玻璃熔窑设计
一窑四线平拉玻璃熔窑设计
摘要介绍了260~300td一窑四线平拉玻璃熔窑的设计情况,包括:熔化部设计,分支通路的布置原则,分支通路长度尺寸的设计,全窑池底结构形式和不同池深的窑底结构处理。
关键词平拉玻璃熔窑设计天津玻璃厂是我国采用平拉工艺(格法)生产平板玻璃的重点骨干企业。
该厂于1986年全套引进了比利时格拉威伯尔公司(Glaverbe1)的平拉玻璃生产技术及主要设备。
建设初期为一窑二线,并留有可热接第三线的接口。
后来在不停产的情况下,成功地热接了第三线,建成了国内第一条一窑三线的平拉玻璃生产线。
长期稳定地生产2 mm厚优质薄玻璃,工厂取得了良好的经济效益,同时为国内多家平拉玻璃企业提供了技术支持。
随着天津市城市建设的发展和环境保护的要求,该生产线所在的地理位置已被规划为商住区,玻璃厂需要搬迁到新址。
由于原一窑三线已经完成了两个窑期近17年的运行,拆后可利用的设施已不多,以及要扩大生产能力的考虑,工厂决定新建一条一窑四线平拉玻璃生产线。
设计熔化能力260~300t/d,燃料为重油,窑龄8年,玻璃原板宽度4000 mm,耐火材料立足于全部国产,现将有关设计情况介绍如下:1 熔化部设计在80年代引进的一窑三线平拉玻璃熔窑,从窑型尺寸到各部位细部结构看,该熔窑的熔化部在现在看来仍是一座200 t/d级的技术比较先进的熔窑。
本次工厂搬迁需要新建同样技术先进的一窑四线,熔化能力为260~300 t/d的熔窑,并要积极采用近年来的各项熔窑新技术。
本设计确定一窑四线平拉玻璃熔窑的熔化部,采用近年来在国内浮法玻璃熔窑上广泛采用的熔化部结构形式,并以某建成投产多年的300 t/d浮法线熔窑做为参照,进行熔化部设计。
1.1 熔化部主要尺寸的确定按照熔化部的池宽尺寸计算公式:B=9000+ (P-300) ×7求得该熔窑(按P=300 t/d)的熔化部池宽为:B=9 000 mm。
对于浮法玻璃熔窑来说,熔化部和熔化区的长宽比分别为:K1=3~3.3;K2=1.8~2.0。
玻璃熔窑设计第二章.配合料计算
× 100%
纯碱飞散率于纯碱的物理性质(容重、颗粒组成等) 、配合料水分、加料方 式等因素有关。浮法玻璃配合料使用重质碱时的飞散率小于使用轻质碱的飞散率, 重质碱的飞散率控制在 1.4%~1.8%之间。 ②芒硝含率 芒硝含率=
芒硝中的氧化钠 纯碱引入的氧化钠+芒硝引入的氧化钠
× 100%
5mm 30% 2.5 480
6mm 10% 3.0 400
综合成品率 75%
石灰石 60 天
白云石 60 天
纯碱 30 天
2.4.1 玻璃成品产量计算
通常生产中,一玻璃重量箱= 2mm 玻璃板 10m2( 玻璃的密度取 2.5g/cm3) 。 产品年产量箱数:500000×0.75×345/50=2587500(重量箱) 1. 产品任务见表 2-7。
y 22.34+y
x = 22.31
= 1.6%
y = 0.36kg 见表 2-5
质量份
R2O SO3 含水 量 干基 湿基
⑦把上述计算结果汇总成原料用料表
表 2-5 原料用量单
原料 用量 占混 合料 质量 分数 砂岩 钽铌 石 石灰 3.95 3.23 0.10 0.004 0.04 68.51 7.55 56.05 6.18 66.89 5.01 0.41 1.13 0.10 0.01 0.10 0.01 2 2.03 0.05 0.1 51.7 0.03 0.006 0.50 0.5 1.0 896.8 98.9 SiO2 Al2O3 Fe2O3 CaO MgO
17
11
2.各种原料的化学组成
单位:% (质量分数) R2O Na2CO3 Na2SO4 C
MgO
0.08 1.22
玻璃熔窑钢结构设计
玻 璃 熔 窑 钢 结 构 可 按 部 位 区 分 为 :窑底 钢结
构 、侧 墙钢 结构 、投 料 口及 山墙 钢结 构 、蓄热室 钢 结 构 、小炉 钢结 构 、烟道 钢结构 、前脸 吊墙 和卡脖 吊墙 吊挂横梁 这样七 部分 。 最 后 还 列 出 了 秦 皇 岛 耀 华 玻 璃 厂 国 投 线 50 0
些 经验做法 。
④ 吊墙横 梁 吊挂前脸 吊墙和 卡脖 吊墙 的钢 梁 ,因 为这两类 吊墙 都是 积木 式结 构 ,必须 保证 所挂 吊墙 砖结 构 的
整 体 性和平 直 性 ,保证 不 出现砖 缝 开裂 、墙 面扭 曲 等情 况 ,这就 要求 吊挂 前脸 吊墙 和 卡脖 吊墙 的钢梁 不 能 出现过大 变形 。
了设计 计 算 。后 来 在多座 新建 玻璃熔 窑 的设计 中,
又 采 用 了 一 些 新 的熔 窑 技术 , 比如 全 窑宽 投 料 池
等 ,也结合 在本 文中体现 出来 。 本设 计 中构件 的受力 计算 以中 国 《 筑结 构静 建 力计算 手册 》中 的计 算公 式为基 础 ,同时也参 照 了 引进 美 国T L D 公 司玻璃 熔 窑钢 结 构计 算 中 的一 OEO
本 设计 以秦皇 岛耀 华 网投 线5 0t 级 的浮 法玻 0 d / 璃 熔 窑 为 例 ,该 熔 窑 19 年4 建 成 投产 ,2 0 年 96 月 08 6 停 窑 ,连 续 运行 l年 多 ,全窑 钢 结构 总 重 量约 月 2 7 0t 5 ,本 人 比较 详 细地对 该熔 窑各 部位 钢结构 进行
铁 )等 。
窑 上 的碹结 构 不是 直接 座落 于基 础之 上 ,而是 架空
700t_d浮法玻璃熔窑设计简介
700t d浮法玻璃熔窑设计简介何 威(秦皇岛玻璃工业研究设计院 秦皇岛市 066000)摘 要 介绍了目前国内自主设计的生产规模最大的浮法线——江苏华润集团6080玻璃加工中心700t d浮法玻璃生产线的熔窑设计过程和经验,对未来超大规模浮法线熔窑设计具有参考意义。
关键词 浮法玻璃 700t d熔窑 江苏华润集团6080玻璃加工中心700t d浮法玻璃生产线(以下简称华润700t d)是目前国内采用洛阳浮法技术设计并建成的生产规模最大、质量要求较高的浮法玻璃生产线,秦皇岛玻璃工业研究设计院承担了该条生产线的全线设计工作。
生产线于2001年7月23日点火,8月18日一次引板成功。
9月8日实际产量达到705t d,综合成品率96 %,玻璃板质量接近SYP实物标准,试生产阶段即为企业创造了显著的经济效益。
中国洛阳浮法技术经过三十年的发展、完善,已经相当成熟,生产线规模由最初的日产几十吨浮法玻璃发展到日产达几百吨。
然而,设计产量始终未能突破600t d规模,其主要的原因是因为国内设计单位尚无设计600t d以上的特大规模浮法线的经验。
该700t d全线设计从立项到施工图,整个设计阶段始终瞄准国际先进水平,在总结吸收国内外先进技术和经验基础上不断研究和大胆创新,经我院各专业技术骨干一年的技术攻关,终于取得了重大突破,填补了中国洛阳浮法技术无超大规模生产线的空白。
投产后该700t d生产线突出表现为如下特点:工艺流程合理;装备先进而务实;产品质量优良;能耗低、投资少,经济效益显著。
是国内自主设计建造的一条高水平、高标准、高质量的生产线,标志着我国浮法技术又上了一个新的台阶。
1 熔窑设计原则熔窑是浮法玻璃生产线三大热工设备之首,是实现全线产量、质量目标的关键设备之一,必须做到能耗低、产量高、熔化玻璃质量好、窑龄长等要求。
为了实现上述要求,我院针对该700t d熔窑的特点,具体提出了如下设计原则:(1)认真总结国外同级别浮法熔窑的经验和教训,结合国内生产线的实际情况、操作特点,围绕生产优质玻璃液这个重点来进行设计。
