王镜岩(第三版)生物化学下册课后习题答案
王镜岩(第三版)生物化学下册课后习题答案
王镜岩(第三版)生物化学下册课后习题答案第34章DNA的复制和修复⒈生物的遗传信息如何由亲代传给子代?答:在细胞分裂间期,DNA分子边解旋边复制,分别以亲代DNA的两条母链为模板,以核中游离的脱氧核苷酸为原料,根据碱基互补配对原则,合成两条子链,它们分别与相应的模板链螺旋化就形成了两个与亲代DNA 一样的子代DNA,在生物传种接代的过程中,亲代将复制出的一份DNA通过配子传给子代,从而实现了亲子代间遗传信息的传递。
接下来,在子代个体发育的过程中,将利用DNA(gene)来指导自身蛋白质的合成,从而表现出与亲代相似的性状。
也有一些生物如某些病毒,是通过将亲代的RNA复制后传给子代的方式进行遗传信息的传递。
⒉何谓DNA的半保留复制?是否所有的DNA复制都以半保留的方式进行?(双链DNA通常都以半保留方式复制。
)答:DNA在复制时首先两条链之间的氢键断裂两条链分开,然后以每一条链分别做模板各自合成一条新的DNA链,这样新合成的子代DNA分子中一条链来自亲代DNA,另一条链是新合成的,这种复制方式为半保留复制(semiconservative replication)。
并非所有的DNA复制都以半保留的方式进行,但双链DNA通常都以半保留方式复制。
⒊若使15N标记的大肠杆菌在14N培养基中生长三代,提取DNA,并用平衡沉降法测定DNA密度,其14N-DNA分子与14N-15N 杂合DNA分子之比应为多少?答:这两者之比为1:3。
⒋比较DNA聚合酶Ⅰ、Ⅱ和Ⅲ性质的异同。
DNA聚合酶Ⅳ和Ⅴ的功能是什么?有何生物学意义?答:在E.coli中,共发现了3种DNA聚合酶,即DNA聚合酶Ⅰ、Ⅱ、Ⅲ。
DNA聚合酶Ⅰ是个多功能酶,具有5’--→ 3’聚合功能;3’--→ 5’外切功能以及3’--→ 5’外切功能。
DNA聚合酶Ⅱ与DNA聚合酶Ⅰ功能相似,但没有5’--→ 3’外切功能。
DNA聚合酶Ⅲ与DNA 聚合酶Ⅱ功能相同,但其聚合活性比DNA聚合酶Ⅰ高1000倍,是E.coliDNA复制中的最主要酶。
1705编号王镜岩《生物化学》课后习题详细解答
生物化学(第三版)课后习题详细解答第三章氨基酸提要α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。
蛋白质中的氨基酸都是L型的。
但碱水解得到的氨基酸是D型和L型的消旋混合物。
参与蛋白质组成的基本氨基酸只有20种。
此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。
除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ-氨基酸,有些是D型氨基酸。
氨基酸是两性电解质。
当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,则全部去质子化。
在这中间的某一pH(因不同氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO-)状态存在。
某一氨基酸处于净电荷为零的兼性离子状态时的介质pH称为该氨基酸的等电点,用pI表示。
所有的α-氨基酸都能与茚三酮发生颜色反应。
α-NH2与2,4-二硝基氟苯(DNFB)作用产生相应的DNP-氨基酸(Sanger反应);α-NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物(Edman反应)。
胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。
半胱氨酸的SH基在空气中氧化则成二硫键。
这几个反应在氨基酸荷蛋白质化学中占有重要地位。
除甘氨酸外α-氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性。
比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。
参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。
核磁共振(NMR)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。
氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。
常用方法有离子交换柱层析、高效液相层析(HPLC)等。
习题1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。
生物化学 第三版 (王镜岩 朱圣庚 著)
单字母 符号 A R N D B C Q E Z
名称
亮氨酸(leucine) 赖氨酸(lysine) 甲硫氨酸(蛋氨酸)(methionine) 苯丙氨酸(phenylalanine)
三字母 符号 Leu Lys Met Phe
单字母 符号 L K M F
脯氨酸(praline) 丝氨酸(serine) 苏氨酸(threonine)
Pro
P
Ser
S
Thr
T
甘氨酸(glyΒιβλιοθήκη ine) 组氨酸(histidine) 异亮氨酸(isoleucine)
Gly
G
色氨酸(tryptophan)
His
H
酪氨酸(tyrosine)
Ile
I
缬氨酸(valine)
Trp
W
Tyr
Y
Val
V
2、计算赖氨酸的εα-NH3+20%被解离时的溶液PH。[9.9]
第四章 蛋白质的共价结构
提要
蛋白质分子是由一条或多条肽链构成的生物大分子。多肽链是由氨基酸通过肽键共价连接而成的,各 种多肽链都有自己特定的氨基酸序列。蛋白质的相对分子质量介于6000到1000000或更高。
蛋白质分为两大类:单纯蛋白质和缀合蛋白质。根据分子形状可分为纤维状蛋白质、球状蛋白质和膜 蛋白质。此外还可按蛋白质的生物学功能分类。
