卡尔曼滤波的学习
卡尔曼滤波的基本原理
卡尔曼滤波的基本原理一、引言卡尔曼滤波是一种用于估计系统状态的算法,最初由卡尔曼于1960年提出。
它在航空航天、导航、机器人等领域得到了广泛应用。
本文将介绍卡尔曼滤波的基本原理。
二、状态方程和观测方程在介绍卡尔曼滤波之前,我们需要先了解两个重要的概念:状态方程和观测方程。
状态方程描述了系统的动态演化规律,通常采用微分方程或差分方程来表示。
观测方程描述了系统输出与状态之间的关系,通常采用线性或非线性函数关系来表示。
三、卡尔曼滤波的基本思想卡尔曼滤波的基本思想是通过对系统状态进行递推估计,不断修正预测值与实际值之间的误差,从而得到更加精确的状态估计结果。
具体来说,卡尔曼滤波将系统状态表示为一个高斯分布,在每个时刻根据观测数据和先验知识更新该高斯分布,并输出当前时刻的最优估计值。
四、离散时间下的卡尔曼滤波离散时间下的卡尔曼滤波是卡尔曼滤波的一种常见形式。
在这种情况下,状态方程和观测方程都采用离散时间模型表示。
假设系统的状态为x(k),观测值为z(k),则可以将状态方程和观测方程表示为:x(k+1) = F(k)x(k) + G(k)w(k)z(k) = H(k)x(k) + v(k)其中,F、G、H分别为状态转移矩阵、控制矩阵和观测矩阵,w、v 分别为过程噪声和测量噪声。
五、卡尔曼滤波的递推过程卡尔曼滤波的递推过程包括预测步骤和更新步骤两个部分。
预测步骤用于对系统状态进行预测,更新步骤用于根据观测数据修正预测值。
1. 预测步骤在预测步骤中,我们需要利用上一个时刻的估计值来预测当前时刻的状态。
具体来说,我们需要通过下面两个公式进行计算:x^-(k+1|k) = F(k)x^(k|k)P^-(k+1|k) = F(k)P^(k|k)F(k)^T + Q(k)其中,x^(k|k)和P^(k|k)分别为上一个时刻的状态估计值和状态协方差矩阵,Q为过程噪声的协方差矩阵。
2. 更新步骤在更新步骤中,我们需要利用观测数据来修正预测值。
卡尔曼滤波器原理之基本思想(一)
卡尔曼滤波器原理之基本思想(⼀)⼀、卡尔曼滤波器要解决的问题 ⾸先说⼀下卡尔曼滤波器要解决的是哪⼀类问题,这类系统应该如何建模。
这⾥说的是线性卡尔曼滤波器,顾名思意,那就是线性动态的离散系统。
这类系统可以⽤如下两个⽅程来表⽰:\[\begin{array}{l}x(n + 1) = {\bf{F}}(n + 1,n)x(n) + {v_1}(n) \\y(n) = {\bf{C}}(n)x(n) + {v_2}(n) \\\end{array}\] 其中: x(n)表⽰系统的状态 F(n+1,n)为状态转移矩阵,表⽰状态随时间的变化规律。
通俗的讲,从当前状态到下⼀个状态之间有什么关系。
C(n)表⽰观测值与状态的关系 y(n)表⽰状态的观测值 v1表⽰系统过程的噪声 v2表⽰观测过程中产⽣的噪声 上⾯的两个⽅程中,第⼀个⽅程是过程⽅程,它表⽰系统状态x(n)随时间的更新过程。
第⼆个⽅程为测量⽅程,表⽰状态x(n)与测量结果y(n)的关系。
这⾥我们要先对这两个⽅程中的概念做下解释。
⾸先解释下状态这个概念。
状态是对系统特征进⾏的⼀个抽象,由预测系统未来特性时所需要的、与系统过去⾏为有关的最少数据组成。
这个概念不好理解吧!那么举个例⼦。
相信不少朋友在⽹上看到过有⼈拿来讲述卡尔曼滤波原理。
这⾥房间⾥真实的温度就是状态,它可以是⼀个参数,也可以是多个参数。
那么,⽤温度计测出来的值,就是这⾥的观测值y(n)。
再说⼀个例⼦,假如我们要对⼀个运动的物体进⾏跟踪,那么,物体的位移和速度完全可以表⽰这个运动物体所组成的系统的主要特征。
这时的状态就可以⽤⼀个具有位移和速度两个特征的向量来表⽰。
解释到这⾥,相信很多朋友已经正确理解了状态这个概念,它表⽰的是系统客观存在的真实特征。
再说⼀下系统状态与其观测值之间为什么有C(n)的存在,这⾥它表⽰的是观测值与状态的关系。
再拿室内测度测量来举例⼦,室内客观真实温度(未知量)做为这个系统中的状态,⽤温度计来测量这个状态。
卡尔曼滤波的基本原理
卡尔曼滤波的基本原理1. 任务名称卡尔曼滤波的基本原理2. 引言卡尔曼滤波是一种用于估计动态系统状态的方法,它通过融合系统测量和模型预测的信息,提供对系统状态的最优估计。
该滤波器在众多领域,如导航、信号处理、机器人技术等方面得到了广泛应用。
本文将详细介绍卡尔曼滤波的基本原理及其应用。
3. 卡尔曼滤波器的算法卡尔曼滤波器的算法主要由两个步骤组成:预测步骤和更新步骤。
在预测步骤中,根据系统的动力学模型,利用上一时刻的状态估计和模型进行预测;在更新步骤中,根据测量值和预测值之间的差异,对状态进行修正。
3.1 预测步骤预测步骤中,卡尔曼滤波器通过状态转移矩阵和控制向量对上一时刻的状态估计进行预测。
预测的状态向量可由以下公式表示:x k=Fx k−1+Bu k其中,x k表示当前时刻的状态估计,x k−1表示上一时刻的状态估计,F表示状态转移矩阵,B表示控制向量,u k表示当前时刻的控制输入。
预测的协方差矩阵可由以下公式表示:P k=FP k−1F T+Q其中,P k表示当前时刻的协方差矩阵,P k−1表示上一时刻的协方差矩阵,Q表示过程噪声的协方差矩阵。
3.2 更新步骤更新步骤中,卡尔曼滤波器将测量值与预测值进行比较,通过计算卡尔曼增益,对预测的状态进行修正。
卡尔曼增益的计算公式如下所示:K k=P k H T(HP k H T+R)−1其中,K k表示卡尔曼增益,H表示测量矩阵,R表示测量噪声的协方差矩阵。
修正后的状态向量可由以下公式表示:x k=x k+K k(y k−Hx k)修正后的协方差矩阵可由以下公式表示:P k=(I−K k H)P k3.3 初始化在使用卡尔曼滤波器之前,需要对状态向量和协方差矩阵进行初始化。
