牛顿运动定律试题及答案
牛顿运动定律练习题-选择(附答案)
牛顿运动定律专题训练一、选择题1、如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点。
每根杆上都套着一个小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放(初速为0),用t 1、t2、t 3依次表示滑环到达d 所用的时间,则( )A .t 1 < t 2 < t 3B .t 1 > t 2 > t 3C .t 3 > t 1 > t 2D .t 1 = t 2 = t 32、光滑斜轨道P A 、PB 、PC 的端点都在竖直平面内的同一圆周上,物体从P 点由静止开始沿不同轨道下滑,如图,下列说法中正确的是( ) A .物体沿P A 下滑时间最短; B .物体沿PB 下滑时间最短; C .物体沿PC 下滑时间最短;D .物体沿不同轨道下滑所用时间相同。
3、有三个光滑斜轨道1、2、3,它们的倾角依次是600,450和300,这些轨道交于O 点.现有位于同一竖直线上的3个小物体甲、乙、丙,分别沿这3个轨道同时从静止自由下滑,如图,物体滑到O 点的先后顺序是( )A.甲最先,乙稍后,丙最后B.乙最先,然后甲和丙同时到达C.甲、乙、丙同时到达D.乙最先,甲稍后,丙最后4、一间新房即将建成时要封顶,考虑到下雨时落至房顶的雨滴能尽快地流离房顶,要设计好房顶的坡度,设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么图中所示四种情况中符合要求的是( )5、一质量为m 的人站在电梯中,电梯加速上升,加速度大小为g/3,g 为重力加速度。
则人对电梯底部的压力为( )A .mg 31B .2mgC .mgD .mg 346、下列哪个说法是正确的?( )A .体操运动员双手握住单杠吊在空中不动时处于失重状态;B .蹦床运动员在空中上升和下落过程中都处于失重状态;C .举重运动员在举起杠铃后不动的那段时间内处于超重状态;D .游泳运动员仰卧在水面静止不动时处于失重状态。
【物理】物理牛顿运动定律练习题及答案及解析
(1)释放后,小滑块的加速度 al 和薄平板的加速度 a2; (2)从释放到小滑块滑离薄平板经历的时间 t。
【答案】(1) 4m/s2 ,1m/s2 ;(2) t 1s
【解析】
【详解】
(1)设释放后,滑块会相对于平板向下滑动,
对滑块 m :由牛顿第二定律有: mg sin 370 f1 ma1
其中 FN1 mg cos 370 , f1 1FN1
(1)小环的质量 m;
(2)细杆与地面间的倾角 a. 【答案】(1)m=1kg,(2)a=30°. 【解析】 【详解】
由图得:0-2s 内环的加速度 a= v =0.5m/s2 t
前 2s,环受到重力、支持力和拉力,根据牛顿第二定律,有: F1 mg sin ma 2s 后物体做匀速运动,根据共点力平衡条件,有: F2 mg sin
=4m/s2
解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t= =1s
(2)由静止到动摩擦因素发生变化的位移:x1= a1t2=2m
动摩擦因数变化后,由牛顿第二定律得加速度:a2=
=5m/s2
由 vB2-v2=2a2(L-x1) 解得滑雪者到达 B 处时的速度:vB=16m/s (3)设滑雪者速度由 vB=16m/s 减速到 v1=4m/s 期间运动的位移为 x3,则由动能定理有:
;解得 x3=96m
速度由 v1=4m/s 减速到零期间运动的位移为 x4,则由动能定理有:
;解得 x4=3.2m
所以滑雪者在水平雪地上运动的最大距离为 x=x3+x4=96+ 3.2=99.2m
5.近年来,随着 AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动 分拣传送装置的简化示意图,水平传送带右端与水平面相切,以 v0=2m/s 的恒定速率顺时 针运行,传送带的长度为 L=7.6m.机械手将质量为 1kg 的包裹 A 轻放在传送带的左端,经过 4s 包裹 A 离开传送带,与意外落在传送带右端质量为 3kg 的包裹 B 发生正碰,碰后包裹 B 在水平面上滑行 0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹 A、B 与水平面 间的动摩擦因数均为 0.1,取 g=10m/s2.求:
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
牛顿运动定律 典型例题 参考答案
牛顿运动定律典型例题参考答案一、连接体问题(整体法与隔离法):1.二体连接问题例题1:F=(M+m)g F=(M+m)g F=(M+m)g F=(M+m)g例题2:例题3:2.多体连接问题:例题4:例题5:二、 超失重问题:例题1:BC例题2:A 例题3:C 例题4:A例题5:D三、 等环境问题(力的质量分配原则):例题1.例题2.D四、 临界值问题: 例题1. 解析:(1)ma sin N cos T =α-αmg cos N sin T =α+α当g 31a =时,N=68.4(N ) T=77.3(N ) (2) 若N=0,则有'm a cos T =αm g sin T =α )s /m (17g 3gctg 'a ==α=例题2.五、 瞬时值问题:例题1:解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F mg 2=,F F mg mg 122=+='。
剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。
例题2:C例题3,D 例题4: (a=gsinθ ,a=gtanθ ) 例题5、BD 六、 分离问题:例题1:例题2:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma ,当N=0时,物体与平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-= 例题3:七、 相对滑动问题:例题1:例题2:BC 例题3:ABC例题4:例题5:例题6:例题7:八、 传送带问题:例题1:D例题2:解析: 物体放上传送带以后,开始一段时间,其运动加速度2m/s 10cos sin =+=m mg mg a θμθ。
02牛顿运动定律习题解答
02牛顿运动定律习题解答第二章牛顿运动定律一选择题1.下列四种说法中,正确的为:()A.物体在恒力作用下,不可能作曲线运动;B.物体在变力作用下,不可能作曲线运动;C.物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动;D.物体在不垂直于速度方向的力作用下,不可能作圆周运动;解:答案是C。
2.关于惯性有下面四种说法,正确的为:()A.物体静止或作匀速运动时才具有惯性;B.物体受力作变速运动时才具有惯性;C.物体受力作变速运动时才没有惯性;D.惯性是物体的一种固有属性,在任何情况下物体均有惯性。
解:答案是D3.在足够长的管中装有粘滞液体,放入钢球由静止开始向下运动,下列说法中正确的是:()A.钢球运动越来越慢,最后静止不动;B.钢球运动越来越慢,最后达到稳定的速度;C.钢球运动越来越快,一直无限制地增加;D.钢球运动越来越快,最后达到稳定的速度。