表3-1 氨基酸的简写符号
名称
丙氨酸(alanine) 精氨酸(arginine) 天冬酰氨(asparagines) 天冬氨酸(aspartic acid) Asn和/或Asp 半胱氨酸(cysteine) 谷氨酰氨(glutamine) 谷氨酸(glutamic acid) Gln和/或Glu
王镜岩生物化学习题+答案
生物化学习题(答案不太全)之樊仲川亿创作第一章绪论一、问答1.什么是生物化学?它主要研究哪些内容?2.生物化学经历了哪几个发展阶段?各个时期研究的主要内容是什么?试举各时期一二例重大成就。
第二章蛋白质化学一、问题1.蛋白质在生命活动中有何重要意义?2.蛋白质是由哪些元素组成的?其基本结构单元是什么?写出其结构通式。
3.蛋白质中有哪些罕见的氨基酸?写出其中文名称和三字缩写符号,它们的侧链基团各有何特点?写出这些氨基酸的结构式。
4.什么是氨基酸的等电点,如何进行计算?5.何谓谷胱甘肽?简述其结构特点和生物学作用?6.什么是构型和构象?它们有何区别?7.蛋白质有哪些结构条理?分别解释它们的含义。
8.简述蛋白质的a-螺旋和b-折迭。
9.维系蛋白质结构的化学键有哪些?它们分别在哪一级结构中起作用?10.为什么说蛋白质的水溶液是一种稳定的亲水胶体?11.碳氢链R基在蛋白质构象中如何取向?12.多肽的骨架是什么原子的重复顺序,写出一个三肽的通式,并指明肽单位和氨基酸残基。
13.一个三肽有多少NH2和COOH端?牛胰岛素呢?14.利用哪些化学反应可以鉴定蛋白质的N-端和C-端?15.简述蛋白质变性与复性的机理,并概要说明变性蛋白质的特点。
16.简述蛋白质功能的多样性?17.试述蛋白质结构与功能的关系。
18.蛋白质如何分类,试评述之。
二、解释下列名称5.<生物化学习题一、最佳选择题:下列各题有A、B、C、D、E五个备选答案,请选择一个最佳答案。
1、蛋白质一级结构的主要化学键是( )A、氢键B、疏水键C、盐键D、二硫键E、肽键2、蛋白质变性后可出现下列哪种变更( )A、一级结构发生改变B、构型发生改变C、分子量变小D、构象发生改变E、溶解度变大3、下列没有高能键的化合物是( )A、磷酸肌酸B、谷氨酰胺C、ADPD、1,3一二磷酸甘油酸E、磷酸烯醇式丙酮酸4、嘌呤核苷酸从头合成中,首先合成的是( )A、IMPB、AMPC、GMPD、XMPE、ATP5、脂肪酸氧化过程中,将脂酰~SCOA载入线粒体的是( )A、ACPB、肉碱C、柠檬酸D、乙酰肉碱E、乙酰辅酶A6、体内氨基酸脱氨基最主要的方式是( )A、氧化脱氨基作用B、联合脱氨基作用C、转氨基作用D、非氧化脱氨基作用E、脱水脱氨基作用7、关于三羧酸循环,下列的叙述哪条不正确( )A、发生NADH和FADH2B、有GTP生成C、氧化乙酰COAD、提供草酰乙酸净合成E、在无氧条件下不克不及运转8、胆固醇生物合成的限速酶是( )A、HMG COA合成酶B、HMG COA裂解酶C、HMG COA还原酶D、乙酰乙酰COA脱氢酶E、硫激酶9、下列何种酶是酵解过程中的限速酶( )A、醛缩酶B、烯醇化酶C、乳酸脱氢酶D、磷酸果糖激酶E、3一磷酸甘油脱氢酶10、DNA二级结构模型是( )A、α一螺旋B、走向相反的右手双螺旋C、三股螺旋D、走向相反的左手双螺旋E、走向相同的右手双螺旋11、下列维生素中介入转氨基作用的是( )A、硫胺素B、尼克酸C、核黄素D、磷酸吡哆醛E、泛酸12、人体嘌呤分解代谢的终产品是( )A、尿素B、尿酸C、氨D、β—丙氨酸E、β—氨基异丁酸13、蛋白质生物合成的起始信号是( )A、UAGB、UAAC、UGAD、AUGE、AGU14、非蛋白氮中含量最多的物质是( )A、氨基酸B、尿酸C、肌酸D、尿素E、胆红素15、脱氧核糖核苷酸生成的方式是( )A、在一磷酸核苷水平上还原B、在二磷酸核苷水平上还原C、在三磷酸核苷水平上还原D、在核苷水平上还原E、直接由核糖还原16、妨碍胆道钙吸收的物质是( )A、乳酸B、氨基酸C、抗坏血酸D、柠檬酸E、草酸盐17、下列哪种途径在线粒体中进行( )A、糖的无氧酵介B、糖元的分解C、糖元的合成D、糖的磷酸戊糖途径E、三羧酸循环18、关于DNA复制,下列哪项是错误的( )A、真核细胞DNA有多个复制起始点B、为半保存复制C、亲代DNA双链都可作为模板D、子代DNA的合成都是连续进行的E、子代与亲代DNA分子核苷酸序列完全相同19、肌糖元不克不及直接弥补血糖,是因为肌肉组织中不含( )A、磷酸化酶B、已糖激酶C、6一磷酸葡萄糖脱氢酶D、葡萄糖—6—磷酸酶E、醛缩酶20、肝脏合成最多的血浆蛋白是( )A、α—球蛋白B、β—球蛋白C、清蛋白D、凝血酶原E、纤维蛋白原21、体内能转化成黑色素的氨基酸是( )A、酪氨酸B、脯氨酸C、色氨酸D、蛋氨酸E、谷氨酸22、磷酸戊糖途径是在细胞的哪个部位进行的( )A、细胞核B、线粒体C、细胞浆D、微粒体E、内质网23、合成糖原时,葡萄糖的供体是( )A、G-1-PB、G-6-PC、UDPGD、CDPGE、GDPG24、下列关于氨基甲酰磷酸的叙述哪项是正确的( )A、它主要用来合成谷氨酰胺B、用于尿酸的合成C、合成胆固醇D、为嘧啶核苷酸合成的中间产品E、为嘌呤核苷酸合成的中间产品25、与蛋白质生物合成无关的因子是( )A、起始因子B、终止因子C、延长因子D、GTPE、P因子26、冈崎片段是指( )A、模板上的一段DNAB、在领头链上合成的DNA片段C、在随从链上由引物引导合成的不连续的DNA片段D、除去RNA引物后修补的DNA片段E、指互补于RNA引物的那一段DNA27、下列哪组动力学常数变更属于酶的竞争性抑制作用( )A、Km增加,Vmax不变B、Km降低,Vmax不变C、Km不变,Vmax增加D、Km不变,Vmax降低E、Km降低,Vmax降低28、运输内源性甘油三酯的血浆脂蛋白主要是( )A、VLDLB、CMC、HDLD、IDLE、LDL29、结合胆红素是指( )A、胆红素——清蛋白B、胆