550t-d浮法玻璃熔窖工艺设计 无机非金属材料工程专业
题目 550t/d浮法玻璃熔窑工艺设计摘要本设计简要介绍了玻璃原料的组成及配料过程,并对玻璃窑炉各部分耐火材料及主要设备进行了选择,根据上述原则对日产550吨的浮法玻璃熔窑工厂的窑炉工艺进行了初步设计。
本设计讨论了玻璃池炉工艺设计,对窑炉各部分工艺计算、设备选型及探索研究。
玻璃熔窑工厂的关键设备之一是熔窑,根据最新的文献资料对工艺中涉及到的生产设备进行了设备选型。
工艺计算中进行了熔化部、冷却部、投料池、卡脖、蓄热室的尺寸及烟囱的截面的设计,重点计算和选择了横火焰窑。
根据计算结果绘制了横火焰窑的三视图。
关键词玻璃窑炉;设计尺寸;设备选型摘要…………………………………………………………………………………错误!未定义书签。
目录一、绪论 (1)二、玻璃的化学成分及原料 (1)2.1 浮法玻璃化学成分设计的一般原则 (1)2.2 配料流程 (2)三、玻璃池窑各部及主要设备 (2)3.1加料口 (3)3.1.1窑池的基本尺寸 (4)3.2熔化部 (4)3.3冷却部 (7)3.3.1冷却部的作用与基本尺寸 (7)3.3.2冷却部的结构 (7)3.4分隔装置 (8)3.4.1气体空间分隔设备 (8)3.4.2玻璃液分隔设备 (9)3.5 格字体的结构特性及排列方式 (10)3.6 烟道系统设计 (12)3.6.1 烟道的基本结构 (12)3.6.2 烟道的布置 (12)3.6.3 烟道的基本结构 (12)四、窑炉各部工艺计算 (12)4.1 熔化部尺寸 (13)4.2冷却部尺寸 (14)4.3投料池尺寸 (14)4.4卡脖尺寸 (14)4.5小炉蓄热室尺寸 (15)4.6烟道截面积设计 (16)五、熔窑部位的耐火材料的选择 (18)5.1熔化部材料的选择 (18)5.2卡脖 (18)5.3冷却部 (18)5.4蓄热室 (19)5.5小炉 (19)六、熔窑热修 (20)6.1日常维修 (20)6.1.1日常巡回检查 (20)6.1.2日常维护 (20)6.2热修补 (20)6.3熔窑热修 (20)七、事故应急处理 (21)7.1停电 (21)7.2停水 (21)7.3停油(燃料) (21)7.4漏玻璃液 (22)7.5冷却装置漏水 (22)结论 (23)参考文献 (24)致谢 (25)一、绪论至公元前二百年。
高硼硅玻璃全电熔窑炉设计分析
高硼硅玻璃全电熔窑炉设计分析摘要:随着社会的发展,高硼硅玻璃逐渐得到广泛使用。
高硼硅玻璃具有多种生产方式,其中全电熔窑炉具有操作便捷、维护成本低、环保等特点,因此,许多玻璃生产企业都采用这种方法生产该种玻璃。
基于此,本文简单讨论高硼硅玻璃生产工艺的控制要点,并对全电熔窑炉的设计策略进行分析,以供参考。
关键词:高硼硅玻璃;全电熔窑炉;玻璃生产工艺引言:高硼硅玻璃不但具有高硬度与高强度,还具备高透光率,且化学性质稳定,因此受到了广泛的应用。
目前,高硼硅玻璃主要应用于日常生活、化工、军事等各个方面。
因此,对于高硼硅玻璃要选择合适的生产方式,并加强生产工艺的控制,才能使玻璃的质量得以保证。
1.高硼硅玻璃生产工艺的控制要点1.1料层厚度的控制在高硼硅玻璃进行熔化的时候,需要较高的温度,且不易澄清,因此,无法使用传统的澄清剂对其澄清。
在实际过程中,要使用NaCl进行澄清,但是,由于其沸点为1465℃,所以在高温状态下NaCl易扩散到玻璃液的残留气泡中,最后溢出。
在高硼硅玻璃的生产过程中,由于料层的厚度过大,NaCl蒸气会在溢出时在料层上凝结,并在表层的配料内部残留。
NaCl具有较好的导电性,且熔点较低,因此,表层材料中的NaCl在不断累积的过程中,会导致窑炉内的电流集中在表层,使表层的温度升高,进而出现红顶现象。
因此,为了避免这种问题的出现,要将料层的厚度控制在1cm到1.5cm左右[1]。
1.2硼挥发的控制关于硼挥发的控制,首先要进行料道溢流的设计,使其不但能够符合流体流动的原理,还能够符合玻璃变质层对专用的溢流结构中的黏度与温度的需要。
由于玻璃变质层黏度较强,因此不易溢流,为此,要在溢流的位置设置燃烧器,并使用电加热的手段升高温度,使得溢流能够顺利进行。
其次,要想避免出现通路中的硼出现挥发问题,要对料道进行封闭。
由于玻璃液会对耐火材料产生腐蚀,因此要采用合适的盖板砖,并降低玻璃液的温度,从而能够最大程度上减少腐蚀现象的发生。
平板玻璃熔窑电助熔设计与计算
0引言玻璃液在高温熔融状态下是一种电导体。
电熔化已在玻璃行业广泛使用,电助熔热效率高、玻璃的热稳定性和均匀性好,具有提高玻璃质量和降低能耗等优点,有广阔的发展空间。
传统大型平板玻璃熔窑电助熔负荷未超过10%,节能效果有限,实现节能减排技术性突破,增大电助熔负荷势在必行。
平板玻璃熔窑稳定的玻璃液流和合理的液流位置及形态对玻璃熔窑的操作至关重要,电助熔玻璃熔窑的电功率输入及位置设计同样要以保证玻璃熔窑的配合料层、环流Ⅰ、环流Ⅱ以及生产流的稳定为前提。
电助熔功率分配和分区设计及电极布置是电助熔玻璃熔窑的设计难点和设计关键,需结合火焰空间热负荷保证工艺制度和温度梯度,为保证设计合理,必要时需借助数学模拟或物理模型等辅助手段。
1电助熔玻璃熔窑的设计与计算(1)电助熔加热功率及装机功率计算普通平板玻璃(12%碎玻璃)理论熔化热由以下几部分组成:①生成硅酸盐耗热:272 kJ/kg玻璃液;②玻璃液加热至1400 ℃所需热量:1842 kJ/kg玻璃液;③生成玻璃耗热:314 kJ/kg玻璃液;④蒸发水分耗热:104 kJ/kg玻璃液;理论熔化总热耗:2533 kJ/kg玻璃液(不含玻璃液生成气加热耗热),转换为电能为0.7 kWh/kg玻璃液,考虑到电极水套及变压器等能量损失,电助熔的热效率可达85%~90%,那么玻璃液所需输入功率为32~34 kW/t玻璃液(不包含窑炉散热损失),装机功率按40~45 kVA/t玻璃液配置。
(2)电助熔分区设计投料口区域池底温度低,一般理所当然地认为电助熔大部分功率应增设在该区域,事实上国内确实有厂家这样分区布置电助熔,但效果并不理想。
对此做数学模拟,方案1:前置四区均布电极,装机功率3600 kVA;方案2:前区均布三排电极,装机功率1500 kVA,热障区两排电极,装机功率2100 kVA 。
图1为600 t/d颜色玻璃电助熔数学模拟玻璃液流示意图。
图1 600 t/d颜色玻璃电助熔数学模拟玻璃液流示意图数学模拟对比显示,方案1池底热点前移,较大地改变了玻璃窑炉纵向液流形态,不利于玻璃的熔化和澄清。
玻璃熔窑设计热工计算
第 4 章总工艺计算4.1 耗热量的计算4.1.1 已求得的数据①原料组成见表4-1②碎玻璃用量占配合料的20%。
③配合料(不包含碎玻璃)水分:4%。