解:答案是D4.一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为:()A.0B.P/4C.PD.P/2解:答案是A。
简要提示:米袋和人具有相同的加速度,因此米袋作用在他肩上的力应为0。
5.有两辆构造相同的汽车在相同的水平面上行驶,其中甲车满载,乙车空载,当两车速度相等时,均关掉发动机,使其滑行,若从开始滑行到静止,甲车需时t1,乙车为t2,则有:()A.t1=t2B.t1>t2C.t1<t2D.无法确定谁长谁短解:答案是A。
简要提示:两车滑动时的加速度大小均为g,又因v0at1=v0at2=0,所以t1=t26.若你在赤道地区用弹簧秤自已的体重,当地球突然停止自转,则你的体重将:()A.增加;B.减小;C.不变;D.变为0解:答案是A简要提示:重力是万有引力与惯性离心力的矢量和,在赤道上两者的方向相反,当地球突然停止自转,惯性离心力变为0,因此体重将增加。
7.质量为m的物体最初位于某0处,在力F=k/某2作用下由静止开始沿直线运动,k为一常数,则物体在任一位置某处的速度应为()A.k112k113k11k11()B.()C.()D.()m某某0m某某0m某某0m某某0解:答案是B。
高中物理牛顿运动定律的应用试题(有答案和解析)及解析
高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。
高中物理牛顿运动定律经典练习题(含答案)
牛顿运动定律练习一1.(2021年河南省十所名校高三第三次联考试题, 7) 如图甲所示,斜面体固定在水平面上,倾角为θ=30°,质量为m的物块从斜面体上由静止释放,以加速度a=开始下滑,取出发点为参考点,那么图乙中能正确描述物块的速率v、动能E k、势能E P、机械能E、时间t、位移x关系的是2.(2021年河南省十所名校高三第三次联考试题, 2) 如下图,两个物体以相同大小的初速度从O点同时分别向x 轴正、负方向水平抛出,它们的轨迹恰好满足抛物线方程y=,那么以下说法正确的选项是〔曲率半径简单地理解为在曲线上一点附近与之重合的圆弧的最大半径〕A .物体被抛出时的初速度为B.物体被抛出时的初速度为C.O点的曲率半径为kD.O点的曲率半径为2k3.(湖北省七市2021届高三理综4月联考模拟试卷,6)不久前欧洲天文学家在太阳系外发现了一颗可能适合人类居住的行星,该行星的质量是地球质量的5倍,直径是地球直径的1.5倍。
设想在该行星外表附近绕行星沿圆轨道运行的人造卫星的动能为Ek1,在地球外表附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为Ek2,那么Ek1: Ek2为A. 7.5B. 3.33C. 0.34.(山东省淄博市2021届高三下学期4月复习阶段性检测,7)在倾角为的固定光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量分别为m1、m2,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态。
现用一平行于斜面向上的恒力F拉物块A 使之向上运动,当物块B刚要离开挡板C时,物块A运动的距离为d,速度为v。
那么此时A .拉力做功的瞬时功率为B .物块B满足C.物块A的加速度为D.弹簧弹性势能的增加量为5.(山东省淄博市2021届高三下学期4月复习阶段性检测,1)用比值法定义物理量是物理学中一种很重要的思想方法,以下物理量由比值法定义正确的选项是〔〕A .加速度B.磁感应强度C.电容D .电流强度6.(四川成都市2021届高中毕业班第三次诊断性检测,7)右图为某节能运输系统的简化示意图。
牛顿运动定律测试卷(附答案)
牛顿运动定律测试卷总分150分一:选择题【在每小题给出的四个选项中.只有一个选项正确。
4分×15=60分】1.下列说法正确的是:(D)A.在17世纪之前,普遍认为力是维持物体运动所不可缺少的,第一个根据实验指出这种认识是错误的科学家是牛顿;B.惯性是物体保持原来运动状态的力;C.一个日本旅游者,想来中国,他设想将自己悬挂在空中的大气球上,由于地球的自转,只要在空中停留几个小时,就可以到达中国;D.由于地球的自转是由西向东,如果让同一跳远运动员用同样的方式从西向东跳和从东向西跳,测出的成绩是一样的。
2. 如图所示,在平直的轨道上,匀速向右行驶的封闭的车厢AB中,悬挂着一个带有滴管的盛油容器,容器正下方地板上有一点O.当滴管按相等时间间隔依次滴下三滴油时(设这三滴油都能落在车厢地板上),下列说法中正确的是:( D )A.这三滴油依次落在OA之间,且后一滴比前一滴离O远;B.这三滴油依次落在OA之间,且后一滴比前一滴离O近;C. 这三滴油依次落在OA之间同一位置上;D. 这三滴油依次落在O点上。
3.物体的位移随时间变化的函数关系是s=4t+2t2(m),则它运动的加速度是(A.0m/s2 ,B. 2m/s2 ,C. 4m/s2 ,D. 8m/s2 .4.根据牛顿运动定律可知,以下说法正确的是( D )A.我们骑自行车带人时,如车速过快会导致惯性大,不易刹车B.沿滑梯下滑的幼儿,是因为受到了下滑力作用的缘故C.以卵击石是鸡蛋破碎,说明它们之间的相互作用力不等D.牛顿运动定律只能解决宏观物体的低速的问题5.我国自行研制的“神舟五号”载人飞船在太空遨游,宇航员杨利伟在绕地球做匀速圆周运动时的受力情况是( D )A.受到地区引力和重力的作用; B.受到地球引力和向心力的作用;C.物体不受任何力作用; D.只受到地球引力作用。
6.下列说法正确的是( D )A.某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车作匀速直线运动。
牛顿运动定律典型题及答案
a典型题及答案1.某物体做直线运动的v-t 图象如图甲所示,据此判断图乙(F 表示物体所受合力,x 表示物体的位移)四个选项中正确的是 ( )2.如图所示,质量为M 的长平板车放在光滑的倾角为α的斜面上,车上站着一质量为m 的人,若要平板车静止在斜面上,车上的人可以(.C ) A .匀速向下奔跑B .以加速度αsin g m Ma =向下加速奔跑 C .以加速度αsin )1(g m Ma +=向下加速奔跑 D .以加速度αsin )1(g mM a +=向上加速奔跑 3.在一根绳下串联着两个质量不同的小球,上面小球比下面小球质量大,当手提着绳端沿水平方向并使两球一起作匀加速运动时(空气阻力不计),则下图中正确的是 ( A )4.如图所示,小车板面上的物体质量为m =8㎏,它被一根水平方向上拉伸了的弹簧拉住而静止在小车上,这时弹簧的弹力为6N力,使小车由静止开始运动起来,运动中加速度由零逐渐增大到1m/s 2,随即以1 m/s 2的加速度做匀加速直线运动。