红素——Y蛋白C、胆红素——葡萄糖醛酸D、胆红素——Z蛋白E、胆红素——珠蛋白30、合成卵磷脂所需的活性胆碱是( )A、ATP胆碱B、ADP胆碱C、CTP胆碱D、CDP胆碱E、UDP胆碱31、在核酸分子中核苷酸之间连接的方式是( )A、2′-3′磷酸二酯键B、2′-5′磷酸二酯键C、3′-5′磷酸二酯键D、肽键E、糖苷键32、能抑制甘油三酯分解的激素是( )A、甲状腺素B、去甲肾上腺素C、胰岛素D、肾上腺素E、生长素33、下列哪种氨基酸是尿素合成过程的中间产品( )A、甘氨酸B、色氨酸C、赖氨酸D、瓜氨酸E、缬氨酸34、体内酸性物质的主要来源是( )A、硫酸B、乳酸C、CO2D、柠檬酸E、磷酸35、下列哪种物质是游离型次级胆汁酸( )A、鹅脱氧胆酸B、甘氨胆酸C、牛磺胆酸D、脱氧胆酸E、胆酸36、生物体编码氨基酸的终止密码有多少个( )A、1B、2C、3D、4E、5二、填充题1、氨基酸在等电点(PI)时,以______离子形式存在,在PH>PI时以______离子存在,在PH<PI时,以______离子形式存在。
生物化学王镜岩(第三版)上下册课后习题解答.doc
第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。
糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。
多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。
糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。
同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。
糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。
单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。
因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。
任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。
单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。
许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。
这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。
成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。
在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。
王镜岩_徐长法_朱圣庚_主编,生物化学_第三版_课后习题解答全__上册1-13章,下册
生物化学王镜岩(第三版)课后习题解答全 (上册1-13章,下册19-40章)第一章糖类糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。
糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。
多数糖类具有(CH2O)n 的实验式,其化学本质是多羟醛、多羟酮及其衍生物。
糖类按其聚合度分为单糖,1个单体;寡糖,含2-20 个单体;多糖,含20 个以上单体。
同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。
糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。
单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。
因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。
任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。
单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer 投影式。
许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。
这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。
成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称a和B异头物,它们通过开链形式发生互变并处于平衡中。
在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为a异头物,上方的为B异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。
(NEW)王镜岩《生物化学》(第3版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】
C.通过对各个蛋白质专一的载体传送
D.膜内外同类蛋白质交换传送
【答案】B
【解析】线粒体蛋白质的跨膜运送一般来说需要导肽的牵引,导肽牵引 蛋白质跨越线粒体膜时,除了需要能源以外,导肽形成两亲(兼有亲水 和疏水基团)的α-螺旋结构是比较重要的;另外,被牵引的蛋白质分子 在跨膜运送过程中呈解折叠状态也是必需的,待运送完成后,解折叠状 态又可转变恢复成折叠状态。另外,在线粒体蛋白质跨膜运送过程中, 还有一些蛋白因子也参与了这一过程。
四、简答题
