人教版八年级数学下册变量与函数
人教版八年级数学下册说课课件-19.1.1 变量和函数(共16张PPT)
子表示 y ? y的值随x的值的变化而变化吗?
y = 10x
八年级 数学
第十九章 一次函数
19.1 变量与函数
19.1.1 变 量
活动二 问题(3) lián yī
你见过水中的涟漪吗?圆形水波慢慢地扩大,在这一过程 中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?
y= 5-x S = 60t y = 10x S= πr2
活动四:巩固练习
变量:月用水量x吨和月应交水费y元, 常量:自来水价4元/吨。
变量:通话时间t分钟和话费余额w元, 常量:通话费0.2元/分钟和存入话费30元。
变量:半径r和圆周长C 常量:圆周率π及计算公式中的数字2。
变量:第一个抽屉放书量x本和第二个抽屉放书量y本, 常量:书的总数10本。
当r=10cm时,S=400πcm2
当r=30cm时,S=900πcm2
圆面积S= πr2
题目中没有 特别要求时,
要保留π
S的值随r的值变化而变化吗?
八年级 数学
19.1 函数
第十九章 一次函数
19.1.1 变 量
活动二 问题(4)
用10 m 长的绳子围成一个长方形,当长方形的一边长x分
别为 3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值
随x
的值的变化而变化吗? 矩形的周长=(长+宽)×2
已知周长,如何去求长或宽呢?
矩形的宽=周长÷2-长
当x=3m时,y=2m 当x=3.5m时,y=1.5m
当x=4m时,y=1m
y= 5-x
活动二:创设情境-----新知探究
问题1:分别指出思考(1)~(4)的变化过程中所涉及的量, 在这些量中哪些量是发生了变化的?哪些量是始终不变的?
19.1.2变量与函数-说课稿 2022-2023学年人教版八年级数学下册
19.1.2 变量与函数-说课稿一、教材分析《2022-2023学年人教版八年级数学下册》中的第19章是关于函数的学习内容。
本说课稿将重点介绍第19章第1节的内容——变量与函数。
本节内容主要包括以下几个方面:1.通过实际例子引入变量的概念;2.介绍变量的定义、表示和使用;3.探讨函数的定义及其基本性质;4.练习函数的使用,包括计算函数值和计算函数的解析式。
通过这一节的学习,学生应该能够了解变量的概念和用途,并掌握函数的基本概念和使用方法。
二、教学目标1. 知识与能力目标•了解变量的概念、定义和表示方法;•掌握函数的定义和函数值的计算方法;•能够计算简单函数的解析式。
2. 过程与方法目标•通过引入实际例子,激发学生对变量的兴趣;•通过提问、讨论和演示等多种教学方法,培养学生分析和解决问题的能力;•鼓励学生进行小组合作学习,提高学生的合作与交流能力。
3. 情感态度价值观目标•培养学生的探究精神和创新思维能力;•培养学生的数学思维和逻辑思维能力;•引导学生积极参与课堂活动,增强课堂互动氛围。
三、教学重点•变量的概念和表示方法;•函数的定义和计算方法。
四、教学难点•函数的解析式的计算。
五、教学准备•教材:《2022-2023学年人教版八年级数学下册》;•多媒体设备;•板书工具。
六、教学过程1. 导入新课通过一个生动有趣的例子引出变量的概念。
比如:小明去水果店买苹果,苹果的价格是每个1元,那么10个苹果的价格是多少?引导学生思考如何计算苹果的总价。
2. 引入变量通过上述例子引导学生理解变量的概念。
告诉学生,我们可以用一个字母或一个符号代表一个数,这个字母或符号就叫做变量。
比如,我们可以用字母x表示苹果的个数,用数字1表示每个苹果的价格,那么苹果的总价就是x乘以1,即x元。
3. 变量的表示方法向学生介绍变量的表示方法,即用字母或符号代表一个数。
同时,告诉学生变量通常都是小写字母,如x、y、z等。
4. 变量的使用通过一些练习题引导学生巩固对变量的理解和使用方法。
八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版
例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=
x
2
2(
x
2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.