以下说法正确的是 (AC ) A .物体与小车始终保持相对静止,弹簧对物体的作用力始终没有发生变化 B .物体受到的摩擦力一直减小C .当小车加速度(向右)为0.75 m/s 2时,物体不受摩擦力作用D .小车以1 m/s 2的加速度向右做匀加速直线运动时,物体受到的摩擦力为8N5.如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用可伸长的轻绳相连,木块间的最大静摩擦力是μmg .现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为 ( B )A .53mgμB . 43mg μC . 23mg μD . 3μmg6.质量不计的弹簧下端固定一小球.现手持弹簧上端使小球随手在竖直方向上以同样大小的加速度a (a <g )分别向上、向下做匀加速直线运动.若忽略空气阻力,弹簧的伸长分别为x 1、x 2;若空气阻力不能忽略且大小恒定,弹簧的伸长分别为x 1′、x 2′, ( C )A .x 1′+x 1=x 2′+xB .x 1′+x 1<x 2+ x 2′C .x 1′+x 2′=x 1+x 2D .x 1′+x 2′<x 1 + x 27.如图, 在倾角为α的固定光滑斜面上,有一用绳子拴着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为 ( C ) A .2gsin α B .gsin α C .23gsin α D .2gsin α8.一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连。
高三物理牛顿运动定律试题答案及解析
高三物理牛顿运动定律试题答案及解析1.某兴趣小组对一辆自制遥控小车的性能进行研究。
他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v―t图象,如图所示(除2s―10s时间段图象为曲线外,其余时间段图象均为直线)。
已知在小车运动的过程中,2s―14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行。
小车的质量为1.0kg,可认为在整个运动过程中小车所受到的阻力大小不变。
则A.小车所受到的阻力大小为1.5NB.小车匀速行驶阶段发动机的功率为9WC.小车在加速运动过程中位移的大小为48mD.小车在加速运动过程中位移的大小为39m【答案】AB【解析】小车在14s-18s内在阻力作用下做匀减速运动,加速度由牛顿定律可知,小车所受到的阻力大小为f=ma=1.5N,选项A 正确;小车匀速行驶阶段发动机的功率为P=Fv=fv=1.5×6W=9W,选项B正确;在0-2s匀加速阶段的位移为,在2-10s 内由动能定理:,解得x2=39m所以小车在加速运动过程中位移的大小为3m+39m=42m,选项CD 错误。
【考点】v-t图线;牛顿定律的应用及动能定理。
2.洗车档的内、外地面均水平,门口的斜坡倾角为θ 。
质量为m的Jeep洗完车出来,空挡滑行经历了如图所示的三个位置。
忽略车轮的滚动摩擦,下列说法正确的是A.在三个位置Jeep都正在做加速运动B.在乙位置Jeep正在做匀速运动C.在甲位置Jeep受到的合力等于mgsinθD.在丙位置Jeep的加速度小于gsinθ【答案】BD【解析】甲图和丙图中Jeep的前轮和后轮分别在斜坡上,所以是加速运动,而乙图中Jeep的前后轮均在水平面上,所以做运动运动,选项B正确,A错误;在甲位置和丙位置Jeep受到的合力均小于mgsinθ ,加速度均小于gsinθ, D正确,C错误。
【考点】牛顿定律的应用。
3.如图1所示,质量为m=2kg的小滑块放在质量为M=1kg的长木板上,已知小滑块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2,开始小滑块和长木板均处于静止状态,现对小滑块施加向右的水平拉力F,水平拉力F随时间的变化规律如图2所示,已知小滑块始终未从长木板上滑下且μ1=0.2,μ2=0.1,g=10m/s2。
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。
高一物理牛顿运动定律练习及答案.
相关习题:(牛顿运动定律)一、牛顿第一定律练习题一、选择题1.下面几个说法中正确的是[ ]A.静止或作匀速直线运动的物体,一定不受外力的作用B.当物体的速度等于零时,物体一定处于平衡状态C.当物体的运动状态发生变化时,物体一定受到外力作用D.物体的运动方向一定是物体所受合外力的方向2.关于惯性的下列说法中正确的是[ ]A.物体能够保持原有运动状态的性质叫惯性B.物体不受外力作用时才有惯性C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性D.物体静止时没有惯性,只有始终保持运动状态才有惯性3.关于惯性的大小,下列说法中哪个是正确的?[ ]A.高速运动的物体不容易让它停下来,所以物体运动速度越大,惯性越大B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大C.两个物体只要质量相同,那么惯性就一定相同D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为[ ]A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来D.人跳起后直到落地,在水平方向上人和车具有相同的速度5.下面的实例属于惯性表现的是[ ]A.滑冰运动员停止用力后,仍能在冰上滑行一段距离B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板C.奔跑的人脚被障碍物绊住就会摔倒D.从枪口射出的子弹在空中运动6.关于物体的惯性定律的关系,下列说法中正确的是[ ]A.惯性就是惯性定律B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律C.物体运动遵循牛顿第一定律,是因为物体有惯性D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因7.如图所示,劈形物体M的各表面光滑,上表面水平,放在固定的斜面上.在M的水平上表面放一光滑小球m,后释放M,则小球在碰到斜面前的运动轨迹是[ ] A.沿斜面向下的直线B.竖直向下的直线C.无规则的曲线D.抛物线二、填空题8.行驶中的汽车关闭发动机后不会立即停止运动,是因为____,汽车的速度越来越小,最后会停下来是因为____。
物理牛顿运动定律的应用练习题20篇及解析
(2)滑块在 B 点时的速度大小为 滑块从 B 点运动到 C 点过程中,由牛顿第二定律有: 可得加速度 设滑块到达 C 点时的速度大小为 vC,有: 解得:
此过程所经历的时间为: 故滑块通过传送带的过程中,以地面为参考系,滑块的位移 x1=L=6m, 传送带的位移 x2=vt=4m; 传送带和滑块克服摩擦力所做的总功为: 代入数据解得: 【点睛】 此题需注意两点,(1)要利用滑块沿 BC 射入来求解滑块到 B 点的速度;(2)计算摩擦力对物 体做的功时要以地面为参考系来计算位移。
4.如图所示,长 L=10m 的水平传送带以速度 v=8m/s 匀速运动。质量分别为 2m、m 的小 物块 P、Q,用不可伸长的轻质细绳,通过固定光滑小环 C 相连。小物块 P 放在传送带的最 左端,恰好处于静止状态,C、P 间的细绳水平。现在 P 上固定一质量为 2m 的小物块(图中 未画出),整体将沿传送带运动,已知 Q、C 间距大于 10 m,重力加速度 g 取 10m/s2.求:
由牛顿第二定律得:F=m vB2 r
解得:F=5 2 N
由牛顿第三定律知小球对细管作用力大小为 5 2 N,
6.如图所示,在竖直平面内有一倾角 θ=37°的传送带 BC.已知传送带沿顺时针方向运行的 速度 v=4 m/s,B、C 两点的距离 L=6 m。一质量 m=0.2kg 的滑块(可视为质点)从传送带上 端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC 方向滑人传送 带,滑块与传送带间的动摩擦因数 μ=0.5,取重力加速度 g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。求:
(1)经历多长时间 A 相对地面速度减为零;
高一物理牛顿运动定律试题答案及解析
高一物理牛顿运动定律试题答案及解析1.如图所示,台秤上放有一杯水,杯内底部处用线系着一小木球浮在水中,若细线突然断开,试分析在小木球上浮的过程中,台秤的示数如何变化?A.增大B.减小C.不变D.以上三种情况都有可能【答案】B【解析】若细线突然断开,小木球上浮的过程中,水向下运动,有向下的加速度,系统处于失重状态,台秤的示数减小,B正确。
2.关于力和运动的关系,下列选项中正确的是A.若物体的速度不断增大,则物体所受的合力一定不为0B.若物体的位移不断增大,则物体所受的合力一定不为0C.若物体的位移与时间的平方成正比,则物体所受的合力一定为0D.若物体的加速度不变,则物体所受合力一定为0【答案】A【解析】只要物体速度变化,则一定存在加速度,所以合外力一定不为零;A对,D错。
位移增大,不一定速度变化,可以是匀速运动,所以合力可以为零,B错;位移与时间的平方成正比,则物体肯定不是做匀速运动,所以加速度一定不为零,合力一定不为零,C错;3.如图所示,空间存在着场强为E=2.5×102 N/C、方向竖直向上的匀强电场,在电场内一长为L =0.5 m的绝缘细线,一端固定在O点,另一端拴着质量为m=0.5 kg、电荷量为q=4×10-2 C 的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g=10 m/s2.求:(1)小球的电性;(2)细线能承受的最大拉力;(3)当细线断裂后,小球继续运动到与O点水平方向距离为L时(仍在匀强电场中),小球距O点的高度.【答案】(1)正(2)(3)0.625 m【解析】(1)由小球运动到最高点可知,小球带正电.(2)设小球运动到最高点时速度为v,对该过程由动能定理有,①在最高点对小球进行受力分析,由圆周运动和牛顿第二定律得,②由①②式解得,(3)小球在细线断裂后,在竖直方向的加速度设为a,则③设小球在水平方向运动位移为L的过程中,所经历的时间为t,则④设竖直方向上的位移为x,则⑤由①③④⑤解得x=0.125 m所以小球距O点的高度为x+L=0.625 m【考点】考查了牛顿第二定律,圆周运动,动能定理4.如图所示,用细绳把小球悬挂起来,当小球静止时,下列说法中正确的是()A.小球对细绳的拉力和细绳对小球的拉力是一对作用力和反作用力B.小球受到的重力和小球对细绳的拉力是一对作用力和反作用力C.小球受到的重力和细绳对小球的拉力是一对平衡力D.小球受到的重力和小球对细绳的拉力是一对平衡力【答案】AC【解析】解:对小球受力分析,受地球对其的重力,细线对其向上的拉力,小球保持静止状态,加速度为零,合力为零,故重力和拉力是一对平衡力;细线对小球的拉力的反作用力是小球对细线的向下的拉力,这两个力是一对相互作用力,故AC正确,BD错误故选:AC.【考点】作用力和反作用力.分析:一对平衡力与“作用力与反作用力“的共同的特点:二力都是大小相等,方向相反,作用在同一条直线上.一对平衡力与“作用力与反作用力“的区别:作用力与反作用力描述的是两个物体间相互作用的规律,二力平衡描述的是一个物体在二力作用下处在平衡状态.点评:本题涉及三力,重力、细线对小球的拉力和小球对细线的拉力,其中重力和细线对小球的拉力是平衡力(因为小球处于平衡状态),细线对小球的拉力和小球对细线的拉力是相互作用力;平衡力和相互作用力是很容易混淆的,要注意其最明显的区别在于是否同体.5.(12分)如图所示为某高楼电梯上升的速度-时间图像,试求:(1)在t1=5s、t2=8s时刻的速度;(2)求出各段的加速度;(3)画出电梯上升的加速度-时间图像.【答案】(1)v1=10m/s;v2=5m/s(2)0s~2s :5m/s2;2s~5s :0m/s2;5s~8s :-1.7m/s2;(3)图线如图:【解析】(1)由图线可知在t1=5s时的速度是10m/s;在t2=8s时刻的速度是5m/s;(2)0s~2s :5m/s2;2s~5s :a2=0m/s2;5s~8s :;(3)电梯上升的加速度-时间图像:【考点】v-t图线.【名师】此题考查了v-t图线在实际生活中的应用问题;要了解图线的物理意义:斜率大小等于物体的加速度大小,斜率的符号反映加速度的方向;图线与坐标轴围成的面积等于物体的位移;做题时要会分段处理;此题难度不大.6.两物体都做匀变速直线运动,在给定的时间间隔t内()A.加速度大的,其位移一定大B.初速度大的,其位移一定大C.末速度大的,其位移一定大D.平均速度大的,其位移一定大【答案】D【解析】解:A、根据x=知,加速度大,位移不一定大,还与初速度有关.故A错误.B、根据x=知,初速度大的,位移不一定大,还与加速度有关.故B错误.C、末速度大,位移不一定大,还与初速度有关.故C错误.D、根据,时间一定,平均速度大,位移一定大.故D正确.故选D.【考点】匀变速直线运动的速度与时间的关系;匀变速直线运动的位移与时间的关系.分析:根据匀变速直线运动位移时间公式x=和平均速度公式去判断一定时间内的位移大小.点评:解决本题的关键掌握匀变速直线运动的位移时间公式x=和平均速度公式.7.如图所示,为做直线运动质点的v﹣t图象,则下列说法正确的是()A.质点在0~2s内做匀加速直线运动B.质点在2~6s内处于静止状态C.质点t=8s时的位移为零D.质点在8~10s内做匀加速直线运动【答案】AD【解析】解:A、质点在0~2s内速度均匀增大,做匀加速直线运动.故A正确.B、质点在2~6s内速度不变,做匀速直线运动,故B错误.C、根据面积表示位移,可知质点t=8s时的位移为 x=m=36m,故C错误.D、质点在8~10s内沿负方向做匀加速直线运动,故D错误.故选:AD【考点】匀变速直线运动的图像.【分析】v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.图象与坐标轴所围的面积表示位移.由此分析.【点评】本题的解题关键是抓住两个数学意义来分析和理解图象的物理意义:速度图象的斜率等于加速度、速度图象与坐标轴所围“面积”大小等于位移.明确v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.8.一物体以20m/s的速度沿光滑斜面向上做匀变速直线运动,加速度大小为a=5m/s2.如果斜面足够长,那么当速度大小变为10m/s时物体所通过的路程可能是多少?【答案】物体通过路程可能为30m,可能为50m.【解析】解:当末速度的方向与初速度方向相同,根据速度位移公式得,物体通过的路程s=.若末速度的方向与初速度方向相反,则物体向上做匀减速运动的位移,向下做匀加速运动的位移,则路程s=x1+x2=40+10m=50m.答:物体通过路程可能为30m,可能为50m.【考点】匀变速直线运动的位移与时间的关系.【分析】当末速度的方向与初速度方向相同,直接结合匀变速直线运动的速度位移公式求出物体通过的路程.当末速度的方向与初速度方向相反,根据速度位移公式分别求出向上匀减速运动的位移和向下匀加速运动的位移,从而得出路程.【点评】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,注意末速度的方向可能与初速度方向相同,可能与初速度方向相反.9.