高能化合物为水解或基团转移时释放大量自由能的化合物,高能化合物 的类型有哪些?各举一例。[中国科学院2007研]
答:高能化合物为水解或基团转移时释放大量自由能的化合物。高能化 合物类型有:
(1)磷氧键型:如三磷酸核苷和二磷酸核苷、氨甲酰磷酸。
(2)氮磷键型:如磷酸肌酸。
(3)硫酯键型:如酰基-CoA。
第24章 生物氧化—电子传递和氧 化磷酸化作用 第25章 戊糖磷酸途径和糖的其他 代谢途径 第26章 糖原的分解和生物合成 第27章 光合作用 第28章 脂肪酸的分解代谢 第29章 脂类的生物合成 第30章 蛋白质降解和氨基酸的分 解代谢 第31章 氨基酸及其重要衍生物的
生物合成 第32章 生物固氮 第33章 核酸的降解和核苷酸代谢 第34章 DNA的复制和修复 第35章 DNA的重组 第36章 RNA的生物合成和加工 第37章 遗传密码 第38章 蛋白质合成及转运 第39章 细胞代谢与基因表达调控 第40章 基因工程及蛋白质工程
B.NADPH C.FMNH2 D.FADH2 【答案】B 【解析】NADPH通常作为生物合成的还原剂,并不能直接进入呼吸链 接受氧化,只是在特殊酶的作用下,NADPH上的H被转移到NAD+上, 然后以NADH的形式进入呼吸链。 4.肌肉组织中肌肉收缩所需的大部分能量是以哪一种形式贮存的? ( )[华东师范大学2007&华中农业大学2008研] A.ADP B.磷酸烯醇式丙酮酸 C.ATP D.cAMP E.磷酸肌酸 【答案】E 【解析】磷酸肌酸是肌肉组织中肌肉收缩的主要能量来源。 5.人体活动主要的直接供能物质是( )。[华东理工大学2007研] A.葡萄糖 B.脂肪酸 C.磷酸肌酸 D.GTP
王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真题)详解
内容简介王镜岩主编的《生物化学》(第3版)是我国高校生物类广泛采用的权威教材之一,也被众多高校(包括科研机构)指定为考研考博专业课参考书目。
为了帮助参加研究生入学考试指定参考书目为王镜岩主编的《生物化学》(第3版)的考生复习专业课,我们根据该教材的教学大纲和名校考研真题的命题规律精心编写了王镜岩《生物化学》(第3版)辅导用书(均可免费试读,阅读全部内容需要单独购买):1.王镜岩《生物化学》(第3版)(上册)笔记和课后习题(含考研真题)详解2.王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真题)详解3.王镜岩《生物化学》(第3版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】4.王镜岩《生物化学》(第3版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】本书是王镜岩主编的《生物化学》(第3版)(下册)的学习辅导电子书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的所有知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对王镜岩主编的《生物化学》(第3版)(下册)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了归纳和延伸。
(3)精编考研真题,培养解题思路。
本书精选详析了部分名校近年来的相关考研真题,这些高校均以该教材作为考研参考书目。
所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。
(4)免费更新内容,获取最新信息。
本书定期会进行修订完善。
对于完善的内容,均可以免费升级获得。
目录第19章代谢总论19.1复习笔记19.2课后习题详解19.3名校考研真题详解第20章生物能学20.1复习笔记20.2课后习题详解20.3名校考研真题详解第21章生物膜与物质运输21.1复习笔记21.2课后习题详解21.3名校考研真题详解第22章糖酵解作用22.1复习笔记22.2课后习题详解22.3名校考研真题详解第23章柠檬酸循环23.2课后习题详解23.3名校考研真题详解第24章生物氧化—电子传递和氧化磷酸化作用24.1复习笔记24.2课后习题详解24.3名校考研真题详解第25章戊糖磷酸途径和糖的其他代谢途径25.1复习笔记25.2课后习题详解25.3名校考研真题详解第26章糖原的分解和生物合成26.1复习笔记26.2课后习题详解26.3名校考研真题详解第27章光合作用27.1复习笔记27.2课后习题详解27.3名校考研真题详解第28章脂肪酸的分解代谢28.1复习笔记28.2课后习题详解28.3名校考研真题详解第29章脂类的生物合成29.1复习笔记29.2课后习题详解29.3名校考研真题详解第30章蛋白质降解和氨基酸的分解代谢30.1复习笔记30.2课后习题详解30.3名校考研真题详解第31章氨基酸及其重要衍生物的生物合成31.1复习笔记31.2课后习题详解31.3名校考研真题详解第32章生物固氮32.1复习笔记32.2课后习题详解32.3名校考研真题详解第33章核酸的降解和核苷酸代谢33.1复习笔记33.2课后习题详解33.3名校考研真题详解第34章DNA的复制和修复34.2课后习题详解34.3名校考研真题详解第35章DNA的重组35.1复习笔记35.2课后习题详解35.3名校考研真题详解第36章RNA的生物合成和加工36.1复习笔记36.2课后习题详解36.3名校考研真题详解第37章遗传密码37.1复习笔记37.2课后习题详解37.3名校考研真题详解第38章蛋白质合成及转运38.1复习笔记38.2课后习题详解38.3名校考研真题详解第39章细胞代谢与基因表达调控39.1复习笔记39.2课后习题详解39.3名校考研真题详解第40章基因工程及蛋白质工程40.1复习笔记40.2课后习题详解40.3名校考研真题详解第19章代谢总论19.1复习笔记一、新陈代谢概述1.定义(1)新陈代谢(metabolism)简称代谢,是营养物质在生物体内所经历的一切化学变化总称,是生物体表现其生命活动的重要特征之一。
