刚体的动量和质心运动定理
物理竞赛-刚体
![物理竞赛-刚体](https://img.taocdn.com/s3/m/8adfb497a300a6c30d229f46.png)
t
0
fR2dt
1 2
m2 R22 (2
20
)
—
—(2)
稳定后两轮边缘线速度大小相等:1R1 2R2 — —(3)
1
m1R110 m2 R220
(m1 m2 )R1
,2
m2 R220 m1R110
(m1 m2 )R2
例、有一长为l、质量为m的匀质细杆,置于光滑 水平面上,可绕过中点O的光滑固定竖直轴转动,
5、车轮(圆柱体)的无滑滚动
若滚动车轮边缘上各点与支 撑面接触的瞬时,与支撑面 无相对滑动,则称车轮作无 滑滚动(纯滚动)。
车轮(中心)前进的距离与
转过的角度的关系:
x r dx r d
dt dt
则
vC
r
dvC dt
r d
dt
或 aC r
——无滑滚动的条件
C vC
r
x
车轮上任一点的速度: v vC r
vC
v 2
同时,对C轴合外力矩为0,故角动量守恒:
mv
l 4
( J C杆
J C球
)
y
J C杆
1 12
ml2
m( l )2 4
7 48
m l(2 平行轴定理)
ml
J C球
m( l )2 4
6v
5l
碰且后 系系 统统 以质心 将6v以绕v质C 心v2轴向转右动运。动,
5l
C vC
m O
例12、光滑水平桌面上有一半径为R、质量为M的
(r— —该点相对质心C的位矢)
例1、求图示纯滚动中G、B、A相对支撑面的速度。
G点:vG vC rGC 0
▲对无滑滚动,车轮边缘在与支撑面接触
相对于质心平移系的质点系动量矩定理刚体平面运
![相对于质心平移系的质点系动量矩定理刚体平面运](https://img.taocdn.com/s3/m/71f9dd083169a4517723a3cf.png)
0
0
J O d fFN Rdt
0
t
F fFN
J O 0 t f FN R
四、刚体转动惯量的计算
J z mi ri
2
——刚体对转轴的转动惯量
转动惯量——是刚体转动时惯性的度量。
转动惯量的大小不仅与质量的大小有关,
而且与质量的分布情况有关。 在国际单位制中为:kg · m2 对于质量为连续分布的刚体,则上式成为定积分
d (e) (i ) M ( m v ) M ( F ) M ( F 质点1: O 1 1 O 1 O 1 ) dt d M O (mi vi ) M O ( Fi ( e ) ) M O ( Fi (i ) ) 质点i : dt
d M O (mn v n ) M O ( Fn( e ) ) M O ( Fn(i ) ) 质点n : dt
一、质点和质点系的动量矩 二、动量矩定理 三、刚体绕定轴转动的微分方程 四、刚体转动惯量的计算 五、相对于质心(平移系)的质点系动量矩定理
六、刚体平面运动微分方程
一、 质点和质点系的动量矩
质点的动量矩——质点的动量对点之矩 z [1、力对点之矩] 空间的力对O 点之矩:
M O (F ) r F
d M x ( mv ) M x ( F ) dt d M y ( mv ) M y ( F ) dt d M z ( mv ) M z ( F ) dt
2、质点系的动量矩定理
设质点系有n个质点
每个质点的质量分别为: m1、m2、 mi mn
对轴的动量矩
z
Lz M z (mi vi )
LO Lxi Ly j Lz k
大学物理3-4质心 质心运动定理 动量守恒定律
![大学物理3-4质心 质心运动定理 动量守恒定律](https://img.taocdn.com/s3/m/09b7b575f121dd36a22d825b.png)
1. 质心
Y
质点系(或物体) 的质量中心,简称 质心。
C
O
X
抛手榴弹的过程
质心运动反映了质点系的整体运动趋势。
质心
对于N个质点组成的质点系:
m1, m2,, mi ,mN M mi 系统总质量
r1, r2, , ri , rN
直角坐标系中 质心的定义:
F1
f12
f13
f1n
m2a2
m2
d v2 dt
F2
f21
f23
f2n
mnan
mn
d vn dt
Fn
fn1
fn2
fn3
fnn1
质心运动定理
对于内力 f12 f21 0,, fin fni 0,
