构造函数法证明导数不等式的八种方法(新)

合集下载

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数与构造函数是数学中非常重要的两个概念,它们可以帮助我们证明不等式,优化函数等问题。

接下来将分别介绍导数与构造函数在证明不等式时的技巧。

一、导数在证明不等式中的应用导数是函数的重要特征之一,它可以表示函数在某个点的变化率。

在证明不等式时,我们可以使用导数的性质来帮助我们证明某个不等式是否成立。

1. 利用导数判断函数在某个区间的单调性假设函数f(x)在区间[a,b]上具有一阶导数,则f(x)在区间[a,b]上为单调递增的条件是:f'(x)>0,而在区间[a,b]上为单调递减的条件则是:f'(x)<0。

如果我们需要证明某个不等式在某个区间上成立,可以通过证明函数的导数在该区间上的符号,从而得出原函数在该区间上的单调性,从而得出结论。

例如:证明当x>0时,e^x>x+1证明:考虑函数f(x)=e^x-x-1如果x>0,则f'(x)>0,因此函数f(x)在(0,∞)上单调递增。

又f(0)=e^0-0-1=0,因此当x>0时,f(x)>f(0)=0即e^x-x-1>0,即e^x>x+1。

2. 利用导数求函数的极值导数可以帮助我们求出函数的极值,例如函数的最大值和最小值。

如果我们需要证明某个不等式的最大值或最小值,可以通过推导函数的导数,找出函数的极值,从而得出结论。

f'(x)=2x-2/x^3,因此f(x)在x=1处取得极小值。

又因为当x>0时,x^2+1/x^2≥2 |x=1,因此当x>0时,x^2+1/x^2≥2。

3. 利用导数证明柯西-施瓦茨不等式柯西-施瓦茨不等式是数学中的重要不等式之一,它可以用来计算向量的点积的上界。

柯西-施瓦茨不等式的表述为:对于任意两个n维实向量a和b,有|a·b|≤|a|·|b|其中a·b为向量a和b的点积,|a|和|b|为向量a和b的模。

证明不等式的八种方法

证明不等式的八种方法
比较法:比较法是证明不等式的最基本、最 重要的方法之一,它是两个实数大小顺序和 运算性质的直接应用,比较法可分为差值比 较法和商值比较法。
1 Math Part 比较法
证明:
∴a-1≥1,b-1≥1
ab-a-b =a(b-1)-b
∴(a-1)(b-1)≥1 例题:已知a≥2,b≥即2,(a求-1)证(b:-1)a-b1≥≥a0+b
6 Math Part 构造法
函数构造法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 要证明的不等式为: ab≥a+b 移项得 ab-a-b≥0 即(b-1)a-b≥0 构造函数 f(x)=(b-1)x-b (x≥2)
f(x)是关于x的一次函数 其中一次项系数b-1>0 ∴f(x)为定义域上的增函数 ∴对于任意的x∈[2,+∞)都有 f(x)≥f(2)=(b-1)×2-b=b-2≥0 ∴(b-1)a-b≥0 所以原命题成立 证毕
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中非常重要的概念,它是函数在某一点的变化率,也可理解为函数在该点的切线斜率。

在证明不等式中,有时可以通过求导来探究函数的性质,从而得到不等式。

构造函数也是证明不等式的常用技巧之一。

通过巧妙地构造函数,可以得到满足特定条件的变量之间的不等式,进而推导出原问题的不等式。

下面,我们将详细介绍导数和构造函数在证明不等式中的应用。

一、导数在证明不等式中的应用在微积分中,导数被称为函数的铁证,因为它可以准确描述出函数在某一点附近的性质。

在证明不等式时,导数也可以起到很好的作用。

1. 求导探究函数的特性如果一个函数在某一区间内是严格单调递增或严格单调递减的,那么这个函数在该区间内的大小关系也就确定了。

因此,我们可以通过求导来探究函数的单调性,进而得出函数的大小关系。

例如,我们要证明当$x>0$时,$e^x>1+x$。

此时我们可以定义函数$f(x)=e^x-(1+x)$,然后求$f(x)$的导数,即$ f'(x)=e^x-1$。

根据导数的定义可知,当$f'(x)>0$时,$f(x)$单调递增;当$f'(x)<0$时,$f(x)$单调递减。

因此,我们只需要证明在$x>0$时,$f'(x)>0$即可。

显然,$e^x>1$,因此$f'(x)=e^x-1>0$,即$f(x)$单调递增。

由于$f(0)=0$,因此当$x>0$时,$f(x)>0$,即$e^x-(1+x)>0$,也就是$e^x>1+x$。

2. 利用中值定理证明不等式中值定理是微积分中的一个重要定理,它表明如果一个函数在某一区间内满足一定的条件,那么这个函数在该区间内至少有一点的导数等于这一区间的函数增量的比率。

在证明不等式时,我们可以用中值定理来探究函数的性质。

$$f'(x)=\frac{x}{\sqrt{x^2-1}}-\frac{1}{x}$$可以发现,$f'(x)<0$当且仅当$x>\sqrt{2}$,因此我们只需要证明当$x>\sqrt{2}$时,$f(x)>0$。

构造函数法解决导数不等式问题(二)

构造函数法解决导数不等式问题(二)

