数据挖掘实验报告-关联规则挖掘
关联规则分析--实验报告
数据挖掘——关联规则一、数据处理1.来源:百度文库《麻坪中学体质测试》2.源数据描述1)源数据量:572个2)数据属性:年级编号、班号、班级、学号、民族代码、姓名、性别、出生日期、学生来源、家庭住址、身高、身高体重分数、身高体重等级、肺活量、肺活量体重指数、肺活量体重分数、肺活量等级、耐力类项目成绩、耐力类项目分数、耐力项目等级、柔韧力量类项目编号、柔韧力量类项目成绩、柔韧力量类项目分数、柔韧力量类项目等级、速度灵巧类项目编号、速度灵巧类项目成绩、速度灵巧类项目分数、速度灵巧类项目等级、奖惩项目编号、奖惩成绩、测试总分、总分等级。
(部分数据展示)3.数据处理1)数据规约选择属性:选择“姓名、性别、肺活量体重等级、耐力类项目等级、柔韧、力量类项目等级、速度、灵巧类项目等级”五个属性。
其余属性为不重要属性,故舍去。
2)数据转换a)等级属性值转化:等级均为“不及格、及格、良好、优秀”。
将“不及格”和“及格”转化为“F”;将“及格”和“不及格”转化为“T”b)性别属性值转化:女性T,男性Fc)属性名转化:将属性名和各个学生姓名转化为英文字母+数字NA:姓名A1:性别A2:肺活量体重等级A3:耐力类项目等级A4:柔韧、力量类项目等级A5:速度、灵巧类项目等级二、实验内容1.代码来源:网上算法结合自己的想法2.代码运行过程:第一次扫描后的1级备选集CandidateItemsetA1A2A3A4A5第一次扫描后的1级频繁集FrequentItemsetA1A2A3A4A5扫描后备选集A1 A2A1 A3A1 A4A1 A5A2 A3A2 A4A5 A2A3 A4A5 A3A5 A4扫描后频繁集A1 A2A1 A3A1 A4A1 A5A2 A3A2 A4A5 A2A3 A4A5 A3A5 A4扫描后备选集A1 A2 A3A1 A2 A4A1 A5 A2A1 A3 A4A1 A5 A3A1 A5 A4A2 A3 A4A5 A2 A3A5 A2 A4A5 A3 A4扫描后频繁集A1 A2 A3A1 A2 A4A1 A3 A4A1 A5 A3A1 A5 A4A2 A3 A4A5 A2 A3A5 A2 A4A5 A3 A4扫描后备选集A1 A2 A3 A4 A1 A2 A3 A5 A1 A2 A4 A5 A1 A3 A4 A5A2 A3 A4 A5扫描后频繁集A1 A3 A4 A5A2 A3 A4 A5扫描后备选集A1 A2 A3 A4 A5无满足支持度项集,结束连接扫描后频繁集Apriori算法--->频繁集A1 A3 A4 A5A2 A3 A4 A53.代码结果:支持度:0.05关联关系:A1、A3、A4、A5A2、A3、A4、A5三、结论1.由{ A1、A3、A4、A5}得出男生的耐力类项目等级、柔韧、力量类项目等级、速度、灵巧类项目等级普遍比较优秀2.由{ A2、A3、A4、A5}得出一般肺活量体重等级、耐力类项目等级、柔韧、力量类项目等级、速度、灵巧类项目等级普遍都是同一等级,即肺活量体重等级优秀的人,则其他的都是优秀。
数据挖掘实验报告
数据挖掘实验报告一、引言。
数据挖掘作为一种从大量数据中发现隐藏模式和信息的技术,已经被广泛应用于各个领域。
本实验旨在通过对给定数据集的分析和挖掘,探索其中潜在的规律和价值信息,为实际问题的决策提供支持和参考。
二、数据集描述。
本次实验使用的数据集包含了某电商平台上用户的购物记录,其中包括了用户的基本信息、购买商品的种类和数量、购买时间等多个维度的数据。
数据集共包括了10000条记录,涵盖了近一年的购物数据。
三、数据预处理。
在进行数据挖掘之前,我们首先对数据进行了预处理。
具体包括了数据清洗、缺失值处理、异常值处理等步骤。
通过对数据的清洗和处理,保证了后续挖掘分析的准确性和可靠性。
四、数据分析与挖掘。
1. 用户购买行为分析。
我们首先对用户的购买行为进行了分析,包括了用户购买的商品种类偏好、购买频次、购买金额分布等。
通过对用户购买行为的分析,我们发现了用户的购买偏好和消费习惯,为电商平台的商品推荐和营销策略提供了参考。
2. 商品关联规则挖掘。
通过关联规则挖掘,我们发现了一些商品之间的潜在关联关系。
例如,购买商品A的用户80%也会购买商品B,这为商品的搭配推荐和促销活动提供了依据。
3. 用户价值分析。
基于用户的购买金额、购买频次等指标,我们对用户的价值进行了分析和挖掘。
通过对用户价值的评估,可以针对不同价值的用户采取个性化的营销策略,提高用户忠诚度和购买转化率。
五、实验结果。
通过对数据的分析和挖掘,我们得到了一些有价值的实验结果和结论。
例如,发现了用户的购买偏好和消费习惯,发现了商品之间的关联规则,发现了用户的不同价值等。
这些结论为电商平台的运营和管理提供了一定的参考和决策支持。
六、结论与展望。
通过本次实验,我们对数据挖掘技术有了更深入的理解和应用。
同时,也发现了一些问题和不足,例如数据质量对挖掘结果的影响,挖掘算法的选择和优化等。
未来,我们将继续深入研究数据挖掘技术,不断提升数据挖掘的准确性和效率,为更多实际问题的决策提供更有力的支持。
关联规则实验报告
2. 转换数据test.csv为testuse.csv以便进行关联分析。
4. 查看导入的数据a)点击节点选项卡“输出”,双击“表格”节点b)右键点击“testuse.csv”节点,选择“Connect”选项,单击“Table”(在两个节点中产生一个箭头,从“testuse.csv”指向“Table”节点。
)5. 对数据进行清洗a)选择节点选项卡的“字段选项”,把“类型”节点拖入数据流区域。
b)连接“testuse.csv”节点和“类型”节点c)双击数据流区域中的“类型”节点,单击“读取值”按钮d)把其他行的“方向”的值改为“双向”6. 使用Apriori节点分析a)双击“建模”选项卡的“Apriori”节点b)连接“类型”节点与“Apriori”节点(箭头指向“Apriori”节点)7. 查看挖掘结果a)左键单击管理器的“模型”选项卡,右键点击第5部执行以后出现的模型图标b)选择“浏览”,弹出图表c)查看结果质合比3:3 和奇偶奇偶比3:3100%8. 提升a)双击“Apriori”节点,弹出选项界面,修改参数b)选择“模型”选项卡修改参数质合比1:5 和奇偶和大小奇偶比1:5关联规则分析方法原理算法优点缺点适用范围逐层搜索的迭代算法,k-项集用于探索(k+1)-项集。
连接,减枝两步走。
首先,通过扫描数据集,产生一个大的候选数据项集,并使用候选项集找频繁项集Apriori算法效率高1.多次扫描事务数据库,需很大的I/O负载。
2.单维、单层、布尔关联规66.667%。
数据挖掘方法——关联规则(自己整理)
小结:Apriori算法可以分为频繁项集的生成和关联规则的生成两 大步骤;FP-Growth算法可以分成FP-Tree的生成,频繁项集的生成和 关联规则的生成3大步骤。
Copyright © 2009, MANAGEMENT SCIENCE ASSOCIATES, INC.