通常情况下,初始状态向量和协方差矩阵可通过经验估计或历史数据进行初始化。
4. 卡尔曼滤波器的应用卡尔曼滤波器具有很广泛的应用领域,下面将介绍其中几个典型的应用。
4.1 导航在导航领域,卡尔曼滤波器常用于姿态估计、位置估计和速度估计等方面。
卡尔曼滤波的原理与应用pdf
卡尔曼滤波的原理与应用一、什么是卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的算法,其基本原理是将过去的观测结果与当前的测量值相结合,通过加权求和的方式进行状态估计,从而提高对系统状态的准确性和稳定性。
二、卡尔曼滤波的原理卡尔曼滤波的原理可以简单概括为以下几个步骤:1.初始化:初始状态估计值和协方差矩阵。
2.预测:使用系统模型进行状态的预测,同时更新预测的状态协方差矩阵。
3.更新:根据测量值,计算卡尔曼增益,更新状态估计值和协方差矩阵。
三、卡尔曼滤波的应用卡尔曼滤波在很多领域都有广泛的应用,下面列举了几个常见的应用场景:•导航系统:卡尔曼滤波可以用于航空器、汽车等导航系统中,实时估计和优化位置和速度等状态参数,提高导航的准确性。
•目标追踪:如在无人机、机器人等应用中,利用卡尔曼滤波可以对目标进行状态估计和跟踪,提高目标追踪的鲁棒性和准确性。
•信号处理:在雷达信号处理、语音识别等领域,可以利用卡尔曼滤波对信号进行滤波和估计,去除噪声和提取有效信息。
•金融预测:卡尔曼滤波可以应用于金融市场上的时间序列数据分析和预测,用于股价预测、交易策略优化等方面。
四、卡尔曼滤波的优点•适用于线性和高斯性:卡尔曼滤波适用于满足线性和高斯假设的系统,对于线性和高斯噪声的系统,卡尔曼滤波表现出色。
•递归性:卡尔曼滤波具有递归性质,即当前状态的估计值只依赖于上一时刻的状态估计值和当前的测量值,不需要保存全部历史数据,节省存储空间和计算时间。
•最优性:卡尔曼滤波可以依据系统模型和观测误差的统计特性,以最小均方差为目标,进行最优状态估计。
五、卡尔曼滤波的局限性•对线性和高斯假设敏感:对于非线性和非高斯的系统,卡尔曼滤波的性能会受到限制,可能会产生不理想的估计结果。
•模型误差敏感:卡尔曼滤波依赖于精确的系统模型和观测误差统计特性,如果模型不准确或者观测误差偏差较大,会导致估计结果的不准确性。
•计算要求较高:卡尔曼滤波中需要对矩阵进行运算,计算量较大,对于实时性要求较高的应用可能不适合。
卡尔曼滤波器的五个公式
卡尔曼滤波器的五个公式
卡尔曼滤波器(Kalman Filter)的五个公式如下:
1. 预测状态:
x̂_k = F_k * x̂_k-1 + B_k * u_k
其中,x̂_k为当前时刻k的状态估计值,F_k为状态转移矩阵,x̂_k-1为上一时刻k-1的状态估计值,B_k为外部输入矩阵,u_k为外部输入。
2. 预测误差协方差:
P_k = F_k * P_k-1 * F_k^T + Q_k
其中,P_k为当前时刻k的状态估计误差协方差矩阵,P_k-1为上一时刻k-1的状态估计误差协方差矩阵,Q_k为系统过程噪声的协方差矩阵。
3. 计算卡尔曼增益:
K_k = P_k * H_k^T * (H_k * P_k * H_k^T + R_k)^-1
其中,K_k为当前时刻k的卡尔曼增益矩阵,H_k为观测矩阵,R_k为观测噪声的协方差矩阵。
4. 更新状态估计值:
x̂_k = x̂_k + K_k * (z_k - H_k * x̂_k)
其中,z_k为当前时刻k的观测值。
5. 更新状态估计误差协方差:
P_k = (I - K_k * H_k) * P_k
其中,I为单位矩阵。
初学者的卡尔曼滤波——扩展卡尔曼滤波(一)
初学者的卡尔曼滤波——扩展卡尔曼滤波(⼀)简介 已经历经了半个世纪的卡尔曼滤波⾄今仍然是研究的热点,相关的⽂章不断被发表。
其中许多⽂章是关于卡尔曼滤波器的新应⽤,但也不乏改善和扩展滤波器算法的研究。
⽽对算法的研究多着重于将卡尔曼滤波应⽤于⾮线性系统。
为什么学界要这么热衷于将卡尔曼滤波器⽤于⾮线性系统呢?因为卡尔曼滤波器从⼀开始就是为线性系统设计的算法,不能⽤于⾮线性系统中。
但是事实上多数系统都是⾮线性的,所以如果卡尔曼滤波器不能⽤在⾮线性系统中的话,那么它的应⽤范围就⾮常有限了。
如果真的是这样,卡尔曼滤波器可能早就寿终正寝或者过很久很久才会被⼈注意到。
幸运的是早期的学者们对这个问题理解的⾮常深刻,⽽且也找到了解决⽅法,就是扩展卡尔曼滤波(EKF)。
事实上世界上的第⼀个卡尔曼滤波也是扩展卡尔曼滤波,⽽不是线性卡尔曼滤波器。
扩展卡尔曼滤波有很久远的历史,如果说有⼀个⾮线性系统需要⽤到卡尔曼滤波的话,不必怀疑,先试试扩展卡尔曼滤波准没错。
因为他有很久远的历史,所以可以轻松的找到许多这⽅⾯的资料。
不过扩展卡尔曼滤波也不是⽆懈可击的,它有⼀个很严重的短板——发散。
使⽤扩展卡尔曼滤波的时候请务必记在⼼上,时刻提醒⾃⼰,这样设计滤波器其结果会发散吗?毫不夸张地说相对于线性卡尔曼滤波设计扩展卡尔曼滤波器的就是在解决发散问题。
发散问题解决了剩下的都是⼩事。
⼩结:扩展卡尔曼滤波器主要⽤于⾮线性系统;扩展卡尔曼滤波器会发散。
线性化的卡尔曼滤波器 在讨论扩展卡尔曼滤波之前,⾸先要了解⼀下线性化卡尔曼滤波。
它和线性卡尔曼滤波器在滤波器的算法⽅⾯有同样的算法结构,⼀样⼀样的。
不⼀样的地⽅在于这两者的系统模型不同。
线性卡尔曼滤波器的系统本⾝就是线性系统,⽽线性化卡尔曼滤波器的系统本⾝是⾮线性系统,但是机智的⼤神们将⾮线性的系统进⾏了线性化,于是卡尔曼滤波就可以⽤在⾮线性系统中了。