王镜岩(第三版)生物化学下册课后习题答案
第19章代谢总论⒈怎样理解新陈代谢?答:新陈代谢是生物体内一切化学变化的总称,是生物体表现其生命活动的重要特征之一。
它是由多酶体系协同作用的化学反应网络。
新陈代谢包括分解代谢和合成代谢两个方面。
新陈代谢的功能可概括为五个方而:①从周围环境中获得营养物质。
②将外界引入的营养物质转变为自身需要的结构元件。
③将结构元件装配成自身的大分子。
④形成或分解生物体特殊功能所需的生物分子。
⑤提供机体生命活动所需的一切能量。
⒉能量代谢在新陈代谢中占何等地位?答:生物体的一切生命活动都需要能量。
生物体的生长、发育,包括核酸、蛋白质的生物合成,机体运动,包括肌肉的收缩以及生物膜的传递、运输功能等等,都需要消耗能量。
如果没有能量来源生命活动也就无法进行.生命也就停止。
⒊在能量储存和传递中,哪些物质起着重要作用?答:在能量储存和传递中,ATP(腺苷三磷酸)、GTP(鸟苷三磷酸)、UTP(尿苷三磷酸)以及CTP(胞苷三磷酸)等起着重要作用。
⒋新陈代谢有哪些调节机制?代谢调节有何生物意义?答:新陈代谢的调节可慨括地划分为三个不同水平:分子水平、细胞水平和整体水平。
分子水平的调节包括反应物和产物的调节(主要是浓度的调节和酶的调节)。
酶的调节是最基本的代谢调节,包括酶的数量调节以及酶活性的调节等。
酶的数量不只受到合成速率的调节,也受到降解速率的调节。
合成速率和降解速率都备有一系列的调节机制。
在酶的活性调节机制中,比较普遍的调节机制是可逆的变构调节和共价修饰两种形式。
细胞的特殊结构与酶结合在一起,使酶的作用具有严格的定位条理性,从而使代谢途径得到分隔控制。
多细胞生物还受到在整体水平上的调节。
这主要包括激素的调节和神经的调节。
高等真核生物由于分化出执行不同功能的各种器官,而使新陈代谢受到合理的分工安排。
人类还受到高级神经活动的调节。
除上述各方面的调节作用外,还有来自基因表达的调节作用。
代谢调节的生物学意义在于代谢调节使生物机体能够适应其内、外复杂的变化环境,从而得以生存。
(NEW)王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真题)详解 (2)
2.生物催化剂—酶 (1)定义 酶是推动生物体内全部代谢活动的工具。
(2)特点 ①高度专一性
酶对催化的反应和反应物有严格的选择性,往往只能催化一种或一类反 应。
②很高的催化效率
③活性受到调节
每种特殊的酶都有其调节机制,使错综复杂的新陈代谢过程成为高度协 调的、高度整合在一起的化学反应网络。
(3)将结构元件装配成自身的大分子,例如蛋白质、核酸、脂类以及 其他组分;
(4)形成或分解生物体特殊功能所需的生物分子;
(5)提供生命活动所需的一切能量。
二、分解代谢与合成代谢
1.分解代谢(catabolism)
(1)分解代谢
分解代谢是指从外界环境获得的或自身贮存的有机营养物通过一系列反 应步骤转变为较小的、较简单的物质的过程,与分解代谢相伴随的是能 量的释放。
(2)分解代谢途径
分解代谢途径是指分解代abolism)
合成代谢又称生物合成,是生物体利用小分子或大分子的结构元件建造 成自身大分子的过程。由小分子建造成大分子是使分子结构变得更为复 杂。这种过程都是需要提供能量的。
3.分解代谢与合成代谢途径的异同点
(1)不同点 ①同一种物质,其分解代谢和合成代谢途径一般是不相同的,他们并非 可逆反应,而是通过不同的中间反应或不同的酶来实现;
种化学反应的核苷酸类分子有ATP、GTP、UTP以及CTP等。
(3)自然界以ATP形式贮存的自由能的用途
①提供生物合成做化学功时所需的能量;
②是生物机体活动以及肌肉收缩的能量来源;
③供给营养物逆浓度梯度跨膜运输到机体细胞内所需的自由能;
④在DNA、RNA和蛋白质等生物合成中,保证基因信息的正确传递, ATP也以特殊方式起着递能作用。
生物化学王镜岩(第三版)课后习题解答全
第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。
糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。
多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。
糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。
同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。
糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。
单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。
因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。
任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。
单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。
许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。
这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。
成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。
在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。
生物化学王镜岩(第三版)课后习题解答全.