ac
mi
ai miai mi
F
i
ac
Fi mi
Fi
M
质心运
条件 定律
vc
Fi
0
mivi
M
=常矢量
P
mi vi
Mvc
=常矢量
i
动量守恒定律
直角坐标系下的分量形式
m1v1x m2v2x mnvnx =常量 m1v1y m2v2 y mnvny=常量 m1v1z m2v2z mnvnz =常量
动量守恒定律
例题3-8 如图所示,设炮车以仰角 发射一炮弹,炮车
线分布 d m dl 面分布 d m d S 体分布 d m dV
质心
注意:
质心的位矢与参考系的选取有关。
刚体的质心相对自身的位置确定不变。
质量均匀的规则物体的质心在几何中心。
力学中的刚体运动
![力学中的刚体运动](https://img.taocdn.com/s3/m/5f4d4d3fbfd5b9f3f90f76c66137ee06eff94ec7.png)
力学中的刚体运动刚体运动是力学中的基础概念之一,涉及物体在空间中的平移和旋转运动。
刚体指的是一个具有无穷多个质点的物体,其内部任意两点之间的相对位置保持不变。
本文将介绍刚体运动的基本原理、刚体运动的类型以及刚体运动的相关公式。
一、刚体运动的基本原理刚体运动的基本原理是“刚体上的任一质点在任意时刻的平面运动状态都完全相同”。
这意味着无论刚体如何运动,刚体上的各个质点之间的相对位置都保持不变。
这种相对位置的不变性使得刚体的运动可以用一个简化的模型来描述。
二、刚体运动的类型刚体运动可以分为平面运动和空间运动两种类型。
1. 平面运动平面运动指的是刚体在一个平面内的运动。
在平面运动中,刚体的质心沿直线或曲线轨迹运动,同时围绕质心进行旋转。
平面运动可以进一步分为平行轴定理和垂直轴定理两种类型。
- 平行轴定理:当刚体的所有质点在一个平面内运动,且对于每个平行于该平面的轴,刚体质量对该轴的转动惯量都相等,则刚体的转动可以看作是质心绕着某个轴的转动。
- 垂直轴定理:当刚体的所有质点在一个平面内运动,且对于每个垂直于该平面的轴,刚体质量对该轴的转动惯量都相等,则刚体的转动可以看作是绕着该轴的转动。
2. 空间运动空间运动指的是刚体在三维空间中的运动。
在空间运动中,刚体的质心和各个质点都可以沿直线或曲线轨迹进行平移和旋转。
空间运动需要考虑刚体在三个方向上的运动和转动,其描述较为复杂,常用欧拉角和四元数等方法进行分析和计算。
三、刚体运动的相关公式刚体运动的描述离不开相关的公式和定理。
以下是一些常用的刚体运动公式:1. 质心运动的描述:- 质心速度公式:v = ds/dt,其中v为质心速度,s为质心位移,t为时间。
2. 刚体的平面运动:- 转动惯量公式:I = ∑mi ri²,其中I为转动惯量,mi为每个质点的质量,ri为质点到旋转轴的距离。
- 角动量公式:L = Iω,其中L为角动量,ω为刚体的角速度。
- 动能定理:∑(1/2mi vi²) = (1/2)Iω²,其中vi为每个质点的速度。
大学物理第三章刚体力学
![大学物理第三章刚体力学](https://img.taocdn.com/s3/m/0a838338f111f18583d05a4c.png)
薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理
刚体质心运动的动量定理
![刚体质心运动的动量定理](https://img.taocdn.com/s3/m/40c2ee63cdbff121dd36a32d7375a417866fc1fa.png)
刚体质心运动的动量定理
一、定义和概述
刚体质心运动是指刚体绕其质心进行的运动。
刚体质心运动的研究是刚体动力学中的重要部分,其研究的主要内容包括质心的位移、速度和加速度等。
而动量定理则是质心运动的基本定理之一,用于描述质心运动的动量变化和力矩之间的关系。
二、刚体质心运动的特点
刚体质心运动具有以下特点:
1.刚体的质心始终在同一直线上运动,即质心轨迹是一条直线或一个点。
2.刚体的角动量等于零,因为刚体绕质心的运动可以分解为质心的平动和相对于质心的旋转运动,而旋转运动的角动量为零。
3.刚体的动量等于质心的动量,因为刚体中任意一点的动量都与质心的动量相同。
三、动量定理在刚体质心运动中的应用