9
五、关联规则挖掘的相关算法
Copyright © 2009, MANAGEMENT SCIENCE ASSOCIATES, INC.
Copyright © 2009, MANAGEMENT SCIENCE ASSOCIATES, INC.
7
五、关联规则挖掘的相关算法
1.Apriori算法:使用候选项集找频繁项集 Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是 基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关 联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和 预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小 支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集 合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定 义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被 留下来。为了生成所有频集,使用了递推的方法。 Apriori算法可以产生相对较小的候选项目集,扫描数据库的次数由最大频繁 项目集的项目数决定。因此,该算法适合于最大频繁项目集相对较小的数据集中 的关联规则挖掘问题。 Apriori算法的两大缺点:1.可能产生大量的候选集;2.可能需要重复扫描数据库。
关联分析的目的:找出数据库中隐藏的关联网。一般用Support(支 持度)和Confidence(可信度)两个阀值来度量关联规则的相关性,引入 lift(提高度或兴趣度)、相关性等参数,使得所挖掘的规则更符合需求。
数据挖掘关联规则实验报告
数据挖掘关联规则实验报告1. 背景关联规则是数据挖掘中一种重要的技术,用于发现数据集中的项集之间的关联关系。
关联规则可以帮助我们了解数据中的隐含模式,从而提供决策支持和洞察力。
本实验旨在通过关联规则分析数据集中的购物篮数据,探索其中的关联关系,为商家提供销售策略和推荐。
2. 数据分析2.1 数据集介绍本实验使用的数据集是一个超市的销售数据,包含了大量的购物篮信息。
每个购物篮的信息记录了购买的商品,我们可以根据这些信息分析商品之间的关联关系,挖掘出一些有用的规则。
2.2 数据预处理在进行关联规则分析之前,需要对数据进行预处理。
首先,我们需要将数据集转换成适合关联规则分析的形式,即每个篮子的商品集合。
其次,为了减少数据集的大小,我们可以去除不常见的商品或者设置最小支持度阈值。
2.3 关联规则分析在进行关联规则分析时,可以使用Apriori算法来挖掘频繁项集和关联规则。
Apriori算法通过迭代生成候选项集,并使用支持度和置信度来筛选出频繁项集和关联规则。
通过分析频繁项集和关联规则,我们可以了解商品之间的关联关系,例如某些商品的购买行为存在共同模式等。
3. 实验结果3.1 频繁项集分析结果使用Apriori算法计算频繁项集,得到了如下结果:频繁项集支持度{牛奶} 0.4{面包} 0.6{鸡蛋} 0.3{牛奶,面包} 0.3{面包,鸡蛋} 0.2从上表中可以看出,牛奶、面包和鸡蛋是经常一起购买的商品。
其中,牛奶和面包的支持度较高,说明它们经常一起被购买。
3.2 关联规则分析结果使用Apriori算法计算关联规则,设置置信度阈值为0.5,得到了如下结果:关联规则支持度置信度{牛奶} -> {面包} 0.3 0.75{面包} -> {牛奶} 0.3 0.5{面包} -> {鸡蛋} 0.2 0.33从上表中可以看出,购买牛奶的顾客有75%的概率也购买面包,而购买面包的顾客有50%的概率也购买牛奶。
数据挖掘实验报告结论(3篇)
第1篇一、实验概述本次数据挖掘实验以Apriori算法为核心,通过对GutenBerg和DBLP两个数据集进行关联规则挖掘,旨在探讨数据挖掘技术在知识发现中的应用。
实验过程中,我们遵循数据挖掘的一般流程,包括数据预处理、关联规则挖掘、结果分析和可视化等步骤。
二、实验结果分析1. 数据预处理在实验开始之前,我们对GutenBerg和DBLP数据集进行了预处理,包括数据清洗、数据集成和数据变换等。
通过对数据集的分析,我们发现了以下问题:(1)数据缺失:部分数据集存在缺失值,需要通过插补或删除缺失数据的方法进行处理。
(2)数据不一致:数据集中存在不同格式的数据,需要进行统一处理。
(3)数据噪声:数据集中存在一些异常值,需要通过滤波或聚类等方法进行处理。
2. 关联规则挖掘在数据预处理完成后,我们使用Apriori算法对数据集进行关联规则挖掘。
实验中,我们设置了不同的最小支持度和最小置信度阈值,以挖掘出不同粒度的关联规则。
以下是实验结果分析:(1)GutenBerg数据集在GutenBerg数据集中,我们以句子为篮子粒度,挖掘了林肯演讲集的关联规则。
通过分析挖掘结果,我们发现:- 单词“the”和“of”在句子中频繁出现,表明这两个词在林肯演讲中具有较高的出现频率。
- “and”和“to”等连接词也具有较高的出现频率,说明林肯演讲中句子结构较为复杂。
- 部分单词组合具有较高的置信度,如“war”和“soldier”,表明在林肯演讲中提到“war”时,很可能同时提到“soldier”。
(2)DBLP数据集在DBLP数据集中,我们以作者为单位,挖掘了作者之间的合作关系。
实验结果表明:- 部分作者之间存在较强的合作关系,如同一研究领域内的作者。
- 部分作者在多个研究领域均有合作关系,表明他们在不同领域具有一定的学术影响力。
3. 结果分析和可视化为了更好地展示实验结果,我们对挖掘出的关联规则进行了可视化处理。