人教八年级数学下册-变量与函数(附习题)
C.p和t是变量
D.数100和t都是常量
2.分别指出下列式子中的变量和常量:
(1)圆的变周量长l=2π常r(其量中l为周长,r为半径);
(2)式变子量m=(n-常2)量×18变0°量(m为多边形的内角
和,n为边数);
变量
常量
变量 常量 (3)若矩形的宽为x,面积为36,则这个矩形的
长为y= 36 . 变量
2.能列出函数解析式表示两个变量之间 的关系.
3.能根据函数解析式求函数自变量的取 值范围.
4.能根据问题的实际意义求函数自变量 的取值范围.
推进新课
知识点 1 函数的概念及函数值
思考下面两个问题, 你学到了什么?
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
小圆半径 小圆面积 圆环面积
课堂小结
变量
数值发生变化的量
常量
数值始终不变的量
拓展延伸 心理学家发现,学生对概念的接受能力y
与提出概念所用的时间x(单位:分)之间有如 下关系(其中0≤x≤30):
提出概念所用的时间(x) 2 5 7 10 12 13 14 17 20 对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55
13分钟
第2课时 函数
新课导入
上节课我们学习了变量与常量, 这节课我们进一步学习函数及函数自 变量的取值范围问题.
试判断下面所给的两个例子中两 个变量是否也存在一一对应的关系.
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
《变量与函数》公开课教学设计 人教版八年级下册
人教版八年级下册19.1.1变量与函数教学设计因为数是固定不变的,所以在一个关系式中,常量是数,而字母可以取相应变化的值,所以变量是字母。
下列运动变化过程中的关系式,哪些是变量,哪些是常量:①y=0.4x常量:变量:②a=3+2.4b常量:变量:③C=2πR常量:变量:④V=6abc常量:变量:2、函数的相关概念:P73一般地,在一个变化过程中,如果有____个变量___与___,并且对于____的每一个确定的值,____都有___________的值与其对应,那么我们就说 x是_________,y是 x的______.如果当x=a 时,对应的y=b,那么 b 叫做当自变量的值为a时的_______.P74用关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数的_________.x/h 1 2 3 4 (x)y/km 60 120 180 240 (60x)在上述汽车行驶的过程中, y与x的关系式是_________,这其中有____个变量,给一个x,得____个y,所以____是自变量,_____是_____的函数。
x=1时,y的函数值是60;x=2时,y的函数值是120;x=3时,y的函数值是_______;x=4时,y的函数值是_______。
函数解析式即y与x的关系式:___________.y是x的函数吗?如果是,指出自变量。
①y=0.4x 两个变量x和y,给一个x,得一个y,所以,x是自变量,y是x的函数。
②y=±x 反例:当 x=1时,y=±1,给一个x,得两个y,所以y不是x函数。
③y2=x 问题前置的目的。
左题由组代表抢答,并计入本组竞赛成绩,教师根据答题情况纠偏改错。
2、学生齐读并齐答,教师根据回答情况纠偏改错。
①②③④是难点题目,教师先讲解,学生讨论研究。
反例:(±3)2=9,当 x=9时,y=±3,给一个x,得两个y,所以y不是x的函数。
人教版八年级数学下册《变量与函数》
如: 当矩形的长一定时,矩形的面积依赖 宽的变化而变化他们之间是否存在函数关 系呢?
交流反思:函数概念理解
1.函数概念包含:
(1)在一个变化过程中两个变量; (2)两个变量之间的对应关系 (3)对于x的每一个确定的值,y都有唯 一 确定的值与 其对应 2.在某个变化过程中,可以取不同数值的量,叫做变 量;数值始终保持不变的量,叫做常量.例如x和y, 对于x的每一个值,y都有惟一的值与之对应,我们 就说x是自变量,y是x的函数.
自我挑战
1、判断下列问题中的变量y是不是x的函数?
(1)在 y = 2x 中的y与x; 是 (2)在 y = x 中的y与x; 是
2
(3)在 y = x 中的y与x; 不是
2
2.下列各曲线中不表示 y 是 x 的函数的是(பைடு நூலகம்
4
)
3.下列关系中,y不是x函数的是(
D
)
x A. y 2
B. y x
(2)火车以60千米/时的速度行驶,它 驶过的路程 s(千米)和所用时间t(时)的关系式; (3)n边形的内角和S与边数n的关系式.