④玻璃熔化温度1465℃4.1.2100 ㎏湿粉料中形成氧化物的数量见表3-2表4-2 形成玻璃液的各氧化物的量单位:质量分数(% )4.1.3100 ㎏湿粉料逸出气体组成见表4-3表4-3 逸出气体组成体积(标准状态)/m38.0744 4.9782 0.0712 13.1238所占体积分数/% 61.53 37.93 0.54 100.0 4.1.4(4-1)即 1 ㎏粉料中需要加入0.25 ㎏碎玻璃,可以得到玻璃液:1-20.0664% ×1+0.25=1.0493 因此,熔制成为1 ㎏玻璃液需要粉料量:熔化成 1 ㎏玻璃液需要的配合料量为:0.9530+0.2383=1.1913kg4.1.5 生成硅酸盐耗热量(以 1 ㎏湿粉料进行计算,单位kJ/kg )由CaCO3 生产CaSiO3 时反应耗热量q1:q1=1536.6G CaO=1536.6 ×(0.0807+0.0119+1.5926)/100=25.8948kJ 由MgCO3 生成MgSiO3 时反应耗热量q2:q2=3466.7G MgO =3466.7 ×(0.0215+0.0387+0.0047)/100= 2.2187kJ由CaMg(CO3)2 生成CaMg(SiO3)2 时反应耗热量q3:q3=2757.4G CaMgO2=2757.4 ×(4.6755+3.0831)/100=213.9329kJ由NaCO3 生成NaSiO3 时耗热量q4 :q4=951.7G Na2O=951.7 ×10.3850/100=98.8340kJ由Na2SO4 生成NaSO3 时耗热量q5:q5=3467.1 ×0.1635/100=5.6687kJ1 ㎏湿粉料生成硅酸盐耗热量:q0=q1+q2+q3+q4+q5=25.8948+2.2187+213.9329+98.8340+5.6687=346.5489(kJ)4.1.6 玻璃形成过程的热量平衡(以生成 1 ㎏玻璃液计,单位是kJ/kg, 从0℃算起)①支出热量a. 生成硅酸盐耗热量:qⅠ=q0G 粉=352.2931×0.9530=330.2611b. 形成玻璃耗热量:qⅡ=347G粉(1-0.01G 气)kJ=347×0.9530×(1-0.01×20.0644)=264.3398c. 加热玻璃液到1465℃耗热量:qⅢ=C 玻t 玻-4-4C玻=0.672+4.160×10-4t 玻=0.672+4.610×10-4×1465=1.3474 qⅢ=C 玻t 玻=1.3474×1465=即:1973.9410kJd.加热逸出气体到1465℃耗热量:qⅣ=0.01V 气G粉C气t 熔式中V 气=13.1238G粉=0.9530t 熔=1465℃C 气=C CO2(CO2%+SO2%)+C H2O H2O% =2.3266×(61.53+0.54)%+1.825×37.93%=2.1363qⅣ=0.01V 气G 粉C气t 熔=0.01×13.1238×0.9530×2.1363×1645 =391.4284kJe. 蒸发水分耗热量:qⅤ=2491G 粉G 水qⅤ=2491G粉G 水=2491×0.9530×4%=94.9569kJ 共计支出热量:q 支=qⅠ+qⅡ+qⅢ+qⅣ+qⅤ=330.2611+264.3398+1973.9410+391.4284+94.9569 =3054.9272kJ②收入热量(设配合料入窑温度为36℃)a. 由碎玻璃入窑带入的热量:qⅥ= C 碎玻璃G 碎玻璃t 碎玻璃-4C 碎玻璃=0.7511+2.65×10-4×36=0.7606 qⅥ=C 碎玻璃G 碎玻璃t 碎玻璃=0.7606 ×0.2383 ×36=6.5kJ b. 由粉料入窑带入的热量:qⅦ=C 粉G 粉t 粉qⅦ=C 粉G 粉t 粉=0.963 ×0.9530 ×36=33.0kJ 共计支出热量:q 收=qⅥ+qⅦ= 6.5+33.0=39.5kJ ③熔化 1 ㎏玻璃液在玻璃形成过程中的耗热量:q=q支-q 收=3054.9272-39.5=3015.4272kJ4.2 燃烧计算4.2.1 烟气组成计算[5]1.重油成分见下表4-4表4-4 重油成分单位:质量分数(% )2.100g窑内气体或火焰按其化学组成成分以及具有的氧化或还原能力分为氧化气氛、中性气氛、还原气氛三种。
浮法玻璃熔窑的合理设计(连载一)
浮法玻璃熔窑的合理设计(连载-)唐福恒(北京长城工业炉技术中心北京102208)摘要对浮法玻璃熔窑的熔化率设计,熔化区的长宽比例设计,熔化区、小炉、蓄热室系统的基本热平衡计算,窑体结构散热量与窑体砖结构重量的关系,熔化率与单位能耗指标之间的关系,以及个别浮法玻璃熔窑存在的不达产、多烧的燃料热量随排岀废气跑掉了等问题进行了分析验证。
提岀了浮法玻璃熔窑合理设计的10个要点。
关键词浮法;玻璃;熔窑;设计中图分类号:TQ171文献标识码:A文章编号:1003-1987(2021)01-0007-14Reasonable Design of Float Glass Melting FurnaceTANG Fuheng(Technology Center ofBeijing Great Wall industrial Furnace,Beijing10220&China) Abstract:Design for melting rate of float glass furnace,length-width ratio design of melting area,the basic heat balance calculation of melting area,pot,regenerator system,the relationship between heat loss of kiln body structure and the mass of bricks,the relationship between the melting rate and unit energy consumption indicators,as well as the production yield is not up to standard and more fuel is combusted, heat energy ran away with the discharged waste gas,ten key points of reasonable design of float glass melting furnace are put forward.Key Words:float glass,furnace,design1概述1.1近50年国内玻璃熔窑概况在1980年以前,国内玻璃熔窑的基本情况是:熔窑吨位小、最大吨位300t/d(九机窑),最大熔化部池宽只有9m左右,蓄热室格子体高度一般为5~6m;燃料以发生炉煤气为主,单位能耗高,普遍超过2000kcal/kg披霜(1kcal=4.1868 kJ);砌筑玻璃熔窑所用的耐火材料质量差,耐高温、耐冲刷、抗侵蚀性能都比较弱;窑龄短,一般不超过3年。
玻璃熔窑设计
合肥学院Hefei University无机非金属材料工艺课程设计题目:浮法平板玻璃熔窑生产设计系别:化工系专业:无机非金属学号:1203031001姓名:彭冲导师:张全争2015年12月摘要设计介绍了一套规模为900t/d浮法玻璃生产线的工艺流程,在设计过程中,原料方面,对工艺流程中的配料进行了计算;熔化工段方面,参照国内外的资料和经验,对窑的各部位的尺寸、热量平衡和设备选型进行了计算;分析了环境保护重要性及环保措施参考实习工厂资料,在运用相关工艺布局的基础下,绘制了料仓、熔窑、锡槽、成品库为主的厂区平面图,具体对熔窑的结构进行了全面的了解,绘制了熔窑的平面图和剖面图,还有卡脖结构图,整个设计参照目前浮法玻璃生产的主要设计思路,采用国内外先进技术,进行全自动化生产,反映了目前浮法生的较高水平。