通过可视化,我们可以直观地看出以下信息:(1)频繁项集的分布情况:通过柱状图展示频繁项集的分布情况,便于分析不同项集的出现频率。
《数据挖掘中关联规则算法研究》范文
《数据挖掘中关联规则算法研究》篇一一、引言随着信息技术和大数据时代的飞速发展,数据挖掘技术逐渐成为各个领域研究的重要课题。
关联规则算法作为数据挖掘的核心技术之一,能够从大量数据中提取出有价值的信息和知识。
本文将深入探讨数据挖掘中关联规则算法的研究现状、常用算法及其应用领域。
二、关联规则算法概述关联规则算法是一种在大规模数据集中寻找项集之间有趣关系的技术。
其主要目标是发现数据集中项集之间的关联性或因果结构,从而帮助人们更好地理解和利用数据。
关联规则算法通常用于购物篮分析、用户行为分析、生物信息学等领域。
三、常用关联规则算法1. Apriori算法:Apriori算法是一种经典的关联规则挖掘算法,其核心思想是通过寻找频繁项集来生成关联规则。
Apriori算法通过不断迭代,逐步找出满足最小支持度和最小置信度的规则。
2. FP-Growth算法:FP-Growth算法是一种改进的关联规则挖掘算法,它通过构建频繁模式树(FP-Tree)来发现数据集中的频繁项集和关联规则。
与Apriori算法相比,FP-Growth算法具有更高的效率。
3. Eclat算法:Eclat算法也是一种常用的关联规则挖掘算法,其基本思想是将数据库分割成若干个不相交的子集,然后对每个子集进行局部搜索,最后将局部搜索结果合并得到全局的关联规则。
四、关联规则算法的应用领域1. 购物篮分析:通过分析顾客的购物行为,发现商品之间的关联关系,从而帮助商家制定更有效的营销策略。
2. 用户行为分析:在互联网领域,通过分析用户的浏览、点击等行为数据,发现用户兴趣之间的关联关系,为个性化推荐等应用提供支持。
3. 生物信息学:在生物信息学领域,关联规则算法可以用于分析基因、蛋白质等生物分子之间的相互作用关系,从而揭示生物系统的复杂网络结构。
五、研究现状与展望目前,关联规则算法已经广泛应用于各个领域,并取得了显著的成果。
然而,随着数据规模的日益增大和复杂性的提高,传统的关联规则算法面临着诸多挑战。
(完整word版)数据挖掘实验报告-关联规则挖掘(word文档良心出品)
数据挖掘实验报告(二)关联规则挖掘**: ***班级: 计算机1304学号: **********一、实验目的1. 1.掌握关联规则挖掘的Apriori算法;2.将Apriori算法用具体的编程语言实现。
二、实验设备PC一台, dev-c++5.11三、实验内容根据下列的Apriori算法进行编程:四、实验步骤1.编制程序。
2.调试程序。
可采用下面的数据库D作为原始数据调试程序, 得到的候选1项集、2项集、3项集分别为C1.C2.C3, 得到的频繁1项集、2项集、3项集分别为L1.L2.L3。
代码#include <stdio.h>#include<string.h>#define D 4 //事务的个数#define MinSupCount 2 //最小事务支持度数void main(){char a[4][5]={{'A','C','D'},{'B','C','E'},{'A','B','C','E'},{'B','E'}};charb[20],d[100],t,b2[100][10],b21[100 ][10];inti,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1;int count[100],temp;for(i=0;i<D;i++){for(j=0;a[i][j]!='\0';j++) {//用来判断之前保存的是否和a[i][j]一样, 不一样就保存, 一样就不保存for(k=0;k<x;k++){if(b[k]!=a[i][j]) ; else{flag=0;break;}}//用来判断是否相等 if(flag==1){b[x]=a[i][j];x++;}else flag=1;}}//计算筛选出的元素的支持度计数for(i=0;i<D;i++){for(j=0;a[i][j]!='\0';j++) {for(k=0;k<x;k++){if(a[i][j]==b[k]) {c[k]++;break; }}}}//对选出的项集进行筛选, 选出支持度计数大于等于2的, 并且保存到d[x1]数组中for(k=0;k<x;k++){if(c[k]>=MinSupCount){d[x1]=b[k];count[x1]=c[k];x1++;}}//对选出的项集中的元素进行排序for(i=0;i<x1-1;i++){for(j=0;j<x1-i-1;j++){if(d[j]>d[j+1]){t=d[j];d[j]=d[j+1];d[j+1]=t;temp=count[j];count[j]=count[j+1];count[j+1]=temp;}}}//打印出L1printf("L1 elements are:\n");for(i=0;i<x1;i++){printf("{%c} = %d \n",d[i],count[i]);}//计算每一行的元素个数, 并且保存到n[]数组中for(i=0;i<D;i++){for(j=0;a[i][j]!='\0';j++);n[i]=j;}//对a[][]数组的每一行进行排序for(i=0;i<D;i++){for(j=0;j<n[i]-1;j++){for(k=0;k<n[i]-j-1;k++) {if(a[i][k]>a[i][k+1]){t=a[i][k];a[i][k]=a[i][k+1]; a[i][k+1]=t;}}}}//把L1中的每一个元素都放在b2[i][0]中j1=x1;for(i=0;i<j1;i++){b2[i][0]=d[i];}//把L1中的元素进行组合, K=2开始, 表示x1个元素选K个元素的组合for(k=2;b2[0][0]!