在刚体质心运动中,动量定理可以表述为:对于刚体绕其质心的运动,其动量的变化率等于作用在刚体上的外力对质心的力矩。
这个定理可以用来描述刚体在力矩作用下的质心运动规律。
具体来说,假设刚体的质量为m,质心的位置为r(t),则刚体的动量为p=m*r(t)。
设外力F作用于刚体上,其作用点相对于质心的位置为f(t),则外力对质心的力矩为M=F*f(t)。
根据动量定理,有dp/dt=M,即m*dr(t)/dt=M。
这个公式可以用来求解刚体在力矩作用
下的质心运动规律。
四、结论
综上所述,动量定理是刚体质心运动的基本定理之一,它可以用来描述刚体在力矩作用下的质心运动规律。
在具体的应用中,可以通过对动量定理进行变换和化简,求解出刚体在给定外力矩作用下的质心运动轨迹、速度和加速度等物理量。
《理论力学》第10章 质心运动定理
![《理论力学》第10章 质心运动定理](https://img.taocdn.com/s3/m/068f83ea51e2524de518964bcf84b9d528ea2c90.png)
第10章 质心运动定理
26
3、求质心加速度
aC
aB
aCt B
aCnB
4、质心运动定理求约束力,受力分析
ma Cx FixE FA sin450 maCy FiyE FB mg FA cos 450
O
450
1m
A
C
vB
aB
450
B
FA
A
mg
x
FB
C
450
B
★理论力学电子教案
0
px const
★理论力学电子教案
第10章 质心运动定理
18
例题 图示机构,均质杆OA长l,质量为m1,滑块A的质量为m2, 滑道CD的质量为m3。OA杆在一力偶(图中未画出)作用下作 匀角度ω转动。试求O处的水平约束反力(机构位于铅直平面
内,各处摩擦不计)。 C
A
O
E
D
★理论力学电子教案
第10章 质心运动定理
第10章 质心运动定理
27
ma A
第10章 质心运动定理
14
M
C aC mg
FN
F
★理论力学电子教案
第10章 质心运动定理
§2 质点系动量、冲量
质点动量: 质点系动量:
p mv
P mivi mvC
问:刚体系动量?
元冲量:
dI F dt
冲量:
t2 t2
I dI F dt
t1
t1
15
p mv
★理论力学电子教案
第10章 质心运动定理
1
第十章 质心运动定理&动量定理
★理论力学电子教案
第10章 质心运动定理
大学物理-质心质心运动定律
![大学物理-质心质心运动定律](https://img.taocdn.com/s3/m/7a6e4c8c2dc58bd63186bceb19e8b8f67c1cef00.png)
当刚体绕定轴转动时,如果作用于刚体上的外力矩为零,则刚体的 角动量守恒。
角动量守恒应用
利用角动量守恒原理可以解决一些实际问题,如陀螺仪的工作原理、 天体运动中行星轨道的确定等。
角动量不守恒情况
当作用于刚体上的外力矩不为零时,刚体的角动量将发生变化。此时 需要根据外力矩的作用时间和大小来计算角动量的变化量。
适用范围和条件
01
适用范围:质心运动定律适用于任何由多个质点组成的系统,无论这 些质点之间是否存在相互作用力。
02
适用条件:质心运动定律的应用需要满足以下两个条件
03
质点系所受的外力可以视为作用于质心上的合力。
04
质点系内部的相互作用力对质心的运动没有影响,或者其影响可以忽 略不计。
质点系相对于质心参
角动量
描述刚体绕定轴转动时动量的大小 和方向,等于转动惯量与角速度的 乘积。
刚体绕定轴转动时质心位置变化规律
质心位置不变
刚体绕定轴转动时,其质 心位置保持不变,始终位 于转轴上。
质心速度为零
由于质心位于转轴上,因 此质心的速度为零。
质心加速度为零
由于质心速度为零,因此 质心的加速度也为零。
刚体绕定轴转动时角动量守恒原理
02
考系运动
质点系内各点相对于质心参考系位移
01
02
03
定义
质点系内各点相对于质心 的位置矢量称为相对位移。
性质
相对位移是描述质点系内 各点相对于质心位置变化 的物理量,具有矢量性。
计算方法
通过几何方法或解析方法 求出各点相对于质心的位 置矢量。
质点系内各点相对于质心参考系速度
定义
质点系内各点相对于质心的速度称为相对速度。
《力学》漆安慎答案07章