构造函数法解决导数不等式问题(二)考点四构造F (x )=f (x )±g (x ),F (x )=f (x )g (x ),F (x )=f (x )g (x )类型的辅助函数【方法总结】(1)若F (x )=f (x )+ax n +b ,则F ′(x )=f ′(x )+nax n -1;(2)若F (x )=f (x )±g (x ),则F ′(x )=f ′(x )±g ′(x );(3)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )+f (x )g ′(x );(4)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.由此得到结论:(1)出现f ′(x )+nax n -1形式,构造函数F (x )=f (x )+ax n +b ;(2)出现f ′(x )±g ′(x )形式,构造函数F (x )=f (x )±g (x );(3)出现f ′(x )g (x )+f (x )g ′(x )形式,构造函数F (x )=f (x )g (x );(4)出现f ′(x )g (x )-f (x )g ′(x )形式,构造函数F (x )=f (x )g (x ).【例题选讲】[例1](1)函数f (x )的定义域为R ,f (-1)=3,对任意x ∈R ,f ′(x )<3,则f (x )>3x +6的解集为()A .{x |-1<x <1}B .{x |x >-1}C .{x |x <-1}D .R答案C解析设g (x )=f (x )-(3x +6),则g ′(x )=f ′(x )-3<0,所以g (x )为减函数,又g (-1)=f (-1)-3=0,所以根据单调性可知g (x )>0的解集是{x |x <-1}.(2)定义在R 上的函数f (x )满足f (1)=1,且对∀x ∈R ,f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.答案(0,2)解析构造函数F (x )=f (x )-12x ,则F ′(x )=f ′(x )-12<0,∴函数F (x )在R 上是减函数.由f (1)=1,得F (1)=f (1)-12=1-12=12∴f (log 2x )>log 2x +12⇔f (log 2x )-12log 2x >12⇔F (log 2x )>F (1)⇔log 2x <1⇔0<x <2.(3)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈-π2,3π2时,不等式f (2cos x )>32-2sin 2x2的解集为()A B -π3,C D -π3,答案D解析令g (x )=f (x )-x 2-12,则g ′(x )=f ′(x )-12>0,∴g (x )在R 上单调递增,且g (1)=f (1)-12-12=0,∵f (2cos x )-32+2sin 2x 2=f (2cos x )-2cos x 2-12=g (2cos x ),∴f (2cos x )>32-2sin 2x2,即g (2cos x )>0,∴2cos x >1,又x ∈-π2,3π2,∴x -π3,(4)f (x )是定义在R 上的偶函数,当x ≥0时,f ′(x )>2x .若f (a -2)-f (a )≥4-4a ,则实数a 的取值范围是()A .(-∞,1]B .[1,+∞)C .(-∞,2]D .[2,+∞)答案A解析令G (x )=f (x )-x 2,则G ′(x )=f ′(x )-2x .当x ∈[0,+∞)时,G ′(x )=f ′(x )-2x >0,∴G (x )在[0,+∞)上是增函数.由f (a -2)-f (a )≥4-4a ,得f (a -2)-(a -2)2≥f (a )-a 2,即G (a -2)≥G (a ),又f (x )是定义在R 上的偶函数,知G (x )是偶函数.故|a -2|≥|a |,解得a ≤1.(5)已知f ′(x )是函数f (x )的导数,且f (-x )=f (x ),当x ≥0时,f ′(x )>3x ,则不等式f (x )-f (x -1)<3x -32的解集是()A -12,B ∞CD ∞答案D解析设g (x )=f (x )-32x 2,则g ′(x )=f ′(x )-3x .因为当x ≥0时,f ′(x )>3x ,所以当x ≥0时,g ′(x )=f ′(x )-3x >0,即g (x )在[0,+∞)上单调递增.因为f (-x )=f (x ),所以g (-x )=f (-x )-32x 2=f (x )-32x 2=g (x ),所以g (x )是偶函数.因为f (x )-f (x -1)<3x -32,所以f (x )-32x 2<f (x -1)-32(x -1)2,即g (x )<g (x -1),所以g (|x |)<g (|x -1|),则|x |<|x -1|,解得x <12.故选D .(6)设f ′(x )是奇函数f (x )(x ∈R )的导数,当x >0时,f (x )+f ′(x )·x ln x <0,则不等式(x -1)f (x )>0的解集为________.答案(0,1)解析由于函数y =f (x )为R 上的奇函数,则f (0)=0.当x >0时,f (x )+f ′(x )·x ln x <0,则f (1)<0.当x >0时,构造函数g (x )=f (x )ln x ,则g ′(x )=f ′(x )ln x +f (x )·1x =f (x )+f ′(x )·x ln xx <0,所以函数y =g (x )在区间(0,+∞)上单调递减,且g (1)=0.当0<x <1时,ln x <0,g (x )>g (1)=0,即f (x )ln x >0,此时f (x )<0;当x >1时,ln x >0,g (x )<g (1)=0,即f (x )ln x <0,此时f (x )<0.又f (1)<0,所以当x >0时,f (x )<0.由于函数y =f (x )为R 上的奇函数,当x <0时,f (x )>0.对于不等式(x -1)f (x )>0,当x <0时,x -1<0,则f (x )<0,不符合题意;当0<x <1时,x -1<0,则f (x )<0,符合题意;当x >1时,x -1>0,则f (x )>0,不符合题意.综上所述,不等式(x -1)f (x )>0的解集为(0,1).(7)(多选)定义在(0,+∞)上的函数f (x )的导函数为f ′(x ),且(x +1)f ′(x )-f (x )<x 2+2x 对任意x ∈(0,+∞)恒成立.下列结论正确的是()A.2f(2)-3f(1)>5B.若f(1)=2,x>1,则f(x)>x2+12x+12C.f(3)-2f(1)<7D.若f(1)=2,0<x<1,则f(x)>x2+12x+12解析CD答案设函数g(x)=f(x)-x2x+1,则g′(x)=(x+1)f′(x)-f(x)-(x2+2x)(x+1)2.因为(x+1)f′(x)-f(x)<x2+2x对任意x∈(0,+∞)恒成立,所以g′(x)<0,故g(x)在(0,+∞)上单调递减,从而g(1)>g(2)>g(3),整理得2f(2)-3f(1)<5,f(3)-2f(1)<7,故A错误,C正确.当0<x<1时,若f(1)=2,因为g(x)在(0,+∞)上单调递减,所以g(x)>g(1)=12,即f(x)-x2x+1>12,即f(x)>x2+12x+12,故D正确,从而B不正确.即结论正确的是CD.(8)已知函数f(x),对∀x∈R,都有f(-x)+f(x)=x2,在(0,+∞)上,f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围为()A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)答案B解析因为对∀x∈R,都有f(-x)+f(x)=x2,所以f(0)=0,设g(x)=f(x)-12x2,则g(-x)=f(-x)-12x2,所以g(x)+g(-x)=f(x)-12x2+f(-x)-12x2=0,又g(0)=f(0)-0=0,所以g(x)为奇函数,且f(x)=g(x)+12x2,所以f(4-m)-f(m)=g(4-m)+12(4-m)2-g(m)+12m2=g(4-m)-g(m)+8-4m≥8-4m,则g(4-m)-g(m)≥0,即g(4-m)≥g(m).当x>0时,g′(x)=f′(x)-x<0,所以g(x)在(0,+∞)上为减函数,又g(x)为奇函数,所以4-m≤m,解得m≥2.(9)已知函数y=f(x)是R上的可导函数,当x≠0时,有f′(x)+f(x)x >0,则函数F(x)=xf(x)+1x的零点个数是()A.0B.1C.2D.3答案B解析依题意,记g(x)=xf(x),则g′(x)=xf′(x)+f(x),g(0)=0,当x>0时,g′(x)=x[f′(x)+f(x)x]>0,g(x)是增函数,g(x)>0;当x<0时,g′(x)=x[f′(x)+f(x)x]<0,g(x)是减函数,g(x)>0.在同一坐标系内画出函数y=g(x)与y=-1x的大致图象,结合图象可知,它们共有1个公共点,因此函数F(x)=xf(x)+1x的零点个数是1.(10)函数f(x)满足x2f′(x)+2xf(x)=e xx,f(2)=e28,当x>0时,f(x)的极值状态是___________.答案没有极大值也没有极小值解析因为x2f′(x)+2xf(x)=e x x,关键因为等式右边函数的原函数不容易找出,因此把等式左边函数的原函数找出来,设h (x )=x 2f (x ),则h ′(x )=e x x ,且h (2)=e 22,因为x 2f ′(x )+2xf (x )=e x x ,则f ′(x )=e x -2h (x )x 3,判断f (x )的极值状态就是判断f ′(x )的正负,设g (x )=e x -2h (x ),则g ′(x )=e x -2h ′(x )=e x -2·e xx =e x ·x -2x ,这里涉及二阶导,g (x )在x =2处取得最小值0,因此g (x )≥0,则f ′(x )≥0,故f (x )没有极大值也没有极小值(有难度,但不失为好题目).【对点训练】1.已知函数f (x )的定义域为R ,f (-1)=2,且对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为()A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)1.答案B解析由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2.因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增.又F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B .2.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为.2.答案{x |x <-1或x >1}解析设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即不等式的解集为{x |x <-1或x >1}.3.已知定义域为R 的函数f (x )的导数为f ′(x ),且满足f ′(x )<2x ,f (2)=3,则不等式f (x )>x 2-1的解集是()A .(-∞,-1)B .(-1,+∞)C .(2,+∞)D .(-∞,2)3.答案D解析令g (x )=f (x )-x 2,则g ′(x )=f ′(x )-2x <0,即函数g (x )在R 上单调递减.又不等式f (x )>x 2-1可化为f (x )-x 2>-1,而g (2)=f (2)-22=3-4=-1,所以不等式可化为g (x )>g (2),故不等式的解集为(-∞,2).