='\0';k++){ //u是用来计数组合总数的u=0;v=1;//v 是用来在进行输出各种组合的标识数 v=1 说明正在进行输出 for(i=0;i<100;i++){c2[i]=0;}for(i=0;i<j1;i++){for(i1=i+1;i1<j1;i1++) {for(j=0;j<k-2;j++) {if(b2[i][j]!=b2[i1][j]){flag1=0;break;}}//进行组合的部分if(flag1==1&&b2[i][k-2]!=b2[i1][k-2]){for(j2=0;j2<k-1;j2++){b21[u][j2]=b2[i][j2];}b21[u][k-1]=b2[i1][k-2];u++;}flag1=1;}}counter=0;for(i=0;i<D;i++) //a数组有5行元素{for(i1=0;i1<u;i1++) // 代表x1个元素选K个元素的所有组合总数 {for(j1=0;j1<k;j1++) //K 代表一个组合中的元素个数{for(j=0;a[i][j]!='\0';j++) //逐个比较每一行的元素{if(a[i][j]==b21[i1][j1])counter++;}}if(counter==k)c2[i1]++; //把每种组合数记录在c2数组中counter=0;} }j1=0;temp=0;//这里的temp 是用来分行//对u种情况进行选择, 选出支持度计数大于2的*/for(i=0;i<u;i++){if(c2[i]>=MinSupCount) {if(v==1){printf("L%d elements are:\n",k);v=0;}printf("{");for(j=0;j<k;j++)//输出每种组合k 个元素{b2[j1][j]=b21[i][j];printf("%c,",b2[j1][j]);}j1++;printf("\b}");printf(" = %d \n",c2[i]);temp++;}}b2[j1][0]='\0';}}五、结果截图。
数据挖掘实验报告
数据挖掘实验报告数据挖掘是一门涉及发现、提取和分析大量数据的技术和过程,它可以揭示出隐藏在数据背后的模式、关系和趋势,对决策和预测具有重要的价值。
本文将介绍我在数据挖掘实验中的一些主要收获和心得体会。
实验一:数据预处理在数据挖掘的整个过程中,最重要的一环就是数据预处理。
数据预处理包括数据清洗、数据集成、数据转换和数据规约等步骤,目的是为了提高数据的质量和可用性。
首先,我对所使用的数据集进行了初步的观察和探索。
发现数据集中存在着一些缺失值和异常值。
为此,我使用了一些常见的缺失值处理方法,如均值替代、中值替代和删除等。
对于异常值,我采用了离群值检测和修正等方法,使得数据在后续的分析过程中更加真实可信。
其次,我进行了数据集成的工作。
数据集合并是为了整合多个来源的数据,从而得到更全面和综合的信息。
在这个过程中,我需要考虑数据的一致性和冗余情况。
通过采用数据压缩和去重等技术,我成功地完成了数据集成的工作。
接着,我进行了数据转换的处理。
数据转换是为了将原始的数据转换成适合数据挖掘算法处理的形式。
在这个实验中,我采用了数据标准化和归一化等方法,使得不同属性之间具备了可比性和可计算性,从而便于后续的分析过程。
最后,我进行了数据规约的操作。
数据规约的目的在于减少数据的维数和复杂度,以提高数据挖掘的效果。
在这个阶段,我采用了主成分分析和属性筛选等方法,通过压缩数据集的维度和减少冗余属性,成功地简化了数据结构,提高了挖掘效率。
实验二:关联规则挖掘关联规则挖掘是数据挖掘中常用的一种方法,它用于发现数据集中项集之间的关联关系。
在这个实验中,我使用了Apriori算法来进行关联规则的挖掘。
首先,我对数据进行了预处理,包括数据清洗和转换。
然后,我选择了适当的最小支持度和最小置信度阈值,通过对数据集的扫描和频繁项集生成,找出了数据集中的频繁项集。
接着,我使用了关联规则挖掘算法,从频繁项集中挖掘出了具有一定置信度的关联规则。
在实验过程中,我发现挖掘出的关联规则具有一定的实用性和可行性。
关联规则挖掘实验报告
关联规则挖掘实验报告一、实验介绍关联规则挖掘是数据挖掘中的一种重要技术,用于发现数据集中的频繁项集和关联规则。
本次实验旨在通过使用Apriori算法和FP-Growth算法来挖掘一个超市销售数据集中的频繁项集和关联规则。
二、实验步骤1. 数据准备本次实验使用的数据集为一个超市销售数据,包括了超市中各个商品的销售记录。
首先需要将数据导入到Python环境中,并进行预处理,例如去除重复项、缺失值等。
2. Apriori算法挖掘频繁项集和关联规则Apriori算法是一种常用的关联规则挖掘算法,其基本思想是利用先验知识来减少搜索空间。
我们可以通过设置最小支持度和最小置信度来筛选出频繁项集和关联规则。
在本次实验中,我们首先使用Apriori算法来挖掘频繁项集和关联规则。
具体步骤如下:(1)设置最小支持度和最小置信度;(2)利用Apriori算法生成候选项集;(3)根据候选项集计算支持度,并筛选出满足最小支持度的频繁项集;(4)根据频繁项集生成候选规则;(5)根据候选规则计算置信度,并筛选出满足最小置信度的关联规则。
3. FP-Growth算法挖掘频繁项集和关联规则FP-Growth算法是一种基于频繁模式树的关联规则挖掘算法,相比于Apriori算法具有更高的效率。
在本次实验中,我们也使用FP-Growth算法来挖掘频繁项集和关联规则。
具体步骤如下:(1)设置最小支持度和最小置信度;(2)利用FP-Growth算法生成频繁模式树;(3)从频繁模式树中提取满足最小支持度的频繁项集;(4)根据频繁项集生成候选规则;(5)根据候选规则计算置信度,并筛选出满足最小置信度的关联规则。