对于⼀个卡尔曼滤波器的设计者,就不要去管你的模型到底是⼀开始就是线性系统还是⾮线性系统线性化得到的线性系统,反正只要是线性系统就好了。
卡尔曼滤波的原理说明(通俗易懂)
卡尔曼滤波的原理说明(通俗易懂)以下是为大家整理的卡尔曼滤波的原理说明(通俗易懂)的相关范文,本文关键词为尔曼,滤波,原理,说明,通俗易懂,尔曼,滤波,原理,说明,学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
卡尔曼滤波的原理说明在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。
跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名RudolfemilKalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。
1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。
1957年于哥伦比亚大学获得博士学位。
我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《AnewApproachtoLinearFilteringandpredictionproblems》(线性滤波与预测问题的新方法)。
如果对这编论文有兴趣,可以到这里的地址下载:/~welch/kalman/media/pdf/Kalman1960.pdf 简单来说,卡尔曼滤波器是一个“optimalrecursivedataprocessingalgorithm(最优化自回归数据处理算法)”。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
2.卡尔曼滤波器的介绍(IntroductiontotheKalmanFilter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
但是,他的5条公式是其核心内容。
结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
卡尔曼滤波详解一维卡尔曼滤波实例解析(五个公式以及各个参数的意义)
卡尔曼滤波详解一维卡尔曼滤波实例解析(五个公式以及各个参数的意义)一、问题描述假设我们有一个一维系统,我们想要估计这个系统的状态x。
我们可以通过一维传感器获得关于这个系统的观测z,但是这个观测会存在误差。
二、基本原理三、基本公式1.状态预测:我们首先假设系统可以通过一个线性方程来描述:x(k)=Ax(k-1)+B(u(k))+w(k),其中x(k)代表系统在时刻k的真实状态,A是系统的状态转移矩阵,B是外部输入的影响矩阵,u(k)是外部输入,w(k)是系统状态预测过程中的噪声。
2.状态协方差预测:卡尔曼滤波同时也需要估计状态的不确定性,即状态协方差。
协方差可以通过以下公式进行预测:P(k)=AP(k-1)A^T+Q(k-1),其中P(k)代表状态协方差矩阵,Q(k-1)是协方差预测过程中的噪声。
3.观测预测:将状态的估计值带入观测模型中,可以预测观测值:z^(k)=Hx^(k),其中z^(k)代表预测的观测值,x^(k)代表状态的估计值,H是观测模型矩阵。
4.观测残差:观测残差即观测值与预测观测值之间的差异:y(k)=z(k)-z^(k),其中y(k)代表观测残差。
5.状态更新:基于观测残差,我们可以通过以下公式更新状态的估计值:x(k)=x^(k)+K(k)y(k),其中K(k)代表卡尔曼增益。
卡尔曼增益可以通过以下公式计算:K(k)=P(k)H^T(HP(k)H^T+R)^-1,其中R为观测噪声的方差。
四、参数含义1.状态转移矩阵A:描述系统状态k与状态k-1之间的转移关系。
2.外部输入矩阵B:外部输入对系统状态的影响矩阵。
3.外部输入u(k):外部输入,可以是控制信号或者测量噪声。
4.状态预测噪声w(k):在状态预测过程中引入的噪声。
5.状态协方差矩阵P:表示状态估计的不确定性,协方差矩阵的对角线上的元素越大,状态的不确定性越大。
6.状态协方差预测噪声Q(k):在状态协方差预测过程中引入的噪声。
卡尔曼滤波算法-数据同化的经典算法
在现代科学和工程领域中,我们经常需要处理大量的数据,以便进行预测、估计或控制。
然而,由于各种原因,真实的数据通常是不完整或带有噪声的。
为了更好地利用这些数据,我们需要一些有效的方法来处理这些不完整和带有噪声的数据。
卡尔曼滤波算法就是这样一种能够有效处理不完整和带有噪声数据的经典算法。
二、卡尔曼滤波算法的基本原理卡尔曼滤波算法是一种用于实时估计系统状态的算法,它最初是由Rudolf E. Kálmán在1960年提出的。
该算法通过一系列线性动态系统方程和观测方程,将系统的状态进行更新和校正,从而得到更精确的状态估计。
三、卡尔曼滤波算法的数学模型1. 状态方程在卡尔曼滤波算法中,通常假设系统的状态具有线性动态变化,并且满足高斯分布。
系统的状态方程可以用如下形式表示:x(k+1) = Ax(k) + Bu(k) + w(k)其中,x(k)表示系统在时刻k的状态,A表示状态转移矩阵,B 表示外部控制输入矩阵,u(k)表示外部控制输入,w(k)表示系统状态的噪声,通常假设为高斯分布。
2. 观测方程观测方程用于描述系统的测量值与状态之间的关系,通常可以表z(k) = Hx(k) + v(k)其中,z(k)表示系统在时刻k的观测值,H表示观测矩阵,v(k)表示观测噪声,也通常假设为高斯分布。
四、卡尔曼滤波算法的基本步骤卡尔曼滤波算法的基本步骤包括预测和更新两个步骤:1. 预测步骤预测步骤用于根据上一时刻的状态估计和外部控制输入,预测系统在当前时刻的状态。
