值;②当三角板OAB的一边OB所在直线平分∠COD时,t=秒;(直接写出结果)(2)将两个大小一样的含30°角的直角三角板按图6的方式摆放(顶点A、O、C在一条直线上).在三角板OAB绕点O以每秒5°的速度顺时针匀速转动的同时,三角板OCD绕点O以每秒3°的速度逆时针匀速转动,当三角板OAB转动一周时停止转动,此时三角板OCD也停止转动.两块三角板同时从起始位置(图6)开始转动,设三角板OAB转动的时间为t秒.当三角板OAB的一边OB所在直线平分∠COD时,t=秒.(直接写出结果)22.(2020秋•鼓楼区校级月考)(1)已知射线OA,从点O处再引两射OB、OC,使∠AOB=60°,∠BOC =20°.求∠AOC的度数.(2)已知∠AOB=30°,∠BOC=24°,∠AOD=15°,锐角∠COD的度数是.五.余角和补角(共5小题)23.(2021秋•广陵区期末)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是(把符合条件的角都填出来).(2)图中除直角相等外,还有相等的角,请写出三对:①;②;③.(3)①如果∠AOD=140°.那么根据,可得∠BOC=度.②如果,求∠EOF的度数.24.(2021秋•崇川区校级月考)如图,射线OC、OD在∠AOB的内部,∠AOC=∠AOB,OD平分∠BOC,∠BOD与∠AOC互余,求∠AOB的度数、(提示:设∠AOC=x度)25.(2020秋•崇川区校级月考)一个角的余角比它的补角的还少20°,求这个角.26.(2021秋•苏州期末)如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,将一直角三角板AOB(其中∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,此时,∠BOC与∠BOE之间数量关系为;(2)若射线OC的位置保持不变,且∠COE=130°.①在旋转的过程中,是否存在某个时刻,使得射线OA,OC,OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意t的值,若不存在,请说明理由;②如图3,在旋转的过程中,边AB与射线OE相交,请直接写出∠AOC﹣∠BOE的值.27.(2021秋•南京期末)已知∠AOB与∠BOC互为补角,OD平分∠BOC.(1)如图①,若∠AOB=80°,则∠BOC=°,∠AOD=°;(2)如图②,若∠AOB=140°,求∠AOD的度数;(3)若∠AOB=n°,直接写出∠AOD的度数(用含n的代数式表示),及相应的n的取值范围.六.对顶角、邻补角(共1小题)28.(2021秋•南京期末)如图,已知直线AB和CD相交于点O,∠COE=90°,OF平分∠AOE,∠COF =37°.(1)求∠EOB的度数.(2)若射线OF、OD分别绕着点O按顺时针方向转动,两射线同时出发,射线OF每分钟转动6°,射线OD每分钟转动0.5°,多少分钟后,射线OF与射线OD第一次重合.(3)在(2)的条件下,假设转动时间不超过60分钟,若∠FOD=33°,则两射线同时出发分钟.七.垂线(共2小题)29.(2021秋•鼓楼区校级期末)如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=时,AB所在直线与CD所在直线互相垂直.30.(2022秋•鼓楼区校级期末)如图,直线AB、CD相交于点O,OE平分∠AOC,OE⊥OF,∠AOE=32°.(1)求∠DOB的度数;(2)OF是∠AOD的角平分线吗?为什么?。
平面图形的认识(一)综合测试卷(word含答案)
一、初一数学几何模型部分解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.3.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC= ________.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)________.(3)将直线MN绕点P旋转。
第六章《平面图形的认识(一)》高分拔尖卷(含答案)
第六章《平面图形的认识(一)》高分拔尖卷考试时间:120分钟试卷满分:100分一.选择题(共7小题,满分21分,每小题3分)1.如图,O 是直线AB 上一点,OE 平分AOB ∠,90COD ∠=︒.则图中互余的角、互补的角各有( )对.A .3,3B .4,7C .4,4D .4,52.如果线段16AB cm =,点C 是AB 的中点,点D 是CB 的中点,点P 是AD 的中点,则PC 是( ) A .1cmB .2cmC .3cmD .4cm3.如图,取一条长度为1的线段,将它三等分,去掉中间一段,余下两条线段,达到第1阶段;将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分,各去掉中间一段,余下八条线段,达到第3阶段;⋯⋯;这样一直继续操作下去,当达到第2018个阶段时,余下的线段的长度之和为( )A .20171()3B .20172()3C .20182()3D .20192()34.如图,AB 是一段高铁行驶路线图图中字母表示的5个点表示5个车站在这段路线上往返行车,需印制( )种车票.A .10B .11C .20D .225.如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中有2对互补的角;③若90BAE ∠=︒,40DAC ∠=︒,则以A 为顶点的所有小于平角的角的度数和为360︒;④若2BC =,3CD DE ==,点F 是线段BE 上任意一点,则点F 到点B 、C 、D 、E 的距离之和最大值为15,最小值为11,其中说法正确的个数有( )A .1个B .2个C .3个D .4个6.下列说法:①平方等于其本身的数有0和1;②233xy 是四次单项式;③11()122÷-=-;④平面内有4个点,过每两点画直线,可画6条其中说法正确的个数有( ) A .2个B .1个C .4个D .3个7.如图所示,某公司有三个住宅区,A 、B 、C 各区分别住有职工30人,15人,10人,且这三点在一条大道上(A ,B ,C 三点共线),已知100AB =米,200BC =米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .点AB .点BC .A ,B 之间D .B ,C 之间二.填空题(共9小题,满分27分,每小题3分)8.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,⋯,像这样,10条直线相交最多有 个交点.9.如图,点A 、B 、C 、D 是直线l 上的四个点,图中共有线段的条数是 .10.将两个形状、大小完全相同的含有30︒、60︒的三角板PAB 与PCD 如图1放置,A 、P 、C 三点在同一直线上,现将三角板PAB 绕点P 沿顺时针方向旋转一定角度,如图2,若PE平分APD ∠,PF 平分BPD ∠,则EPF ∠的度数是 ︒.11.已知线段MN ,在MN 上逐一画点(所画点与M 、N 不重合),当线段上有1个点时,共有3条线段,当线段上有2个点时,共有6条线段;当线段上有3个点时,共有10条线段;直接写出当线段上有20个点时,共有线段 条.12.如图,已知OB、OC是AOD∠.∠内部的两条射线,OM平分AOB∠,ON平分COD①若40BOC∠=︒,80∠的度数为度;MON∠=︒,则AOD②若AOD x∠的度数为度(用含x的代数式表示).∠=︒,则BOCMON∠=︒,8013.一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有(1k k=、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.14.如果线段5BC cm=,且A,B,C三点在同一条直线上,那么A,C两AB cm=,3点之间的距离是.15.时针指示6点15分,它的时针和分针所夹的角是度.16.平面内两条直线相交,有1个交点;三条直线相交,最多有3个交点;⋯,若5条直线相交,最多有个交点.三.解答题(共8小题,满分52分)17.(4分)如图,已知75∠内部的一条射线,过点O作射线OD,AOB∠=︒,OC是AOB使得COD AOB∠=∠.(1)若120∠=︒;∠=︒,则BOCAOD(2)若5∠=︒;AOD BOC∠=∠,则BOD(3)当COD∠+∠是否变化?若不变,求出其大小;若变化,∠绕着点O旋转时,AOD BOC说明理由.18.(6分)已知直角三角板ABC和直角三角板DEF,90ABC∠=︒,∠=∠=︒,60ACB EDF∠=︒.45DEF(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分ACB∠时,求ACE∠的度数;(2)在(1)的条件下,继续旋转三角板DEF,猜想ACE∠有怎样的数量关系?∠与BCF并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.当∠内部时,直接写出ACDCA落在DCF∠之间的数量关系.∠与BCF19.(6分)如图,OC是AOB∠<∠,OE是AOB∠的平分线,∠内一条射线,且AOC BOC∠的平分线,则:OD是AOC(1)若108∠=︒,则OC是DOE∠平分线.请说明理由;AOC∠=︒,36AOB(2)小明由第(1)题得出猜想:当3∠=∠时,OC一定平分DOE∠.你觉得小AOB AOC明的猜想正确吗?若正确,请说明理由;若不正确,判断当AOB∠满足什么条件∠和AOC时OC一定平分DOE∠,并说明理由.20.(6分)已知90∠=︒,OC是一条可以绕点O转动的射线,ON平分AOC∠,OM AOB平分BOC∠.(1)当射线OC转动到AOB∠的度数.∠的内部时,如图(1),求MON(2)当射线OC转动到AOB∠的大小是否∠的外时(90180)︒<∠<∠︒,如图2,MONBOC发生变化?变或者不变均说明理由.21.(6分)已知,OM平分AOC∠.∠,ON平分BOC(1)如图1,若OA OB⊥,60∠=︒,求MON∠的度数;BOC(2)如图2,若80∠∠=,求AONMON AOC∠的度数.AOB∠=︒,:2:722.(8分)如图1,已知点C在线段AB上,线段10BC=厘米,点M,N分AC=厘米,6别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC BC a+=,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2/cm s的速度沿AB向右运动,终点为B,点Q以1/cm s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?23.(8分)已知160AOD∠=︒,OB、OC、OM、ON是AOD∠内的射线.(1)如图1,若OM平分AOB∠,ON平分BOD∠.当OB绕点O在AOD∠内旋转时,求MON∠的大小;(2)如图2,若20BOC∠=︒,OM平分AOC∠,ON平分BOD∠.当BOC∠绕点O在AOD∠内旋转时,求MON∠的大小;(3)在(2)的条件下,若10AOB∠=︒,当BOC∠在AOD∠内绕着点O以2度/秒的速度逆时针旋转t秒时,23AOM DON∠=∠.求t的值.24.(8分)(1)如图,已知点C在线段AB上,且6AC cm=,4BC cm=,点M、N分别是AC、BC的中点,求线段MN的长度;(2)若点C是线段AB上任意一点,且AC a=,BC b=,点M、N分别是AC、BC的中点,请直接写出线段MN的长度;(用a、b的代数式表示)(3)在(2)中,把点C是线段AB上任意一点改为:点C是直线AB上任意一点,其他条件不变,则线段MN的长度会变化吗?若有变化,求出结果.一.选择题(共7小题,满分21分,每小题3分)1.(3分)如图,O 是直线AB 上一点,OE 平分AOB ∠,90COD ∠=︒.则图中互余的角、互补的角各有( )对.A .3,3B .4,7C .4,4D .4,5【解答】解:OE 平分AOB ∠,90AOE BOE ∴∠=∠=︒,∴互余的角有AOC ∠和COE ∠,AOC ∠和BOD ∠,COE ∠和DOE ∠,DOE ∠和BOD ∠共4对,互补的角有AOC ∠和BOC ∠,DOE ∠和BOC ∠,COE ∠和AOD ∠,BOD ∠和AOD ∠,AOE ∠和BOE ∠,AOE ∠和COD ∠,COD ∠和BOE ∠共7对. 故选:B .2.(3分)如果线段16AB cm =,点C 是AB 的中点,点D 是CB 的中点,点P 是AD 的中点,则PC 是( ) A .1cmB .2cmC .3cmD .4cm【解答】解:如图,16AB =,点C 是AB 的中点,182AC BC AB ∴===,点D 是CB 的中点, 142CD BD CB ∴===,12AD AC CD ∴=+=,点P 是AD 的中点, 162AP PD AD ∴===,862PC AC AP ∴=-=-=,则PC 的长为2cm . 