故选D .4.定义在(0,+∞)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=4,则不等式f (x )>1x +3的解集为________.4.解析(1,+∞)答案由x 2f ′(x )+1>0得f ′(x )+1x 2>0,构造函数g (x )=f (x )-1x -3,则g ′(x )=f ′(x )+1x2>0,即g (x )在(0,+∞)上是增函数.又f (1)=4,则g (1)=f (1)-1-3=0,从而g (x )>0的解集为(1,+∞),即f (x )>1x+3的解集为(1,+∞).5.设f (x )为R 上的奇函数,当x ≥0时,f ′(x )-cos x <0,则不等式f (x )<sin x 的解集为.5.答案(0,+∞)解析令φ(x )=f (x )-sin x ,∴当x ≥0时,φ′(x )=f ′(x )-cos x <0,∴φ(x )在[0,+∞)上单调递减,又f (x )为R 上的奇函数,∴φ(x )为R 上的奇函数,∴φ(x )在(-∞,0]上单调递减,故φ(x )在R上单调递减且φ(0)=0,不等式f (x )<sin x 可化为f (x )-sin x <0,即φ(x )<0,即φ(x )<φ(0),故x >0,∴原不等式的解集为(0,+∞).6.设f (x )和g (x )分别是定义在R 上的奇函数和偶函数,f ′(x ),g ′(x )分别为其导数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是()A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)6.答案D解析令h (x )=f (x )g (x ),当x <0时,h ′(x )=f ′(x )g (x )+f (x )g ′(x )>0,则h (x )在(-∞,0)上单调递增,又f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以h (x )为奇函数,所以h (x )在(0,+∞)上单调递增.又由g (-3)=0,可得h (-3)=-h (3)=0,所以当x <-3或0<x <3时,h (x )<0,故选D .7.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有()A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )7.解析C答案令F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,所以F (x )在R 上单调递减.又a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ).又f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).8.设函数f (x )在R 上存在导数f ′(x ),对任意x ∈R ,都有f (-x )+f (x )=x 2,在(0,+∞)上f ′(x )<x ,若f (2-m )+f (-m )-m 2+2m -2≥0,则实数m 的取值范围为__________.8.答案[1,+∞)解析令g (x )=f (x )-x 22,则g (-x )+g (x )=0,g (x )是R 上的奇函数.又当x ∈(0,+∞)时,g ′(x )=f ′(x )-x <0,所以g (x )在(0,+∞)上单调递减,所以g (x )是R 上的单调减函数.原不等式等价于g (2-m )+g (-m )≥0,g (2-m )≥-g (-m )=g (m ),所以2-m ≤m ,m ≥1.9.已知f (x )是定义在R 上的减函数,其导函数f ′(x )满足f (x )f ′(x )+x <1,则下列结论正确的是()A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1),f (x )<0D .当且仅当x ∈(1,+∞),f (x )>09.答案B解析∵f (x )f ′(x )+x <1,f (x )是定义在R 上的减函数,f ′(x )<0,∴f (x )+xf ′(x )>f ′(x ),∴f (x )+(x -1)f ′(x )>0,∴[(x -1)f (x )]′>0,∴函数y =(x -1)f (x )在R 上单调递增,而x =1时,y =0,则x <1时,y <0,故f (x )>0.x >1时,x -1>0,y >0,故f (x )>0,∴f (x )>0对任意x ∈R 成立,故选B .10.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x,则函数g (x )的零点个数为()A .1B .2C .0D .0或210.答案C 解析令h (x )=xf (x ),因为当x ≠0时,xf ′(x )+f (x )x>0,所以h ′(x )x >0,因此当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,又h (0)=0,易知当x ≠0时,h (x )>0,又g (x )=h (x )+1x,所以g (x )≠0,故函数g (x )的零点个数为0考点五构造具体函数关系式【方法总结】这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.【例题选讲】[例1](1)(2020·全国Ⅰ)若2a +log 2a =4b +2log 4b ,则()A .a >2bB .a <2bC .a >b 2D .a <b 2答案B解析由指数和对数的运算性质得2a +log 2a =4b +2log 4b =22b +log 2b .令f (x )=2x +log 2x ,则f (x )在(0,+∞)上单调递增.又∵22b +log 2b <22b +log 2b +1=22b +log 2(2b ),∴2a +log 2a <22b +log 2(2b ),即f (a )<f (2b ),∴a <2b .故选B .(2)已知α,β∈-π2,π2,且αsin α-βsin β>0,则下列结论正确的是()A .α>βB .α2>β2C .α<βD .α+β>0答案B解析构造函数f (x )=x sin x ,则f ′(x )=sin x +x cos x .当x ∈0,π2时,f ′(x )≥0,f (x )是增函数,当x ∈-π2,f ′(x )<0,f (x )是减函数,又f (x )为偶函数,∴αsin α-βsin β>0⇔αsin α>βsin β⇔f (α)>f (β)⇔f (|α|)>f (|β|)⇔|α|>|β|⇔α2>β2,故选B .(3)(多选)若0<x 1<x 2<1,则()A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .12e x x >21e x x D .12e x x <21e x x 答案AC解析令f (x )=x -ln x ,∴f ′(x )=1-1x =x -1x,当0<x <1时,f ′(x )<0,∴f (x )在(0,1)上单调递减.∵0<x 1<x 2<1,∴f (x 2)<f (x 1),即x 2-ln x 2<x 1-ln x 1,即x 1+ln x 2>x 2+ln x 1.设g (x )=e xx ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2.当0<x <1时,g ′(x )<0,即g (x )在(0,1)上单调递减,∵0<x 1<x 2<1,∴g (x 2)<g (x 1),即22e x x <11e x x ,∴12e x x >21e x x ,故选AC .A .(a +1)a +2>(a +2)a+1B .log a (a +1)>log a +1(a +2)C .log a (a +1)<a +1a D .log a +1(a +2)<a +2a +1答案ABD解析若A 成立,则(a +1)a +2>(a +2)a +1,两边取自然对数,得(a +2)ln(a +1)>(a +1)ln(a+2),因为a ≥2,所以ln(a +1)a +1>ln(a +2)a +2.令f (x )=ln xx ,则x ≥3,f ′(x )=1-ln x x 2<0,故f (x )在[3,+∞)上单调递减,所以ln(a +1)a +1>ln(a +2)a +2,故A 成立;若B 成立,则log a (a +1)>log a +1(a +2),即ln(a +1)ln a >ln(a +2)ln(a +1),设g (x )=ln(x +1)ln x ,x ≥2,则g ′(x )=ln x x +1-ln(x +1)x (ln x )2=x ln x -(x +1)ln(x +1)x ·(x +1)(ln x )2,令h (x )=x ln x ,x ≥2,则h ′(x )=ln x +1>0,故h (x )在[2,+∞)上单调递增,所以x ln x -(x +1)ln(x +1)<0,所以g ′(x )<0,故g (x )在[2,+∞)上单调递减,所以ln(a +1)ln a >ln(a +2)ln(a +1),故B 成立;若C 成立,则log a (a +1)<a +1a ,即ln(a +1)a +1<ln a a ,由A 知f (x )=ln xx 在[2,e)上单调递增,在(e ,+∞)上单调递减,取a =2,故C 不成立;若D 成立,则log a +1(a +2)<a +2a +1,即ln(a +2)a +2<ln(a +1)a +1,由A 知D 成立.故选ABD .(6)(2021·全国乙)设a =2ln1.01,b =ln1.02,c =1.04-1,则()A .a <b <cB .b <c <aC .b <a <cD .c <a <b答案B 解析b -c =ln1.02- 1.04+1,设f (x )=ln(x +1)-1+2x +1,则b -c =f (0.02),f ′(x )=1x +1-221+2x=1+2x -(x +1)(x +1)1+2x,当x >0时,x +1=(x +1)2>1+2x ,故当x >0时,f ′(x )=1+2x -(x +1)(x +1)1+2x<0,所以f (x )在(0,+∞)上单调递减,所以f (0.02)<f (0)=0,即b <c .a -c =2ln 1.01- 1.04+1,设g (x )=2ln(x +1)-1+4x +1,则a -c =g (0.01),g ′(x )=2x +1-421+4x =2[1+4x -(x +1)](x +1)1+4x,当0<x <2时,4x +1=2x +2x +1>x 2+2x +1=(x +1)2=x +1,故当0<x <2时,g ′(x )>0,所以g (x )在(0,2)上单调递增,所以g (0.01)>g (0)=0,故c <a ,从而有b <c <a ,故选B .(7)已知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),若xf ′(x )-f (x )=x ln x ,且=1e ,则()A .f 0B .f (x )在x =1e 处取得极大值C .0<f (1)<1D .f (x )在(0,+∞)上单调递增答案ACD解析由题知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),xf ′(x )-f (x )=x ln x ,即满足xf ′(x )-f (x )x 2=ln x x .