预测步骤可以用如下公式表示:x^(k|k-1) = Ax^(k-1|k-1) + Bu(k)P(k|k-1) = AP(k-1|k-1)A^T + Q其中,x^(k|k-1)表示时刻k的状态的预测值,P(k|k-1)表示状态预测值的协方差矩阵,Q表示状态噪声的协方差矩阵。
2. 更新步骤更新步骤用于根据当前时刻的观测值,对预测得到的状态进行校正。
卡尔曼滤波基础知识
卡尔曼滤波基础知识卡尔曼滤波(Kalman filtering)是一种常用于估计被测量的物理系统状态的算法。
它最初在20世纪60年代由Rudolf Kalman发明,并被广泛应用于自动控制、导航、机器人、计算机视觉、信号处理等领域。
卡尔曼滤波的基本原理是通过测量系统中的输入和输出信号,得出最优的状态估计。
它利用数学模型来描述系统的动态行为,并从中预测未来状态。
此外,它还使用实际测量的数据来校正预测结果,从而提高估计的准确性。
卡尔曼滤波主要分为两个阶段:预测阶段和更新阶段。
预测阶段通过数学模型预测系统的状态,并计算出其协方差矩阵。
更新阶段则使用实际测量的数据进行校正,进一步提高估计的准确性。
卡尔曼滤波的数学模型通常以状态空间形式表示。
状态空间是一个向量空间,可以将系统的状态表示为该空间中的一个向量。
在状态空间中,系统状态和测量数据可以表示为向量和矩阵的形式,从而简化了卡尔曼滤波的计算。
卡尔曼滤波的估计过程涉及多个概率分布的计算,包括状态先验分布、状态后验分布、观测先验分布和观测后验分布等。
这些分布都可以通过贝叶斯公式进行计算,从而得出最优的状态估计。
卡尔曼滤波具有许多优点,最主要的是它可以通过测量数据自适应地调整估计的精度,因此可以很好地应用于动态和噪声环境下的系统。
此外,它还可以处理多个输入和输出,以及随时间变化的系统参数。
然而,卡尔曼滤波也有一些局限性。
例如,在高噪声环境下,其精度可能会受到限制。
此外,它对测量数据的特性和系统参数的行为做了一些假设,因此可能不适用于某些特殊情况。
在实际应用中,卡尔曼滤波通常需要与其他算法一起使用。
例如,它可以与模糊逻辑、神经网络等算法相结合,以提高估计的精度和鲁棒性。
此外,它还可以与传感器融合技术一起使用,以利用多个传感器的信息,进一步提高估计的准确性。
总之,卡尔曼滤波是一种强大的估计算法,可以应用于各种物理系统,并在自动控制、导航、机器人、计算机视觉、信号处理等领域取得了广泛应用。
第三章卡尔曼(Kalman)滤波
总结
状态方程的核心是:设置状态变量, 状态变量是网络内部(最少的)节点变量, 一般设在延迟支路的输出端,状态方程刻 画了状态变量下一时刻的取值与当前时刻的 状态变量和输入之间的关系。
x(k 1) Ax(k) Be(k) 一步递推状态方程: x(k) A(k)x(k 1) w(k -1)
二、离散时间系统的量测方程
来估计信号的当前值 以均方误差最小条件下求解 系统的传递函数H(z)或单位冲激响应h(n)
卡尔曼滤波
不需要全部过去的观察数据
只根据前一个估计值 xˆk -1 和最近一个观察数据 yk 来估计信号的当前值 它是用状态空间法描述系统, 即由状态方程和量测方程组成。
解是以估计值(是状态变量的估计值)的形式给出的
一、离散状态方程及其解
离散状态方程的基本形式是:
x(k 1) Ax(k) Be(k)
其中x(k)代表一组状态变量组成的多维状态矢量, 而A,B都是矩阵,它们是由系统的拓扑结构、元件 性质和数值所确定的。
e(k) 是激励信号。
状态方程是多维一阶的差分方程。 当已知初始状态x(0), 可用递推的方法得到它的解 x(k)
即:
Eyn yk 0, 1 k n -1
表明:yk不相关性质。 意味着yk的每个值都带来新的信息。
又因为:yk sk k
所以:Ck 1
第三节 卡尔曼滤波的方法
1、卡尔曼滤波的基本思想
卡尔曼滤波是采用递推的算法实现的, 是以卡尔曼滤波的信号模型为基础。
(1)先不考虑激励噪声wk和观测噪声k,
得到状态的估计值xˆk' 和观测数据的估计值yˆk'。
(2)再用观测数据的估计误差yk =yk - yˆk' 去修正状态的估计值xˆk,通过选择修正 矩阵H 使得状态估计误差的均方值Pk最小。
卡尔曼滤波的基本原理及应用
滤波器实际实现时, 测量噪声协方差 R 一般可以观测得 到,是滤波器的已知条件。 它可以通过离线获取一些系统观测 值计算出来。 通常,难确定的是过程激励噪声协方差的 Q 值, 因为我们无法直接观测到过程信号。一种方法是通过设定一个 合适的 Q,给过程信号“注入”足够的不确定性来建立一个简单 的可以产生可接受结果的过程模型。 为了提高滤波器的性能, 通常要按一定标准进行系数的选择与调整。
在上面式中,各量说明如下:
(14) (15)
A:作用在 Xk-1 上的 n×n 状态变换矩阵 B:作用在控制向量 Uk-1 上的 n×1 输入控制矩阵 H:m×n 观测模型矩阵, 它把真实状态空间映射成观测空 间 Pk-:为 n×n 先验估计误差协方差矩阵 Pk:为 n×n 后验估计误 差 协 方差 矩 阵 Q:n×n 过 程 噪 声 协 方 差 矩 阵 R:m×m 过 程 噪 声
4 结束语
采用伪线性卡尔曼滤波算法,在参数估计的收敛速度和收 敛精度上有明显的改善,在很大程度上克服了非线性问题线性 化时 ,线性化误差导致的不良结果 。 通过伪量测变量的引入 ,对 量测矩阵进行重新构造, 使得系统量测矩阵是量测角的函数, 并且具有线性形式。 该算法降低了对模型精度的要求,改进了 扩展卡尔曼滤波的发散问题,具有较好的稳定性,在一定的误
· 34 ·
软件导刊
2009 年