故选:B .3.(3分)如图,取一条长度为1的线段,将它三等分,去掉中间一段,余下两条线段,达到第1阶段;将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分,各去掉中间一段,余下八条线段,达到第3阶段;⋯⋯;这样一直继续操作下去,当达到第2018个阶段时,余下的线段的长度之和为( )A .20171()3B .20172()3C .20182()3D .20192()3【解答】解:初始线段长度为1, ∴第一阶去掉13,为23,第二阶再去掉13,为22()3, 依此类推,第2018阶为20182()3,故选:C .4.(3分)如图,AB 是一段高铁行驶路线图图中字母表示的5个点表示5个车站在这段路线上往返行车,需印制( )种车票.A .10B .11C .20D .22【解答】解:5(51)20⨯-=, 故选:C .5.(3分)如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中有2对互补的角;③若90BAE ∠=︒,40DAC ∠=︒,则以A 为顶点的所有小于平角的角的度数和为360︒;④若2BC =,3CD DE ==,点F 是线段BE 上任意一点,则点F 到点B 、C 、D 、E 的距离之和最大值为15,最小值为11,其中说法正确的个数有( )A .1个B .2个C .3个D .4个【解答】解:①以B 、C 、D 、E 为端点的线段BC 、BD 、BE 、CE 、CD 、DE 共6条,故①正确;②图中互补的角就是分别以C 、D 为顶点的两对邻补角,即BCA ∠和ACD ∠互补,ADE ∠和ADC ∠互补,故②正确;③由90BAE ∠=︒,40CAD ∠=︒,根据图形可以求出90909040310BAC DAE DAC BAE BAD CAE ∠+∠+∠+∠+∠+∠=︒+︒+︒+︒=︒,故③错误; ④当F 在线段CD 上,则点F 到点B 、C 、D 、E 的距离之和最小为11FB FE FD FC +++=,当F 和E 重合,则点F 到点B 、C 、D 、E 的距离之和最大为806317FB FE FD FC +++=+++=,故④错误.故选:B .6.(3分)下列说法:①平方等于其本身的数有0和1;②233xy 是四次单项式;③11()122÷-=-;④平面内有4个点,过每两点画直线,可画6条其中说法正确的个数有( ) A .2个B .1个C .4个D .3个【解答】解:①平方等于其本身的数有0和1,说法正确;②233xy 是四次单项式,说法正确;③11()122÷-=-,说法正确;④平面内有4个点,过每两点画直线,可画6条,说法错误; 说法正确的个数有3个, 故选:D .7.(3分)如图所示,某公司有三个住宅区,A 、B 、C 各区分别住有职工30人,15人,10人,且这三点在一条大道上(A ,B ,C 三点共线),已知100AB =米,200BC =米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .点AB .点BC .A ,B 之间D .B ,C 之间【解答】解:①以点A 为停靠点,则所有人的路程的和15100103004500=⨯+⨯=(米), ②以点B 为停靠点,则所有人的路程的和30100102005000=⨯+⨯=(米), ③以点C 为停靠点,则所有人的路程的和303001520012000=⨯+⨯=(米),④当在AB 之间停靠时,设停靠点到A 的距离是m ,则(0100)m <<,则所有人的路程的和是:3015(100)10(300)450054500m m m m +-+-=+>,⑤当在BC 之间停靠时,设停靠点到B 的距离为n ,则(0200)n <<,则总路程为30(100)1510(200)5000354500n n n n +++-=+>.∴该停靠点的位置应设在点A ;故选:A .二.填空题(共9小题,满分27分,每小题3分)8.(3分)观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,⋯,像这样,10条直线相交最多有 45 个交点.【解答】解:两条直线相交最多有1个交点, 三条直线相交最多有123+=个交点, 四条直线相交最多有1236++=个交点, 五条直线相交最多有123410+++=个交点,⋯⋯十条直线相交最多有12345678945++++++++=个交点; 故答案为:45.9.(3分)如图,点A 、B 、C 、D 是直线l 上的四个点,图中共有线段的条数是 6 .【解答】解:图中的线段有:AB 、AC 、AD 、BC 、BD 、CD 共6条,故答案为:6.10.(3分)将两个形状、大小完全相同的含有30︒、60︒的三角板PAB 与PCD 如图1放置,A 、P 、C 三点在同一直线上,现将三角板PAB 绕点P 沿顺时针方向旋转一定角度,如图2,若PE 平分APD ∠,PF 平分BPD ∠,则EPF ∠的度数是 15 ︒.【解答】解:设三角板PAB 绕点P 沿顺时针方向旋转的角度为α,则18060120APD αα∠=︒-︒-=︒-,PE 平分APD ∠,PF 平分BPD ∠,111(120)60222APE EPD APD αα∴∠=∠=∠=︒-=︒-,111(1806030)45222BPF FPD BPD αα∠=∠=∠=︒-︒-︒-=︒-1160(45)1522EPF EPD FPD αα∴∠=∠-∠=︒--︒-=︒,故答案为:15︒11.(3分)已知线段MN ,在MN 上逐一画点(所画点与M 、N 不重合),当线段上有1个点时,共有3条线段,当线段上有2个点时,共有6条线段;当线段上有3个点时,共有10条线段;直接写出当线段上有20个点时,共有线段 231 条.【解答】解:由题意可得:当在MN 上有20个点时,共有线段:11232021(121)212312+++⋯++=+⨯=,故答案为:231.12.(3分)如图,已知OB 、OC 是AOD ∠内部的两条射线,OM 平分AOB ∠,ON 平分COD ∠.①若40BOC ∠=︒,80MON ∠=︒,则AOD ∠的度数为 120 度;②若AOD x ∠=︒,80MON ∠=︒,则BOC ∠的度数为 度(用含x 的代数式表示).