教你一招: 1、先认真审题,根据题意找出相等关系 2、按相等关系,写出含有两个变量的等式 3、将等式变形为用含有自变量的代数式 表示函数的式子
根据所给的 条件,写出y与x的函数关系式:
用含重物质量m(kg)的式子表示受力后的 弹簧长度 L(cm)为:
L=10+0.5m
3
11.5
重物质量 m(Kg)
1
2
11
4
12
5
12.5
弹簧长度 10.5 L(cm)
弹簧长度L 重物质量 m 当 确定一个值时, 就 随之确定一个值。
19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
人教版八年级下册数学教案-第19章 一次函数-19.1.1 变量与函数
19.1函数19.1.1变量与函数第1课时常量与变量教学目标一、基本目标【知识与技能】1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.【过程与方法】经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.【情感态度与价值观】培养学生积极参与数学活动,对数学产生好奇心和求知欲.二、重难点目标【教学重点】1.认识变量、常量.2.用式子表示变量间关系.【教学难点】用含有一个变量的式子表示另一个变量.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P71的内容,完成下面练习.【3 min反馈】1.在一个变化的过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.2.判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值是否发生变化.3.每张电影票售价为10元,如果早场售出150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?解:早场电影票房收入:150×10=1500(元),日场电影票房收入:205×10=2050(元),晚场电影票房收入:310×10=3100(元), 关系式:y =10x .4.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm ,每1 kg 重物使弹簧伸长0.5 cm ,怎样用含有重物质量m 的式子表示受力后的弹簧长度?解:挂1 kg 重物时弹簧长度:1×0.5+10=10.5(cm), 挂2 kg 重物时弹簧长度:2×0.5+10=11(cm), 挂3 kg 重物时弹簧长度:3×0.5+10=11.5(cm), 关系式:L =0.5m +10. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】分析并指出下列关系中的变量与常量: (1)球的表面积S 与球的半径R 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h (m)与它下落的时间t (s)的关系式是h =12gt 2(其中g 取9.8 m/s 2); (4)已知橙子每千克的售价是1.8元,则购买数量x 千克与所付款W 元之间的关系式是W =1.8x .【互动探索】(引发学生思考)在一个变化的过程中,常量和变量怎样区分? 【解答】(1)S =4πR 2,常量是4,π,变量是S ,R . (2)h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t .(3)h =12gt 2(其中g 取9.8 m/s 2),常量是12,g ,变量是h ,t .(4)W =1.8x ,常量是1.8,变量是x ,W .【互动总结】(学生总结,老师点评)常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.活动2 巩固练习(学生独学)1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q (元)与他买这种笔记本的本数x 之间的关系是( C )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +502.甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足v t =s ,在这个变化过程中,下列判断中错误的是 ( A )A .s 是变量B .t 是变量C .v 是变量D .s 是常量3.某种报纸的价格是每份0.4元,买x 份报纸的总价为y 元,先填写下表,再用含x 的式子表示y .份数/份 1 2 3 4 5 6 7 100 价钱/元0.40.81.21.62.02.42.840x 与y 之间的关系是y =0.4x ,在这个变化过程中,常量是报纸的单价,变量是报纸的份数.4.先写出下列问题中的函数关系式,然后指出其中的变量和常量: (1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)一个铜球在0 ℃的体积为1000 cm 3,加热后温度每增加1 ℃,体积增加0.051 cm 3,t ℃时球的体积为V cm 3;(3)等腰三角形的顶角为x 度,试用x 表示底角y 的度数. 解:(1)α=90°-β.90°是常量,α、β是变量.(2)V =1000+0.051t .其中1000,0.051是常量,t 、V 是变量.(3)y =180-x 2 =90-x 2(0<x <180°).其中90,12 是常量,x 、y 是变量.活动3 拓展延伸(学生对学)【例2】如图,等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分的面积y cm 2与MA 的长度x cm 之间的关系式,并指出其中的常量与变量.【互动探索】根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA 的长度可得出y 与x 的关系,再根据变量和常量的定义得出常量与变量.【解答】由题意知,开始时A 点与M 点重合,让△ABC 向右运动,两图形重合的长度为AM =x cm.∵∠BAC =45°,∴S 阴影=12·AM ·h =12AM 2=12x 2,则y =12x 2,0≤x ≤10.其中的常量为12,变量为重叠部分的面积y cm 2与MA 的长度x cm.【互动总结】(学生总结,老师点评)通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.