关键词:浮法玻璃、熔窑工段、设备选型、工艺计算AbstractThe design introduced the technical process of 900t/d float glass production line. During the planning, for the raw material, the computation of material has been made; and for the melt section, the melting kiln various spots size, The heat balance and the choose of the equipment have been calculated with reference to the domestic and foreign materials and the experience, the environmental protection importance and environmental protection measure have been analyzed. With reference to factory date, under the technology arrangement correlation knowledge foundation, the factory horizontal plan about the storage, the melting kiln, the tin trough and product storage has been finished. The melting kiln structure has been concretely introduced, the horizontal plan and the sectional drawing of the melting kiln, small mouth composition and card neck structure drawing have been draw up. The entire design consulted the main design mentality of present float glass production; took the domestic and foreign advanced technologies; carried on the entire automated production; reflected at present floats production to compare the high level.keywords: float glass; melting section; choose of the equipment; process calculation.目录前言 (1)第一章浮法玻璃工艺方案的选择与论证 (2)1.1平板玻璃工艺方案 (2)1.1.1有曹垂直引上法 (2)1.1.2垂直引上法 (2)1.1.3压延玻璃 (2)1.1.4 水平拉制法 (3)1.2浮法玻璃工艺及其产品的优点 (3)1.3浮法玻璃生产工艺流成图见图1.1 (4)图1.1 (4)第二章设计说明 (5)2.1设计依据 (5)2.2工厂设计原则 (6)第三章配料计算 (7)3.1于配料计算相关的参数 (7)3.2浮法平板玻璃配料计算 (7)3.2.1设计依据 (8)3.2.2配料的工艺参数; (8)3.2.3计算步骤; (10)3.3平板玻璃形成过程的耗热量的计算 (14)第四章熔窑工段主要设备 (15)4.1浮法玻璃熔窑各部 (16)4.2熔窑主要结构见表4.1 (16)4.3熔窑主要尺寸 (18)4.4熔窑部位的耐火材料的选择 (19)4.4.1熔化部材料的选择见表4.3 (19)4.4.2卡脖见表4.4 (20)4.4.3冷却部表4.5 (20)4.4.4蓄热室见表4.6 (20)4.4.5小炉见表4.7 (20)4.5玻璃熔窑用隔热材料及其效果见表4.8 (21)第五章玻璃的形成及锡槽 (23)第六章玻璃的退火及成品的装箱 (25)第七章除尘脱硫工艺 (26)7.1除尘工艺 (26)7.2烟气脱硫除尘 (26)参考文献 (27)前言英国Pilkington兄弟在20世纪50年代浮法玻璃生产技术的发明付出了坚持不懈的努力,自1953年开始到1959年取得了成功耗时7年,投入了400万英镑。
玻璃电熔炉设计
窑炉课程设计说明书题目:年产3000吨高硼硅玻璃电熔窑炉的设计目录前言 ............................................................................................................................ 错误!未定义书签。
一、设计任务及原始资料 (3)1.1 设计题目: (3)1.2 设计技术指标、参数: (3)二、窑型选择 (4)三、窑体主要尺寸选择 (5)3.1 熔化池面积 (5)3.2熔化池的长度和宽的 (6)3.3 熔化池的深度 (7)四、电极材料的选择及插入方式 (8)4.1 电极材料的选择 (8)4.2 电极尺寸的选择 (9)4.3 电极插入方式选择 (10)4.2 电极连接方式选择 (11)五、耐火材料的选择与计算 (12)5.1耐火材料的选择 (12)5.2耐火材料的计算 (13)六、窑炉电工热工计算 (14)6.1玻璃熔化热计算 (14)6.2 玻璃耗电量计算 (15)6.3玻璃热效率计算 (15)七、小结 (16)参考文献 (16)前言玻璃电熔技术是目前国际上最先进的熔制工艺,是玻璃生产企业提高产品质量,降低能耗,从根本上消除环境污染的十分有效的途径。
对于15t/d以下的小型玻璃熔窑来说,在电力充足和电价适中的地区,用电熔工艺来生产各类玻璃制品的综合经济效益是很理想的;在电价较高的地区,对于彩色玻璃、乳浊玻璃、硼硅酸盐玻璃、铅玻璃、高挥发组分玻璃或特种玻璃生产也是合算的。
过去我国小型电熔窑的应用一直进展不太大,主要原因有两条:首先是人们普遍认为电熔的价格昂贵,熔制成本高,忽视了电熔可带来的整体效益;其次,以往引进的国外电熔窑由于包含大量的技术费用,选材过于讲究,因而投资很大,一座熔化面积不到2m2,日产量4吨的小型电熔窑,少则二三百万元,多则近千万,对于生产一般玻璃制品来说,是难以接受的。
玻璃工业窑炉 第二章马蹄焰窑 第一节熔化部设计
熔化池基础、主次梁
主梁
次梁
基础柱
熔化池池底 池底大砖 池底保温层
熔化部、冷却部池壁预排
投料口
熔化池
冷却池
池底“漂砖”的原因
配合料中碎玻璃带入的金属和玻璃还原的熔融金 属杂质沉在池底形成球状熔体,对池底砖产生向 下钻孔侵蚀。同时玻璃液和金属液在渗入到铺面 砖下垫层时产生向上钻蚀。
缝,2~3mm,R为半径,δ为碹厚。 砌拱时,插入的直型砖不要太多,否则易塌拱。 拱脚要加固紧,拱脚松动也会造成塌拱。 横推力F为
F KG ctg
22
式中,K为温度修正系数
F大小影响因素 G的大小
θ的大小 平拱θ=0,F→∞ θ=180,F=0
温度tw1≥tw2,产生附加载荷 T↑,K↑
品种料别
F熔<20 m2
燃料1
燃料2
F熔21~39 m2
燃料1
燃料2
F熔>40 m2 燃料1 燃料2
保温瓶 仪器普白料
0.6~0.9 0.8~0.95 0.7~1.0 0.4~0.5 0.65~0.8