因为f (x )x ′=xf ′(x )-f (x )x 2,所以f (x )x ′=ln x x ,所以可设f (x )x =12ln 2x +b (b 为常数),所以f (x )=12x ln 2x +bx .因为=12·1e ln 21e +b e =1e ,解得b =12,所以f (x )=12ln 2x +12x ,所以f (1)=12,满足0<f (1)<1,所以C 正确;因为f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,且仅有f 0,所以B 错误,A ,D 正确.故选ACD .【对点训练】1.若a =ln 22,b =ln 33,c =ln 66,则()A .a <b <cB .c <b <aC .c <a <bD .b <a <c1.答案C解析设f (x )=ln xx ,则f ′(x )=1-ln x x2,所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,即有f (6)<f (4)<f (3),所以ln 66<ln 44=ln 22<ln 33,故c <a <b .2.设a ,b >0,则“a >b ”是“a a >b b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.答案D解析因为a ,b >0,由a a >b b 可得a ln a >b ln b .设函数f (x )=x ln x ,则f ′(x )=ln x +1,由f ′(x )>0可得x >1e ,所以函数f (x )=x ln x a >b 不一定有a ln a >b ln b ,即a a >b b ,所以充分性不成立;当a a >b b ,即a ln a >b ln b 时,不一定有a >b ,所以必要性不成立,所以“a >b ”是“a a >b b ”的既不充分也不必要条件,故选D .3.已知0<x 1<x 2<1,则()A .ln x 1x 2>ln x 2x 1B .ln x 1x 2<ln x 2x 1C .x 2ln x 1>x 1ln x 2D .x 2ln x 1<x 1ln x 23.答案D解析设f (x )=x ln x ,则f ′(x )=ln x +1,由f ′(x )>0,得x >1e,所以函数f (x )调递增;由f ′(x )<0,得0<x <1e f (x )f (x )在(0,1)上不单调,所以f (x 1)与f (x 2)的大小无法确定,从而排除A ,B ;设g (x )=ln xx ,则g ′(x )=1-ln x x 2,由g ′(x )>0,得0<x <e,即函数g (x )在(0,e)上单调递增,故函数g (x )在(0,1)上单调递增,所以g (x 1)<g (x 2),即ln x 1x 1<ln x 2x 2,所以x 2ln x 1<x 1ln x 2.故选D .4.已知a >b >0,a b =b a ,有如下四个结论:(1)b <e ;(2)b >e ;(3)存在a ,b 满足a ·b <e 2;(4)存在a ,b 满足a ·b >e 2,则正确结论的序号是()A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)4.答案C解析由a b =b a 两边取对数得b ln a =a ln b ⇒ln a a =ln b b .对于y =ln xx,由图象易知当b <e<a 时,才可能满足题意.故(1)正确,(2)错误;另外,由a b =b a ,令a =4,b =2,则a >e ,b <e ,ab =8>e 2,故(4)正确,(3)错误.因此,选C .5.设x ,y ,z 为正数,且2x =3y =5z ,则()A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z5.答案D解析令2x =3y =5z =t (t >1),两边取对数得x =log 2t =ln t ln 2,y =log 3t =ln t ln 3,z =log 5t =ln tln 5,从而2x =2ln 2ln t ,3y =3ln 3ln t ,5z =5ln 5ln t .由t >1知,要比较三者大小,只需比较2ln 2,3ln 3,5ln 5的大小.又2ln 2=4ln 4,e<3<4<5,由y =ln x x 在(e ,+∞)上单调递减可知,ln 33>ln 44>ln 55,从而3ln 3<4ln 4<5ln 5,3y <2x <5z ,故选D .6.已知a <5且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c ,则()A .c <b <a B .b <c <a C .a <c <bD .a <b <c6.答案D解析方法一由已知e 55=e a a ,e 44=e bb,e 33=e c c ,设f (x )=e xx ,则f ′(x )=(x -1)e x x 2,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (3)<f (4)<f (5),f (c )<f (b )<f (a ),所以a <b <c .方法二设e x=e 55x ,①,e x =e 44x ,②,e x=e 33x ,③,a ,b ,c 依次为方程①②③的根,结合图象,方程的根可以看作两个图象的交点的横坐标,∵e 55>e 44>e 33,由图可知a <b <c.7.若0<x 1<x 2<a ,都有x 2ln x 1-x 1ln x 2≤x 1-x 2成立,则a 的最大值为()A .12B .1C .eD .2e7.答案B解析ln x 1x 1-ln x 2x 2≤1x 2-1x 1,即ln x 1x 1+1x 1≤ln x 2x 2+1x 2,令f (x )=ln x x +1x,则f (x )在(0,a )上为增函数,所以f ′(x )≥0在(0,a )上恒成立,f ′(x )=-ln xx 2,令f ′(x )=0,解得x =1,所以f (x )在(0,1)上为增函数,在(1,+∞)上为减函数,所以a ≤1,所以a 的最大值为1,选B .8.下列四个命题:①ln 5<5ln 2;②ln π>πe;③;④3eln 2>42.其中真命题的个数是()A .1B .2C .3D .48.答案B解析构造函数f (x )=ln xx ,则f ′(x )=1-ln x x 2,当x ∈(0,e)时,f ′(x )>0,f (x )单调递增;当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减.①ln 5<5ln 2⇒2ln 5<5ln 2⇒ln 55<ln 22,又2<5<e ,故错误.②ln π>πe ⇒2ln π>πe ⇒ln ππ>12e=ln e e ,又e>π>e ,故正确.③⇒11ln 2<ln 11=2ln 11⇒ln 22=ln 44<ln 1111,又4>11>e ,故正确.④3eln 2>42⇒322eln 2>2×322⇒3232ln 22>ln e e ,显然错误.因此选B .A .0<a <b <1B .b <a <0C .1<a <bD .a =b 10.答案ABD 解析因为实数a ,b 满足2a +3a =3b +2b ,所以设f (x )=2x +3x ,g (x )=3x +2x ,在同一平面直角坐标系中作出f (x )与g (x )的图象如图所示.由图象可知:①当x <0时,f (x )<g (x ),所以当2a +3a =3b +2b 时,b <a <0,故B 正确;②当x =0或1时,f (x )=g (x ),所以当2a +3a =3b +2b 时,a =b =0或a =b =1,故D 正确;③当0<x <1时,f (x )>g (x ),所以当2a +3a =3b +2b 时,0<a <b <1,故A 正确;④当x >1时,f (x )<g (x ),所以当2a +3a =3b +2b 时,1<b <a ,故C 错误.故选ABD .11.已知函数f (x )=e x x -ax ,x ∈(0,+∞),当x 2>x 1时,不等式f (x 1)x 2<f (x 2)x 1恒成立,则实数a 的取值范围为()A .(-∞,e]B .(-∞,e)C ∞D ∞,e 211.答案D 解析因为x ∈(0,+∞),所以x 1f (x 1)<x 2f (x 2),即函数g (x )=xf (x )=e x -ax 2在x ∈(0,+∞)上是单调增函数,则g ′(x )=e x -2ax ≥0在x ∈(0,+∞)上恒成立,所以2a ≤e x x在x ∈(0,+∞)上恒成立.令m (x )=e x x ,则m ′(x )=(x -1)e x x 2,当x ∈(0,1)时,m ′(x )<0,m (x )单调递减,当x ∈(1,+∞)时,m ′(x )>0,m (x )单调递增,所以2a ≤m (x )min =m (1)=e ,所以a ≤e 2.故选D .12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (e)=1e,则下列结论正确的是()A .f (x )在(0,+∞)单调递增B .f (x )在(0,+∞)单调递减C .f (x )在(0,+∞)上有极大值D .f (x )在(0,+∞)上有极小值12.答案B 解析由x 2f ′(x )+xf (x )=ln x ,得xf ′(x )+f (x )=ln x x ,构造F ′(x )=xf ′(x )+f (x )=ln x x ,F (x )=xf (x )=ln 2x 2+m ,当x =e 时,xf (x )=ln 2x 2+m ,又e f (e)=ln 2e 2+m ,所以m =12,所以f (x )=ln 2x +12x,所以f ′(x )=-(ln x -1)22x 2≤0,f (x )在(0,+∞)单调递减,选B .13.(多选)下列不等式中恒成立的有()A .ln(x +1)≥x x +1,x >-1B .ln x x >0C .e x ≥x +1D .cos x ≥1-12x 213.答案ACD 解析A 选项,因为x >-1,令t =x +1>0,f (t )=ln t +1t -1,则f ′(t )=1t -1t 2=t -1t2,所以当0<t <1时,f ′(t )=t -1t 2<0,即f (t )单调递减;当t >1时,f ′(t )=t -1t 2>0,即f (t )单调递增,所以f (t )min =f (1)=0,即f (t )=ln t +1t -1≥0,即ln t ≥t -1t,即ln(x +1)≥x x +1,x >-1恒成立,故A 正确;B 选项,令f (x )=ln x x >0,则f ′(x )=1x -=2x -x 2-12x 2=-(x -1)22x 2≤0显然恒成立,所以f (x )=ln x x >0上单调递减,又f (1)=0,所以当x ∈(0,1)时,f (x )>f (1)=0,即ln x B 错;C 选项,令f (x )=e x -x -1,则f ′(x )=e x -1,当x >0时,f ′(x )=e x -1>0,所以f (x )单调递增;当x <0时,f ′(x )=e x -1<0,所以f (x )单调递减,则f (x )≥f (0)=0,即e x ≥x +1恒成立,故C 正确;D 选项,令f (x )=cos x -1+12x 2,则f ′(x )=-sin x +x ,令h (x )=f ′(x )=-sin x +x ,则h ′(x )=-cos x +1≥0恒成立,即函数f ′(x )=-sin x +x 单调递增,又f ′(0)=0,所以当x >0时,f ′(x )>0,即f (x )=cos x -1+12x 2单调递增;当x <0时,f ′(x )<0,即f (x )=cos x -1+122单调递减,所以f (x )min =f (0)=0,因此cos x ≥1-12x 2恒成立,故D 正确.。