![《力学》漆安慎答案07章](https://img.taocdn.com/s3/m/a833570981c758f5f71f67cc.png)
力学(第二版)漆安慎习题解答第七章刚体力学第七章刚体力学一、基本知识小结1.刚体的质心定义:r c m i r i/ m r c rdm/ dm求质心方法:对称分析法,分割法,积分法。
2.刚体对轴的转动惯量定义:I m i r i2I r2dm平行轴定理I o = l c+md2正交轴定理I z = X+I y.常见刚体的转动惯量:(略)3.刚体的动量和质心运动定理p mv c F ma c4.刚体对轴的角动量和转动定理L I I5.刚体的转动动能和重力势能E k ?I 2E p mgy c6•刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程: F ma c c I c c(不必考虑惯性力矩)动能:E k 2mv;今I c c27.刚体的平衡方程、思考题解答火车在拐弯时所作的运动是不是平动答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。
若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。
但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。
对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动r r答:对静止的刚体施以外力作用,当合外力为了零,即Fi ma c 0时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。
所以,对某一确定点刚体所受合外力的力矩M Mi r i Fi不一定为零。
由刚体的转动定律M J可知,刚体将发生转动。
比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静止,但由于所受合外力矩不为零,将作绕质心轴的转动。
如果刚体转动的角速度很大,那么(1)作用在它上面的力是否一定很大(2)作用在它上面的力矩是否一定很大M r i F sin j J J「答:由刚体的定轴转动定律dt可知,刚体受对轴的合外力矩正比于绕定轴转动角速度的时间变化率。
刚体的运动方程
![刚体的运动方程](https://img.taocdn.com/s3/m/08623f06b52acfc789ebc9a9.png)
(欧勒运动学方程)
若:已知 ω 1 , ω 2 , ω 3
& & & 则:计算 ϕ , ψ , θ
讨论:对于对称陀螺,两个主轴可在平面 x1 x 2 上任意 选取,则:取 ox1 沿oN方向 ⇒
& ψ =0& 于是有: ω Nhomakorabea = θ
& & & ω 2 = φ sin θ ω 3 = φ sin θ + ψ
又
rc
∑m r = ∑m
a a a
a a
=0
⇒ 则
∑m r
a
a a
=0
d & 0 + ∑ (ra × ma ra ) = ∑ ra × Fa 外 dt a a
⇒
d & ∑ (ra × mara ) = ∑ ra × Fa 外 dt a a
令
& L( o ) = ∑ ra × ma ra
a
M ( o ) = ∑ ra × Fae
ϕ :刚体绕固定轴oz转过的角度——进动角; & ϕ :进动角速度——沿oz方向
& ψ
ψ :刚体绕 ox3 转过的角度——自转角;
:自转角速度——沿 ox3 方向。
ox θ : 3 和oz间的夹角——章动角; θ& :章动角速度——沿oN方向。
1. & 在 x1 x 2平面, 在 θ 由图:
x1 , x 2 , x3 的分量 θ&1 , θ&2 , θ&3 。
dω d ' ω d 'ω = + ω×ω = [ ] dt dt dt
⇒
dv 0 & = w + a + 2ω × v + ω × r + ω × (ω × r ) dt
动量定理 质心运动定理
![动量定理 质心运动定理](https://img.taocdn.com/s3/m/b6bdf450eff9aef8941e06e5.png)
动量定理 质心运动定理质点的动量定理可以表述为:质点动量的微分,等于作用于质点上力的元冲量。