1.1~1.35 1.7~1.9 (60m2)
仪器灯工硬 料
仪器烧器硬 料
中碱球
~0.35 0.15~0.2
0.5
吹制泡壳 0.5~0.65 0.8~1.0 0.6~0.75 0.8~1.1
1.0
1.2
压制管壳
0.6~0.7
0.6~0.7
安瓶管
0.4~0.6
~ 0.8
0.8~1.0
灯管芯柱 0.25~0.3 0.35~0.4 0.3~0.5 0.4~0.6
0.7~0.8
玻璃行业的三大窑炉
窑炉及设计(玻璃)
电熔玻璃池窑
窑炉及设计(玻璃)
1925年瑞典曾试用纯铁作电极熔制琥珀色和 绿色瓶罐玻璃。
1932年费格森试制水冷钼电极。
1942年康宁公司开始推广钼电极。最大全电 熔玻璃日产240吨,采用自动仪表,微机控 制和工业电视。
基础材料和器件工业.如电熔锆刚玉砖和钼 电极已达较高水平。
窑炉及设计(玻璃)
(2)适合熔制高质量玻璃:火焰池窑须 具备稳定高温和改善均化对流。在电熔 窑中靠窑结构、电极位置,调节电流, 就易取得。熔制玻璃有很高的均一性。 即使配料称量发生大误差,仍可继续作 业。熔制钠钙玻璃可提高合格率(2-4)%, 结石可降至0.3%。熔制乳白硼硅玻璃和 铅玻璃可提高合格率约20%。
浙江省椒江市 3吨电熔炉
1986年投产
窑炉及设计(玻璃)
3.2 电熔窑的优点
(1)热效率高:电熔窑电能在玻璃液内 部变成热能,且玻璃液被配合料覆盖, 周围散热可降到最低限度,且没有废气 热损失。故热效率高,大型电熔窑(7580)%,小型达60%。(火焰池窑效率为 (25-30)%,小型窑10%。)
钠钙玻璃除离子数量外,离子强度和半径 也影响导电性。与Na+相比,K+结合虽弱, 但K+半径较大,迁移阻力大。Li+半径比 Na+小,但Li电性。混合碱玻璃导 电性最差。
窑炉及设计(玻璃)
导电性难易以电阻率ρ(Ω•cm)或电导率σ (1/Ω•cm)来表示。 玻璃室温为电绝缘体σ=10-13~10-15/Ω•cm。 T↑ ρ ↓σ ↑↑ 熔融态σ= 0.1~1/Ω•cm 含其它改良剂离子时,降低离子迁移和ρ 如Ca2+、Ba2+、Pb2+↑玻璃ρ ↑↑。
玻璃炉窑的设计与运行
玻璃炉窑的设计与运行摘要:玻璃熔制是玻璃制造中的主要过程之一,是通过燃料的燃烧,将热量传递给配合料,从而达到熔化目的的过程。
玻璃的熔制过程是在玻璃窑炉内实现的。
着玻璃生产技术的不断发展进步,电子玻璃、浮法玻璃等生产行业在追求高质量和高效益的同时,对玻璃生产的环保也有了更高的要求.传统的玻璃熔制工艺已经很难满足更高的环保要求,此时采用全氧燃烧技术的玻璃窑炉的出现无疑成为解决行业生产“节能、环保”问题的一个有效途径。
关键词:玻璃炉窑节能环保设计与运行全氧燃烧玻璃炉1.窑炉的设计原则熔窑是浮法玻璃生产线三大热工设备之首,是实现全线产量、质量目标的关键设备之一,必须做到能耗低、产量高、熔化玻璃质量好、窑龄长等要求。
为了实现上述要求,具体提出了如下设计原则:(1)认真总结国外同级别浮法熔窑的经验和教训,结合国内生产线的实际情况、操作特点,围绕生产优质玻璃液这个重点来进行设计。
(2)着重节能降耗,采用国际先进的节能措施和节能产品,降低生产成本。
(3)全窑工艺尺寸确定既要注重以往的经验数据,同时要有理论创新,要在总结以往经验数据的基础上对新结构确立理论依据。
(4)本熔窑出现的超出国内设计手册的结构设计,必须确保结构安全,此类结构需建立相应的力学模型,并经过常温和热态理论论证通过后方可用于设计。
(5)设计中充分考虑延长窑龄的方法和措施,既要注重耐火材料装备水平,又要充分考虑生产后期保窑操作的可能性及方便性。
(6)节省投资,材料配置上注重实用性,不搞花架子。
主要材料立足于国内采购,尽量少引进硬件,以减少外汇开支。
2.全氧燃烧炉的设计我国已经有很多大学院校和设计单位对全氧燃烧窑炉进行过理论上的研究探讨,但是目前国内的全氧燃烧窑炉基本上是完全引进国外的设计、技术,甚至整条生产线,不仅投资很大,而且使我们自己的全氧燃烧技术发展缓慢。
近年来我院实际参与了国内几台全氧池炉的引进、,设计转化工作,对国外先进技术进行了一些研究,在全氧玻璃池炉的设计上积累了一些经验。
浮法玻璃熔制理论在熔窑设计中的应用
0 引 言浮法玻璃熔制过程是在玻璃熔窑中进行的,它的设计是否合理?决定了玻璃熔窑热耗的高低,决定了玻璃成品质量的好坏,决定了熔窑的寿命,决定了企业的成本,因此我们有必要认真学习、总结玻璃熔制理论知识,并将其应用到玻璃熔窑设计中来,使我们的熔窑设计更上一层楼。
1 浮法玻璃相关定义及熔制机理在玻璃熔窑设计过程中,我们会同时遇到玻璃一等品率、熔窑热耗及熔窑窑龄三方面问题,三者之间看似相互矛盾,但实际上它们是既相互独立,又相互关联。
因此,我们在设计过程中只有认真考虑每个问题的实质,才能达到设计出来的熔窑达到玻璃熔制质量好、熔窑热耗低和熔窑窑龄长的要求。
1.1 浮法玻璃的定义浮法玻璃是由硅氧四面体为骨架,钠、钙(镁)等为填充物构成的网络状共熔物及其包裹的微量微缺陷(主要是微气泡)组成的混合物。
此玻璃定义主要是针对浮法玻璃而言,其原因,一是微缺陷在浮法玻璃中的客观存在。
虽然这些微缺陷数量不多,但它直接影响着玻璃的品质,特别是高端玻璃;二是它能更准确地体现出浮法玻璃形成过程,只有通过分析微缺陷在玻璃本体中的形成过程及存在形式,才能更好地控制微缺陷的数量,提高玻璃的品质,为生产厂家带来更大的效益。
1.2 浮法玻璃液中熔窑内的形成机理浮法玻璃熔窑由熔化部、澄清部(卡脖)和冷却部三部分组成。
浮法玻璃熔化的特点是连续化,玻璃配合料不断地从熔窑投料口(入口)进入窑内进行熔化,熔制好的玻璃液不断地从熔窑出口流出,形成了玻璃液在熔窑投料口与熔窑出口间的高度落差,在重力作用下高温玻璃液从熔窑投料口向熔窑出口方向流动。
这个过程,我们称为“玻璃熔化”,下面详细论述这个过程的机理。
混合好的结构松散的玻璃配合料在原料皮带上运行中被碎玻璃均匀覆盖,进入投料机内。
此时熔窑内存有熔化好的高温玻璃液,其玻璃液上表面距熔窑池壁上沿50mm,配合料在投料机作用下连续不断地以一定的厚度进入窑内。
进入窑内的配合料通称为“料堆”,熔窑内有料堆的区域我们称为“料堆区”,这些有一定厚度的料堆入窑后覆盖窑内已有的高温玻璃液,它的上下表面分别受到来自于料堆上部空间火焰和料堆下部高温玻璃液的高温加热,发生物理化学(吸热)反应,放出气体,形成硅酸盐、复合硅酸盐。
课程设计:日产8吨高硼硅玻璃窑炉设计
日产8吨的高硅硼玻璃的全电熔窑炉设计1.前言所谓全电容窑炉,通常是指配合料熔成导电介质后,玻璃液体本身成为电阻组件,实现玻璃的连续融化。
但配合料(含有部分熟料)未熔成导电介质之前,即在烤窑阶段,仍需要气体或液体来加热。
玻璃电熔技术是目前国际上最先进的熔制工艺,是玻璃生产企业提高产品质量,降低能耗,从根本上消除环境污染的十分有效的途径。
对于15t/d以下的小型玻璃熔窑来说,在电力充足和电价适中的地区,用电熔工艺生产各种玻璃制品的综合经济效益是很理想的;在电价高的地区,对于生产彩色玻璃、乳浊玻璃、硅酸盐玻璃、铅玻璃、高挥发组分玻璃或特种玻璃也是很合算的。
电熔窑炉产生的废气量少,防止空气污染;能降低挥发性配合料组分的挥发;降低因结石造成的产品损失;而且玻璃成分均匀,在整个窑炉期间可始终保持满负荷的出料量。
另外它的建设投资少,占地面积小。
玻璃质量好,效率高,但成本低。
玻璃电熔窑炉也有耐火寿命短的缺陷,而且窑炉的用电成本和初期安装成本高。