第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。
糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。
多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。
糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。
同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。
糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。
单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。
因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。
任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。
单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。
许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。
这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。
成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。
在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。
王镜岩 生物化学(第三版)配套练习及详解
王镜岩生物化学(第三版)配套练习及详解王镜岩-生物化学(第三版)配套练习及详解第一章蛋白质化学i主要内容一、蛋白质的生物学意义蛋白质是生物体内最为重要的有机化学物质之一,它几乎参与了生物体所有的生命活动,如生物体的构成、机体的运动、化学催化、机体的免疫保护、生物遗传信息的传递与表达等等,可以说蛋白质是一切生命活动的重要支柱,没有蛋白质就没有生命现象的存在,因此,蛋白质化学是生物化学中一个重要的研究方面。
二、蛋白质的元素组成蛋白质是由c、h、o、n、s等几种元素构成,其中c50-55%、h6-8%、o20-30%、n15-17%、s0-4%,且含量基本相同,因此通过测定蛋白质样品中元素含量就可以推测出样品中蛋白质的含量。
三、蛋白质的氨基酸组成(Ⅰ)氨基酸的结构和特性一般的蛋白质都是由20种氨基酸构成,这些氨基酸都是在蛋白质的合成过程中直接加进去的,并有专门的遗传密码与其对应,这些构成蛋白质的基本氨基酸称为天然氨基酸(通用氨基酸)。
天然氨基酸具有如下特点:1.20种天然氨基酸具有特殊的遗传密码,直接添加到蛋白质合成中。
2.除甘氨酸外,其他氨基酸至少含有一个手性碳原子。
3.除脯氨酸外,其他氨基酸为-氨基酸。
4.氨基酸虽有d、lc型之分,但存在于天然蛋白质中的氨基酸均为l-型氨基酸。
(二)天然氨基酸的分类1.根据氨基酸分子中氨基和羧基的相对数量进行分类2.根据氨基酸的分子结构进行分类3.根据氨基酸侧链的极性进行分类氨基酸根据其侧链基团在近中性的ph条件下是否带电荷以及带电荷的种类分成四类:非极性氨基酸、极性不带电荷氨基酸、极性带正电荷氨基酸、极性带负电荷氨基酸。
(三)稀有蛋白质氨基酸这一部分主要指存在于蛋白质中但含量较少的一类氨基酸。
蛋白质中的稀有氨基酸是在蛋白质合成后的加工过程中,在天然氨基酸的基础上,通过化学方法加入一些基团而形成的。
(4)非蛋白质氨基酸非蛋白质氨基酸是细胞中不参与天然蛋白质合成的一类氨基酸。
生物化学-王镜岩 朱圣庚-第三版课后习题答案(3至13章)
所有的α-氨基酸都能与茚三酮发生颜色反应。α-NH2与 2,4-二硝基氟苯(DNFB)作用 产生相应的DNP-氨基酸(Sanger反应);α-NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基 酸的苯胺基硫甲酰衍生物( Edman反应)。胱氨酸中的二硫键可用氧化剂(如过甲酸)或还 原剂(如巯基乙醇)断裂。半胱氨酸的SH基在空气中氧化则成二硫键。这几个反应在氨基酸 荷蛋白质化学中占有重要地位。
序列分析中的重要方法和技术有:测定 N-末端基的苯异硫氰酸酯(PITC)法,分析 C末端基的羧肽酶法,用于多肽链局部断裂的酶裂解和 CNBr 化学裂解,断裂二硫桥的巯基乙 醇处理,测定肽段氨基酸序列的 Edman 化学降解和电喷射串联质谱技术,重建多肽链一级序 列的重叠肽拼凑法以及用于二硫桥定位的对角线电泳等。
肽键(CO—NH)是连接多肽链主链中氨基酸残缺的共价键,二硫键是使多肽链之间交联 或使多肽链成环的共价键。
多肽链或蛋白质当发生部分水解时,可形成长短不一的肽段。除部分水解可以产生小肽 之外,生物界还存在许多游离的小肽,如谷胱甘肽等。小肽晶体的熔点都很高,这说明短肽 的晶体是离子晶格、n 和/或 Asp
Asx
B
半胱氨酸(cysteine)
Cys
C 脯氨酸(praline)
Pro
P
谷氨酰氨(glutamine)
Gln
Q 丝氨酸(serine)
生物化学 第三版 (王镜岩 朱圣庚 著) 课后答案(3至13章)
Gly
G
色氨酸(tryptophan)
His
H
酪氨酸(tyrosine)
Ile
I
缬氨酸(valine)
Trp
W
Tyr
Y
Val43;20%被解离时的溶液PH。[9.9]
解:pH = pKa + lg20% pKa = 10.53 (见表3-3,P133) pH = 10.53 + lg20% = 9.83
环的共价键。
w 后 多肽链或蛋白质当发生部分水解时,可形成长短不一的肽段。除部分水解可以产生小肽之外,生物界 课 还存在许多游离的小肽,如谷胱甘肽等。小肽晶体的熔点都很高,这说明短肽的晶体是离子晶格、在水溶
液中也是以偶极离子存在的。 测定蛋白质一级结构的策略是:(1)测定蛋白质分子中多肽链数目;(2)拆分蛋白质分子的多肽
m 相等,问这种蛋白质有多少种可能的排列顺序?[10100] o 解:1012000/120=10100 .c 2、有一个A肽,经酸解分析得知为Lys、His、Asp、Glu2、Ala以及Val、Tyr忽然两个NH3分子组成。当A肽
生物化学王镜岩(第三版)课后习题解答全.