高中数学解题方法-----构造函数法证明导数不等式的八种方法

高中数学解题方法-----构造函数法证明导数不等式的八种方法

高中数学解题方法构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

以下介绍构造函数法证明不等式的八种方法:1.移项法构造函数 2、作差法构造函数证明3、换元法构造函数证明4、从条件特征入手构造函数证明5、主元法构造函数6、构造二阶导数函数证明导数的单调性7.对数法构造函数(选用于幂指数函数不等式)8.构造形似函数1.移项法构造函数【例1】 已知函数x x x f −+=)1ln()(,求证:当1−>x 时,恒有x x x ≤+≤+−)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(−+++=x x x g ,从其导数入手即可证明。

【解】1111)(+−=−+=′x x x x f ∴当01<<−x 时,0)(>′x f ,即)(x f 在)0,1(−∈x 上为增函数当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(−,单调递减区间),0(+∞于是函数()f x 在),1(+∞−上的最大值为0)0()(max ==f x f ,因此,当1−>x 时,0)0()(=≤f x f ,即0)1ln(≤−+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(−+++=x x x g , 22)1()1(111)(+=+−+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′−∈x g x x g x 时当时 ,即)(x g 在)0,1(−∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞−上的最小值为0)0()(min ==g x g ,∴当1−>x 时,0)0()(=≥g x g ,即0111)1ln(≥−+++x x ∴111)1ln(+−≥+x x ,综上可知,当x x x x ≤+≤−+−>)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F −=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

(完整版)构造函数法证明导数不等式的八种方法

(完整版)构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点.2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。

【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证),现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题,即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可. 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=,则x x x x F 12)(2--='=xx x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <,故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数与构造函数是微积分中的重要概念,它们在证明不等式中起着重要作用。

本文将介绍一些导数与构造函数在证明不等式中的技巧,并通过具体的例子来加深理解。

1. 利用导数的性质进行不等式证明在证明不等式时,可以通过导数的性质来进行推导。

当需要证明一个函数在某个区间上单调递增或单调递减时,可以通过求导数并分析导数的正负性来进行证明。

假设一个函数f(x)在区间[a, b]上可导,求出其导数f'(x)并分析f'(x)的正负性,如果f'(x)恒大于零,那么函数f(x)在区间[a, b]上就是单调递增的;如果f'(x)恒小于零,那么函数f(x)在区间[a, b]上就是单调递减的。

通过这种方法,可以利用导数的性质来证明函数的单调性质,从而进一步推导出不等式。

2. 构造函数进行不等式证明构造函数是指通过一些技巧将原函数进行变形,从而更好地应用各种数学性质来进行不等式证明。

当需要证明一个不等式时,可以通过构造一个辅助函数来简化原不等式的证明过程。

通过巧妙地构造函数,可以使得不等式的证明更加直观、简单。

例1:证明当x>0时,有e^x>1+x。

解:可以通过在函数f(x) = e^x - (1+x)上应用导数的性质来证明这个不等式。

求导数得f'(x) = e^x - 1,显然f'(x)恒大于零,因此f(x)在区间(0, +∞)上单调递增。

又当x=0时,有f(0) = e^0 - (1+0) = 0,因此在区间(0, +∞)上有f(x)>0,即e^x>1+x。

通过导数的性质,成功证明了不等式e^x>1+x。

通过以上两个例子,可以看到导数与构造函数在不等式证明中的重要作用。

通过分析导数的性质以及巧妙地构造辅助函数,可以更好地理解、应用和证明各种不等式。

在实际的数学问题中,通常会遇到各种复杂的不等式,通过灵活运用导数与构造函数的技巧,可以更加轻松地解决这些问题。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。

它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。

而构造函数则是数学中一种非常常见的证明不等式的方法。

本文将介绍一些常用的导数和构造函数证明不等式的技巧。

一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。

因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。

例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。

由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。

2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。

因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。

3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。

例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。

例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。

例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。

例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。

7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。

例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧在高中数学中,不等式是经常会遇到的题目类型,也是数学竞赛中经常涉及到的一类题目。

在证明不等式的过程中,我们可以运用导数与构造函数等技巧来简化证明难度,提高证明效率。

一、运用导数证明不等式当我们需要证明一个函数的值在某个范围内时,我们可以考虑用导数来帮助我们进行证明,具体可分为以下步骤:1、确定函数的定义域和值域,并确定要证明的不等式形式。

2、通过求导得到函数的单调性或极值点。

3、根据函数的单调性或极值点,利用数轴或图象来确定函数的取值范围及是否满足要证明的不等式。

例如,要证明关于 $x$ 的不等式 $\frac{3}{2}x^2-6x+5>0$ 成立,可按以下步骤进行证明:1、由不等式左边的式子可得到 $f(x)=\frac{3}{2}x^2-6x+5$,其定义域为实数集,值域为 $[0,\infty)$。

2、对 $f(x)$ 求导,得到 $f'(x)=3x-6$。

当 $f'(x)>0$ 时,$f(x)$ 单调上升,当$f'(x)<0$ 时,$f(x)$ 单调下降。

当 $f'(x)=0$ 时,$f(x)$ 有极值,即当 $x=2$ 时,$f(x)$ 取得极小值 $-1$。

3、据此得到 $f(x)$ 的图象如下图所示,可知在 $x<2$ 和 $x>2$ 的区间内,$f(x)$ 的取值为正,因此原不等式成立。

构造函数法是一种运用代数方法构造一个函数来满足指定条件的证明方法。

具体可分为以下步骤:1、根据不等式的形式或特点,分析解析式中可能出现的约束条件或不等式关系。

2、构造一个函数并确定其满足条件的范围。

3、证明所构造的函数满足所要证明的不等式条件。

1、根据不等式的形式,可考虑构造分式函数。

2、构造函数 $f(x,y)=\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}$,其定义域为$D=\{(x,y)\mid x\neq0,y\neq0,x\neq y\}$。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧数学中,不等式是一种非常重要的工具,可以用来证明和描述各种性质和现象。