环节3 课堂小结,当堂达标 (学生总结,老师点评)常量与变量⎩⎪⎨⎪⎧定义判断练习设计请完成本课时对应训练!第2课时 函 数教学目标一、基本目标 【知识与技能】1.认识变量中的自变量与函数. 2.进一步掌握确定函数关系式的方法. 3.会确定自变量的取值范围. 【过程与方法】1.经历回顾思考过程,提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.【情感态度与价值观】积极参与活动,提高学习兴趣,并形成合作交流意识及独立思考的习惯. 二、重难点目标 【教学重点】1.进一步掌握确定函数关系的方法. 2.确定自变量的取值范围. 【教学难点】认识函数、领会函数的意义.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P74的内容,完成下面练习. 【3 min 反馈】1.函数的概念:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.2.用关于自变量的数学式子表示函数与自变量之间的关系的式子叫做函数的解析式. 3.对函数的理解,要抓住三点:(1)两个变量;(2)一个变量的数值随着另一个变量数值的变化而发生变化;(3)自变量的每一个确定的值,函数都有唯一的一个值与其对应.4.使得函数有意义的自变量的取值的全体叫做自变量的取值范围.确定自变量取值范围的条件:(1)使函数解析式有意义;(2)使函数所代表的实际问题有意义.5.对于自变量的取值范围内的一个确定的值,如当x =a 时,y =b ,函数有唯一的值b 与之对应,则这个对应值b 叫做x =a 时的函数值.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】下列变量间的关系不是函数关系的是( ) A .长方形的宽一定,其长与面积 B .正方形的周长与面积 C .等腰三角形的底边长与面积 D .圆的周长与半径【互动探索】(引发学生思考)如何判断两个变量是否是函数关系?【分析】长方形的宽一定,它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;正方形的面积=(正方形的周长)216,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;等腰三角形的面积=12×高×底,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;圆的周长=2π×半径,圆的周长与其半径是函数关系,故D 选项是函数关系.【答案】C【互动总结】(学生总结,老师点评)判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【例2】根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值y 为( )A .32B .25C .425D .254【互动探索】(引发学生思考)已知函数解析式,怎样求函数值?自变量的取值范围不同,对应的函数关系式不同,又怎样求函数值呢?【分析】∵2<52<4,∴将x =52代入函数y =1x ,得y =25.【答案】B【互动总结】(学生总结,老师点评)根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【例3】写出下列函数中自变量x 的取值范围: (1)y =2x -3; (2)y =31-x ; (3)y =4-x ; (4)y =x -1x -2. 【互动探索】(引发学生思考)怎样确定自变量的取值范围? 【解答】(1)全体实数. (2)分母1-x ≠0,即x ≠1. (3)被开方数4-x ≥0,即x ≤4.(4)由题意,得⎩⎪⎨⎪⎧x -1≥0,x -2≠0, 解得x ≥1且x ≠2.【互动总结】(学生总结,老师点评)本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.活动2 巩固练习(学生独学)1.下列变量之间的关系是函数关系的是( C ) A .水稻的产量与用肥量 B .小明的身高与饮食 C .球的半径与体积 D .家庭收入与支出2.如图,△ABC 底边BC 上的高是6 cm ,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是BC ,因变量是 △ABC 的面积; (2)如果三角形的底边长为x (cm),三角形的面积y (cm 2)可以表示为y =3x ; (3)当底边长从12 cm 变到3 cm 时,三角形的面积从36cm 2变到9cm 2; (4)当点C 运动到什么位置时,三角形的面积缩小为原来的一半? 解:当点C 运动到中点时,三角形的面积缩小为原来的一半.3.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10 kg 的物体,它的原长为10 cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1 kg 物体,弹簧伸长0.5 cm ;(2)设一长方体盒子高为30 cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数.(2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.4.一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表: 时间 (秒) 012345678910速度 (米/秒)0.31.32.84.97.611.014.118.424.228.9(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒时,v 的变化情况相同吗?在哪1秒时,v 的增加量最大? (4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?解:(1)上表反映了时间和速度之间的关系,时间是自变量,速度是因变量.(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是v 随着t 的增大而增大.(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加量最大. (4)120×10003600=1003≈33.3(米/秒),由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.