跳伞运动员从300m高空无初速度跳伞下落,他自由下落4s后打开降落伞,以恒定的加速度做匀减速运动,到达地面时的速度为4.0m/s,g=10m/s2.求:(1)运动员打开降落伞处离地面的高度;(2)运动员打开伞后运动的加速度;(3)运动员在空中运动的总时间.【答案】(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【解析】解:竖直向下方向为正方向.(1)运动员自由下落4s的位移为运动员打开降落伞处离地面的高度为:h2=h﹣h1=300﹣80m=220m(2)运动员自由下落4s末的速度为:v1=gt1=10×4m/s=40m/s打开降落伞后做匀减速直线运动,根据速度位移关系有:2可得加速度==﹣3.6m/s2(3)打开降落伞后做匀减速时间达到地面的时间为:所以运动在空中下落的总时间为:t=t1+t2=4+10s=14s答:(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【考点】匀变速直线运动的位移与时间的关系;匀变速直线运动的速度与时间的关系.【分析】(1)根据自由落体运动的规律求得物体下落4s的高度,从而求得离地面的高度;(2)根据匀减速运动的速度位移关系求得打开伞后的加速度;(3)求得匀减速下落的时间和自由落体运动的时间即为在空中下落的总时间.【点评】掌握匀变速直线运动的位移时间关系和速度时间关系是正确解题的关键,不难属于基础题.10.某研究性学习小组,为探究电梯起动和制动时的加速度大小,董趣同学站在体重计上乘电梯从1层到10层,之后又从10层返回到1层,并用照相机进行记录,请认真观察分析下列图片,得出正确的判断是()A.根据图乙和图丙,可估测电梯向上起动时的加速度B.根据图甲和图乙,可估测电梯向上制动时的加速度C.根据图甲和图戊,可估测电梯向下制动时的加速度D.根据图丁和图戊,可估测电梯向下起动时的加速度【答案】C【解析】解:A、图2表示电梯加速上升时这位同学超重时的示数,图3,表示向上减速时的示数,由此两图不能够求出的是电梯向上起动时的加速度,所以A错误.B、图1表示电梯静止时的示数,图2显示加速上升时的示数,此时能够求出的是电梯向上加速时的加速度,所以B错误.C、图1表示电梯静止时的示数,图5表示电梯减速下降时的示数,此时能够求出的是电梯向下减速时的加速度,所以C正确.D、图4表示电梯加速下降时的示数,图5表示电梯减速下降时的示数,此时不能够求出电梯向下起动时的加速度,所以D错误.故选C【考点】加速度.【分析】图甲表示电梯静止时体重计的示数,乙图表示电梯加速上升时这位同学超重时的示数,丙图表示电梯减速上升时这位同学失重时的示数,丁图表示电梯加速下降时这位同学失重时的示数,戊图表示电梯减速下降时这位同学超重时的示数,根据牛顿第二定律可以应用图甲和另外某一图示求出相应状态的加速度.【点评】本题主要考查了对超重失重现象的理解,人处于超重或失重状态时,人的重力并没变,只是对支持物的压力变了.11.(20分)下列是《驾驶员守则》中的安全距离图示(如图)和部分安全距离表格.请根据图表计算:(1)如果驾驶员的反应时间一定,请求出表格中的A 的数据; (2)如果路面情况相同,请求出表格中的B 、C 的数据;(3)如果路面情况相同,一名喝了酒的驾驶员发现前面50 m 处有一队学生正在横过马路,此时他的车速为72 km/h.而他的反应时间比正常时慢了0.1 s ,请问他能在50 m 内停下来吗? 【答案】(1)20;(2)40;60;(3)不能 【解析】(1)反应时间为,即解得A =20 m.因路面情况相同,故知刹车时的加速度相同, 由v 2 =2ax 得 对第一组刹车数据分析,加速度为分析第三组数据知,刹车距离为:所以停车距离为:C =A +B =60 m. 正常情况下司机的反应时间为而喝酒情况下司机的反应距离为 由v 2=2ax 知,此时司机的刹车距离为L =s +x =52.4 m,52.4 m>50 m ,故不能在50 m 内停下来. 【考点】匀变速直线运动的规律12. 物体由A 向B 做匀变速直线运动,所用时间为t ,在时到达D 点,C 为AB 的中点,以v C 和v D 分别表示物体在C 点和D 点时的速度,以下叙述中正确的是:( ) A .若物体做匀加速运动,则v C >v D B .若物体做匀减速运动,则v C >v DC .不论物体做匀加速运动,还是做匀减速运动,都有v C <v DD .如果不确定物体做匀加速运动或匀减速运动,则无法比较v C 和v D 的大小【答案】AB【解析】根据匀变速直线运动的规律,物体在中间时刻D 的速度为;物体在中间位置C 的速度为:;由数学知识可知,恒成立,则v C >v D ,故选项AB 正确,CD 错误;故选AB.【考点】匀变速直线运动的规律13. (8分)跳伞运动员做低空跳伞表演,他离开飞机后先做自由落体运动,当距地面120 m 时打开降落伞,开伞后运动员以大小为12.5 m/s 2的加速度做匀减速运动,到达地面时的速度为5 m/s ,求:(1)运动员离开飞机瞬间距地面的高度;(2)离开飞机后,经多长时间到达地面.(g 取10 m/s 2) 【答案】(1)271.25 m ;(2)9.5 s【解析】(1)由v12-v2=2ah2解出v=55 m/s. (2分)又因为v02=2gh1解出h1=151.25 m. (2分)所以h=h1+h2=271.25 m. (1分)(2)又因为t1==5.5 s, (1分)t2==4 s, (1分)所以t=t1+t2=9.5 s,(1分)【考点】匀变速直线运动的规律【名师】本题难度较小,自由落体运动其实就是初速度为零的匀加速直线运动,灵活应用匀变速运动规律求解本题。
高一物理牛顿运动定律试题答案及解析
高一物理牛顿运动定律试题答案及解析1.(8分)汽车发动机的额定功率为60kW,汽车质量为5t,汽车在水平路面上行驶时,阻力是车重的0.1倍,g取10m/s2,问:(1)汽车保持额定功率从静止起动后能达到的最大速度是多少?(2)若汽车保持0.5m/s2的加速度做匀加速运动,这一过程能维持多长时间?【答案】(1)12m/s;(2)16s。
【解析】(1)因为v=m/s=12m/s;(2)做匀加速运动的最大速度为v′=m/s=8m/s;故这一过程的时间为t==16s【考点】汽车启动问题。
2.如图所示,光滑水平面上放有质量均为m的滑块A和斜面体C,在C的斜面上又放有一质量也为m的滑块B,用力F推滑块A使三者无相对运动地向前加速运动,则各物体所受的合力()A.滑块A最大B.斜面体C最大C.同样大D.不能判断谁大谁小【答案】C【解析】由于三者无相对运动地向前共同加速运动,且质量均相同,根据牛顿第二定律F=ma可知,F均相同,故C正确。