【解答】解:(1)MON BOC BOM CON ∠-∠=∠+∠,40BOC ∠=︒,80MON ∠=︒, 804040BOM CON ∴∠+∠=︒-︒=︒,OM 平分AOB ∠,ON 平分COD ∠,AOM BOM ∴∠=∠,DON CON ∠=∠,40AOM DON ∴∠+∠=︒,8040120AOD MON AOM DON ∴∠=∠+∠+∠=︒+︒=︒,故答案为:120︒;(2)AOD x ∠=︒,80MON ∠=︒,(80)AOM DON AOD MON x ∴∠+∠=∠-∠=-︒, (80)BOM CON AOM DON x ∠+∠=∠+∠=-︒,()80(80)(160)BOC MON BOM CON x x ∴∠=∠-∠+∠=︒--︒=-︒, 故答案为:(160)x -.13.(3分)一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k 号楼恰好有(1k k =、2、3、4、5)个A 厂的职工,相邻两楼之间的距离为50米.A 厂打算在直街上建一车站,为使这5栋楼所有A 厂职工去车站所走的路程之和最小,车站应建在距1号楼 150 米处.【解答】解:假设车站距离1号楼x 米,则总距离||2|50|3|100|4|150|5|200|S x x x x x =+-+-+-+-,①当050x 时,200013S x =-,最小值为1350;②当50100x 时,18009S x =-,最小值为900;②当100150x 时,12003S x =-,最小值为750(此时150)x =;当150200x 时,5S x =,最小值为750(此时150)x =.∴综上,当车站距离1号楼150米时,总距离最小,为750米.故答案为:150.14.(3分)如果线段5AB cm =,3BC cm =,且A ,B ,C 三点在同一条直线上,那么A ,C 两点之间的距离是 8cm 或2cm .【解答】解:当点C 在AB 之间时,532AC AB BC cm =-=-=;当点C 在点B 的右侧时,538AC AB BC cm =+=+=.故填8或2.15.(3分)时针指示6点15分,它的时针和分针所夹的角是 97.5 度.【解答】解:把6点作为起始时间.15分钟,时针旋转了一个大格的14,即1307.54︒⨯=︒,此时分针指向3,3与6之间有三个大格,共30390︒⨯=︒,故针和分针所夹角的度数是907.597.5︒+︒=︒.16.(3分)平面内两条直线相交,有1个交点;三条直线相交,最多有3个交点;⋯,若5条直线相交,最多有 10 个交点.【解答】解:两条直线相交,有1个交点;三条直线相交,最多有3个交点,此时要求第3条直线不过前2条直线的交点;四条直线相交,最多有6个交点;仍要求不存在交点重合的情况,据此可推得:若5条直线相交,最多有6410+=个交点,即与前4条都相交,即增加了4个交点;共10个交点. 或者代入公式11(1)541022S n n =-=⨯⨯=求解.故应填10.三.解答题(共8小题,满分52分)17.(4分)如图,已知75AOB ∠=︒,OC 是AOB ∠内部的一条射线,过点O 作射线OD ,使得COD AOB ∠=∠.(1)若120AOD ∠=︒,则BOC ∠= 30 ︒;(2)若5AOD BOC ∠=∠,则BOD ∠= ︒;(3)当COD ∠绕着点O 旋转时,AOD BOC ∠+∠是否变化?若不变,求出其大小;若变化,说明理由.【解答】解:(1)COD AOB ∠=∠.即AOC BOC BOC BOD ∠+∠=∠+∠,AOC BOD ∴∠=∠,120AOD ∠=︒,75AOB ∠=︒,1207545AOC BOD ∴∠=∠=︒-︒=︒,754530BOC AOB AOC ∴∠=∠-∠=︒-︒=︒,故答案为:30,(2)设BOD x ∠=︒,由(1)得AOC BOD x ∠=∠=︒,则75BOC x ∠=︒-︒由5AOD BOC ∠=∠得,755(75)x x +=-,解得,50x =,即:50BOD ∠=︒,故答案为:50;(3)不变;75COD AOB ∠=∠=︒,AOC BOD ∠=∠,752150AOD BOC AOC BOC BOD BOC AOB COD ∴∠+∠=∠+∠+∠+∠=∠+∠=︒⨯=︒, 答:当COD ∠绕着点O 旋转时,150AOD BOC ∠+∠=︒,其值不变.18.(6分)已知直角三角板ABC 和直角三角板DEF ,90ACB EDF ∠=∠=︒,60ABC ∠=︒,45DEF ∠=︒.(1)如图1.将顶点C 和顶点D 重合.保持三角板ABC 不动,将三角板DEF 绕点C 旋转,当CF 平分ACB ∠时,求ACE ∠的度数;(2)在(1)的条件下,继续旋转三角板DEF ,猜想ACE ∠与BCF ∠有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转.当CA 落在DCF ∠内部时,直接写出ACD ∠与BCF ∠之间的数量关系.【解答】解:(1)CF 平分ACB ∠,11904522BCF ACF ACB ∴∠=∠=∠=⨯︒=︒,904545ACE ECF ACF ∴∠=∠-∠=︒-︒=︒;(2)ACE BCF ∠=∠,90BCF ACF ACE ACF ∠+∠=︒=∠+,ACE BCF ∴∠=∠;(3)45BCF ACD ∠-∠=︒,90ACF BCF ∠+∠=︒,45ACD ACF DCF ∠+∠=∠=︒,()()9045ACF BCF ACD ACF ∴∠+∠-∠+∠=︒-︒,即:45BCF ACD ∠-∠=︒.19.(6分)如图,OC 是AOB ∠内一条射线,且AOC BOC ∠<∠,OE 是AOB ∠的平分线,OD 是AOC ∠的平分线,则:(1)若108AOB ∠=︒,36AOC ∠=︒,则OC 是DOE ∠平分线.请说明理由;(2)小明由第(1)题得出猜想:当3AOB AOC ∠=∠时,OC 一定平分DOE ∠.你觉得小明的猜想正确吗?若正确,请说明理由;若不正确,判断当AOB ∠和AOC ∠满足什么条件时OC 一定平分DOE ∠,并说明理由.【解答】解:(1)OE 是AOB ∠的平分线,108AOB ∠=︒,111085422AOE BOE AOB ∴∠=∠=∠=⨯︒=︒,36AOC ∠=︒,543618COE ∴∠=︒-︒=︒,OD 是AOC ∠的平分线,36AOC ∠=︒,11361822COD AOD AOC ∴∠=∠=∠=⨯︒=︒,OC ∴是DOE ∠平分线;(2)正确,设AOC α∠=,则3AOB α∠=,OE 平分AOB ∠,3AOB α∠=,32AOE α∴∠=,AOC α∠=,12COE α∴∠=,OD 是AOC ∠的平分线,12COD COE α∴∠==∠,OC ∴平分DOE ∠.20.