活动3 拓展延伸(学生对学)【例4】水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t 分钟时,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围; (2)7:55时,水箱内还有多少水? (3)何时水箱内的水恰好放完?【互动探索】(1)根据水箱内存有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)当7:55时,t =55-30=25,将t =25代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.【解答】(1)∵水箱内存有的水=原有水-放掉的水, ∴y =200-2t .∵y ≥0,∴200-2t ≥0, 解得t ≤100, ∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100). (2)∵7:55-7:30=25(分钟),∴当t =25时,y =200-2t =200-50=150(升), ∴7:55时,水箱内还有水150升. (3)令y =0,即200-2t =0,解得t =100. 100分=1时40分,7时30分+1时40分=9时10分, 故9:10水箱内的水恰好放完.【互动总结】(学生总结,老师点评)(1)已知函数解析式求函数值,就是将自变量x 的值带入解析式,求代数式的值;(2)已知函数解析式并给出函数值,求相应的自变量x 的值,实际上就是解方程.环节3 课堂小结,当堂达标 (学生总结,老师点评) 函数⎩⎪⎨⎪⎧概念自变量的取值范围函数值练习设计请完成本课时对应训练!。
人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)
在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …
人教版八年级数学下册 第19章 19.1.1 变量与函数(第1课时)说课稿
变量与函数(第1课时)说课尊敬的各位领导和同仁们:大家好,今天我说课的内容是《变量与函数》第二课时。
下面我从教材分析、教法学法、学情分析、教学流程、板书设计、课后反思六个方面进行设计说明。
第一部分:教材分析(一)说教材地位和作用本节课是义务教育课程标准人教版数学八年级下册第十九章一次函数《变量与函数》中第二节课的内容。
变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一次飞跃。
遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则这一部分对于初中生来说是一块新的领域,但涉及的内容又与生活的实际联系非常密切,可以补充大量的实例来充实本课,进而吸引学生的学习兴趣,让学生感受数学在生活中可以广泛的应用到。
所举的实例也都能在认识函数的时候用到,有助于教师帮助学生在现实情境中,感受函数作为刻画现实世界的模型的意义,为下一节课奠定重要基础。
(二)说教学目标综上分析,本课时教学目标制定如下:教学目标:1.了解函数的概念。
2.能结合具体实例概括函数概念。
3.在函数概念形成的过程中体会运动变化与对应的思想。
(三)教学重点和难点【学习重点】概括并理解函数概念中的单值对应关系。
【学习难点】用含有一个变量的式子表示另一个变量.以及结合实际问题表示自变量的取值范围。
第二部分:教法与学法分析:1.说教法方法与手段:本节课从学生熟悉的实际问题开始,将实际问题“数学化”,有利于学生体会与实验,思考与探索。
在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
采用教师引导,学生自主探索、合作交流的教学方式,让学生充分发挥聪明才智,去发现问题,提出问题,进而分析、解决问题,充分调动学生的积极性,培养学生的应用意识。
2.说学法根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考问题、发现问题,充分发挥学生的主体作用,让学生成为学习的主人。
变量与函数(一课时)说课稿
《19.1.1变量与函数》说课稿各位评委,大家好!今天我要说课的内容是义务教育教科书人教版八年级下册第十九章《一次函数》第一节《变量与函数》。
下面我将从教材、教法、学法、教案程序四个方面来进行阐述。
一、说教材1、教材的地位及作用人教版八年级下册第十九章《一次函数》是《课程规范》中“数与代数”领域的重要内容。
函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际。
而本节课是一次函数的启蒙课,在这里学生初步接触了变量的概念,它是函数学习的入门,也为以后学习一次函数、二次函数、反比例函数的内容打下基础。
本节课内容不但对培养学生比较、分析、概括的思维能力有作用,而且对培养学生运动变化等辨证唯物主义观点和形成良好的个性品质也有一定的帮助。
2、根据课程规范的要求和基于对教材的理解与分析,考虑到学生已有的知识水平和认知经验,我制定了如下的教案目标。
知识和能力:(1)掌握常量、变量的概念,体验在一个过程中常量与变量是相对存在的;(2)会在较复杂问题中辨别常量与变量。
过程和方法:通过实践与探索,让学生参与变量的发现过程,强化数学的应用意识,学会将实际问题抽象成数学问题。
情感态度价值观:通过学生列举身边的事例,激发学生探究问题的兴趣,体会数学应用价值,在探索活动中获得成功的体验。
为达成以上的教案目标,结合学生实际情况,确定本节课的教案重点为,常量和变量的概念;要突破的教案难点是:较复杂问题中常量与变量的识别。
二、说教法现代教案理论认为,在教案过程中,学生是学习的主体,教师是学习的组织者、引导者,教案的一切活动都必须以强调学生的主动性、积极性为出发点,根据这一教案理论,结合本节课的内容特点和八年级学生的认知特征,本节课我采用自主学习、合作探究、引领提升的方式展开教案,从实例出发,通过创设情境,引导学生自主探究、思考、归纳、应用,激发学生的好奇心,调动学生的求知欲。
在新知识学习中,给学生提供足够的思考时间和空间,教师始终以引导者的形象出现并在恰当的时候给予点拨、归纳。
人教版初中八年级下 19.1.2函数
请你按下面的问题进行思考: (2)能写出w 与t 的函数解析式吗?