【考点】牛顿第二定律3.一辆以12m/s的速度在水平路面上行驶的汽车,在关闭油门后刹车过程中以3m/s2的加速度做匀减速运动,那么汽车关闭油门后2s内的位移是多少米?关闭油门后5s内的位移是多少米?【答案】(1)18m(2)24m【解析】汽车停下来的时间为,汽车在关闭油门后2s内的位移是由于汽车在4s末停止运动,所以前4s的位移等于5s末的位移故有关闭油门后5s内的位移是【考点】考查了匀变速直线运动规律的应用4.一辆值勤的警车停在公路边,当警员发现在他前面9m处以7m/s的速度匀速向前行驶的货车有违章行为时,决定前去追赶,经3.0s,警车发动起来,以加速度a=2m/s2做匀加速运动.求:(1)警车发动后经多长时间能追上违章的货车,这时警车速度多大;(2)在警车追上货车之前,何时两车间的最大距离,最大距离是多少.【答案】(1)t=10s,20m/s(2)【解析】①得 t=10s v=at=20m/s②当两车速度相等时,两车间距最大【考点】追击相遇问题【名师】关键是抓住位移关系,结合运动学公式灵活求解,知道速度相等时,相距最远,(1)根据位移关系,结合运动学公式求出追及的时间,根据速度时间公式求出警车的速度.(2)当两车的速度相等时,相距最远,根据速度时间公式求出相距最远的时间,根据位移公式求出相距的最远距离5.(10分)如图所示,小球在较长的斜面顶端,以初速度v=2m/s,加速度a=2m/s2向下滑,在到达底端的前1s内,所滑过的距离为,其中L为斜面长,则(1)小球在斜面上滑行的时间为多少?(2)斜面的长度L是多少?【答案】(1)3s;(2)15m【解析】设小球在斜面上运动的总时间为t,则由题意和公式 x=vt+at2得:解上面两个方程得:t=3s;L=15m【考点】匀变速直线运动的规律6.(10分)一列车A的制动性能经测定:当它以标准速度V=20m/s在平直轨道上行驶时,制动后需tA =40s才停下。
物理牛顿运动定律题20套(带答案)
物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.3.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
物理牛顿运动定律练习题含答案及解析
物理牛顿运动定律练习题含答案及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
物理牛顿运动定律题20套(带答案)
物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
【高考物理必刷题】牛顿运动定律(后附答案解析)
上的张力先增大后减小上的张力先增大后减小1D.的大小不变,而方向与角,物块也恰好做匀速直线运动,物块与桌面间的动摩擦因数为()2由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)3实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对4表示滑块下滑的加速度大小,用表示挡光片前端到达光电门时滑块的瞬时速度大的关系式为.,.(结果保留3位有效数字)56,放在静止于水平地面上的木板的两;木板的质量为,与地面间的动摩擦因数为两滑块开始相向滑动,初速度大小均为.、相遇时,与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小为.求:开始运动时,两者之间的距离.1上的张力先增大后减小上的张力先增大后减小的合力大小方向不变,且与先增后减,始终变大.2D.;由,可知摩擦力为:,代入数据为:联立可得:,故C正确.故选C.相互作用共点力平衡多个力的动态平衡由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)34实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对56开始运动时,两者之间的距离.考点时和板共速和板共速后得加速度:再经过,和板共速,(2)牛顿运动定律牛顿运动定律专题滑块问题。
牛顿运动定律试题精选及答案
牛顿运动定律试题精选及答案1.如图所示,在质量为m 0的无下底的木箱顶部用一轻弹簧悬挂质量为m (m 0>m )的A 、B 两物体,箱子放在水平地面上,平衡后剪断A 、B 间的连线,A 将做简谐运动,当A 运动到最高点时,木箱对地面的压力为(A )A .m 0gB .(m 0 - m )gC .(m 0 + m )gD .(m 0 + 2m )g2.如图所示,静止在光滑水平面上的物体A ,一端靠着处于自然状态的弹簧.现对物体作用一水平恒力,在弹簧被压缩到最短这一过程中,物体的速度和加速度变化的情况是(D )A .速度增大,加速度增大B .速度增大,加速度减小C .速度先增大后减小,加速度先增大后减小D .速度先增大后减小,加速度先减小后增大3.为了测得物块与斜面间的动摩擦因数,可以让一个质量为m 的物块由静止开始沿斜面下滑,拍摄此下滑过程得到的同步闪光(即第一次闪光时物块恰好开始下滑)照片如图所示.已知闪光频率为每秒10次,根据照片测得物块相邻两位置间的距离分别为AB =2.40cm ,BC =7.30cm ,CD =12.20cm ,DE =17.10cm .若此斜面的倾角θ=370,则物块与斜面间的动摩擦因数为 .(重力加速度g 取9.8m /s 2,sin 370=0.6,cos 370=0.8)答案:0.125 (提示:由逐差法求得物块下滑的加速度为a =4.9m /s 2,由牛顿第二定律知a =g sin 370–μg cos 370,解得μ=0.125)4.如图所示,一物体恰能在一个斜面体上沿斜面匀速下滑,设此过程中斜面受到水平地面的摩擦力为f 1.若沿斜面方向用力向下推此物体,使物体加速下滑,设此过程中斜面受到地面的摩擦力为f 2。
则(D )A .f 1不为零且方向向右,f 2不为零且方向向右B .f 1为零,f 2不为零且方向向左C .f 1为零,f 2不为零且方向向右D .f 1为零,f 2为零5.如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A的瞬间到木块B 刚离开地面的瞬间这个过程,并且选定这个过程中木块A 的起始位置为坐标原点,则下列图象中可以表示力F 和木块A 的位移x 之间关系的是(A )6.如图所示,质量为m 的物体放在倾角为α的光滑斜面上,随斜面体一起沿水平方向m B A mA B a A B b F O F O F O F O FA B C D运动,要使物体相对于斜面保持静止,斜面体的运动情况以及物体对斜面压力F 的大小是(C )A .斜面体以某一加速度向右加速运动,F 小于mgB .斜面体以某一加速度向右加速运动,F 不小于mgC .斜面体以某一加速度向左加速运动,F 大于mgD .斜面体以某一加速度向左加速运动,F 不大于mg7.如图,质量都是m 的物体A 、B 用轻质弹簧相连,静置于水平地面上,此时弹簧压缩了Δl .如果再给A 一个竖直向下的力,使弹簧再压缩Δl ,形变始终在弹性限度内,稳定后,突然撤去竖直向下的力,在A 物体向上运动的过程中,下列说法中:①B 物体受到的弹簧的弹力大小等于mg 时,A 物体的速度最大;②B 物体受到的弹簧的弹力大小等于mg 时,A 物体的加速度最大;③A 物体受到的弹簧的弹力大小等于mg 时,A 物体的速度最大;④A 物体受到的弹簧的弹力大小等于mg 时,A 物体的加速度最大.其中正确的是(A )A .只有①③正确B .只有①④正确C .只有②③正确D .只有②④正确8.有一种大型游戏器械,它是一个圆筒型大型容器,筒壁竖直,游客进入容器后靠筒壁站立,当筒壁开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为(C )A .游客处于超重状态B .游客处于失重状态C .游客受到的摩擦力等于重力D .筒壁对游客的支持力等于重力9.质量为m =20kg 的物体,在恒定的水平外力F 的作用下,沿水平面做直线运动.0~2.0s 内F 与运动方向相反,2.0~4.0s 内F 与运动方向相同,物体的速度—时间图象如图所示,已知g 取10m /s 2.求物体与水平面间的动摩擦因数.