玻璃电熔窑炉工作原理:玻璃在低温下几乎是绝缘的,但在高温下熔融的玻璃是一种良导体。
玻璃电熔窑炉就是将电流引入玻璃液中,玻璃液直接通电加热,通电后两极间的玻璃液在交流电的作用下产生焦耳热,从而达到熔化和调温的目的。
玻璃液之所以具有导电性,主要是因为电荷通过离子发生迁移。
导电性的难易是以电阻率ρ(Ω·cm)或其倒数σ((Ω·cm)-1)来表示,ρ值越小,则电导本领越强。
玻璃在室温下为绝缘体,它的电导率约为10-13~10-15(Ω·cm)-1。
如果提高温度,玻璃的电导率会急剧增加,在熔融状态可达到0.1~1(Ω·cm)-1。
电熔化能用来融化几乎所有品种的玻璃以及某些呈现高阻值的硅酸盐材料。
各种玻璃的电导率随其成分不同可有很大差别,对同一种玻璃,电导率则是温度的函数。
在网状结构中,含有其他改良剂离子时,能降低Na+离子的迁移和玻璃的电导率。
250吨玻璃熔窑毕业设计说明书
I 日产250吨太阳能玻璃熔制车间设计摘要太阳能玻璃主要是指用于太阳能光伏发电和太阳能光热组件的封装或盖板玻璃。
作为未来清洁、高效、永不衰竭的绿色能源技术之一,近年来太阳能技术的应用越来越广泛,太阳能产业已经成为能源市场中成长速度最快的领域。
本设计旨在针对太阳能用光伏玻璃的生产,从节能环保、提高制品质量与生产效率、改善工人生产工作条件的角度出发,采用全氧燃烧、池底鼓泡以及配合料预热等三项关键技术。
再结合其他技术,遵循玻璃工厂的设计原则对玻璃成分的确定,生产工艺流程,熔制车间设备选型,玻璃窑炉结构,重点对熔制车间平面布置以及工厂的平面布置等进行了具体的设计。
经过计算验证基本达到了设计任务书中要求目标。
关键词:太阳能玻璃,熔制车间,全氧燃烧,工艺设计II The Design of Melting Workshop of solar glass Plant forProducing 250 T solar Glass a dayABSTRACTSolar glass is mainly used for solar photovoltaic and solar thermal components of the package or cover glass.It is a clean,efficient,and potential green energy technologies,solar technology is widely applied in recent years,solar energy industry has become the fastest growing energy market in the area.This design is intended to address the production of solar photovoltaic glass, From the start with the energy-saving,environmental protection,improve product quality and production efficiency,improve the working conditions of workers, in this design oxy-fuel technology and the pulse-bubbling technique were used. Combine the technology, following the design principles of the glass factory to determine the glass composition, production process,glass machinery and equipment, glass furnace,structure and layout of factories,etc.Through the caculation we can find that this design achieved the desired verification purposes.KEY WORDS:solar glass, melting shop, full oxy-fuel furnace,process designIII目录摘要 (I)ABSTRACT (II)1绪论 (2)1.1 太阳能利用概述 (2)1.2 国内外太阳能光伏玻璃生产状况 (2)1.3 设计的依据和范围 (3)1.3.1 设计依据 (3)1.3.2 设计范围和要求 (4)1.4建厂地点,规模及产品方案 (4)1.4.1 建厂地点 (4)1.4.2 产品方案及规模 (4)2 工厂总平面布局设计 (5)2.1 总平面设计的基本原则 (5)2.1.1 一般工厂总平面设计原则 (5)2.1.2 玻璃工厂总平面设计原则 (5)2.2 厂址选择 (5)2.3 当地的地质气候条件 (6)2.3.1 工程位置地形及水纹 (6)2.3.2 气象 (6)2.4 总平面的布置论述 (6)2.4.1 根据玻璃工厂的厂区功能分区 (6)2.4.2 工厂的总平面布置 (7)2.5 工厂主要建筑指标 (8)2.6 厂内外运输论述 (8)2.6.1 厂内运输 (8)2.6.2 厂外运输 (8)IV3 熔制成形车间工艺设计 (9)3.1 设计依据及原则 (9)3.1.1 设计依据 (9)3.1.2 设计原则 (9)3.2 主要生产技术的确定和论证 (9)3.2.1 玻璃的化学成分设计和论证 (9)3.2.2 玻璃原料的选择 (11)3.2.3 玻璃配方计算 (12)3.2.4 物料衡算 (14)3.2.5 玻璃的理化性能和工艺参数计算 (14)3.2.6 玻璃熔化工艺的流程的设计 (19)3.2.7 玻璃熔窑及退火炉的设计 (19)3.2.8 熔化车间主要设备选型计算与论证 (29)3.2.9 热工测量及自动控制方案论述 (34)3.2.10 熔制车间厂房设计及论述 (34)3.2.11 车间生产设备工艺布置 (35)3.2.12设备明细表 (36)4 实验室及机修 (37)4.1 实验室 (37)4.2 机修 (37)5 劳动保护和安全措施 (38)5.1 劳动保护 (38)5.1.1 除尘 (38)5.1.2 隔热 (38)5.1.3 防噪 (38)5.2 安全措施 (38)6 环境保护 (39)V6.1 粉尘污染及防治 (39)6.2 大气污染防治 (39)6.3 废水污染防治 (39)6.4 噪声污染防治 (40)7 水电、土建、通风采光 (41)7.1 电力 (41)7.2 给水排水 (41)7.3 土建 (41)7.4 采光通风 (41)8 熔制成形车间劳动组织和机构 (42)8.1 劳动组织 (42)8.4 对本设计的评价 (42)致谢 (43)参考文献 (44)陕西科技大学毕业论文(设计说明书)21绪论1.1 太阳能利用概述(1)太阳能集热器领域聚焦型太阳能集热器是利用玻璃镜的聚焦反射,将太阳的辐射热能聚焦在集热器锅炉上而加热液体,驱动透平机发电。
课程设计---日产350t浮法玻璃熔窑初步设计
课程设计题目日产350t浮法玻璃熔窑初步设计学院材料科学与工程学院专业班级无机非金属材料工程学生姓名指导教师成绩2011年11月20 日摘要玻璃熔窑,指玻璃制造中用于熔制玻璃配合料的热工设备。
将按玻璃成分配好的粉料和掺加的熟料(碎玻璃)在窑内高温熔化、澄清并形成符合成型要求的玻璃液。