三、实验结果分析1. Apriori算法结果分析在本次实验中,我们设置了最小支持度为0.05,最小置信度为0.5。
通过使用Apriori算法,我们得到了如下结果:(1)频繁项集:共有22个频繁项集,其中最大的频繁项集包含了5个商品。
(2)关联规则:共有87条关联规则,其中置信度最高的规则为{薯片} -> {可乐},置信度为0.8。
数据挖掘中的关联规则挖掘
数据挖掘中的关联规则挖掘数据挖掘是一种从大量数据中自动发现有用信息的过程。
将数据挖掘应用于商业领域,可以帮助企业做出更明智的决策,发现潜在客户,提高销售业绩。
而关联规则挖掘则是数据挖掘中的一个重要方法,它可以帮助我们发现数据集中项集之间的关联关系。
什么是关联规则挖掘?在数据挖掘中,关联规则挖掘是指通过挖掘数据集中的关联规则,从而发现数据集中的频繁项集之间的关联关系。
举个例子,在超市购物场景中,如果我们发现顾客购买了尿布,并伴随着啤酒的购买,那么我们就可以发现尿布和啤酒之间存在关联规则。
这个规则的意义就在于,我们一旦发现顾客购买了尿布,就有可能会购买啤酒,因此我们可以在超市中增加这两种商品的陈列位置,以提高销量。
如何进行关联规则挖掘?关联规则挖掘的过程如下:1.确定数据集和支持度阈值关联规则挖掘需要一个数据集,并且需要指定一个最小支持度阈值。
支持度是指所有包含该项集的事务数除以总事务数,即$supp(X) = \frac{count(X)}{|D|}$其中,X指数据集中的一个项集,count(X)指包含该项集的事务数,D指整个数据集。
2.寻找频繁项集频繁项集是指在数据集中出现次数超过最小支持度阈值的项集,即$\{X | supp(X) \geq minsupp\}$3.生成关联规则根据频繁项集生成关联规则,关联规则的形式为$X \rightarrow Y$其中,X和Y是项集,表示在购买X的情况下,也会购买Y。
关联规则的质量可以通过支持度和置信度来衡量。
4.衡量关联规则的质量关联规则的置信度是指在购买X的情况下,也购买了Y的概率,即$conf(X \rightarrow Y) = \frac{supp(X \cup Y)}{supp(X)}$其中,conf代表置信度,X和Y是项集,supp(X∪Y)代表同时包含X和Y的事务数,supp(X)代表X的支持度。
同时,也可以通过提升度来衡量规则的质量。
提升度是指在购买X的情况下,购买Y的概率是在没有购买X的情况下购买Y的概率的多少倍,即$lift(X \rightarrow Y) = \frac{conf(X \rightarrow Y)}{supp(Y)}$关联规则挖掘的应用场景关联规则挖掘可以被广泛应用于各种业务场景中,例如:1.零售业在零售业场景中,关联规则挖掘可以帮助零售商发现顾客之间的购买模式和趋势,从而提高销售额和客户忠诚度。
数据挖掘领域中的关联规则挖掘与关联性分析研究
数据挖掘领域中的关联规则挖掘与关联性分析研究数据挖掘是从大量数据中发现有用信息的过程,是一项广泛应用于各个领域的技术。
关联规则挖掘和关联性分析是数据挖掘中的一项重要技术,用于发现数据之间的相关性和隐藏的规律。
本文将探讨关联规则挖掘的基本概念、方法和应用,并介绍关联性分析的相关研究。
首先,我们来了解关联规则挖掘的基本概念。
关联规则是指一个数据集中的项之间的关联关系。
常用的关联规则表示形式为“A->B”,表示项集A出现时,项集B也会相应地出现。
关联规则挖掘就是从一个数据集中寻找满足最小支持度和最小置信度阈值的关联规则。
关联规则挖掘的方法有多种,其中最常用的是Apriori算法。
Apriori算法是一种基于频繁项集的方法,通过频繁项集的扩展来逐步生成满足支持度和置信度要求的关联规则。
该算法的核心思想是通过候选项集的剪枝操作来减少搜索空间,从而提高效率。
在进行关联规则挖掘时,需要考虑两个重要指标:支持度和置信度。
支持度指的是项集在数据集中出现的频率,用来衡量项集的普遍程度;置信度指的是关联规则的准确性,用来衡量关联规则的可靠程度。
通过调整这两个指标的阈值,可以控制关联规则的数量和质量。
关联规则挖掘在许多领域都有广泛的应用。
在市场营销中,关联规则可以用于购物篮分析,帮助商家了解消费者的购买习惯,从而提供个性化的推荐;在医学研究中,关联规则可以用于疾病预测,通过挖掘患者的病历数据,发现与疾病相关的规律;在社交网络分析中,关联规则可以用于发现用户之间的互动模式,从而揭示人们的社交行为。
除了关联规则挖掘,关联性分析也是数据挖掘中一个重要的研究方向。
关联性分析主要研究数据之间的关联性,包括相关性分析、时间序列分析和多变量分析等。
关联性分析的目标是找出数据之间的关联关系,从而进行数据的预测、分类和聚类等任务。
在相关性分析中,我们通常使用相关系数来度量两个变量之间的线性关系。
常见的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
数据挖掘——第三章关联规则挖掘(2)
因此,从C3中删除{ I1, I2, I4}、{ I1, I3, I4}、{ I1, I3, I5}、 { I2, I3, I4}得:
可以改写如下所示的关联规则:
buys(X,”computer”)
buys(X,”antivirus_software”)
例5-2:闭的和极大的频繁项集。
假定事务数据库只有两个事务: { a1,a2, … ,a100 };{a1,a2, … ,a50}
最小支持度计数阀值min_sup=1。我们发现两个闭频繁项集和 他们的支持度,即C={{ a1,a2, … ,a100 }:1;{a1,a2, … ,a50}:2} 只有一个极大频繁项集:M={{ a1,a2, … ,a100 }:1}
集是不是频繁项集!