在证明不等式时,我们常常需要运用导数和构造函数的技巧。

下面,本文将介绍导数和构造函数证明不等式的技巧。

一、导数证明不等式当我们需要证明一个函数的某个性质或者不等式时,可以通过计算其导数来得到一些有用的信息。

具体来说,如果一个函数在某一点的导数为正数,则意味着函数在该点的值越大,导函数也就越大;而如果函数在某一点的导数为负数,则意味着函数在该点的值越大,导函数也就越小。

考虑一个简单的例子:证明二次函数 $f(x)=x^2+4x+3$ 在 $x\geqslant-2$ 的区间内严格单调递增。

我们首先计算 $f(x)$ 的导数:$$f'(x)=2x+4$$然后,我们发现,在 $x\geqslant-2$ 的区间内,$f'(x)$ 是恒正的,因此$f(x)$ 在该区间内是严格单调递增的。

因此,不等式 $f(x_1)<f(x_2)$ 成立当且仅当$x_1<x_2$,其中 $x_1$ 和 $x_2$ 均在 $x\geqslant-2$ 的区间内。

另一种证明不等式的常用技巧是构造函数。

具体来说,我们可以构造一个新的函数$g(x)$,使得 $g(x_1)<g(x_2)$ 成立当且仅当 $f(x_1)<f(x_2)$ 成立。

考虑一个简单的例子:证明当 $a>1$ 时,有 $a^2>a+\sqrt{a}$。

我们首先构造一个函数 $f(x)=x^2-x-\sqrt{x}$,并计算其导数:$$f'(x)=2x-1-\frac{1}{2\sqrt{x}}$$接下来,我们构造一个新的函数 $g(x)=af(x)+(a-1)x$。

由于 $a>1$,因此$g'(x)=af'(x)+(a-1)>0$,因此 $g(x)$ 在 $x>1$ 的区间内是严格单调递增的。

构造函数法证明不等式的八种方法冷世平整理

构造函数法证明不等式的八种方法冷世平整理

构造函数法证明不等式的八种方法冷世平整理1.构造多项式函数法:通过构造一个多项式函数来证明不等式。

例如,要证明当$x>0$时,$x^3+x^2+x+1>0$,我们可以构造多项式$f(x)=x^3+x^2+x+1$,然后证明$f(x)$的系数全为正数,从而得到结论。

2. 构造变形函数法:通过构造一个特定的变形函数来证明不等式。

例如,要证明当$x>0$时,$x+\frac{1}{x}>2$,我们可以构造变形函数$f(x)=x+\frac{1}{x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。

3. 构造反函数法:通过构造一个特定的反函数来证明不等式。

例如,要证明当$x>0$时,$\frac{1}{x}+\frac{1}{1-x}>2$,我们可以构造反函数$f(x)=\frac{1}{x}+\frac{1}{1-x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。

4. 构造积分函数法:通过构造一个特定的积分函数来证明不等式。

例如,要证明当$x>0$时,$\int_{0}^{x}\sqrt{t}dt<x$,我们可以构造积分函数$f(x)=\int_{0}^{x}\sqrt{t}dt-x$,然后证明$f(x)$的取值范围为负数,从而得到结论。

5. 构造递推函数法:通过构造一个特定的递推函数来证明不等式。

例如,要证明$n$个正实数的算术平均数大于等于它们的几何平均数,我们可以构造递推函数$f(n)=\frac{a_1+a_2+\dots+a_n}{n}-\sqrt[n]{a_1a_2\dots a_n}$,然后证明$f(n)$关于$n$的递推关系为非负数,从而得到结论。

6. 构造交换函数法:通过构造一个特定的交换函数来证明不等式。

例如,要证明当$x,y,z>0$时,$(x+y)(y+z)(z+x)\geq 8xyz$,我们可以构造交换函数$f(x,y,z)=(x+y)(y+z)(z+x)-8xyz$,然后证明$f(x,y,z)$在$x,y,z$的任意交换下都保持不变或增加,从而得到结论。

利用导数证明不等式的九大题型

利用导数证明不等式的九大题型

利用导数证明不等式的九大题型
题型一:构造函数法
启示:证明分三个步骤:一是构造函数,二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。

题型二:通过对函数的变形,利用分析法,证明不等式
解答第一问用的是分离参数法;解答第二问是构造函数,大家应记住下面的变形:
题型三:求最值解决任意,存在性变量问题,常见的有下面四种形式
题型四:分拆成两个函数研究
启示:掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助
题型五:设而不求:当函数的极值点不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明
题型六:估值法:极值点不确定,先设出来,再估计极值点的取值范围,从而证明不等式。

题型七:利用图像的特点证明不等式
题型八:证明数列不等式
题型九:利用方缩法证明不等式。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧证明不等式的技巧和导数有关的主要有两个方面:一是利用导数的性质来求极值,二是利用导数的中值定理来证明不等式。

一、利用导数的性质来求极值1. 极值的存在性:如果函数在开区间(a,b)上连续,在闭区间[a,b]上可导,并且在区间内部有两个不同的点x1和x2使得f'(x1)和f'(x2)异号,则在(a,b)内存在至少一个点c,使得f(c)取得极值。

这个性质可以通过把函数图像在区间内部画出来来直观地理解。

2. 极值的判定条件:设函数f在开区间(a,b)内可导,如果f'(x)在点x=c处为0或者不存在,且f'(c)在从c的左侧和右侧分别取有限不等的符号,则f(c)为极值点。

如果f'(c)在从c的左侧和右侧分别取相等的符号,则f(c)不是极值点。

3. 极值的求解方法:求解极值有两种方法,一种是使用判定条件找到可能的极值点,然后对极值点进行求导计算;另一种是直接对函数进行求导计算,然后通过对导数方程求解,找到可能的极值点。

二、利用导数的中值定理来证明不等式导数的中值定理是数学中一个非常重要的定理,它的表述是:如果函数f在闭区间[a,b]上连续,在开区间(a,b)内可导,那么存在一个点c∈(a,b),使得f(b)-f(a)=f'(c)(b-a)。

这个定理可以用来证明一些不等式的性质。

利用导数的中值定理来证明不等式的基本步骤如下:1. 将不等式转化为两个函数的差值形式,即设函数g(x)=f(x)-h(x),其中f(x)和h(x)是要证明不等式的两个函数。

2. 判断g(x)在[a,b]上的连续性和在(a,b)内的可导性。

3. 在(a,b)内找到一个点c,使得g'(c)=(f(c)-h(c))/(b-a)。

4. 根据g(x)的符号来确定f(x)和h(x)之间的关系,进而证明不等式的成立。

利用导数证明不等式的常用方法

利用导数证明不等式的常用方法

利用导数证明不等式的常用方法导数是微积分中的重要理论工具,其应用十分广泛,其中一项应用就是证明不等式。

下面将介绍一些利用导数证明不等式的常用方法。

首先,我们需要明确一些基本概念和定理。

设函数f(x)在区间[a,b]上连续,(a,b)上可导,那么:1.如果f'(x)>0,那么f(x)在[a,b]上单调递增;如果f'(x)<0,那么f(x)在[a,b]上单调递减。