玻璃制造有5000年历史,以木柴为燃料、在泥罐中熔融玻璃配合料的制造方法延续了很长时间。
1867年德国西门子兄弟建造了连续式燃煤池窑。
1945年后,玻璃熔窑迅速发展。
玻璃池窑是玻璃工厂中的最重要、投资最大的设备,玻璃池窑的设计,牵涉面广,涉及因素很多。
玻璃池窑的设计是否合理先进,对玻璃熔制的质量、池窑的熔化率、单位能耗、窑龄等有很大影响。
因此保证窑龄、延长寿命保证池窑能连续的制造一定数量的玻璃是非常重要的一个工作。
在玻璃工业中,耐火材料是窑炉实际的基础,因为在一系列的技术措施中,没有好的耐火材料是很难实现的。
本设计通过对现有知识的了解和深入,要求对玻璃池窑各部进行合理的设计,达到节能减排的目的关键词:玻璃;池窑设计;澄清;横火焰;耐火材料目录摘要 (I)第1章绪论 (1)第2章玻璃池窑各部 (2)2.1玻璃熔制部分 (2)2.1.1熔化部 (2)2.1.2投料池 (3)2.1.3冷却部 (3)2.1.4分隔装置 (4)2.2小炉和蓄热室结构 (6)2.2.1对小炉的要求 (7)2.2.2小炉的作用 (7)2.2.3小炉的结构 (7)2.2.4烧重油熔窑的小炉结构 (7)2.2.5小炉钢结构 (9)2.2.6对蓄热室的要求 (9)2.2.7烧重油玻璃熔窑的蓄热室结构 (10)2.2.8 格字体结构 (11)2.3 烟道系统设计 (12)2.3.1 烟道的基本结构 (12)2.3.2 烟道的布置 (12)2.3.3 烟道的基本结构 (13)2.4窑池结构与承重 (13)第3章窑炉各部工艺计算 (16)3.1 熔化部尺寸 (16)3.2冷却部尺寸 (17)3.3投料池尺寸 (17)3.4卡脖尺寸 (17)3.5小炉蓄热室尺寸 (18)3.6烟道截面积设计 (18)3.6熔窑各部尺寸表 (19)第4章设备选型 (21)第5章熔窑热修 (22)5.1日常维修 (22)5.1.1日常巡回检查 (22)5.1.2日常维护 (22)5.2热修补 (22)5.3熔窑热修 (22)第6章事故应急处理 (24)6.1停电、停水和停油 (24)6.2漏玻璃液 (24)6.3冷却装置漏水 (24)参考文献 (26)结论 (27)第1章绪论玻璃池窑是玻璃工厂中的最重要、投资最大的设备,玻璃池窑的设计,牵涉面广,涉及因素很多多。
玻璃熔窑设计 2
目录目录 (I)(一)原始资料 (1)1.产品:机制啤酒瓶 (1)2.出料量: (1)3.玻璃成分(设计)(%): (1)4.料方及原料组成 (2)5.碎玻璃数量: (2)6.配合料水分: (2)7.玻璃熔化温度: (2)8.工作部玻璃液平均温度: (2)9.重油。
(2)10.雾化介质: (2)11.喷嘴砖孔吸入的空气量: (2)12.助燃空气预热温度: (2)13.空气过剩系数α: (2)14.火焰空间内表面温度: (3)15.窑体外表面平均温度(℃) (3)16.熔化池内玻璃液温度(℃) (3)17.熔化部窑顶处压力: (3)(二)玻璃形成过程耗热量计算 (3)1.生成硅酸盐耗热(以1公斤湿粉料计,单位是千卡/公斤) (5)2.配合料用量计算 (6)3.玻璃形成过程的热平衡(以1公斤玻璃液计,单位是千卡/公斤,从0℃算起) (6)(四)熔化部面积计算 (8)1.各尺寸的确定 (8)2.确定火焰空间尺寸: (8)3.熔化带火焰空间容积与面积计算 (8)4.火焰气体黑度(ε气)计算 (8)5.火焰温度计算 (9)(五)燃料消耗量及窑热效率计算 (9)1.理论燃料消耗量计算: (9)(1)熔化部收入的热量 (9)(2)熔化部支出的热量 (10)2.近似燃料消耗计算 (13)3.实际燃烧消耗量计算 (14)4.列熔化部热平衡表 (14)5.熔化部热负荷值,单位耗热量及窑热效率计算(按实际耗油量) (15)(六)蓄热室受热表面计算 (15)(七)排烟系统阻力计算 (16)1.局部阻力计算列下表 (16)2.摩擦阻力计算列表: (17)3.蓄热室几何压头计算: (17)(八)烟囱计算 (17)1.烟囱高度(H)计算 (17)2.烟囱出口直径(D)计算: (18)(一)原始资料1.产品:翠绿料2.出料量:每天熔化玻璃130吨。
3.玻璃成分(设计)(%):4.料方及原料组成5.碎玻璃数量:占配合料量的50%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录前言 (1)第一章浮法玻璃工艺方案的选择与论证 (3)1.1平板玻璃工艺方案 (3)1.1.1有曹垂直引上法 (3)1.1.2垂直引上法 (3)1.1.3压延玻璃 (3)1.1.4 水平拉制法 (3)1.2浮法玻璃工艺及其产品的优点 (4)1.3浮法玻璃生产工艺流成图见图1.1 (5)图1.1 (5)第二章设计说明 (6)2.1设计依据 (6)2.2工厂设计原则 (7)第三章玻璃的化学成分及原料 (8)3.1浮法玻璃化学成分设计的一般原则 (8)3.2配料流程 (9)3.3其它辅助原料 (10)第四章配料计算 (12)4.1于配料计算相关的参数 (12)4.2浮法平板玻璃配料计算 (12)4.2.1设计依据 (12)4.2.2配料的工艺参数; (13)4.2.3计算步骤; (13)4.3平板玻璃形成过程的耗热量的计算 (15)第五章熔窑工段主要设备 (20)5.1浮法玻璃熔窑各部 (20)5.2熔窑主要结构见表5.1 (21)5.3熔窑主要尺寸 (21)5.4熔窑部位的耐火材料的选择 (24)5.4.1熔化部材料的选择见表5.3 (24)5.4.2卡脖见表5.4 (25)5.4.3冷却部表5.5 (25)5.4.4蓄热室见表5.6 (25)5.4.5小炉见表5.7 (26)5.5玻璃熔窑用隔热材料及其效果见表5.8 (26)第六章熔窑的设备选型 (28)6.1倾斜式皮带输送机 (28)6.2毯式投料机 (28)6.3熔窑助燃风机 (28)6.4池壁用冷却风机 (29)6.5碹碴离心风机4-72NO.16C (29)6.6L吊墙离心风机9-26NO11.2D (29)6.7搅拌机 (29)6.8燃油喷枪 (29)6.9压缩空气罐C-3型 (29)第七章玻璃的形成及锡槽 (30)第八章玻璃的退火及成品的装箱 (32)第九章除尘脱硫工艺 (33)9.1除尘工艺 (33)9.2烟气脱硫除尘 (33)第十章技术经济评价 (34)10.1厂区劳动定员见表10.1 (34)10.2产品设计成本编制 (35)参考文献 (38)致谢 (39)摘要设计介绍了一套规模为900t/d浮法玻璃生产线的工艺流程,在设计过程中,原料方面,对工艺流程中的配料进行了计算;熔化工段方面,参照国内外的资料和经验,对窑的各部位的尺寸、热量平衡和设备选型进行了计算;分析了环境保护重要性及环保措施参考实习工厂资料,在运用相关工艺布局的基础下,绘制了料仓、熔窑、锡槽、成品库为主的厂区平面图,具体对熔窑的结构进行了全面的了解,绘制了熔窑的平面图和剖面图,还有卡脖结构图,整个设计参照目前浮法玻璃生产的主要设计思路,采用国内外先进技术,进行全自动化生产,反映了目前浮法生的较高水平。
关键词:浮法玻璃、熔窑工段、设备选型、工艺计算。