小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (1)在这个测量过程中,锅中油的温度w 是加热时 间t 的函数吗?
小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
1 (5) y x 1 1 x
x4 ( 6) y 9 x
求下列函数中自变量x的取值范围:
(1) y=3x-1; (2) y=2x2+7; 1 (3) y= ; (4) y= x 2. x2
作业
• 必做:书81---83页 第1-----5题,10、11 题 • 能力培养51页1-----7 • 选作:能力培养52页8----10
6
(3)正多边形的内角和度数y随变数n的变化 情况. y= (n-2) ×180°
x
例1、求出下列函数中自变量的取值范围 (1)y=2x
3 ( 3) y x2
(2)
m n 1
1 k k 1
(4) h
求下列函数中自变量x的取值范围:
(1) y=3x-1; (2) y=2x2+7; 1 (3) y= ; (4) y= x 2. x2
人教版数学八年级下册19.1.1《变量与函数》说课稿
人教版数学八年级下册19.1.1《变量与函数》说课稿一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,属于初中数学的函数单元。
本节内容主要介绍了变量的概念,函数的定义及其表示方法,旨在让学生理解变量之间的关系,掌握函数的基本概念和表示方法。
二. 学情分析学生在学习本节内容前,已经学习了代数基础知识,对代数表达式有一定的理解,但对于变量的概念和函数的定义可能还比较陌生。
因此,在教学过程中需要引导学生理解变量之间的关系,逐步引入函数的概念,并通过实例让学生掌握函数的表示方法。
三. 说教学目标1.知识与技能目标:让学生理解变量之间的关系,掌握函数的定义及其表示方法,能够识别和表示简单的函数关系。
2.过程与方法目标:通过观察、分析实例,培养学生的抽象思维能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作意识。
四. 说教学重难点1.教学重点:函数的定义及其表示方法。
2.教学难点:理解变量之间的关系,掌握函数的表示方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究,积极参与课堂活动。
2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示实际生活中的实例,引导学生观察和分析变量之间的关系,引出函数的概念。
2.探究新知:让学生通过小组合作,探讨函数的定义及其表示方法,教师进行引导和讲解。
3.巩固新知:通过练习题让学生巩固函数的概念和表示方法,教师进行点评和指导。
4.应用拓展:让学生运用函数的知识解决实际问题,提高学生解决问题的能力。
5.课堂小结:对本节课的内容进行总结,强调函数的概念和表示方法。
七. 说板书设计板书设计要清晰、简洁,能够突出函数的概念和表示方法。
主要包括以下几个部分:1.变量与函数的定义2.函数的表示方法3.函数的性质八. 说教学评价教学评价主要包括学生的学习效果评价和教师的教学评价两个方面。
人教版变量与函数免费课件
展
1.阅读课本71页.找出下面问题中的常量和变量: (1)汽油的价格是7.4元/升,加油 x L,车主加油付油费 y 元. (2)小明看一本200 页的小说,看完这本小说需要t 天,平均每天所看的页数 为 n页. (3)用长为40 cm 的绳子围矩形,围成的矩形一边长为 x cm,其面积为 S cm2 . (4)圆形水波慢慢地扩大,在这一过程中,当圆的半径r,圆的面积S cm2 .