2.如果在(a,b)上f'(x)>g'(x),则f(x)>g(x)。

3.如果在(a,b)上f'(x)≥g'(x),则f(x)≥g(x)。

基于以上定理,我们将介绍三种常用的利用导数证明不等式的方法。

方法一:使用函数性质和导数的单调性这种方法适用于证明比较简单的不等式,主要步骤如下:1.首先,根据题目中给出的不等式,构造一个连续函数f(x)。

2.然后,求出f'(x),根据导数的正负确定f(x)的单调性。

3.最后,根据f(x)的单调性和不等式的要求,得出不等式的成立。

例如,我们来证明当x>0时,有e^x>1+x:1.构造函数f(x)=e^x-1-x。

2.求导得到f'(x)=e^x-1,由于e^x>0,所以f'(x)>0。

3.根据f(x)的单调性,得出e^x-1-x在x>0时为递增函数。

4.由于f(0)=e^0-1-0=0,所以当x>0时,有f(x)>0,即e^x>1+x成立。

方法二:使用导数的比较性质这种方法适用于需要比较多个函数的不等式,主要步骤如下:1.首先,根据题目中给出的不等式,构造多个连续函数。

2.然后,求出这些函数的导数。

3.利用导数的比较性质,确定函数之间的大小关系。

4.最后,根据函数之间的大小关系和不等式的要求,得出不等式的成立。

例如,我们来证明当0 < x < 1时,有x < ln(1 + x):1.构造函数f(x) = ln(1 + x) - x。

导数构造函数解不等式的方法

导数构造函数解不等式的方法

导数构造函数解不等式的方法不等式是数学中常见的一种关系,解不等式可以帮助我们求出变量的取值范围,从而更好地理解数学问题。

导数构造函数是解不等式的一种重要方法,本文将介绍导数构造函数的原理、方法和应用,帮助读者更好地理解和应用它解决不等式问题。

一、导数构造函数的原理在了解导数构造函数的方法之前,我们需要先了解它的原理。

导数构造函数的基本思想是利用函数的导数来构造一个函数,该函数在某些区间内单调递增或者单调递减,从而可以对不等式进行分析。

具体来说,如果我们需要解一个形如f(x)>0的不等式,我们可以先求出函数f(x)的导数f'(x),然后找到f'(x)的零点和断点,将区间分成若干段,然后分别对每个区间进行单调性的判断,找到f(x)>0的取值范围。

同理,如果我们需要解一个形如g(x)<0的不等式,可以按照类似的方法构造一个新的函数h(x)=-g(x),然后再对h(x)>0的不等式进行求解。

二、导数构造函数的方法基于导数构造函数的原理,我们可以采用如下的步骤来解不等式:Step 1: 求出函数的导数。

Step 2: 解方程f'(x)=0,找到导数的零点和断点。

Step 3: 根据导数的符号和临界点的性质判断原函数的单调性。

Step 4: 找到f(x)>0或者f(x)<0的取值范围。

举个例子,假设我们需要解如下的不等式:x^3-3x^2+2x>0首先,求出函数f(x)=x^3-3x^2+2x的导数f'(x)=3x^2-6x+2。

然后,解方程f'(x)=0,得到临界点x=1/3和x=2。

接下来,根据f'(x)的符号和临界点的性质可以得到如下的单调性分析表:x<1/3: f'(x)<0, f(x)递减1/3<x<2: f'(x)>0, f(x)递增x>2: f'(x)<0, f(x)递减最后,我们可以看出f(x)>0的解集为x∈(-∞,1/3)∪(2,+∞),即函数f(x)在这些区间内是正的。

构造函数法证明不等式的八种方法.doc

构造函数法证明不等式的八种方法.doc

构造函数法证明不等式的八种方法.doc构造函数法是一种证明不等式的有效方法。

构造函数法是通过构造函数来证明不等式的真实性。

构造函数是函数的一种特殊形式,它是根据不等式中的条件和限制而构造出来的函数。

构造函数法的基本思路是,通过构造函数将原不等式转化为更容易证明的形式,进而通过对构造函数的研究来证明原不等式的真实性。

本文将介绍构造函数法证明不等式的八种方法。

一、线性函数法线性函数法是基于线性函数的构造函数法,它是构造函数法中最简单的方法之一。

线性函数法的思路是,构造一个线性函数,使得该函数在不等式限制下达到最大值或最小值。

例如,证明如下不等式:$$\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\geq\frac{3}{2}$$将不等式两边都乘以$2(b+1)(c+1)(a+1)$得:$$2a(c+1)(b+1)+2b(a+1)(c+1)+2c(b+1)(a+1)\geq 3(a+1)(b+1)(c+1)$$此时,可以构造如下的线性函数$f(x,y,z)$:容易发现,$f(x,y,z)$在限制条件$x,y,z\geq 0$,$xy+yz+zx=3$下,达到最大值$\frac{3}{2}$。

因此,原不等式成立。

二、对数函数法对数函数法是基于对数函数的构造函数法,它常用于证明形如$a^x+b^y+c^z\geq k$的不等式,其中$a,b,c,x,y,z,k$均为正实数。

对数函数法的思路是,构造一个对数函数,使得该函数满足$g(x,y,z)\leq\ln(a^x+b^y+c^z)$,进而证明$g(x,y,z)\leq\ln k$,从而得到原不等式的证明。

例如,证明如下不等式:考虑构造如下的对数函数:$$g(x)=\ln\left(\frac{4a^3x+6}{5a^2x+2ax+5}\right)-\frac{3}{4}\ln x$$不难证明,$g(x)$在$x\geq 1$时单调递减且$g(1)=0$,因此$g(x)\leq 0$。

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法

导数之构造函数法证明不等式 1、移项法构造函数 【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=, 则xx x x F 12)(2--='=x x x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <, 故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。

构造函数证明不等式

构造函数证明不等式

突破疑难点1构造函数证明不等式构造法证明不等式是指在证明与函数有关的不等式时,根据所要证明的不等式,构造与之相关的函数,利用函数单调性、极值、最值加以证明.常见的构造方法有:(1)直接构造法:证明不等式f(x)>g(x)(f(x)<g(x))转化为证明f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x);(2)适当放缩构造法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x≤x-1,e x≥x+1,ln x<x<e x(x>0),xx+1≤ln(x+1)≤x(x>-1);(3)构造“形似”函数:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数:若直接构造函数求导难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.突破疑难点2利用分类讨论法确定参数取值范围一般地,若a>f(x)对x∈D恒成立,则只需a>f(x)max;若a<f(x)对x∈D恒成立,则只需a<f(x)min.若存在x0∈D,使a>f(x0)成立,则只需a>f(x)min;若存在x0∈D,使a<f(x0)成立,则只需a<f(x0)max.由此构造不等式,求解参数的取值范围.常见有两种情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另外一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.突破疑难点3两法破解函数零点个数问题两类零点问题的不同处理方法:利用零点存在性定理的条件为函数图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0.①直接法:判断一个零点时,若函数为单调函数,则只需取值证明f(a)·f(b)<0;②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明f(a)·f(b)<0.突破疑难点4两法破解由零点个数确定参数问题已知函数有零点求参数范围常用的方法:(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.。

导数证明不等式构造函数法类别(教师版)

导数证明不等式构造函数法类别(教师版)

导数证明不等式构造函数法类别1、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g , 从其导数入手即可证明。

【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的 图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题,即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数 【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。

【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=,则x x x x F 12)(2--='=xx x x )12)(1(2++- 当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x时 0)()(>-x f x g ,即)()(x g x f <,故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。

【警示启迪】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。

读者也可以设)()()(x g x f x F -=做一做,深刻体会其中的思想方法。

3、换元法构造函数证明【例3】 证明:对任意的正整数n ,不等式3211)11ln(nn n ->+ 都成立. 分析: 从所证结构出发,只需令x n=1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(23++-=x x x x h ,求导即可达到证明。

【解】令)1ln()(23++-=x x x x h ,则1)1(31123)(232+-+=++-='x x x x x x x h 在),0(+∞∈x 上恒正, 所以函数)(x h 在),0(+∞上单调递增,∴),0(+∞∈x 时,恒有,0)0()(=>h x h 即0)1ln(23>++-x x x,∴32)1ln(x x x ->+对任意正整数n ,取3211)11ln(),0(1nn n n x->++∞∈=,则有 【警示启迪】我们知道,当()F x 在[,]a b 上单调递增,则x a >时,有()F x ()F a >.如果()f a =()a ϕ,要证明当xa >时,()f x >()x ϕ,那么,只要令()F x =()f x -()x ϕ,就可以利用()F x 的单调增性来推导.也就是说,在()F x 可导的前提下,只要证明'()F x >0即可.4、从条件特征入手构造函数证明【例4】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b ,求证:.a)(a f >b )(b f【解】由已知 x)(x f '+)(x f >0 ∴构造函数 )()(x xf x F =,则=)('x Fx )(x f '+)(x f >0, 从而)(x F 在R 上为增函数。

b a > ∴)()(b F a F > 即 a )(a f >b )(b f【警示启迪】由条件移项后)()(x f x f x +',容易想到是一个积的导数,从而可以构造函数)()(x xf x F =,求导即可完成证明。