解:由图象可知:0~2.0s 内物体做匀减速直线运动,加速度大小为a 1=5m /s 2,由牛顿第二定律得:mf F a +=1(4分)2~4s 内物体做匀加速直线运动,加速度大小为a 2=1m /s 2,由牛顿第二定律得:mf F a -=2 又f =μmg由以上各式解得:μ=0.210.我国铁路上火车经过多次提速,火车的运行速度较大,而车轮与铁轨间的动摩擦因数又不大,所以飞驰的火车在发生险情紧急刹车后,到完全停下的制动距离是很大的.据实际测定,在某一直线路段,某列火车车速为86.4km /h 时,制动距离为960m .(设火车刹车时受到的阻力不变)(1)求紧急刹车时火车的加速度大小.(2)在同一路段,该列火车的行车速度提高到108km /h时,制动距离变为多少?解:(1)设列车在紧急刹车过程中做匀减速直线运动,初速度为v 1=86.4km /h =24m /s ,末速度v =0,位移s =960m ,紧急刹车时加速度为a .由速度——位移公式得 -1212as v = -2代入数据得 a =-0.3m /s 2所以火车加速度大小为0.3m /s 2.(2)火车初速度 v 2=108km /h =30m /s-2222as v =代入数据得制动距离 s =1.5×103m11.为了测定小木板和斜面间的动摩擦因数,某同学设计了如下的实验.在小木板上固定一个弹簧测力计(质量不计),弹簧测力计下端吊一个光滑小球,将木板连同小球一起放在斜面上,如图所示.用手固定住木板时,弹簧测力计的示数为F 1,放手后木板沿斜面下滑,稳定时弹簧测力计的示数为F 2,测得斜面倾角为θ,由测得的数据可求出木板与斜面间的动摩擦因数是多少?解:用手固定住木板时,对小球有 F 1=mgsin θ木板沿斜面下滑时,对小球有 mgsin θ-F 2=ma木板与小球一起下滑有共同的加速度,对整体有(M +m )gsin θ-F f =(M +m )aF f =μ(M +m )gcos θ 联立①②③④式得:θμtan 12F F = 12.如图所示,一粗糙的水平传送带以恒定的速度v 1沿顺时针方向运动,传送带的左、右两端皆有一与传送带等高的光滑水平面,一物体以恒定的速度v 2沿水平面分别从左、右两端滑上传送带,下列说法正确的是(CD )A .物体从右端滑到左端所须的时间一定大于物体从左端滑到右端的时间B .若v 2<v 1,物体从左端滑上传送带必然先做加速运动,再做匀速运动C .若v 2<v 1,物体从右端滑上传送带,则物体可能到达左端D .若v 2<v 1,物体从右端滑上传送带又回到右端.在此过程中物体先做减速运动,再做加速运动13.四个质量、形状相同的斜面体放在粗糙的水平面上,另有四个质量相同的小物体放在斜面顶端,由于小物体与斜面间的摩擦力不同,第一个物体匀加速下滑,第二个物体匀速下滑,第三个物体匀减速下滑,第四个物体静止在斜面上,如图所示,四个斜面均保持不动,下滑过程中斜面对地面压力依次为F 1、F 2、F 3、F 4,则它们的大小关系是(C )A .F 1=F 2=F 3=F 4B .F 1>F 2>F 3>F 4C .F 1<F 2=F 4<F 3D .F 1=F 3<F 2<F 414.如图所示,一弹簧的下端固定在地面上,一质量为0.05kg 的木块 B 固定在弹簧的上端,一质量为0.05kg 的木块A 置于木块B 上,A 、B 两木块静止时,弹簧的压缩量为2cm ;再在木块A 上施一向下的力F ,当木块A 下移4cm 时,木块A 和B 静止,弹簧仍在弹性限度内,g 取10m/s 2.撤去力F 的瞬间,关于B 对A 的作用力的大小,下列说法正确的是(C )A .2.5NB .0.5NC .1.5ND .1N15.举重运动是力量和技巧充分结合的体育项目.就“抓举”而言,其技术动作可分为预备、提杠铃、发力、下蹲支撑、起立、放下杠铃等六个步骤,如图所示表示了其中的几个状态.在“发力”阶段,运动员对杠铃施加恒力作用,使杠铃竖直向上加速运动;然后运动员停止发力,杠铃继续向上运动,当运动员处于“下蹲支撑”处时,杠铃的速度恰好为零.从运动员开始“发力”到“下蹲支撑”处的整个过程历时0.8s ,杠铃升高0.6m ,该杠铃的质量为150kg .求运动员发力时,对杠铃的作用力大小.(g 取10m /s 2)解:设杠铃在题述过程中的最大速度为v m ,则有t v h m 21=,解得v m =1.5m /s 杠铃匀减速运动的时间为: s g v t m 15.0==' 杠铃匀加速运动的加速度为:2/3.2s m t t v a m ='-= 根据牛顿第二定律有:F - mg = ma解得F =1845N16.如图所示,质量为m 的小球用水平弹簧系住,并用倾角为300的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为(C )A .0B .大小为g ,方向竖直向下C .大小为g 332,方向垂直木板向下 D .大小为g 33,方向水平向右 17.如图所示,质量相同的木块M 、N 用轻弹簧连结并置于光滑水平面上,开始弹簧处于自然伸长状态,木块M 、N 静止.现用水平恒力F 推木块M ,用a M 、a N 分别表示木块M 、N 瞬时加速度的大小,用v M 、v N 分别表示木块M 、N 瞬时速度,则弹簧第一次被压缩到最短的过程中(A )A .M 、N 加速度相同时,速度v M >v NB .M 、N 加速度相同时,速度v M =v NC .M 、N 速度相同时,加速度a M >a ND .M 、N 速度相同时,加速度a M =a N18.将金属块用压缩的轻弹簧卡在一个矩形的箱中,如图所示,在箱的上顶板和下顶板安有压力传感器,箱可以沿竖直轨道运动.当箱以a =2.0m /s 2的加速度做竖直向上的匀减速运动时,上顶板的传感器显示的压力为6.0N ,下顶板的传感器显示的压力为10.0N ,g 取10m /s 2.(1)若上顶板的传感器的示数是下顶板的传感器示数的一半,试判断箱的运动情况;(2)要使上顶板传感器的示数为0,箱沿竖直方向的运动1发力 2下蹲支撑 3起立AB 300 F N M可能是怎样的?解:设金属块的质量为m ,根据牛顿第二定律有:mg +F 上-F 下=ma解得m =0.5kg(1)由于上挡板仍有压力,说明弹簧的长度没有变化,因此弹簧的弹力仍为10.0N ,,可见上顶板的压力为5N ,设此时加速度为a 1,根据牛顿第二定律有121ma F F mg =-+下下 解得 a 1=0,即此时箱静止或做匀速直线运动.(2)要使上挡板没有压力,弹簧的长度只能等于或小于目前的长度,即下顶板的压力只能等于或大于10.0N ,设此时金属块的加速度为a 2,应满足:ma 2≥10.0N-mg解得a 2≥10m /s 2,即只要箱的加速度向上、等于或大于10m /s 2(可以向上做加速运动,也可以向下做减速运动),上顶板传感器的示数均为零.19.一小圆盘静止在桌布上,位于一方桌的水平桌面的中央.桌布的一边与桌的AB 边重合,如图所示.已知盘与桌布间的动摩擦因数为 μ1,盘与桌面间的动摩擦因数为 μ2.现突然以恒定加速度a 将桌布抽离桌面,加速度方向是水平的且垂直于AB 边.若圆盘最后未从桌面掉下,则加速度a 满足的条件是什么?(以g 表示重力加速度)解:对盘在桌布上有 μ1mg = ma 1 ①在桌面上有μ2mg = ma 2 ②υ12 =2a 1s 1 ③ υ12 =2a 2s 2 ④ 盘没有从桌面上掉下的条件是s 2≤─12l - s 1 ⑤ 对桌布 s = ─ 12 at 2 ⑥ 对盘 s 1 = ─ 12a 1t 2 ⑦ 而 s = ─ 12l + s 1 ⑧ 由以上各式解得a ≥( μ1 + 2 μ2) μ1g / μ2 ⑨ 20.