•
2.该 类 题 目 考 察学 生对文 本的理 解,在 一定程 度上是 在考察 学生对 这类题 型答题 思路。 因此一 定要将 这些答 题技巧 熟记于 心,才 能自如 运用。
•
3. 结 合 实 际 , 结合 原文, 根据知 识库存 ,发散 思维, 大胆想 象。由 文章内 容延伸 到现实 生活, 对现实 生活中 相关现 象进行 解释。 对人类 关注的 环境问 题等提 出解决 的方法 ,这种 题考查 的是学 生的综 合能力 ,考查 的是学 生对生 活的关 注情况 。
感谢观看,欢迎指导!
•
6.另 外 , 木 质 材料 受温度 、湿度 的影响 比较大 ,榫卯 同质同 构的链 接方式 使得连 接的两 端共同 收缩或 舒张, 整体结 构更加 牢固。 而铁钉 等金属 构件与 木质材 料在同 样的热 力感应 下,因 膨胀系 数的不 同,从 而在连 接处引 起松动 ,影响 整体的 使用寿 命。
•
4.做 好 这 类 题 首先 要让学 生对所 给材料 有准确 的把握 ,然后 充分调 动已有 的知识 和经验 再迁移 到文段 中来。 开放性 试题, 虽然没 有规定 唯一的 答案, 可以各 抒已见 ,但在 答题时 要就材 料内容 来回答 问题。
•
5.木 质 材 料 由 纵向 纤维构 成,只 在纵向 上具备 强度和 韧性, 横向容 易折断 。榫卯 通过变 换其受 力方式 ,使受 力点作 用于纵 向,避 弱就强 。
人教版八年级数学下册19.1.1变量与函数(2) 课件
等号右边是开偶次方的式子,自变量的取值
范围是使根号下的式子的值大于或等于0的实数,例如:
= − 3.
④.零次型
等号右边是自变量的零次幂或负整数次幂,
自变量的取值范围是使幂的底数不为0的实数,例如:
= 0.
新知探究
例5 汽车的油箱中有汽油50L,如果不再加油,那么油箱中的
油量y(单位:L)随行驶里程x(单位:km)的增加而减少,
的函数. 例如,问题1中的s=3t,问题2中的S=x(5-x)
如果当x=a时y=b,那么b叫做当自变量的值为a时
的函数值.
新知小结
2.判断一个关系是否是函数关系的方法
①看是否在一个变化过程中;
②看是否存在两个变量;
3个条件
缺一不可
③看每当变量确定一个值时,另外一个变量是否都有唯一
确定的值与之相对应.
平均耗油量为0.1L/km.
(1)写出表示y与x的函数关系的式子;
叫做函数的解析式
解:函数关系式为: y = 50-0.1x.
0.1x表示的意义是什么?
新知探究
(2)指出自变量x的取值范围;
解: 由x≥0及50-0.1x ≥0得
0 ≤ x ≤ 500.
汽车行驶里程,油箱中
的油量均不能为负数!
∴自变量的取值范围是
化;当一个变量确定时,另一个变量也随之确定.
新知探究
奥运会火炬手以3米/秒的速度
跑步前进传递火炬,传递路程为s
米,传递时间为t秒,怎样用含t的
式子表示 s?
新知探究
知识点 1
函数的有关概念
问题1 全运会火炬手以3米/秒的速度跑步前进传递火炬,传
递路程为s米,传递时间为t秒,填写下表:
人教版八年级数学下册变量与函数优质教学设计教案
人教版八年级数学下册变量与函数教案2023年4月第十九章一次函数19.1 函数19.1.1 变量与函数课时1 变量与常量教学目标【知识与技能】借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。
初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。
【过程与方法】借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。
【情感态度与价值观】从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。
学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。
教学重点正方形的定义及正方形与平行四边形、矩形、菱形的联系.教学难点正方形与矩形、菱形的关系及正方形的性质与判定的灵活运用..教学准备多媒体课件一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的。
例如,地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。
再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。
这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。
教学过程:二、合作交流、解读探究1、气温问题:下图是北京春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃;(2)这一天中,在4时~12时,气温(),在16时~24时,气温()。
A.持续升高B.持续降低C.持续不变思考:(1)气温随的变化而变化,即T随的变化而变化;(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?2、当正方形的边长x分别取1、2、3、4、5、6、7,……时,正方形的面积S分别是多少?3、某城市居民用的天然气,1m3收费2.88元,使用xm3天然气应缴纳费用y=2.88x ,当x=10时,缴纳的费用为多少?思考:上述三个问题,分别涉及哪些量的关系?哪些量是变化的?哪些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫作变量;有些量的值始终不变(如正方形的面积……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请指出上面各个变化过程中的常量、变量.