用公式表达为 Fv =)(m dt d(17-7)dt m d F v =)( (17-8)设1t 时刻质点系的动量为1p ,2t 时刻质点系的动量为2p ,将(17-8)式积分,积分区间为从1t 到2t ,得⎰=-2112t t dtF p p (17-9)记IF =⎰21t t dt ,称为力F 在1t 到2t 时间间隔内的冲量。
式(17-9)为质点系动量定理的积分形式,它表明质点系在某时间间隔内的冲量的改变量,等于作用在质点系上的外力主矢在该时间间隔内的冲量。
对于质点系而言,设)(e i F 为质点i M 所受到的外力,)(i i F 为该质点所受到的质点系内力,根据牛顿第二定律得)(i i (e)ii i m F F a += 即)()(i i e i iidt d m F F v +=除了火箭运动等一些特殊情况,一般机械在运动中可以认为质量不变。
如果质点的质量i m 不变,则有 )()()(i i e i i i dt m d F F v +=上式对质点系中任一点都成立,n 个质点有n 个这样的方程,把这n 个方程两端相加,得∑∑∑===+=ni i i ni e ini i i dtm d 1)(1)(1)(F F v质点系的内力总是成对地出现,内力的矢量和∑=ni i iF1)(等于零。
上式中∑=ni e iF1)(是质点系上外力的矢量和,即外力系的主矢,记作)(e RF ,则上式可写为)(e R dt d F p= (17-10)这就是质点系动量定理的微分形式,它表明:质点系的动量对时间的导数等于作用在质点系上外力的矢量和。
将式(17-10)写成微分形式dt d e R )(F p =设1t 时刻质点系的动量为1p ,2t 时刻质点系的动量为2p ,上式从1t 到2t 积分,得⎰=-21)(12t t e R dtF p p I =(17-11)当外力主矢为零时,由上式可推出质点系的动量是一常矢量,即0p p =这表明当作用在质点系上的外力的矢量和为零时,质点系的动量保持不变,这就是质点系的动量守恒定理。
大学物理-刚体绕定轴转动的角动量
![大学物理-刚体绕定轴转动的角动量](https://img.taocdn.com/s3/m/1c0cecd5162ded630b1c59eef8c75fbfc67d945b.png)
M J
p mivi
角动量
L J
角动量定理 M d(J)
dt
质点的运动规律与刚体的定轴转动规律的比较(续)
质点的运动
动量守恒 力的功 动能
Fi 0时
mivi 恒量
Aab
b
F
dr
a
Ek
1 2
mv
2
动能定理
A
1 2
mv
2 2
1 2
mv12
重力势能
Ep mgh
机械能守恒
A外 A非保内 0时
进动特性的技术应用
翻转
外力
C
外力
进动
C
炮弹飞行姿态的控制:炮弹在飞行时,空气阻力对炮弹质心 的力矩会使炮弹在空中翻转;若在炮筒内壁上刻出了螺旋线 (称之为来复线),当炮弹由于发射药的爆炸所产生的强大 推力推出炮筒时,炮弹还同时绕自己的对称轴高速旋转。由 于这种自转作用,它在飞行过程中受到的空气阻力将不能使 它翻转,而只能使它绕着质心前进的方向进动。
pA pB
pA A
Bp B
s
s
O
x
结论:静止流体中任意两等高点的压强相等,即压强差为零。 若整个流体沿水平方向加速运动? 加速运动为a,压强差为?
2. 高度相差为 h 的两点的压强差(不可压缩的流体)
选取研究对象,受力分析:(侧面?)
沿 y 方向:
p C
Y C s
pB s pC s mg may
已知:p0=1.013×105 Pa , 0 1.29kg / m3
解 由等温气压公式
p
p e(0g / p0 ) y 0
0g 1.25104 m1
p0
p1 1.0 105 e1.251043.6103 0.64 105 Pa
漆安慎《力学》教案第07章 刚体力学
![漆安慎《力学》教案第07章 刚体力学](https://img.taocdn.com/s3/m/72473008e45c3b3567ec8b6e.png)
Δt0 Δt dt
在定轴转动中, 只有两个转向
第七章 刚体力学
P(t+t )
+ P(t)
O
x
逆时针转动时 >0; 顺时针转动时 < 0.