return Ck;
}
Prodedure has_infrequent_subset (c:candidate k-itemset;Lk-1:frequent(k-1)-itemsets) { //从第k项侯选项集Ck中,看它的(k-1)项子集是不是
第(k-1)项频繁项集中的项;
5.2.1Apriori算法:使用侯选产生发现频繁 项集;
5.2.2由频繁项集产生关联规则; 5.2.3提高Apriori算法的效率; 5.2.4不侯选产生挖掘频繁项集; 5.2.5使用垂直数据格式挖掘频繁项集;
1.2.1Apriori算法:使用侯选产生发现 频繁项集
1.Apriori性质:频繁项集的所有非空子集也必须是频繁的。
数据挖掘实例实验报告(3篇)
第1篇一、实验背景随着大数据时代的到来,数据挖掘技术逐渐成为各个行业的重要工具。
数据挖掘是指从大量数据中提取有价值的信息和知识的过程。
本实验旨在通过数据挖掘技术,对某个具体领域的数据进行挖掘,分析数据中的规律和趋势,为相关决策提供支持。
二、实验目标1. 熟悉数据挖掘的基本流程,包括数据预处理、特征选择、模型选择、模型训练和模型评估等步骤。
2. 掌握常用的数据挖掘算法,如决策树、支持向量机、聚类、关联规则等。
3. 应用数据挖掘技术解决实际问题,提高数据分析和处理能力。
4. 实验结束后,提交一份完整的实验报告,包括实验过程、结果分析及总结。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 数据挖掘库:pandas、numpy、scikit-learn、matplotlib四、实验数据本实验选取了某电商平台用户购买行为数据作为实验数据。
数据包括用户ID、商品ID、购买时间、价格、商品类别、用户年龄、性别、职业等。
五、实验步骤1. 数据预处理(1)数据清洗:剔除缺失值、异常值等无效数据。
(2)数据转换:将分类变量转换为数值变量,如年龄、性别等。
(3)数据归一化:将不同特征的范围统一到相同的尺度,便于模型训练。
2. 特征选择(1)相关性分析:计算特征之间的相关系数,剔除冗余特征。
(2)信息增益:根据特征的信息增益选择特征。
3. 模型选择(1)决策树:采用CART决策树算法。
(2)支持向量机:采用线性核函数。
(3)聚类:采用K-Means算法。
(4)关联规则:采用Apriori算法。
4. 模型训练使用训练集对各个模型进行训练。
5. 模型评估使用测试集对各个模型进行评估,比较不同模型的性能。
六、实验结果与分析1. 数据预处理经过数据清洗,剔除缺失值和异常值后,剩余数据量为10000条。
2. 特征选择通过相关性分析和信息增益,选取以下特征:用户ID、商品ID、购买时间、价格、商品类别、用户年龄、性别、职业。
数据挖掘中的关联规则挖掘算法
数据挖掘中的关联规则挖掘算法数据挖掘是通过对大量数据的分析和处理,发现其中隐藏的模式、关系和规律的过程。
而关联规则挖掘算法就是其中的一种重要方法,它帮助我们发现数据集中的频繁项集和关联规则。
一、关联规则挖掘算法简介关联规则挖掘算法是指在事务型数据中挖掘频繁项集和关联规则的方法。
频繁项集指的是在一组数据事务中频繁出现的项集,而关联规则则是指形如{A}→{B}的规则,其中A和B为项集。
常用的关联规则挖掘算法包括Apriori算法和FP-growth算法。
二、Apriori算法Apriori算法是最早被提出和广泛应用的关联规则挖掘算法之一。
它基于频繁项集的性质,使用候选集和剪枝策略来逐步生成频繁项集。
1. 候选集生成Apriori算法的第一步是生成候选集,即通过扫描数据集来获取初始的候选项集C1。
然后根据C1生成候选项集C2,再根据C2生成C3,以此类推,直到生成不再增长的候选集。
2. 剪枝策略在生成候选集的过程中,Apriori算法采用了一种称为“Apriori性质”的剪枝策略,即如果一个项集不是频繁的,那么它的超集也不是频繁的。
这样可以减少不必要的计算。
3. 频繁项集生成通过候选集生成步骤得到的候选集,通过扫描数据集来计算支持度,并筛选出频繁项集,即满足最小支持度阈值的项集。
4. 关联规则生成根据频繁项集,生成关联规则。
对于每个频繁项集,可以根据置信度阈值来筛选出满足条件的关联规则。
三、FP-growth算法FP-growth算法是一种用于挖掘频繁项集的高效算法。
它通过构建一种称为FP树的数据结构,显著减少了候选项集的生成和扫描数据集的次数。
1. 构建FP树FP-growth算法首先通过扫描数据集构建FP树。
FP树是一种前缀树,它通过链接相似的项集,将频繁项集的信息压缩到了树中。
2. 构建条件模式基通过FP树,可以获取每个项集的条件模式基。
条件模式基是指以某个项集为后缀的路径集合。
3. 递归挖掘频繁项集利用条件模式基,可以递归地挖掘频繁项集。
数据挖掘关联规则实验报告
数据挖掘关联规则实验报告一、实验背景和目的数据挖掘是一种从大量数据中发现有用信息的过程。
关联规则是数据挖掘中的一个重要技术,用于发现不同属性之间的关系。
本实验旨在通过使用Apriori算法来挖掘一组购物篮数据中的关联规则,并分析其可行性和有效性。
二、实验步骤1. 数据集准备本次实验使用的是UCI机器学习库提供的Grocery Store Dataset,包含了9565个购物篮中商品的信息。
首先需要将该数据集导入到Python环境中,并进行预处理。
2. 数据清洗和预处理在导入数据后,需要对其进行清洗和预处理,以便进行后续操作。
具体步骤包括:(1)去除重复项:去除重复项可以避免对结果产生影响。
(2)转换成适合Apriori算法处理的格式:将数据集转换成包含多个列表的列表格式,每个列表代表一个购物篮。
3. 运行Apriori算法在完成数据预处理后,可以开始运行Apriori算法来挖掘关联规则。
具体步骤如下:(1)设置最小支持度和最小置信度:这些参数可以根据需求进行调整。
(2)运行Apriori算法:通过调用Python中的Apriori算法库来运行算法。
(3)生成关联规则:根据设定的最小支持度和最小置信度,生成符合条件的关联规则。
4. 分析结果在生成关联规则后,需要对其进行分析,以便确定其可行性和有效性。
具体步骤如下:(1)计算支持度和置信度:可以通过计算支持度和置信度来评估关联规则的可行性和有效性。
(2)筛选出符合条件的关联规则:根据设定的最小支持度和最小置信度,筛选出符合条件的关联规则。