(6分)已知90AOB ∠=︒,OC 是一条可以绕点O 转动的射线,ON 平分AOC ∠,OM 平分BOC ∠.(1)当射线OC 转动到AOB ∠的内部时,如图(1),求MON ∠的度数.(2)当射线OC 转动到AOB ∠的外时(90180)BOC ︒<∠<∠︒,如图2,MON ∠的大小是否发生变化?变或者不变均说明理由.【解答】解:(1)如图1所示:ON 平分AOC ∠,12CON AOC ∴∠=∠,又OM 平分BOC ∠,12COM BOC ∴∠=∠,又90AOB AOC BOC ∠=∠+∠=︒,MON CON COM ∴∠=∠+∠1()2AOC BOC =∠+∠1902=⨯︒45=︒;(2)MON ∠的大小不变,如图2所示,理由如下:OM 平分BOC ∠,12MOC BOC ∴∠=∠,又ON 平分AOC ∠,12AON AOC ∴∠=∠,又MON AON AOM ∠=∠+∠,1()2MON BOC AOC ∴∠=∠-∠12AOB =∠1902=⨯︒45=︒.21.(6分)已知,OM 平分AOC ∠,ON 平分BOC ∠.(1)如图1,若OA OB ⊥,60BOC ∠=︒,求MON ∠的度数;(2)如图2,若80AOB ∠=︒,:2:7MON AOC ∠∠=,求AON ∠的度数.【解答】解:(1)OA OB ⊥,90AOB ∴∠=︒,AOC AOB BOC ∠=∠+∠,60BOC ∠=︒,9060150AOC ∴∠=︒+︒=︒,OM 平分AOC ∠,1752COM AOC ∴∠=∠=︒,ON 平分BOC ∠,11603022CON BOC ∴∠=∠=⨯︒=︒,753045MON COM CON ∴∠=∠-∠=︒-︒=︒;(2)12COM AOC ∠=∠,12CON BOC ∠=∠,11()4022MON AOC BOC AOB ∴∠=∠-∠=∠=︒,:2:7MON AOC ∠∠=,140AOC ∴∠=︒,OM 平分AOC ∠,1702AOM AOC ∴∠=∠=︒,7040110AON AOM MON ∴∠=∠+∠=︒+︒=︒22.(8分)如图1,已知点C 在线段AB 上,线段10AC =厘米,6BC =厘米,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长度; (2)根据第(1)题的计算过程和结果,设AC BC a +=,其他条件不变,求MN 的长度;(3)动点P 、Q 分别从A 、B 同时出发,点P 以2/cm s 的速度沿AB 向右运动,终点为B ,点Q 以1/cm s 的速度沿AB 向左运动,终点为A ,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C 、P 、Q 三点有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)线段10AC =厘米,6BC =厘米,点M ,N 分别是AC ,BC 的中点, 152CM AC ∴==厘米,132CN BC ==厘米,8MN CM CN ∴=+=厘米;(2)点M ,N 分别是AC ,BC 的中点,12CM AC ∴=,12CN BC =,111222MN CM CN AC BC a ∴=+=+=; (3)①当05t <时,C 是线段PQ 的中点,得1026t t -=-,解得4t =;②当1653t <时,P 为线段CQ 的中点,210163t t -=-,解得265t =;③当1663t <时,Q 为线段PC 的中点,6316t t -=-,解得112t =; ④当68t <时,C 为线段PQ 的中点,2106t t -=-,解得4t =(舍),综上所述:4t =或265或112.23.(8分)已知160AOD ∠=︒,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,若OM 平分AOB ∠,ON 平分BOD ∠.当OB 绕点O 在AOD ∠内旋转时,求MON ∠的大小; (2)如图2,若20BOC ∠=︒,OM 平分AOC ∠,ON 平分BOD ∠.当BOC ∠绕点O 在AOD∠内旋转时,求MON ∠的大小;(3)在(2)的条件下,若10AOB ∠=︒,当BOC ∠在AOD ∠内绕着点O 以2度/秒的速度逆时针旋转t 秒时,23AOM DON ∠=∠.求t 的值. 【解答】解:(1)因为160AOD ∠=︒,OM 平分AOB ∠,ON 平分BOD ∠,所以12MOB AOB ∠=∠,12BON BOD ∠=∠,即MON MOB BON ∠=∠+∠1122AOB BOD =∠+∠1()2AOB BOD =∠+∠1802AOD =∠=︒,答:MON ∠的度数为80︒;(2)因为OM 平分AOC ∠,ON 平分BOD ∠,所以12MOC AOC ∠=∠,12BON BOD ∠=∠,①射线OC 在OB 左侧时,如图:MON MOC BON BOC ∠=∠+∠-∠ 1122AOC BOD BOC =∠+∠-∠1()2AOC BOD BOC =∠+∠-∠1()2AOD BOC BOC =∠+∠-∠1180202=⨯︒-︒70=︒;②射线OC 在OB 右侧时,如图:MON MOC BON BOC ∠=∠+∠+∠ 1122AOC BOD BOC =∠+∠+∠1()2AOC BOD BOC =∠+∠+∠1()2AOD BOC BOC =∠-∠+∠1140202=⨯︒+︒90=︒;答:MON ∠的度数为70︒或90︒.(3)射线OB 从OA 逆时针以2︒每秒的速度旋转t 秒,20COB ∠=︒, ∴根据(2)中的第一种情况,得21020230AOC AOB COB t t ∠=∠+∠=︒+︒+︒=︒+︒.射线OM 平分AOC ∠,1152AOM AOC t ∴∠=∠=︒+︒.BOD AOD BOA ∠=∠-∠,160AOD ∠=︒,1502BOD t ∴∠=︒-︒.射线ON 平分BOD ∠, 1752DON BOD t ∴∠=∠=︒-︒.又:2:3AOM DON ∠∠=,(15):(75)2:3t t ∴+-=,解得21t =.根据(2)中的第二种情况,观察图形可知:这种情况不可能存在10AOB ∠=︒. 