角速度用每分 n 转表示时: 2πn πn rad/s
60 30
类似地可得: 角加速度
lim Δ d
d (t)dt
t
0
(t)dt
0
d (t) dt
t
0
(t)dt
0
匀速转动时 =常量
匀变速转动时 =常量
0 t 0 t
0
t
1 t2
2
2 02 2( 0)
与质点作匀速或匀变速直线运动的公式完全对应!!!
特点
(1) 刚体可以看成由许多质点组成的质点 系,每一个质点叫做刚体的一个质元
(2) 刚体内任意两点间的距离保持不变. 所以将刚体称为“不变质点系”.
研究刚体的基本方法 将刚体看作质点系,并运用已知的质
点系的运动规律去研究.
上页 下页 返回 结束
第七章 刚体力学
§7.1 刚体运动的描述
刚体最基本的运动形式有: ⑴平动;⑵绕固定轴的转动;⑶平面运动
r j
z
r k
其中
x
dx
dt
y
dy
dt
z
dz
dt
当刚体作定轴转动时,可令转轴与 z 轴重合,
则有
x y 0 x y
r
z
r k
07物理学力学习题答案
![07物理学力学习题答案](https://img.taocdn.com/s3/m/8ab3cf1f10a6f524ccbf8564.png)
第七章基本知识小结⒈刚体的质心定义:∑⎰⎰==dm dm r r m r m r c i i c //求质心方法:对称分析法,分割法,积分法。
⒉刚体对轴的转动惯量定义:∑⎰==dm rI r m I ii 22平行轴定理 I o = I c +md 2正交轴定理 I z = I x +I y.常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==c c a m F v m p⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程: ∑∑==c c c c I a m F βτ(不必考虑惯性力矩)动能:221221c c c k I mv E ω+=⒎刚体的平衡方程∑=0F, 对任意轴∑=0τ7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。
⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ⑵rad 27.152)60/2)(12003000(21039.2622222⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ctbta dtd dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。
边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2(θ:rad,t:s)。
⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。
3-7质心动量角动量定理
![3-7质心动量角动量定理](https://img.taocdn.com/s3/m/5c1035f304a1b0717ed5dd0f.png)
例:任意三角形的每个顶点有一质量m,求质心。
y (x1,y1)
o
x2
x
mx1 mx2 x1 x2 xc 3m 3
my1 y1 yc 3m 3
例 :确定半径为R的均质半球的质心位置。
解:建立如图所示坐标 已知薄圆盘的质心位 于圆心,取厚度为 dy 的 薄圆盘为质量微元。
Y
dy
i
2. 增加了考虑问题的方法
(1)人在船上行走; (2)动量守恒定律体现在质心速度不变.
3. 如果外力
F外=0 ,则 ac 0 , 质心参考系是
个惯性系;反之,质心参考系是个非惯性系 , 各质点都受到一个惯性力 F惯=-mi ac .
例: 一船浮于静水中,船长 5 米,质量为 m。 一个质量亦为 m 的人从船尾走到船头,不计水 和空气的阻力,则在此过程中船将(A)不动(B)
质心在距球心3R/8处。
例:设有一质量为 2m的弹丸,从地面斜 抛出去,它飞行在最 高点处爆炸成质量 相等的两个碎片,
2m m O C m x
其中一个竖直自由下落,另一个水平抛出, 它们同时落地.问第二个碎片落地点在何处?