(3)分析结果:通过对筛选出的关联规则进行分析,可以得出一些有用的结论。
三、实验结果在运行Apriori算法并分析结果后,我们得到了以下结论:1. 最受欢迎的商品是牛奶、面包、鸡蛋、蔬菜/水果和糖果/巧克力等。
2. 一些常见组合包括牛奶和面包、牛奶和糖果/巧克力等。
3. 高价值商品如葡萄酒、海鲜等通常与其他高价值商品一起购买。
数据挖掘中的关联规则挖掘算法
数据挖掘中的关联规则挖掘算法数据挖掘是一种通过自动或半自动的方式从大量数据集中挖掘出隐藏的模式、关系和规律的过程。
而在数据挖掘的过程中,关联规则挖掘算法被广泛应用于发现数据集中的相关性。
一、关联规则挖掘算法的概述关联规则挖掘算法主要用于挖掘数据集中的频繁项集和关联规则。
频繁项集是指在数据集中经常同时出现的一组项的集合,而关联规则则是描述这些频繁项集之间的关联性的规则。
常用的关联规则挖掘算法包括Apriori算法和FP-growth算法。
Apriori算法是一种基于候选项集生成的算法,它通过逐层扫描事务数据库来发现频繁项集;而FP-growth算法则是一种基于前缀树的算法,它通过构建一种称为FP树的数据结构来高效地挖掘频繁项集。
二、Apriori算法的原理和步骤Apriori算法是一种经典的关联规则挖掘算法,其基本原理是通过逐层扫描事务数据库,从候选项集生成频繁项集。
以下是Apriori算法的基本步骤:1. 初始化:将每个单个项作为候选项集,并对事务数据库进行扫描,计算每个项的支持度。
2. 剪枝:根据最小支持度阈值,删除不满足支持度要求的候选项集。
3. 连接:根据频繁项集的特点,将多个满足支持度要求的候选项集进行连接,生成新的候选项集。
4. 重复步骤2和步骤3,直到无法生成新的候选项集为止。
5. 最后得到的频繁项集即为所求。
三、FP-growth算法的原理和步骤FP-growth算法是一种高效的关联规则挖掘算法,其主要原理是通过构建FP树来存储事务数据库,并利用FP树的特性来挖掘频繁项集。
以下是FP-growth算法的基本步骤:1. 构建FP树:遍历事务数据库,统计每个项的支持度,并基于支持度构建FP树。
2. 构建条件模式基:通过遍历FP树的每个项,构建该项对应的条件模式基,以及该项的条件FP树。
3. 递归挖掘频繁项集:对于每个项,以其对应的条件FP树为输入,递归地应用FP-growth算法挖掘频繁项集。
数据挖掘中的关联规则挖掘方法总结
数据挖掘中的关联规则挖掘方法总结数据挖掘是一种从大量数据中发现隐藏模式、关联规则和有用信息的过程。
在数据挖掘的众多任务中,关联规则挖掘是其中一项重要的技术。
关联规则挖掘是一种用于发现数据集中项之间相互关联的方法,它可以帮助我们了解数据之间的关联性,从而做出更好的决策。
在数据挖掘中,关联规则挖掘的目标是通过发现频繁项集和关联规则,揭示数据之间的关联性。
频繁项集是在数据集中经常出现的项集,而关联规则则是描述这些项集之间的关联关系。
关联规则通常具有形如“A->B”的形式,表示A与B之间存在关联。
为了完成关联规则挖掘的任务,有许多方法被提出并得到了广泛应用。
下面将对其中的三种经典方法进行介绍和总结。
1. Apriori算法Apriori算法是一种经典的关联规则挖掘方法。
它的基本思想是通过逐步构建更大的频繁项集,然后生成关联规则。
Apriori算法的核心概念是“先验原则”,即如果一个项集不频繁,那么它的超集也一定是不频繁的。
Apriori算法的过程分为两个主要步骤:频繁项集的生成和关联规则的生成。
频繁项集的生成通过扫描数据集来计算每个项集的支持度,并根据设定的最小支持度阈值来筛选出频繁项集。
关联规则的生成通过对频繁项集进行相应的操作和筛选,以获得具有足够置信度的关联规则。
2. FP-growth算法FP-growth算法是另一种常用的关联规则挖掘方法。
相比于Apriori算法,FP-growth算法具有更高的效率。
FP-growth算法的核心数据结构是FP树,该树的节点表示项集中的某项以及它的计数。
FP-growth算法首先通过建立FP树来表示数据集,并通过压缩和剪枝来减少树的规模。
然后,通过递归遍历FP树来生成频繁项集和关联规则。
FP-growth算法的关键优势在于只需对数据集进行两次扫描,大大提高了挖掘效率。
3. ECLAT算法ECLAT算法是一种基于垂直数据表示的关联规则挖掘方法。
与Apriori算法和FP-growth算法不同,ECLAT算法使用的数据表示方式不是水平数据集,而是垂直数据集。
数据挖掘方法——关联规则(自己整理)
1
一、关联规则概念
关联分析(Association analysis):就是从给定的数据集发现频繁出 现的项集模式知识(又称为关联规则,association rules)。
按照不同情况,关联规则可以进行分类如下: 1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。 布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值 型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动 态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。 例如:性别=“女”=>职业=“秘书” ,是布尔型关联规则;性别=“女”=>avg(收入) =2300,涉及的收入是数值类型,所以是一个数值型关联规则。 2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。 在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而 在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=>Sony打 印机,是一个细节数据上的单层关联规则;台式机=>Sony打印机,是一个较高层次和细节层 次之间的多层关联规则。 3.基于规则中涉及到的数据的维数,关联规则可以分为单维关联规则和多维关联规则。 在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联 规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的 一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=>尿布,这条规则 只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段 的信息,是两个维上的一条关联规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘实验报告(二)关联规则挖掘