如图,一个盛水的容器底部有一小孔.静止时用手指堵住小孔不让它漏水,假设容 在下述几种运动过程中始终保持平动,且忽略空气阻力,则 (D )A .容器自由下落时,小孔向下漏水B .将容器竖直向上抛出,容器向上运动时,小孔向下漏水;容器向下运动时,小孔不向下漏水C .将容器水平抛出,容器在运动中小孔向下漏水D .将容器斜向上抛出,容器在运动中小孔不向下漏水21.如图所示,质量为M 的木板上放着一个质量为m 的木块,木块与木板间的动摩擦因数为 μ1,木板与水平地面间的动摩擦因数为 μ2,F 为多大时,才能将木板从木块下抽出?(F >( μ1+ μ2)(M +m )g )22.如图所示,A 、B 的质量分别为m A =0.2kg ,m B =0.4kg ,盘C 质量m C =0.6kg ,现悬挂于天花板O 处,处于静止状态.当用火柴烧断的细线瞬间,木块A 的加速度a A = 0 ,木块B 对盘C 的压力N BC = (取g =10m/s 2)23.如图所示,在倾角为θB ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k ,C 处于静止状态.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d .重力加速度g .()AB A m g m m F a θsin +-=,()k g m m d B Aθsin += 24.一质量为m 的人站在电梯中,电梯加速上升,加速度大小为g /3,g 为重力加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理牛顿运动定律测试
一、选择题:(每题5分,共50分)每小题有一个或几个正确选项。
1.下列说法正确的是
A.力是物体运动的原因B.力是维持物体运动的原因
C.力是物体产生加速度的原因D.力是使物体惯性改变的原因
2.下列说法正确的是
A.加速行驶的汽车比它减速行驶时的惯性小
B.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大
C.已知月球上的重力加速度是地球上的1/6,故一个物体从地球移到月球惯性减小为1/6 D.为了减小机器运转时振动,采用螺钉将其固定在地面上,这是为了增大惯性
3.在国际单位制中,力学的三个基本单位是
A.kg 、m 、m / s2 B.kg 、 m / s 、 N
C.kg 、m 、 s D.kg、 m / s2 、N
4.下列对牛顿第二定律表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成正比
B.由m=F/a可知,物体的质量与其所受合外力成正比,与其运动加速度成反比
C.由a=F/m可知,物体的加速度与其所受合外力成正比,与其质量成反比
D.由m=F/a可知,物体的质量可以通过测量它的加速度和它受到的合外力而求得
5.大小分别为1N和7N的两个力作用在一个质量为1kg的物体上,物体能获得的最小加速度和最大加速度分别是
A.1 m / s2和7 m / s2 B.5m / s2和8m / s2
C.6 m / s2和8 m / s2 D.0 m / s2和8m / s2
6.弹簧秤的秤钩上挂一个物体,在下列情况下,弹簧秤的读数大于物体重力的是A.以一定的加速度竖直加速上升B.以一定的加速度竖直减速上升
C.以一定的加速度竖直加速下降D.以一定的加速度竖直减速下降
7.一物体以 7 m/ s2的加速度竖直下落时,物体受到的空气阻力大小是 ( g取10 m/ s2 )
A.是物体重力的0.3倍 B.是物体重力的0.7倍
C.是物体重力的1.7倍 D.物体质量未知,无法判断
8.一小车在牵引力作用下在水平面上做匀速直线运动,某时刻起,牵引力逐渐减小直到为零,在此过程中小车仍沿原来运动方向运动,则此过程中,小车的加速度A.保持不变 B.逐渐减小,方向与运动方向相同
C.逐渐增大,方向与运动方向相同 D.逐渐增大,方向与运动方向相反
9、如图所示,在平直轨道做匀变速运动的车厢中,用轻细线悬挂一个小球,悬线与竖直方向保持恒定的夹角θ,则
A.小车一定具有方向向左的加速度
B.小车一定具有方向向右的加速度
C.小车的加速度大小为gtanθ
D.小车的加速度大小为gcotθ
10.在光滑水平面上有一物块受水平恒力F的作用而运动,在其正前方固定一个足够长的轻质弹簧,如图所示,当物块与弹簧接触并将弹簧压至最短的过程中,下列说法正确的是A.物块接触弹簧后即做减速运动
B.物块接触弹簧后先加速后减速
C.当弹簧处于压缩量最大时,物块的加速度不等于零
D.当物块的速度为零时,它所受的合力不为零
选择题答题框
1 2 3 4 5 6 7 8 9 10
二、填空题:(每空3分,共14分)
11.使质量是1 kg的物体产生1 m / s2 的加速度的合力大小叫做_____________。
12.甲、乙两辆实验小车,在相同的力的作用下,甲车产生的加速度为2m / s2 ,乙车产生的加速度为4.5 m / s2。
则甲、乙两车的质量之比为________________。
(4分)
13.升降机以1.0m/s的速度竖直匀速上升,站在升降机里质量为60kg的人对升降机地板的压力为________________N;如果升降机以0.5m/s2的加速度减速上升,人对地板的压力又为(g取 10m/s2)
三、计算题:(每题12分。
4——12班完成14、15、16题,2、3班完成15、16、18题,1班完成16、17、18题)
14.水平桌面上质量为1kg的物体受到2N的水平拉力,产生1.5m/s2的加速度。
(1)物体所受摩擦力为多大?(2)若水平拉力增至4N,则物体将获得多大的加速度?15.一静止在水平地面的物块,质量为m=20kg,现在用一个大小为F=60N的水平推力使物体做匀加速直线运动,当物块移动s=9.0m时,速度达到v=6.0m/s.
(1)求物块的加速度大小。
(2)物块与地面之间的动摩擦因数.(g取10m/s2)
16.交通警察在处理交通事故时,有时会根据汽车在路面上留下的刹车痕迹,来判断发生事故前汽车是否超速。
在一个限速为40km/h的大桥路面上,有一辆汽车紧急刹车后仍发生交通事故,交警在现场测得该汽车在路面刹车的痕迹为10m,已知汽车轮胎与地面的动摩擦因数为0.5,请判断汽车是否超速。
17.一个物体从长L=10m、高h=6m的斜面顶端由静止开始滑下,设物体与斜面间的动摩擦因数为μ=0.2,求物体滑到斜面底端所用的时间和速度大小。
18、如图所示,质量为m=4kg的物体与水平地面间的动摩擦因数μ=0.2,现用F=25N与水平方向成θ=370的力拉物体,使物体由静止开始做匀加速运动:
(1)物体所受支持力为多大?摩擦力为多大?
(2)求物体的加速度的大小?
(3)若F作用t=4s后即撤除,此后物体还能运动多久?
(sin37°=0.6,cos37°=0.8,g=10 m/s2)
参考答案:
1 2 3 4 5 6 7 8 9 10
C D C CD C AD A D BC BCD
11.1N
12.9:4
13.600N,570
14.(1)0.5N(2)3.5m/s2
15.(1)2m/s2(2)0.1
17.2.13s,9.38m/s
18.(1)25N,5N(2)3.75m/s2(3)7.5s。