第一章糖类1.环状己醛糖有多少个可能的旋光异构体,为什么?[25=32]解:考虑到C1、C2、C3、C4、C5各有两种构象,故总的旋光异构体为25=32个。
2.含D-吡喃半乳糖和D-吡喃葡萄糖的双糖可能有多少个异构体(不包括异头物)?含同样残基的糖蛋白上的二糖链将有多少个异构体?[20;32]解:一个单糖的C1可以与另一单糖的C1、C2、C3、C4、C6形成糖苷键,于是α-D-吡喃半乳基-D-吡喃葡萄糖苷、β-D-吡喃半乳基-D-吡喃葡萄糖苷、α-D-吡喃葡萄糖基-D-吡喃半乳糖苷、β-D-吡喃葡萄糖基-D-吡喃半乳糖苷各有5种,共5×4=20个异构体。
糖蛋白上的二糖链其中一个单糖的C1用于连接多肽,C2、C3、C4、C6用于和另一单糖的C1形成糖苷键,算法同上,共有4×4=16个,考虑到二糖与多肽相连时的异头构象,异构体数目为16×2=32个。
3.写出β-D-脱氧核糖、α-D-半乳糖、β- L-山梨糖和β-D-N-乙酰神经氨酸(唾液酸)的Fischer投影式,Haworth式和构象式。
4.写出下面所示的(A).(B)两个单糖的正规名称(D/L,α/β,f/p),指出(C).(D)两个结构用RS系统表示的构型(R/S)[A、α- D-f-Fru;B、α-L- p-Glc; C、R; D、S]5. L7-葡萄糖的α和β异头物的比旋[αD20]分别为+112.2°和+18.70°。
当α-D-吡喃葡糖晶体样品溶于水时,比旋将由+112.2°降至平衡值+52.70°。
计算平衡混合液中α和β异头物的比率。
假设开链形式和呋喃形式可忽略。
[α异头物的比率为36.5%,β异头物为63.5%]解:设α异头物的比率为x,则有112.2x+18.7(1-x)=52.7,解得x=36.5%,于是(1-x)= 63.5%。
6.将500 mg糖原样品用放射性氰化钾(K14CN)处理,被结合的14CN—正好是0.193μmol,另一500 mg同一糖原样品,用含3% HCl的无水甲醇处理,使之形成还原末端的甲基葡糖苷。
王镜岩_徐长法_朱圣庚_主编,生物化学_第三版_课后习题解答全__上册1-13章,下册19
生物化学王镜岩(第三版)课后习题解答全(上册1-13章,下册19-40章)第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。
糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。
多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。
糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。
同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。
糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。
单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。
因此含n个C*的单糖有2n 个旋光异构体,组成2n-1对不同的对映体。
任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。
单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。
许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。
这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。
成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。
在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。
《生物化学》(王镜岩版)课后习题详细解答
《⽣物化学》(王镜岩版)课后习题详细解答⽣物化学(第三版)课后习题详细解答第三章氨基酸1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、⾕氨酰氨、⾕氨酸、苯丙氨酸、⾊氨酸和酪氨酸。
[见表3-1]表3-1 氨基酸的简写符号2、计算赖氨酸的εα-NH320%被解离时的溶液PH。
[9.9]解:pH = pKa + lg20% pKa = 10.53 (见表3-3,P133)pH = 10.53 + lg20% = 9.833、计算⾕氨酸的γ-COOH三分之⼆被解离时的溶液pH。
[4.6]解:pH = pKa + lg2/3% pKa = 4.25pH = 4.25 + 0.176 = 4.4264、计算下列物质0.3mol/L溶液的pH:(a)亮氨酸盐酸盐;(b)亮氨酸钠盐;(c)等电亮氨酸。
[(a)约1.46,(b)约11.5, (c)约6.05]5、根据表3-3中氨基酸的pKa值,计算下列氨基酸的pI值:丙氨酸、半胱氨酸、⾕氨酸和精氨酸。
[pI:6.02;5.02;3.22;10.76]解:pI = 1/2(pKa1+ pKa2)pI(Ala) = 1/2(2.34+9.69)= 6.02pI(Cys) = 1/2(1.71+10.78)= 5.02pI(Glu) = 1/2(2.19+4.25)= 3.22pI(Ala) = 1/2(9.04+12.48)= 10.766、向1L1mol/L的处于等电点的⽢氨酸溶液加⼊0.3molHCl,问所得溶液的pH是多少?如果加⼊0.3mol NaOH以代替HCl 时,pH将是多少?[pH:2.71;9.23]7、将丙氨酸溶液(400ml)调节到pH8.0,然后向该溶液中加⼊过量的甲醛,当所得溶液⽤碱反滴定⾄Ph8.0时,消耗0.2mol/L NaOH溶液250ml。
