2019-2020学年安徽省亳州市中考数学达标测试试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()
A.12
5
B.
9
5
C.
6
5
D.
16
5
2.下列图形中,阴影部分面积最大的是
A.B.C. D.
3.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()
A.1
(1)28
2
x x-=B.
1
(1)28
2
x x+=C.(1)28
x x-=D.(1)28
x x+=
4.如图,已知O的周长等于6cm
π,则它的内接正六边形ABCDEF的面积是()
A.93
4
B.
3
4
C.
3
2
D.3
5.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是()
A.1 B.2 C.3 D.4
6.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()
A.B.C.D.
7.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )
A.45︒B.50︒C.60︒D.75︒
8.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包
含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤
2
3
-;③对于任意实数m,a+b≥am2+bm
总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个
9.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
10.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()
A.1
2
B.
1
3
C.
3
10
D.
1
5
二、填空题(本题包括8个小题)
11.若一个多边形的内角和是900º,则这个多边形是边形.
12.如果关于x的方程2x2x m0
-+=(m为常数)有两个相等实数根,那么m=______.
13.
1
2019
的相反数是_____.
14.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.
15.写出一个一次函数,使它的图象经过第一、三、四象限:______.
16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.
17.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:
评价条数等级
餐厅
五星四星三星二星一星合计
甲 538 210 96 129 27 1000 乙 460 187 154 169 30 1000 丙
486
388
81
13
32
1000
(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.
18.如图,这是一幅长为3m ,宽为1m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m 1.
三、解答题(本题包括8个小题)
19.(6分)如图,一位测量人员,要测量池塘的宽度 AB 的长,他过 A B 、 两点画两条相交于点 O 的射线,在射线上取两点 D E 、 ,使
1
3
OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.
20.(6分)如图,在ABC 中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的
O 交BC 于点G ,交AB 于点F ,FB 恰为O 的直径.
求证:AE 与
O 相切;当1
4cos 3
BC C ==,时,求O 的半径.
21.(6分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .试判断DE 与⊙O 的位置关系,并说明理由;过点D 作DF ⊥AB 于点F ,若3DF=3,求图中阴影部分的面积.