这种情形的一种解法,同 Talyer 级数类似,面对非线性关系时, 我们可以通过求过程方程和量测方程的偏导 来 线 性化 , [4、5] 并 计算当前估计量。 不同于基本卡尔曼滤波(KF)过程,扩展卡尔 曼 滤 波 (EKF)过 程 中 的 因 子 矩 阵 (A,W,H,K)是 时 刻 变 化 的 , 因此加下标 k(k 表示 k 时刻)以示标记。 扩展滤波器 (EKF)的 基本工作步同基本滤波器的工作步一样,两者的主要区别在于 非线性情形下需要进行线性化处理,且因子矩阵一般都随时间 变化(与时刻 k 有关)。 但是值得注意的是,经线性变换后系统 噪声及量测噪声不再服从高斯分布。
卡尔曼滤波原理及应用matlab仿真第二版
《卡尔曼滤波原理及应用matlab仿真第二版》是一本深入探讨卡尔曼滤波原理和其在matlab中应用的专业书籍。
本书通过对卡尔曼滤波原理的详细剖析,加之丰富的matlab仿真实例,为读者提供了深入理解和应用卡尔曼滤波的宝贵资料。
本书的主要内容如下:一、卡尔曼滤波原理1. 基本概念卡尔曼滤波是一种线性最优滤波器,通过融合系统模型和实际观测值,可以对系统状态进行估计。
本书对卡尔曼滤波的基本概念进行了详细阐述,包括状态空间模型、观测模型、预测和更新等基本原理。
2. 数学推导为了帮助读者深入理解卡尔曼滤波原理,本书对卡尔曼滤波的数学推导进行了全面而系统的讲解,包括卡尔曼滤波的求解方程、卡尔曼增益的计算等内容。
3. 算法实现除了理论推导,本书还详细介绍了卡尔曼滤波算法的实现步骤,并结合matlab示例进行了实际演示,帮助读者具体了解卡尔曼滤波在实际应用中的具体操作。
二、matlab仿真应用1. matlab基础本书首先对matlab的基础知识进行了简要介绍,包括matlab的基本语法、矩阵运算、绘图函数等内容,为后续的卡尔曼滤波仿真应用做了铺垫。
2. 卡尔曼滤波仿真通过具体的matlab仿真实例,本书展示了卡尔曼滤波在不同应用场景下的具体应用,包括目标跟踪、航空航天领域、自动驾驶等领域,帮助读者从实际案例中更好地理解卡尔曼滤波的应用方法。
3. 仿真案例分析针对具体的仿真案例,本书进行了详细的分析和讨论,包括数据处理方法、滤波效果评估等内容,帮助读者深入理解卡尔曼滤波在实际应用中的具体操作步骤和注意事项。
三、实战案例与实践1. 行业案例分析本书结合实际行业案例,对卡尔曼滤波在航空航天、汽车驾驶辅助系统、无人机等领域的应用进行了案例分析,帮助读者更好地理解卡尔曼滤波在实际工程中的应用价值。
2. 实战技巧除了理论知识和仿真应用,本书还总结了在实际工程中使用卡尔曼滤波的一些实战技巧,包括滤波参数调整、模型选择、实时数据处理等方面的经验共享,为读者实际应用卡尔曼滤波提供了有益的参考。
卡尔曼滤波算法示例解析与公式推导
本文将对卡尔曼滤波算法进行示例解析与公式推导,帮助读者更好地理解该算法的原理和应用。
文章将从以下几个方面展开:一、卡尔曼滤波算法的概念卡尔曼滤波算法是一种用于估计动态系统状态的线性无偏最优滤波算法。
它利用系统的动态模型和观测数据,通过迭代更新状态估计值,实现对系统状态的精确估计。
卡尔曼滤波算法最初是由美国工程师鲁道夫·卡尔曼在20世纪60年代提出,随后得到了广泛的应用和研究。
二、卡尔曼滤波算法的原理1. 状态空间模型在卡尔曼滤波算法中,系统的动态模型通常用状态空间模型表示。
状态空间模型由状态方程和观测方程组成,其中状态方程描述系统的演化规律,观测方程描述观测数据与状态之间的关系。
通过状态空间模型,可以对系统的状态进行预测,并与观测数据进行融合,从而估计系统的状态。
2. 卡尔曼滤波的预测与更新卡尔曼滤波算法以预测-更新的方式进行状态估计。
在预测阶段,利用系统的动态模型和之前时刻的状态估计值,对当前时刻的状态进行预测;在更新阶段,将预测值与观测数据进行融合,得到最优的状态估计值。
通过迭代更新,可以不断优化对系统状态的估计,实现对系统状态的精确跟踪。
三、卡尔曼滤波算法的示例解析以下通过一个简单的例子,对卡尔曼滤波算法进行具体的示例解析,帮助读者更好地理解该算法的应用过程。
假设有一个匀速直线运动的物体,其位置由x和y坐标表示,观测到的位置数据带有高斯噪声。
我们希望利用卡尔曼滤波算法对该物体的位置进行估计。
1. 状态空间模型的建立我们建立物体位置的状态空间模型。
假设物体在x和y方向上的位置分别由状态变量x和y表示,动态模型可以用如下状态方程描述:x(k+1) = x(k) + vx(k) * dty(k+1) = y(k) + vy(k) * dt其中,vx和vy分别为x和y方向的速度,dt表示时间间隔。
观测方程可以用如下形式表示:z(k) = H * x(k) + w(k)其中,z(k)为观测到的位置数据,H为观测矩阵,w(k)为观测噪声。
kalman filter 卡尔曼滤波调参的实用方法和经验
kalman filter 卡尔曼滤波调参的实用方法和经验
卡尔曼滤波是一种广泛用于估计和预测线性动态系统状态的有效方法。
调参是使用卡尔曼滤波的关键步骤之一,以下是一些实用的方法和经验:
1. 理解系统:在开始调参之前,需要深入理解所处理问题的性质和动态系统的特性。
这包括确定系统的状态变量、输入和测量噪声的特性等。
2. 选择合适的模型:卡尔曼滤波需要一个线性动态系统模型。
如果系统是非线性的,需要使用扩展卡尔曼滤波或者其他非线性滤波方法。
3. 初始参数选择:初始参数包括初始状态估计、初始状态协方差矩阵、初始测量协方差矩阵和初始过程噪声协方差矩阵。
这些参数可以根据先验知识和问题的特性进行选择,也可以通过实验数据进行初步估计。
4. 实验和验证:在实际应用中,需要对卡尔曼滤波进行实验和验证,以确定参数的最优值。
这可以通过对比卡尔曼滤波的结果和实际测量数据进行调整。