答:t 的值为21秒.24.(8分)(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(用a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.【解答】解:(1)6AC cm =,点M 是AC 的中点 132CM AC cm ∴==4BC cm =,点N 是BC 的中点122CN BC cm ∴==5MN CM CN cm ∴=+=∴线段MN 的长度为5cm .(4分)(2)2a b MN +=.(6分)(3)线段MN 的长度会变化.(7分)当点C 在线段AB 上时,由(2)知2a b MN +=(8分) 当点C 在线段AB 的延长线时,如图:则AC a BC b =>=AC a =点M 是AC 的中点1122CM AC a ∴==BC b =点N 是BC 的中点1122CN BC b ∴==2a bMN CM CN -∴=-=(9分)当点C 在线段BA 的延长线时,如图:则AC a BC b =<=同理可求:1122CM AC a ==1122CN BC b == 2b aMN CN CM -∴=-=(10分)∴综上所述,线段MN 的长度变化,2a b MN +=,2a b -,2b a-.。
《平面图形的认识(一)》拓展试题
《平面图形的认识(一)》拓展试题《平面图形的认识(一)》1.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求线段AM的长.2.如图,B、C两点把线段AB分成2:3:4的三部分,M点AD的中点,CD=8,求MC 的长.3.A车站到B车站之间还有3个车站,那么从A车站到B车站方向发出的车辆.一共有多少种不同的车票( )A.8 B.9 C.10D.1124.如图,线段AB-4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2,但他在反思的过程中突发奇想:若点O运动到AB的延长线上时,原有的结论“CD=2”是否仍成立?请帮小明画出图形并说明理由.5.如图,A、B、C表示3个村庄,它们被三条河隔开,现在打算在每两个村庄之间都修一条笔直公路,则一共需架多少座桥?请你在图上用字母标明桥的位置.6.如图已知∠AOB+∠AOC=180°,OP、3OQ分别平分∠AOB、∠AOC且∠POQ=50°.求∠AOB、∠AOC的度数.7.已知∠AOB=30°,又自∠AOB的顶点O 引射线OC.若∠AOC:∠AOB=4:3,那么∠BOC=( )A.10°B.40°C.45°D.70°或10°8.小明晚上6点多外出购物.看手表上时针与分针的夹角为110°,接近7点回到家,发现时针与分针的夹角又是110°,问小明外出时用了多少时间?49.考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图中画出射线OA、OB,并计算∠AOB的度数.10.已知∠a与∠β之和的补角等于∠a与∠β之差的余角,则∠β=( )A.60°B.45°C.75°D.无法求出11.为了解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路,现已知四个村庄及电厂之间距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线的最短总长度应该是( )A.19.5 B.20.5 C.21.5 D.25.5512.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和.13.如图,已知∠AOB与∠BOC互为补角,OD是∠AOB的角平分线,OE在∠BOC内,∠EOC,∠DOE=72°,求∠EOC ∠BOE=12的度数.614.如图所示,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和为( ) A.5 B.6C.7 D.815.如图所示,同一直线上有A、B、C、D四点,已知:AD:DB=5:9.AC:CB=9:5,且CD=4cm,求线段AB的长是多少?16.In the figure,Mon is a straight 1ive,If the angles α、β and γ,satisfgβ:α=2:1,and γ:7β=3:1,then the ang1e β=_______,(英汉小词典straight 1ive直线;ang1e角;satisfg满足)17.五位朋友,a、b、c、d、e在公园聚会,见面时握手致意问候,已知a握了4次,b握了1次,C握了3次,d握了2次,到目前为止,e 握了( )次.A.1 B.2 C.3 D.418.如图,已知B是线段AC上一点,M是线段AB的中点,N是线段AC的中点,P为NA 的中点,Q为MA的中点,则MN:PQ等于( )A.1 B.2 C.3 4D.8加油站M所花费的总时间最少,试找出M的位置.20.如图,B、C、D依次是线段AE上的三点,已知AE=8.9cm,BD=3cm则图中以A、B、C、D、E这5个点为端点的所有线段长度的和为_______cm.21.如图是一个3×3的正方形,则图中∠1+∠2+∠3+…+∠9的度数(degree)是_______.22.钟面上从2点到4点有几次时针与分针成60°的角?分别是几时几分?923.电子跳蚤游戏盘为△ABC,AB=8a,AC =9a,BC=10a,如果电子跳蚤开始时在BC边上P0处,BP0=4a,第一步跳蚤跳到AC边上P1处且CP1=CP0;第二步跳蚤以P1跳到AB 边上P2处,且AP2=AP1;第三步跳蚤跳到BC 边上P3处,且BP3=BP2……跳蚤按上述规则跳下去,第2001次落到P2001,请计算P0与P2001之间的距离.24.如图,已知C是线段AB的中点D是线段AC的中点,且图中所有线段的长度和为2010,求线段AC的长度.25.设有甲、乙、丙三人,他们的步行速度相同,骑车速度也相同,骑车的速度为步行速度的3倍,现甲自A地去B地,乙、丙则从B地去A地,双方同时出发,出发时,甲、乙为步10行,丙骑车,途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又步行,三人仍按各自方向继续前进,问:三人之中谁最选到达自己的目的地?谁最后到达目的地?26.如图,∠A1OA11为一平角,∠A3OA2-∠A2OA1=∠A4OA3-∠A3OA2=…=∠A11OA10-∠A10OA9=2°.求∠A2OA1的度数.参考答案1.3cm或9cm2.1 3.C4.2 5.共建5座桥,分别在M、N、P、Q、R五处(如图所示).6.140°. 7.D8.40分钟.9.75°. 10.B11.B12.(1)6条,20;(2)36条,88.13.72°14.D cm. 16.40°17.B15.8718.B19.M应选在CD段(包括C、D)任意一点均可.20.41.621.405°22.共有四次23.a24.402225.丙最先13到达目的地,甲最后到达目的地.26.9°。