解 选弹丸为一系 统,爆炸前、后质心 运动轨迹不变.建立 图示坐标系,
2m O m1
mi r i
i
xc yc zc
mi xi
i
m mi yi
i
m
m mi zi
i
连续分布质点系: r c
M
rdm m
xc yc zc
m xdm
M ydm M zdm M
分立质点系:
rc
m r
i i
i
第4章 刚体的运动
![第4章 刚体的运动](https://img.taocdn.com/s3/m/b58ed70911a6f524ccbff121dd36a32d7375c727.png)
角动量的时间变化率。
非相对论情况d下L , 转I d动惯量II为常量:
dt dt 所以,经典力学中刚体的转动定理可表示为:
M I
➢当外力矩一定时,转动惯量越大,则角加速度越小。说明 转动惯量I是刚体转动惯性大小的量度。
例题 4-5
设 m1 > m2,定滑轮可看作匀质圆盘,其质量为M 而半径为r 。绳的质量不计且与滑轮无相对滑动,
Li ri pi
对时间求导: dLi
dt
d dt ( ri pi
)
dri dt
pi
ri
dpi dt
vi mivi ri fi ri fi Mi
其中:
fi
dpi dt
Mi ri fi
为第i个质元所受的作用力; 为fi对转轴的力矩。
对整个刚体: dL d
外力矩持续作用一段时间后,刚体的角速度才会改变。
由转动定理: Mdt dL
t2
Mdt
t1
L2dL
L1
L2
L1
I 2
I 1
式中
t2 t1
Mdt
称为合外力矩在
Δt
=
t2-t1内的冲量矩(N·m
·s)。
角动量定理:刚体所受合外力矩的冲量矩等于刚体在同一
时间内角动量的增量。
➢角动量定理对非刚体也成立,此时:
由平行轴定理:
z
I
Ic
Mh 2
1 12
ML2
Mh 2
当h=L/2时,与(1)的情况相同,由上式:
zc h
C
L、M
I 1 ML2 Mh 2 1 ML2 M( 1 L )2 1 ML2
12
12
2
7.2刚体的动量和质心运动定理
![7.2刚体的动量和质心运动定理](https://img.taocdn.com/s3/m/e26af2cba1c7aa00b52acb1f.png)
∑ mi yi
m
n
z C = i =1
∑ mi z i
m
n
刚体可看成特殊的质点系,上述各式同样适用于刚体 刚体可看成特殊的质点系,上述各式同样适用于刚体. 对质量连续分布的刚体: 对质量连续分布的刚体:
1 xC = ∫ xdm m
引入体密度ρ
xc =
1 yC = ∫ ydm m
1 z C = ∫ z dm m
刚体的动量
p = mvc
将质心运动定律应用于刚体
dv c ∑ Fi = m dt = mac
刚体的总质量 刚体所受的外力矢量和 质心加速度
上页
下页
返回
结束
第七章
刚体力学
*[例题 例题3]p220一圆盘形均质飞轮质量为 一圆盘形均质飞轮质量为m=5.0kg,半径 例题 一圆盘形均质飞轮质量为 , 转速为n=400r/min.飞轮作匀速转动 飞轮质 飞轮作匀速转动.飞轮质 为r=0.15m,转速为 转速为 飞轮作匀速转动 心距转轴d=0.001m,求飞轮作用于轴承的压力.计入飞 ,求飞轮作用于轴承的压力 计入飞 心距转轴 轮质量但不考虑飞轮重量( 轮质量但不考虑飞轮重量(这意味着仅计算由于飞轮的 转动使轴承受到的压力, 转动使轴承受到的压力,不考虑飞轮所受重力对该压力 的影响) 的影响). [解] 解
r1 m1
rc
o
z
rC =
x
∑ mi ri m1r1 + m2 r2 + … + mi ri + … i =1
m1 + m2 + … + mi + … = m
下页 返回 结束 上页
n
第七章 对质量离散分布的物体系: 对质量离散分布的物体系:
质点的运动规律和刚体定轴转动规律的对比
![质点的运动规律和刚体定轴转动规律的对比](https://img.taocdn.com/s3/m/20a65134f12d2af90242e696.png)
1 2
kx2
mgx
sin
v R
J
1
MR2
2
2mgx sin kx2
v mM /2
a dv dv dx v dv mg sin kx
dt dx dt dx m M / 2
(2) (3)
dv
mg sin
dx xxm 0 xm