5. 动态调整:在实际应用中,如果系统状态的变化是动态的,需要动态调整卡尔曼滤波的参数。
例如,在无人机导航中,位置和速度的估计会随着时间的推移而不断变化,需要根据实际情况调整滤波参数。
6. 调参工具:可以使用一些工具来辅助调参,例如Matlab或Python中的卡尔曼滤波库,这些库提供了各种参数调整的功能,可以方便地进行实验和验证。
7. 不断尝试和改进:调参是一个试错的过程,需要通过不断的尝试和改进来确定最优的参数值。
在某些情况下,可能需要结合经验和理论来调整参数。
总之,卡尔曼滤波的调参需要综合考虑理论、经验和实验验证。
通过深入理解系统、合理选择模型和初始参数、进行实验和动态调整,可以获得更好的估计效果。
卡尔曼滤波入门、简介及其算法MATLAB实现代码
卡尔曼滤波入门:卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。
卡尔曼滤波也可进行系统辨识。
卡尔曼滤波是一种基于统计学理论的算法,可以用来对含噪声数据进行在线处理,对噪声有特殊要求,也可以通过状态变量的增广形式实现系统辨识。
用上一个状态和当前状态的测量值来估计当前状态,这是因为上一个状态估计此时状态时会有误差,而测量的当前状态时也有一个测量误差,所以要根据这两个误差重新估计一个最接近真实状态的值。
信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。
这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。
维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。
(1)过滤或滤波 - 从当前的和过去的观察值x(n),x(n-1),x(n-2),…估计当前的信号值称为过滤或滤波;(2)预测或外推 - 从过去的观察值,估计当前的或将来的信号值称为预测或外推; (3)平滑或内插 - 从过去的观察值,估计过去的信号值称为平滑或内插;因此,维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。
这里所谓“最佳”与“最优”是以最小均方误差为准则的。
维纳过滤与卡尔曼过滤都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。
因此在平稳条件下,它们所得到的稳态结果是一致的。
然而,它们解决的方法有很大区别。
维纳过滤是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数H(z)或单位样本响应h(n)的形式给出的,因此更常称这种系统为最佳线性过滤器或滤波器。
而卡尔曼过滤是用前一个估计值和最近一个观察数据(它不需要全部过去的观察数据)来估计信号的当前值,它是用状态方程和递推的方法进行估计的,它的解是以估计值(常常是状态变量值)形式给出的。
卡尔曼滤波器原理及应用
卡尔曼滤波器原理及应用
卡尔曼滤波器是一种利用机器学习算法来优化估计的方差和协方差矩阵的技术。
它主要用于将不稳定的、含有噪声的信号转换为稳定的信号。
卡尔曼滤波器原理:
卡尔曼滤波器原理是基于一个随机过程的线性状态空间模型进行的,对于一个状态空间模型,可以建立一个方案:
1. 状态方程:X(t)=A*X(t-1)+B*U(t)+W(t),其中A、B是状态转移矩阵和输入的控制矩阵,U是输入状态,W是过程噪声。
2. 观测方程:Y(t)=C*X(t)+V(t),其中C是状态观测矩阵,V是观测噪声。
卡尔曼滤波器的应用:
卡尔曼滤波器广泛应用于无人机、移动机器人、航空航天、智能交通、自动控制等领域。
关于卡尔曼滤波器的应用思路,以自动驾驶汽车为例:
自动驾驶汽车的环境复杂多变,包括天气、路况、行人、交通信号灯等各种影响
因素,因此需要通过传感器系统获取各种传感器数据和反馈控制信息来快速精确地反应车辆的实际状态。
利用卡尔曼滤波器算法,可以将各种不同的传感器数据合并起来,利用车辆运动和环境变化的信息,实时估计车辆的状态变量和环境变量,实现车辆轨迹规划和动态控制。
同时,通过利用卡尔曼滤波器的预测功能,可以根据历史数据进行预测,进一步优化系统的控制策略。
总之,卡尔曼滤波器作为一种优秀的估计技术,无论在精度和效率上,都足以发挥其独特的优势,在实际应用中,具有广泛的应用前景。
卡尔曼滤波 拟合直线
卡尔曼滤波拟合直线
卡尔曼滤波是一种常用的估计方法,可以用于拟合直线。
它基于统计学原理,通过对测量数据和模型预测值进行加权平均,得到更准确的估计结果。
在拟合直线的应用中,我们可以利用卡尔曼滤波来估计直线的斜率和截距。
首先,我们需要定义一个状态空间模型,包括直线的斜率和截距。
然后,通过观测数据,我们可以对直线的斜率和截距进行估计。
卡尔曼滤波通过两个步骤来进行估计:预测和更新。
在预测步骤中,根据状态空间模型和系统的动态特性,我们可以预测下一个时间点的直线参数。
在更新步骤中,我们利用观测数据对预测结果进行修正,得到更准确的估计。
卡尔曼滤波的优势在于它可以处理包含噪声的观测数据,并且可以适应系统动态的变化。
通过不断迭代预测和更新步骤,卡尔曼滤波可以逐渐收敛到真实的直线参数。
除了拟合直线,卡尔曼滤波还可以应用于其他估计问题,例如目标跟踪、姿态估计等。
它在工业、军事等领域具有广泛的应用。
卡尔曼滤波是一种强大的估计方法,可以用于拟合直线等问题。
它通过对观测数据和模型预测值进行加权平均,得到更准确的估计结果。
在实际应用中,我们可以根据具体问题的需求,灵活调整卡尔