2019-2020寒假《平面图形的认识(一)》解答题难题拓展训练(一)(无答案)
2019-2020寒假《平面图形的认识(一)》解答题难题拓展训练(一)一、解答题1.已知∠AOB=m°,与∠AOC互为余角,与∠BOD互为补角,OM平分∠AOC,ON平分∠BOD.(1)如图,当m=36时.①求∠MOB的度数;②请你补全图形,并求∠MON的度数;(2)当∠AOB为大于30°的锐角,且∠AOC与∠AOB有重合部分时,请直接写出∠MON的度数______.(用含有m的代数式表示)2.如图:已知数轴上点A表示的数是6,,B是数轴上一点,且AB=10,动点P从点A出发,以每秒6个单位的速度向左匀速运动,设运动时间为t秒.(1)写出数轴.上点B表示的数___,点P表示的数____(用含t的代数式表示)(2)动点R从点B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒是追上R、(3)若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化,若变化,请说明理由;若不变,请你画出图形,并求出MN的长。
∠AOC,∠BOD=3∠BOC(∠BOC<45°),3.【问题提出】已知∠AOB=70°,∠AOD=12求∠BOC的度数.【问题思考】聪明的小明用分类讨论的方法解决.(1)当射线OC在∠AOB的内部时,①若射线OD在∠AOC内部,如图1,可求∠BOC的度数,解答过程如下:设∠BOC=α,∴∠BOD=3∠BOC=3α,∴∠COD=∠BOD−∠BOC=2α,∴∠AOD=1∠AOC,2∴∠AOD=∠COD=2α,∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°∴α=14°,∴∠BOC=14°问:当射线OC在∠AOB的内部时,②若射线OD在∠AOB外部,如图2,请你求出∠BOC的度数;【问题延伸】(2)当射线OC在∠AOB的外部时,请你画出图形,并求∠BOC的度数.【问题解决】综上所述:∠BOC的度数分别是____________.4.探索新知:如图①,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.(1)一个角的平分线_________这个角的“巧分线”;(填“是”或“不是”)(2)如图②,若∠MPN=a,且射线PQ是∠MPN的“巧分线”,则∠MPQ=___________;(用含a的代数式表示出所有可能的结果)深入研究:如图②,若∠MPN=60°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成180°时停止旋转,旋转的时间为t秒.(3)当t何值时,射线PM是∠QPN的“巧分线”;(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN的“巧分线”时t的值.5.点O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图 1中的∠COD绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE与∠AOC的度数之间的关系,写出你的结论,并说明理由.6.如图,O为直线AB上一点,∠AOC=58°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明:OE是否平分∠BOC.(3)与∠AOE互补的角是______;7.如图,三角尺的直角顶点C在平面直角坐标系的第四象限,三角尺的两条直角边分别与x轴的正半轴和y轴的负半轴交于点D和点B。
(2021年整理)平面图形的认识(一)复习题及答案
平面图形的认识(一)复习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(平面图形的认识(一)复习题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为平面图形的认识(一)复习题及答案的全部内容。
平面图形的认识(一)复习题一、选择题(共12小题;共36分)1. 手电筒射出去的光线,给我们的形象是()A。
直线B。
射线 C. 线段 D. 折线2. 点,分别是的边,上的点,分别作出点到的垂线段,点到的垂线段,其中正确的图形是( )A. B。
C。
D.3. 下列说法正确的是( )A。
角的两边画出的越长这个角就越大B. 角的大小与角的两边长短无关C. 角的大小与角的度数的大小不一致D。
直线是一个平角4。
下列各角不能用一副三角尺画出的是( )A. B。
C. D。
5. 如图所示,下列条件中:① ;② ;③ ;④ .其中能判断直线的有A. 个B。
个C。
个 D. 个6。
如图所示,,,,若,则A。
B. C。
D。
7. 下列说法中,错误的是( )A。
在同一平面内,过直线外一点,有且只有一条直线与这条直线垂直B。
在同一平面内,过直线上一点有且只有一条直线与这条直线垂直C。
过直线外一点,有且只有一条直线与这条直线平行D. 过直线上一点有且只有一条直线与这条直线平行8. 如图,直线,相交于点,射线平分,.若,则的度数为A. B. C。
D.9。
将线段延长至,再将线段反向延长至,则图中线段的条数为( )A. B. C. D。
10。
如图所示,,平分,下列四个等式:① ;② ;③ ;④ .其中正确的是A. ①②B. ②③C. ③④D. ①④11. 若和互补,且,则下列表示的余角的式子中:① ;② ;③ ;④ .正确的有()A. 个B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面图形的认识(一)》
1.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求线段AM的长.