AbstractThe design introduced the technical process of 900t/d float glass production line. During the planning, for the raw material, the computation of material has been made; and for the melt section, the melting kiln various spots size, The heat balance and the choose of the equipment have been calculated with reference to the domestic and foreign materials and the experience, the environmental protection importance and environmental protection measure have been analyzed. With reference to factory date, under the technology arrangement correlation knowledge foundation, the factory horizontal plan about the storage, the melting kiln, the tin trough and product storage has been finished. The melting kiln structure has been concretely introduced, the horizontal plan and the sectional drawing of the melting kiln, small mouth composition and card neck structure drawing have been draw up. The entire design consulted the main design mentality of present float glass production; took the domestic and foreign advanced technologies; carried on the entire automated production; reflected at present floats production to compare the high level.keywords: float glass; melting section; choose of the equipment; process calculation.前言英国Pilkington兄弟在20世纪50年代浮法玻璃生产技术的发明付出了坚持不懈的努力,自1953年开始到1959年取得了成功耗时7年,投入了400万英镑。
同时美国的Ford公司也为浮法玻璃的成功做出了很多贡献,但是Ford公司递交专利申请书时比Pilkington兄弟晚了几个月,而让Pilkington兄弟独享了此项殊荣。
浮法玻璃因熔融玻璃液漂浮在熔融锡表面成型为平板玻璃而得名。
这种生产方法于无需克服玻璃本身重力,可使玻璃原板板面宽度加大,拉引速度大大提高,产量和生产规模增大:由于成型是在熔融金属表面进行,因此可以获得双面火抛光的优质镜面,其表面平整度、平行度可以与机械磨光玻璃相媲美,而机械性能和化学稳定性又优于机械磨光玻璃;同时,采取该讲法可以生产出厚度在0.5~25mm之间的多种品种、规格的玻璃,以满足不同用途的需要;另外浮法工艺还可以在线生产各种本体着色玻璃和镀膜玻璃,大大丰富平板玻璃的范畴,扩大了玻璃在各个领域的应用。
因此,随着浮法玻璃生产工艺的出现和不断发展。
使得其它的生产工艺逐渐被淘汰,只有Colburgh法与之并存[1]。
除了英国Pilkington公司的浮法技术之外,还有美国Pittsburgh技术比较有名。
1975年,美国Pittsburgh平板玻璃公司宣布,他们在Pilkington的工艺基础上采用把玻璃液流道和流槽相结合的宽玻璃液输送系统,使流入锡槽的玻璃液带宽度与成品玻璃的宽度相近,这样可以缩短玻璃液在锡液面上的横向摊平和展薄时间,使玻璃具有更好的内在质量和横向平直性。
自1959年2月浮法玻璃生产成功以来,浮法玻璃得到迅速的推广。
截至2003年,全世界已有36个国家和地区建成了140多条浮法玻璃生产线,总量达到3亿吨左右,并占到平板玻璃总量的80%以上,目前国外一些大公司掌握了较为先进的玻璃制造技术,可以生产出0.5~25mm之间各种厚度的浮法玻璃,其玻璃熔窖拉引规模也在150~100t/d之间不等。
当今世界的玻璃市场上,玻璃与玻璃加工业主要由5家玻璃公司所垄断,其总生产能力占全球玻璃生产能力的70%以上,仅日本旭硝子一家公司的市场占有率就达到了21%,英国皮尔金顿公司为12%,美国PPG11%。
我国浮法玻璃生产工艺从1965年开始实验,到1971年生产性试验线建成投产并取得成功,用了近7年的时间。
在试验线投产时只能生产6mm厚的玻璃,到1972年,能够比较稳定的生产出4~9mm玻璃,并试拉了3mm玻璃;1978年,对试验线时行了熔窑该烧重油、扩大生产能力的改建;1980年,国内仅有的一条试验线已能的生产出3~10mm厚度的浮法玻璃;1981年4月,试验线采取的生产技术通过国家级技术鉴定,获国家银质发明奖。
由于该生产试验线是在原洛阳玻璃厂试验成功的,故命名为中国“洛阳浮法玻璃工艺技术”(简称“洛阳浮法”)。
自“洛阳浮法”诞生以来,我国玻璃工业进入了一个快速发展时期。
浮法玻璃技术被迅速推广,一批采用“洛阳浮法”技术的浮法玻璃生产线陆续建成,目前我国已成为世界上生产规模最大的平板玻璃生产国。
截至2009年底,我国已建成投产的浮法玻璃生产线有125条,而采用“洛阳浮法”技术的生产线多达八十余条,其日拉引量一般为400~900t,原板厚度1.1~25mm,总生产能力达到3.13亿重箱/年。
目前,我国玻璃工业先后在日熔化量、玻璃技术装备、节能降耗、环境保护、多功能玻璃开发以及超薄、超厚品种形制方面都取得了重大突破,一些先进技术与国外的差距也正逐步缩小,我国浮法工艺技术从20世纪80年代已开始身发展中国家出口。
与发达国家相比,我国玻璃企业规模一般比较小,并且技术水准参差不齐。
目前,我国有大大小小的玻璃企业几百家,但普遍存在着规模小、整体水平不高、结构单一的特点,并且地域分布不均衡,经济发达地区数量多、规模大、技术也较为先进,代表着我国浮法技术发展的新水平。
目前,国内比较大的几家玻璃企业市场占有率仍然较低,最大的玻璃集团年销售额仅2~3亿美元,与国外大公司相比差距很大。
今后玻璃发展的目标是将常规的和特殊的技术进步结合起来,实现浮法玻璃生产技术、装备的新突破,并在新产品开发、功能化、环保等多方面加大技术研究力度,以促进玻璃工业可持续发展。
第一章浮法玻璃工艺方案的选择与论证1.1平板玻璃工艺方案平板玻璃规模化生产直到18世纪才真正出现。
在18世纪生产平板玻璃的方法主要有两种:一是冠形制板法二是圆筒法。
后来进一步改进出现了Sieverts法,1903处发明了Lubers法,到20世纪后出现了很多很好的生产平板玻璃的方法。
1.1.1有曹垂直引上法其形成特点是利用槽子砖成型,由于静压力作用,玻璃液从槽口向上涌出形成板根,板根处玻璃液受引上机石棉辊拉引继续上升,并经受水冷却器急冷,逐渐硬化形成玻璃原板,进入引上机膛退火。
原板经切割而成原片。