曼滤波的参数,以获得最佳的估计效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 Kalman 滤波理论的基础在估计问题中,长考虑如下随机线性离散系统模型,11,11k k k k k k k X X W ----=Φ+Γ k k k k Z H X V =+k X 是系统的n 维状态向量,k Z 是系统的m 维观察向量。
根据状态向量和观察向量在时间上存在的不同对应关系,我们可以把估计问题分为滤波、预测和平滑,以上式所描述的随机线性离散系统为例,设,ˆk jX 表示根据j 时刻和j 以前时刻的观察值,对k 时刻状态k X 做出的某种估计,则按照k 和j 的不同对应关系, 叙述如下:(1) 当k=j 时,对,ˆk jX 的估计称为滤波,即依据过去直至现在的观察测量来估计现在的状态。
相应地,称,ˆk jX 为k X 的最有滤波估计值,简记为ˆk X 。
这类估计主要用于随机系统的实时控制。
(2) 当k>j 时对,ˆk jX 的估计称为预测或外推,即依据过去直至现在的观察测量来预测未来的状态,并把,ˆk jX 称为k X 的最优预测估计值。
这类估计广泛应用于对系统未来状态的预测和实时控制。
(3) 当k<j 时对,ˆk jX 的估计称为平滑或内插,即依据过去直至现在的观察测量去估计过去的历史状态,并称,ˆk jX 为k X 的最优平滑估计值。
这类估计广泛应用于通过分析实验或试验数据,对系统进行评估。
在预测、滤波和平滑三类状态估计问题中预测是滤波的基础,滤波是平滑的基础。
最早的估计方法是高斯提出的最小二乘法,最小二乘法没有考虑到被估参数和观测数据的统计特性,因此这种方法不是最优估计方法。
Wiener 滤波器采用频域设计法,运算复杂,解析求解困难,整批数据处理要求存储空间大,造成其适用范围及其有限,仅适用于一维平稳随机过程信号滤波。
Kalman 滤波采用了和Wiener 滤波相同的估计准则,二者的基本原理一致,但是kalman 滤波是一种时域滤波方法,采用状态空间方法描述系统,算法采用递推形式,数据存储量小,不仅可以处理平稳随机过程,也可以处理多维和非平稳随机过程。
关于系统过程噪声和观测噪声的统计特性如下:[][]0,0,0T k k j k kjTk k j k kj Tk j E W E W W Q E V E V V R E W V δδ⎧⎡⎤==⎣⎦⎪⎪⎡⎤==⎨⎣⎦⎪⎡⎤=⎪⎣⎦⎩如果被估计状态k X 和对k X 的观测量k Z 满足上式约束,系统过程噪声k W 和观测噪声k V 满足上式的假设,系统过程噪声方差阵k Q 非负定,系统观测噪声方差阵k R 正定,k 时刻的观测为k Z ,则k X 的估计ˆkX 可按下述方程求解: 状态一步预测:,1,11ˆk k k k k X X ---=Φ 状态估计1,1ˆˆˆk k k k k k k X X K Z H X --⎡⎤=+-⎣⎦滤波增益矩阵1,1,1T Tk k k k k k k k k K P H H P H R ---⎡⎤=+⎣⎦一步预测误差方差阵,1,11,1,11,1T Tk k k k k k k k k k k k P P Q -------=ΦΦ+ΓΓ估计误差方差阵[][],1TT k k k k k k k k k k P I K H P I K H K R K -=--+其中1T k k k k K P H R -=其中[],1k k k k k P I K H P -=-111,1T k k k k k k P P H R H ----=+Kalman 滤波算法的特点:(1) 由于Kalman 滤波算法将被估计的信号看作在白噪声作用下一个随机线性系统的输出,并且其输入输出关系是由状态方程和输出方程在时间域内给出的,因此这种滤波方法不仅适用于平稳序列的滤波,而且特别适用于非平稳马尔科夫序列或高斯-马尔科夫序列的滤波,因此其应用范围是十分广泛的。
(2) 由于Kalman 滤波的基本方程时间域内的递推形式,其计算过程是一个不断地“预测-修正”过程,在求解是不要求存储大量的数据,并且一旦观测到了新的数据,随时可以算的新的滤波值,因此这种滤波方法非常便于实时处理,计算机实现。
(3) 由于滤波器的增益矩阵于观测无关,因此它可离线算出,从而可以减少实时在线计算量;在求滤波器增益矩阵k K 时要求一个矩阵的逆,既要计算1,1Tk k k k k H P H R --⎡⎤+⎣⎦,它的阶数之取决于观测方程的维数m 而m 通常是最小的这样,上面的求逆运算是比较方便的;另外在求解滤波器增益的过程中随时可以算得滤波器的精度指标k P ,其对角线上的元就是滤波误差向量各分量的方差。
(4)增益矩阵k K 与初始方差0P ,系统噪声方差阵1k Q -以及观测噪声方差阵k R 之间具有如下关系:由基本滤波方程可见,当k R 增大时,k K 就变小,噪声变大滤波增益就应取小。
如果0P 变小,1k Q -变小,因为0P 小表示初始估计较好,1k Q -变小表示系统噪声变小,于是增益矩阵应变小以便较小的修正。
扩展kalman 滤波在车辆GPS/dr 组合定位系统中的应用GPS/DR 组合系统状态方程的建立取组合定位系统的状态变量为[,,,,,]T e e e n n n X x v a x v a =,其中e x ,n x 分别为车辆东向和北向的位置分量;e v ,n v 分别为车辆东向和北向的速度分量;e a ,n a 分别为车辆东向和北向的加速度分量。