姓名:***
班级:计算机1304
学号:**********
一、实验目的
1. 1.掌握关联规则挖掘的Apriori算法;
2.将Apriori算法用具体的编程语言实现。
二、实验设备
PC一台,dev-c++5.11
三、实验内容
根据下列的Apriori算法进行编程:
四、实验步骤
1.编制程序。
2.调试程序。
可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。
代码
#include <stdio.h>
#include<string.h>
#define D 4 //事务的个数
#define MinSupCount 2 //最小事务支持度数
void main()
{
char a[4][5]={
{'A','C','D'},
{'B','C','E'},
{'A','B','C','E'},
{'B','E'}
};
char
b[20],d[100],t,b2[100][10],b21[100 ][10];
int
i,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1;
int count[100],temp;
for(i=0;i<D;i++)
{
for(j=0;a[i][j]!='\0';j++) {
//用来判断之前保存的是否和a[i][j]一样,不一样就保存,一样就不保存
for(k=0;k<x;k++)
{
if(b[k]!=a[i][j]) ; else
{
flag=0;break;
}
}
//用来判断是否相等 if(flag==1)
{
b[x]=a[i][j];
x++;
}
else flag=1;
}
}
//计算筛选出的元素的支持度计数
for(i=0;i<D;i++)
{
for(j=0;a[i][j]!='\0';j++) {
for(k=0;k<x;k++)
{
if(a[i][j]==b[k]) {
c[k]++;break; }
}
}
}
//对选出的项集进行筛选,选出支持度计数大于等于2的,并且保存到d[x1]数组中
for(k=0;k<x;k++)
{
if(c[k]>=MinSupCount)
{
d[x1]=b[k];
count[x1]=c[k];
x1++;
}
}
//对选出的项集中的元素进行排序
for(i=0;i<x1-1;i++)
{
for(j=0;j<x1-i-1;j++)
{
if(d[j]>d[j+1])
{
t=d[j];d[j]=d[j+1];d[j+1]=t;
temp=count[j];count[j]=count[j
+1];count[j+1]=temp;
}
}
}
//打印出L1
printf("L1 elements are:\n");
for(i=0;i<x1;i++)
{
printf("{%c} = %d \n",d[i],count[i]);
}
//计算每一行的元素个数,并且保存到n[]数组中
for(i=0;i<D;i++)
{
for(j=0;a[i][j]!='\0';j++);
n[i]=j;
}
//对a[][]数组的每一行进行排序
for(i=0;i<D;i++)
{
for(j=0;j<n[i]-1;j++)
{
for(k=0;k<n[i]-j-1;k++) {
if(a[i][k]>a[i][k+1])
{
t=a[i][k];
a[i][k]=a[i][k+1]; a[i][k+1]=t;
}
}
}
}
//把L1中的每一个元素都放在b2[i][0]中
j1=x1;
for(i=0;i<j1;i++)
{
b2[i][0]=d[i];
}
//把L1中的元素进行组合,K=2开始,表示x1个元素选K个元素的组合
for(k=2;b2[0][0]!='\0';k++)
{ //u是用来计数组合总数的
u=0;v=1;//v 是用来在进行输出各种组合的标识数 v=1 说明正在进行输出 for(i=0;i<100;i++)
{
c2[i]=0;
}
for(i=0;i<j1;i++)
{
for(i1=i+1;i1<j1;i1++) {
for(j=0;j<k-2;j++) {
if(b2[i][j]!=b2[i1][j])
{
flag1=0;break;
}
}
//进行组合的部分
if(flag1==1&&b2[i][k-2]!=b2[i1][k-2])
{
for(j2=0;j2<k-1;j2++)
{
b21[u][j2]=b2[i][j2];
}
b21[u][k-1]=b2[i1][k-2];
u++;
}
flag1=1;
}
}
counter=0;
for(i=0;i<D;i++) //a数组有5行元素
{
for(i1=0;i1<u;i1++) // 代表x1个元素选K个元素的所有组合总数 {
for(j1=0;j1<k;j1++) //K 代表一个组合中的元素个数
{
for(j=0;a[i][j]!='\0';j++) //逐个比较每一行的元素
{
if(a[i][j]==b21[i1][j1])
counter++;
}
}
if(counter==k)
c2[i1]++; //把每种组合数记录在c2数组中
counter=0;
} }
j1=0;temp=0;//这里的temp 是用来分行
//对u种情况进行选择,选出支持度计数大于2的*/
for(i=0;i<u;i++)
{
if(c2[i]>=MinSupCount) {
if(v==1)
{
printf("L%d elements are:\n",k);
v=0;
}
printf("{");
for(j=0;j<k;j++)
//输出每种组合k 个元素
{
b2[j1][j]=b21[i][j];
printf("%c,",b2[j1][j]);
}
j1++;
printf("\b}");
printf(" = %d \n",c2[i]);
temp++;
}
}
b2[j1][0]='\0';
}
}
五、结果截图。