2.如图,B、C两点把线段AB分成2:3:4的三部分,M点AD的中点,CD=8,求MC的长.
3.A车站到B车站之间还有3个车站,那么从A车站到B车站方向发出的车辆.一共有多少种不同的车票( )
A.8 B.9 C.10 D.11
4.如图,线段AB-4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2,但他在反思的过程中突发奇想:若点O运动到AB的延长线上时,原有的结论“CD=2”是否仍成立?请帮小明画出图形并说明理由.
5.如图,A、B、C表示3个村庄,它们被三条河隔开,现在打算在每两个村庄之间都修一条笔直公路,则一共需架多少座桥?请你在图上用字母标明桥的位置.
6.如图已知∠AOB+∠AOC=180°,OP、OQ分别平分∠AOB、∠AOC且∠POQ=50°.求∠AOB、∠AOC的度数.
7.已知∠AOB=30°,又自∠AOB的顶点O引射线OC.若∠AOC:∠AOB=4:3,那么∠BOC=( )
A.10°B.40°C.45°D.70°或10°
8.小明晚上6点多外出购物.看手表上时针与分针的夹角为110°,接近7点回到家,发现时针与分针的夹角又是110°,问小明外出时用了多少时间?
9.考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B 位于O点南偏东60°,请在图中画出射线OA、OB,并计算∠AOB的度数.
10.已知∠a与∠β之和的补角等于∠a与∠β之差的余角,则∠β=( ) A.60°B.45° C.75° D.无法求出
11.为了解决四个村庄用电问题,政府投资在已建电厂与这四个
村庄之间架设输电线路,现已知四个村庄及电厂之间距离如图
所示(距离单位:公里),则能把电力输送到这四个村庄的输电
线的最短总长度应该是( )
A.19.5 B.20.5 C.21.5 D.25.5
12.已知线段AB=6.
(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;
(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和.
13.如图,已知∠AOB与∠BOC互为补角,OD是∠AOB的角平分线,OE在∠BOC内,
∠BOE=1
2∠EOC,∠DOE=72°,求∠EOC的度数.
14.如图所示,直线l与∠O的两边分别交于点A、B,则图中以
O、A、B为端点的射线的条数总和为( )
A.5 B.6
C.7 D.8
15.如图所示,同一直线上有A、B、C、D四点,已知:AD:DB
=5:9.AC:CB=9:5,且CD=4cm,求线段AB的长是多少?
16.In the figure,Mon is a straight 1ive,If the angles α、β and γ,satisfgβ:α=2:1,and γ:β=3:1,then the ang1e β=_______,(英汉小词典straight 1ive直线;ang1e角;satisfg满足)
17.五位朋友,a、b、c、d、e在公园聚会,见面时握手致意问候,已知a握了4次,b 握了1次,C握了3次,d握了2次,到目前为止,e握了( )次.
A.1 B.2 C.3 D.4
18.如图,已知B是线段AC上一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q为MA的中点,则MN:PQ等于( )
A.1 B.2 C.3 D.4
19.如图,某汽车公司所营运的公路AB段共有4个车站依次为A、C、D、B,且AC=
CD=DB,现想在AB段建一个加油站M,要求使A、B、C、D站的各辆汽车到加油站M所花费的总时间最少,试找出M的位置.
20.如图,B、C、D依次是线段AE上的三点,已知AE=8.9cm,BD=3cm则图中以A、B、C、D、E这5个点为端点的所有线段长度的和为_______cm.
21.如图是一个3×3的正方形,则图中∠1+∠2+∠3+…+∠9的度数(degree)是_______.
22.钟面上从2点到4点有几次时针与分针成60°的角?分别是几时几分?
23.电子跳蚤游戏盘为△ABC,AB=8a,AC=9a,BC=10a,如果电子跳蚤开始时在BC 边上P0处,BP0=4a,第一步跳蚤跳到AC边上P1处且CP1=CP0;第二步跳蚤以P1跳到AB边上P2处,且AP2=AP1;第三步跳蚤跳到BC边上P3处,且BP3=BP2……跳蚤按上述规则跳下去,第2001次落到P2001,请计算P0与P2001之间的距离.
24.如图,已知C是线段AB的中点D是线段AC的中点,且图中所有线段的长度和为2010,求线段AC的长度.
25.设有甲、乙、丙三人,他们的步行速度相同,骑车速度也相同,骑车的速度为步行速度的3倍,现甲自A地去B地,乙、丙则从B地去A地,双方同时出发,出发时,甲、乙为步行,丙骑车,途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又步行,三人仍按各自方向继续前进,问:三人之中谁最选到达自己的目的地?谁最后到达目的地?
26.如图,∠A1OA11为一平角,∠A3OA2-∠A2OA1=∠A4OA3-∠A3OA2=…=∠A11OA10-∠A10OA9=2°.求∠A2OA1的度数.
参考答案
1.3cm或9cm2.1 3.C4.2 5.共建5座桥,分别在M、N、P、Q、R五处(如图所示).6.140°. 7.D8.40分钟.9.75°. 10.B11.B
12.(1)6条,20;(2)36条,88.13.72°14.D15.8
7cm. 16.40°17.B
18.B19.M应选在CD段(包括C、D)任意一点均可.20.41.621.405°
22.共有四次23.a24.4022
1325.丙最先到达目的地,甲最后到达目的地.
26.9°。