则得到组合定位系统连续的状态方程为:()()()Xt AX t U W t =++ 式中,1000000100010000000001000000110000en aa A ττ⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦ 001001e n e a n a a U a ττ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,00()00e n a a W t ωω⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ea ωna ω分别为2(0,)ea σ2(0,)n a σ的高斯白噪声;ea τna τ分别为车辆东向和北向机动加速度变化率的相关时间常数;e a n a 分别为车辆东向和北向机动加速度分量的“当前”均值。
设采样周期为T ,将系统连续的状态方程离散化,得到系统离散的状态方程为,1,1k k k k k k k X X U W --=Φ++ 式4.79式中,()()()()()()[]T k e k e k e k n k n k n k X x v a x v a =,1(,1)(,1)[,]k k e k k n k k diag ---Φ=ΦΦ令1ee aa τ=,1nn aa τ=,则(,1)e k k -Φ,(,1)n k k -Φ为21(,1)1(1)01(1)00e e e a T e e a T e k k e a T T T e e e ααα------⎡⎤-++⎢⎥Φ=-⎢⎥⎢⎥⎣⎦21(,1)1(1)01(1)00n n n a T n n a T n k k na T T T e e e ααα------⎡⎤-++⎢⎥Φ=-⎢⎥⎢⎥⎣⎦[]123456Tk U u u u u u u =其中,21110.5(1)e Te e e e u T T e a αααα---⎡⎤=-++-⎣⎦21110.5(1)e T e e e e u T T e a αααα---⎡⎤=-++-⎣⎦ 12(1)e T e e u T e a αα--⎡⎤=--⎣⎦3(1)e T e u e a α-=-21140.5(1)n T n nn n u T T e a αααα---⎡⎤=-++-⎣⎦ 15(1)n T n n u T e a αα--⎡⎤=--⎣⎦6(1)n T n u e a α-=-式4.79就是所建立的GPS/DR 组合定位系统的状态方程。
GPS/DR 组合系统观测方程的建立将GPS 输出的东向位置信息obs e 北向位置信息obs n ,角速率陀螺的输出ω以及里程计(或车速计)在一个采样周期内输出的距离s 作为观测量,;里程计的刻度系数取为1.观测量和状态变量之间的关系如下1obs e e x v =+ 2obs n n x v =+122tan ()e n e e n n e nv v a v a t v v v ωωωεε-⎡⎤-∂=+=+⎢⎥∂+⎣⎦s s ε=于是系统连续的观测方程为:1222eobsnobsn e e ne nsxvexvnv a v aZv vsωεωε⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-==+⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎣⎦⎣⎦⎢⎣1v2v分别为GPS接收机输出的东向位置和北向位置的观测噪声,可近似为21(0,)σ21(0,)σ的高斯白噪声;ωε为陀螺的漂移,近似为2(0,)ωσ的高斯白噪声;sε为里程计的观测噪声,近似为2(0,)sσ的高斯白噪声。
将观测方程离散化,得到系统离散的观测方程为[]k k kZ h X V=+(4.86)式中,()()Tk obs k obs k k kZ e n sω⎡⎤=⎣⎦[]()()()()()()22()()e kn kn k e k e k n kke k n kxxv a v ah Xv v⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥+⎢⎥⎢⎥⎢⎥⎣⎦,1()2()()()kkkks kvvVωεε⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦从式(4.86)知,观测方程是非线性的。
采用扩展Kalman滤波进行线性化,将[]kh X在预测值,1ˆk kX-处按泰勒级数展开并忽略二次以上的高次项,得,1,1ˆˆk k k k k k k kZ h X H X X V--⎡⎤⎡⎤=+-+⎣⎦⎣⎦(4.87)化简得,1,1ˆˆk k k k k k k k kZ H X V h X H X--⎡⎤=++-⎣⎦(4.88)其中[],1ˆ123456100000000100000000k k kkk X Xkh XHh h h hXh h-=⎡⎤⎢⎥∂⎢⎥==⎢⎥∂⎢⎥⎣⎦2(,1)(,1)(,1)(,1)(,1)(,1)(,1)1222(,1)(,1)ˆˆˆˆˆˆˆ2ˆˆn k k e k k e k k n k k e k k n k k n k kn k k e k ka v v v a a vhv v-----------=⎡⎤+⎣⎦(,1)222(,1)(,1)ˆˆˆn k k n k k e k k vh vv ---=+ 2(,1)(,1)(,1)(,1)(,1)(,1)(,1)3222(,1)(,1)ˆˆˆˆˆˆˆ2ˆˆe k k e k k e k k n k k n k k e k k n k k n k k e k k a v v v a a v h vv---------+-=⎡⎤+⎣⎦(,1)422(,1)(,1)ˆˆˆe k k n k k e k k vh vv ----=+5ˆTv h =6ˆTv h =式(4.88)就是所建立的GPS/DR 系统线性离散的观测方程。