若题目中的条件改为)()(x f x f x >',则移项后)()(x f x f x -',要想到是一个商的导数的分子,平时解题多注意总结。

5、主元法构造函数例.(全国)已知函数x x x g x x x f ln )(,)1ln()(=-+=(1) 求函数)(x f 的最大值;(2) 设b a <<0,证明 :2ln )()2(2)()(0a b b a g b g a g -<+-+<.分析:对于(II )绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等式的目的.证明如下: 证明:对x x x g ln )(=求导,则1ln )('+=x x g .在)2(2)()(b a g b g a g +-+中以b 为主变元构造函数,设)2(2)()()(xa g x g a g x F +-+=,则2ln ln )]2([2)()('''x a x x a g x g x F +-=+-=. 当a x <<0时,0)('<x F ,因此)(x F 在),0(a 内为减函数.当a x>时,0)('>x F ,因此)(x F 在),(+∞a 上为增函数.从而当a x=时, )(x F 有极小值)(a F .因为,,0)(a b a F >=所以0)(>b F ,即.0)2(2)()(>+-+ba gb g a g 又设2ln )()()(a x x F x G --=.则)ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=. 当0>x时,0)('<x G .因此)(x G 在),0(+∞上为减函数.因为,,0)(a b a G >=所以0)(<b G ,即2ln )()2(2)()(a b ba gb g a g -<+-+. 6、构造二阶导数函数证明导数的单调性 例.已知函数21()2xf x ae x =-(1)若f(x)在R 上为增函数,求a 的取值范围; (2)若a=1,求证:x >0时,f(x)>1+x 解:(1)f ′(x)= ae x -x,∵f(x)在R上为增函数,∴f ′(x)≥0对x∈R恒成立, 即a≥xe-x对x∈R恒成立记g(x)=xe-x,则g′(x)=e-x-xe-x=(1-x)e -x , 当x>1时,g′(x)<0,当x<1时,g′(x)>0. 知g(x)在(-∞,1)上为增函数,在(1,+ ∞)上为减函数, ∴g(x)在x=1时,取得最大值,即g(x)max=g(1)=1/e, ∴a ≥1/e, 即a 的取值范围是[1/e, + ∞) (2)记F(X)=f(x) -(1+x) =)0(1212>---x x x e x则F ′(x)=e x -1-x,令h(x)= F ′(x)=e x -1-x,则h ′(x)=e x -1当x>0时, h ′(x)>0, ∴h(x)在(0,+ ∞)上为增函数, 又h(x)在x=0处连续, ∴h(x)>h(0)=0即F ′(x)>0 ,∴F(x) 在(0,+ ∞)上为增函数,又F(x)在x=0处连续, ∴F(x)>F(0)=0,即f(x)>1+x .小结:当函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把不等式的恒成立问题可转化为求函数最值问题.不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为)(x f m >(或)(x f m <)恒成立,于是m 大于)(x f 的最大值(或m 小于)(x f 的最小值),从而把不等式恒成立问题转化为求函数的最值问题.因此,利用导数求函数最值是解决不等式恒成立问题的一种重要方法.7.对数法构造函数(选用于幂指数函数不等式) 例:证明当2111)1(,0x x ex x ++<+>时8.构造形似函数例:证明当a b b a e a b >>>证明,例:已知m 、n 都是正整数,且,1n m <<证明:m n n m )1()1(+>+【思维挑战】1、设x a x x x f a ln 2ln 1)(,02+--=≥ 求证:当1>x 时,恒有1ln 2ln 2+->x a x x , 2、已知定义在正实数集上的函数,ln 3)(,221)(22b x a x g ax x x f +=+=其中a >0,且a a a b ln 32522-=, 求证:)()(x g x f ≥ 3、已知函数xxx x f +-+=1)1ln()(,求证:对任意的正数a 、b , 恒有.1ln ln ab b a -≥- 4、)(x f 是定义在(0,+∞)上的非负可导函数,且满足)()(x f x f x -'≤0,对任意正数a 、b ,若a <b ,则必有 ( )(A )af (b )≤bf (a ) (B )bf (a )≤af (b )(C )af (a )≤f (b )(D )bf (b )≤f (a )【答案咨询】1、提示:xa x x x f 2ln 21)(+-=',当1>x ,0≥a 时,不难证明1ln 2<x x ∴0)(>'x f ,即)(x f 在),0(+∞内单调递增,故当1>x 时,0)1()(=>f x f ,∴当1>x 时,恒有1ln 2ln 2+->x a x x2、提示:设b x a ax x x f x g x F --+=-=ln 3221)()()(22则x a a x x F 232)(-+='=xa x a x )3)((+- )0(>x 0>a ,∴ 当a x =时,0)(='x F ,故)(x F 在),0(a 上为减函数,在),(+∞a 上为增函数,于是函数)(x F 在),0(+∞上的最小值是0)()()(=-=a g a f a F ,故当0>x 时,有0)()(≥-x g x f ,即)()(x g x f ≥3、提示:函数)(x f 的定义域为),1(+∞-,22)1()1(111)(x x x x x f +=+-+='∴当01<<-x 时,0)(<'x f ,即)(x f 在)0,1(-∈x 上为减函数当0>x时,0)(>'x f ,即)(x f 在),0(+∞∈x 上为增函数因此在)(,0x f x 时=取得极小值0)0(=f ,而且是最小值于是x x x f x f +≥+=≥1)1ln(,0)0()(从而,即xx +-≥+111)1ln( 令a b x b a x -=+->=+1111,01则 于是abb a -≥1ln因此abb a -≥-1ln ln4、提示:x x f x F )()(=,0)()()(2'≤-='x x f x xf x F ,故xx f x F )()(=在(0,+∞)上是减函数,由b a < 有bb f a a f )()(≥⇒ af (b)≤bf (a) 故选(A )1、由f(x)=ln(1+x)-x的导数为1/(x+1)-1=-x/(x+1)<0得知f(x)在(-1,∞)上单调减少.2、所以bn=ln(1+n)-n,an=ln(n+1)-bn=n一、√n<√(n+2)-c/√(n+2) 得 c=1+(√(n+2)-√n)^2/2由于队所有n成立,而√(n+2)-√n可以任意小,且当c=1时,不等式依然成立,所以c的范围是(-∞,1]二、分两步证明,先用归纳法证明不等式(1) a1a3...a(2n-1)/[a2a4...a(2n)]<1/√(2n+1)n=1时a1/a2=1/2=1/√4<1/√3设n=k时成立,即a1a3.a(2k-1)/[a2a4...a(2k)]<1/(√2k+1)所以a1a3...a(2k-1)a(2k+1)/[a2a4...a(2k)a(2k+2)]<(2k+1)/[√(2k+1)(2k+2)]=√(2k+1)√(2k+3)/[(2k+2)√(2k+3)]<(2k+1+2k+3)/[2(2k+2)√(2k+3)]=1/√(2k+3)所以当n=k+1时,不等式(1)成立.所以对任意n>0不等式(1)成立.第二步运用第一问的不等式(c=1)时,1/√(n+2)<√(n+2)-√n得a1/a2+a1a3/[a2a4]+...+a1a3...a(2n-1)/[a2a4...a(2n)<√3-√1+√5-√3+...+√(2n+1)-√(2n-1) =√(2n+1)-1=√[a(2n)+1]-1证毕.。

相关文档
最新文档