一光滑的内表面半径为10 cm的半球形碗,以匀角速度ω绕其对称 OC旋转.已知放在碗内表面上的一个小球P相对于碗静止,其 位置高于碗底4 cm,则由此可推知碗旋转的角速度约为
A.10 rad/s B.13 rad/s C.17 rad/s D.18 rad/s
A.(1)、(2)是正确的 B.(2)、(3)是正确的 C.只有(2)是正确的 D.只有(3)是正确的
两木块A、B的质量分别为m1和m2,用一个质量不计、劲度系数 为k的弹簧连接起来.把弹簧压缩x0并用线扎住,放在光滑水平面 上,A紧靠墙壁,然后烧断扎线.判断下列说法哪个正确
A.由初态恢复为原长的过程中,以A、B、弹簧为系统,动量守恒 B.在上述过程中,系统机械能守恒 C.当A离开墙后,整个系统动量守恒,机械能不守恒 D. A离开墙后,整个系统的总机械能为0.5kx02 ,总动量为零
A.JA>JB B.JA<JB C.JA = JB D.不能确定JA、JB哪个大
关于力矩有以下几种说法:
(1)对某个定轴而言,内力矩不会改变刚体的角动量。 (2)作用力和反作用力对同一轴的力矩之和必为零。 (3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下, 它们的角加速度一定相等。
在上述说法中:
一质量为m的匀质细杆AB,A端靠在光滑的竖直墙壁上,B端置于 粗糙水平地面上而静止.杆身与竖直方向成θ角,则A端对墙壁的 压力大小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 如果刚体不是匀质的,但其质量分布和几何形状具有 相同的对称轴,则其质心必在此对称轴上; ③ 如果刚体不是匀质的,且其质量分布和几何形状具有 几条对称轴,则其质心必位于对称轴的交点上;
质量元表达式:
dm dV, ds, dl.
例:
① P218例1:求匀质实心半球的质心(体分布) . 2 体积元
xc
mi ric
m
mi ric m
, zc
i
i icy
m x
m
i icx
, yc
m x
m
m x
m
i icz
例:P219 例2.
[例题] 在半径为R的均质等厚度的大圆板的一侧挖掉半径为 R/2 的小圆板,大小圆板相切,求余下部分的质心。 y [解] 建立如图所示的坐标系,考虑对 称性,余下部分质心一定在 x 轴上, 即 yc 0 . 考虑:整体=阴影+小圆,得
§7.2 刚体的动量和质心运动定理
一、刚体的质心:
1. 质点系的质心公式:
rc
mi ri
i 1 N
N
rc xci yc j zc k
直角坐标系中的分量式:
m
i 1
mi ri
i 1
N
m
i
xc
m x
i
i i
m
, yc
m y
i i
i
m
, zc
m z
i
i i
m
2. 刚体是不变质点系,质心相对刚体的位置不变:
(1)如果刚体的质量分布是连续的,可用积分法求其质心:
rc
M
rdm
m
直角坐标系中的分量式:
xc
xdm ,y ydm ,z zdm
M
c
M
c
M
(2)根据对称性判断刚体的质心:
① 如果刚体匀质,且形状具有对称性,则其质心必在对 称轴上;
dV r dz
2
② 求匀质半球壳的质心(面分布). 面积元 求得质心坐标为
ds 2 ( R - z ) Rd
2 12
R zc 2
③ 求匀质半圆线的质心(线分布).
线元
dl Rd
(3) 如果刚体有几部分组成,可先求出不同部分的 质心坐标,然后再按照刚性质点系处理:
rc
O x
3 2 R 1 2 xc R R 4 2 4 0 R2
R xc 6
[例题]
半圆形均匀薄板(半径为R),试求其质心所在。 y [解] 建立如图所示的坐标系,由对称 性可知 xc=0, yc=? 将半圆划分为许多平行 于 x 轴的窄条,每一窄条中各点具有相 y R 同的 y ,阴影部分面积 2 R 2 y 2 d
y(2 R 2 y 2 )dy
dm
2
2 y R 2 y 2 dy
0
R
R 2
2
令y R sin
2R
3
1
0
cos d (cos )
2
R
2
2R 3 4R 2 R 2 3
3
二、刚体的动量与质心运动定理: 1. 动量:
例:P220 例3.
作 业: 7.2.2 练 习: 7.2.3
dri d p mi vi mi mi ri dt dt drc d mi ri m ( )m mvc dt m dt
2. 质心运动定理:
将质点系的质心运动定理应用于刚体,得:
dvc dp F合外 m mac dt dt