练一练
1、指出下列问题中的变量和常量:
(1)某市的自来水价为4元/t.现要抽取若干户居民调查
水费支出情况,记某户月用水量为xt,月应交水费为y元.
变量:x, y ;
常量:4
(2)某地手机通话费为0.2元/min.李明在手机话费卡中 存入30元,记此后他的手机通话时间为tmin,话费卡中的 余?
y的值随x的值的变化而变化
3、你见过水中涟漪吗?圆形水波慢慢地扩大.在这一过程 中,当圆的半径分别为10 cm, 20 cm,30 cm时,圆的面积s分别为多少?s的值随r的值的 变化而变化吗?
当圆的半径为10cm时,面积为s=100π ; 当圆的半径为20cm时,面积为s=400π ; 当圆的半径为30cm时,面积为s=900π .
是 a ,n ,常量是 50 .
3.汽车开始行使时油箱内有油40升,如果每小时 耗油5升,则油箱内余油量Q(升)与行使时间t(小时) 的关系是 Q=40-5t ,其中的常量是 40,5 ,变量 是 Q,t .
第二场电影的票房收入 _2_0_5_0_元; 第三场电影的票房收入 _3_1_0_0_元.
(2) 在以上这个过程中,变化的_售_ 出票数x,_票_房__收__入_y_____ 不变化的量是_票__价__1_0元__/_张__.
(3) 设一场电影售出票x张,票房收入为y元,怎样用含x的式子表示y?
y=10x
第十九章 一次函数
19.1 函数 19.1.1 变量与函数
学习目标
• 1、完成书上四个思考问题 • 2、弄清变量与常量的概念 • 3、小组讨论解决:自学中存在的问题
并能迅速分辨问题中的变量与常量
新课讲解
1、汽车以60 km/h的速度匀速行驶,行驶路程为s km,行驶时间为t h, 填表,s的值随t 的值的变化而变化吗?
变量:t, w ; 常量:0.2 , 30
(3)水中涟漪(圆形水波)不断扩大,记它的半径为r, 圆周长为C,圆周率(圆周长与直径的比)为π.
变量:r,C;
常量:π
(4)把10本书随意放入两个抽屉(每个抽屉内都放), 第一个抽屉放入x本,第二个抽屉放入y本.
变量:x, y;
常量:10
交流讨论
思考:问题(1)~(4)中是否各有两个变量? 同一个问题中的变量之间有什么联系?
t/h
1
s/km 60
2
3
4
5
120 180 240 300
(1)请同学们根据题意填写下表: (2)在以上这个过程中,变化的是_时__间__t__,
不变化的量是_速__度___.
(3)试用含t的式子表示s 是__s_=_6_0_t_.
2、每张电影票的售价为10元,如果第一场售出150张票,第二场售出205 张票,第三场售出310 张票, (1)第一场电影的票房收入 _1_5_00__元;
4、用10 m长的绳子围一个矩形.当矩形的一边长x分别为3 m, 3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?y的值随x的 值的变化而变化吗?
当x为3m时,y为2m; 当x为3.5m时,y为1.5m; 当x为4m时,y为1m; 当x为4.5m时,y为0.5m; y的值随x的值得变化而变化。
归纳:上面每个问题中的两个变量互相联系,当 其中一个变量取定一个值时,另一个变量就有唯 一确定的值与其对应。
1.若球体体积为V,半径为R,则V= 4πR3 其中
变量是 V 、 R ,常量是
4, 3 π
3
.
2.计划购买50元的乒乓球,所能购买的总数n(个)
与单价 a(元)的关系式是
n 50 a
,其中变量
思考归纳
上述运动变化过程中出现的数量,你认为可以怎样分类?
数值发生 变化的量
数值始终 不变的量
变量 常量
知识要点
S = 60t
y = 10x
S=πr2
y=5–x
变量:在一个变化过程中,数值发生变化的量为变量.
常量:在一个变化过程中,数值始终不变的量为常量.
在同一个变化过程中,理解变量与常量的关键词:发生了变化和始终 不变.