问起始溶液中丙氨酸的含量为多少克?[4.45g]8、计算0.25mol/L的组氨酸溶液在pH6.4时各种离⼦形式的浓度(mol/L)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19章代谢总论⒈怎样理解新陈代谢?答:新陈代谢是生物体内一切化学变化的总称,是生物体表现其生命活动的重要特征之一。
它是由多酶体系协同作用的化学反应网络。
新陈代谢包括分解代谢和合成代谢两个方面。
新陈代谢的功能可概括为五个方而:①从周围环境中获得营养物质。
②将外界引入的营养物质转变为自身需要的结构元件。
③将结构元件装配成自身的大分子。
④形成或分解生物体特殊功能所需的生物分子。
⑤提供机体生命活动所需的一切能量。
⒉能量代谢在新陈代谢中占何等地位?答:生物体的一切生命活动都需要能量。
生物体的生长、发育,包括核酸、蛋白质的生物合成,机体运动,包括肌肉的收缩以及生物膜的传递、运输功能等等,都需要消耗能量。
如果没有能量来源生命活动也就无法进行.生命也就停止。
⒊在能量储存和传递中,哪些物质起着重要作用?答:在能量储存和传递中,ATP(腺苷三磷酸)、GTP(鸟苷三磷酸)、UTP(尿苷三磷酸)以及CTP(胞苷三磷酸)等起着重要作用。
⒋新陈代谢有哪些调节机制?代谢调节有何生物意义?答:新陈代谢的调节可慨括地划分为三个不同水平:分子水平、细胞水平和整体水平。
分子水平的调节包括反应物和产物的调节(主要是浓度的调节和酶的调节)。
酶的调节是最基本的代谢调节,包括酶的数量调节以及酶活性的调节等。
酶的数量不只受到合成速率的调节,也受到降解速率的调节。
合成速率和降解速率都备有一系列的调节机制。
在酶的活性调节机制中,比较普遍的调节机制是可逆的变构调节和共价修饰两种形式。
细胞的特殊结构与酶结合在一起,使酶的作用具有严格的定位条理性,从而使代谢途径得到分隔控制。
多细胞生物还受到在整体水平上的调节。
这主要包括激素的调节和神经的调节。
高等真核生物由于分化出执行不同功能的各种器官,而使新陈代谢受到合理的分工安排。
人类还受到高级神经活动的调节。
除上述各方面的调节作用外,还有来自基因表达的调节作用。
代谢调节的生物学意义在于代谢调节使生物机体能够适应其内、外复杂的变化环境,从而得以生存。
⒌从“新陈代谢总论”中建立哪些基本概念?答:从“新陈代谢总论”中建立的基本概念主要有:代谢、分解代谢、合成代谢、递能作用、基团转移反应、氧化和还原反应、消除异构及重排反应、碳-碳键的形成与断裂反应等。
⒍概述代谢中的有机反应机制。
答:生物代谢中的反应大体可归纳为四类,即基团转移反应;氧化-还原反应;消除、异构化和重排反应;碳-碳键的形成或断裂反应。
这些反应的具体反应机制包括以下几种:酰基转移,磷酰基转移,葡糖基基转移;氧化-还原反应;消除反应,分子内氢原子的迁移(异构化反应),分子重排反应;羟醛综合反应,克莱森酯综合反应,β-酮酸的氧化脱羧反应。
⒎举列说明同位素示踪法和波谱法在生物化学研究中的重要作用。
答:同位素示踪法和波谱法生物化学中研究新陈代谢的两种重要方法。
同位素示踪法不改变被标记化合物的化学性质,已成为生物化学以及分子生物学的研完中一种重要的必不可少的常规先进技术。
如:1945年David Shemin和David Rittenberg 首先成功地用14C 和15N标记的乙酸和甘氨酸怔明了血红素分子中的全部碳原子和氮原子都来源于乙酸利甘氨酸;胆固醇分子中碳原子的来源也是用同样的同位空示踪法得到闸明的。
核磁共振波谱法对于样品不加任何破坏,因此,在生物体的研究得到广泛的应用。
例如在生物化学、生理学以及医学等方面都广泛位用核磁共振波谱技术对生活状态的人体进行研究,取得了重要的研究成果,其中最为人知的实验是1986年用核磁共振波谱法对人体前臂肌肉在运动前和运动后的比较研究。
第20章生物能学⒈就某方面而言,热力学对生物化学工作者更为重要,为什么?答:生物能学是深人理解生物化学特别是理解主物机体新陈代谢规律不可缺少的基本知识。
它是生物化学中涉及生活细胞转移和能量利用的基本间题。
生物能学完全建立在热力学的基础上,因此,从这个角度看,热力学对生物化学工作者更为重要。
⒉考虑下面提法是否正确?①在生物圈内,能量只是从光养生物到异养生物,而物质却能在这两类生物之间循环。
②生物机体可利用体内较热部位的热能传递到较冷的部位而做功。
③当一个系统的熵值降低到最低时,该系统处于热力学平衡状态。
④当ΔG0’值为0.0时,说明反应处于平衡状态。
⑤ATP水解成ADP的反应,ΔG0’约等于ΔG0。
答:①-是,②- 非,③-非,④- 非,⑤-非⒊怎样可判断一个化学反应能够自发进行?答:一个化学反应的自由能是否降低是判断它是否可以自发进行的标准。
只有自由能变化为负值的化学反应,才能自发进行。
⒋怎样判断一个化学反应进行的方向?当反应物和产物的起始浓度都为1mol时,请判断下列反应的进行方向。
(参看表20-3中的数据)。
①磷酸肌酸+ADP Ⅼ⒜⒜⒜→ATP+肌酸②磷酸烯醇式丙酮酸+ADP Ⅼ⒜⒜⒜→丙酮酸+ATP③葡萄糖6-磷酸+ADP Ⅼ⒜⒜⒜→ATP+葡萄糖答:一个化学反应是从总能量高的体系向总能量低的体系变化,即可根据化学反应式两边体系总能量的大小来判断其方向。
根据表20-3中的数据:①-向右,②-向右,③-向左。
⒌解释ATP的γ-磷酸基团转运到葡萄糖6-磷酸的磷酸脂键(ΔG0’=13.8kJ/mol)上,一般情况下,为什么在热力学上可行?逆反应是否可行?答:由于ATP的γ-磷酸基团的ΔG0’=32.2kJ/mol大于葡萄糖6-磷酸的磷酸脂键的ΔG0’=13.8kJ/mol,因此,一般情况下,ATP的γ-磷酸基团转运到葡萄糖6-磷酸的磷酸脂键上在热力学上可行的。
在某些情况下,当该反应的ΔG值为正值时,该反应的逆反应可行。
⒍从ATP的结构特点说明ATP在能量传递中的作用。
答:ATP也叫做腺苷三磷酸、三磷酸腺苷、腺三磷,是高能磷酸化合物的典型代表。
高能磷酸化合物的特点是:它的高能磷酸键(也即酸酐键,用“~”表示),水解时释放出的化学能是正常化学键释放化学能的2倍以上(一般在20.92 kJ/mol以上)。
ATP是由一分子腺嘌呤、一分子核糖和三个相连的磷酸基团构成的。
这三个磷酸基团从与分子中腺苷基团连接处算起,依次分别称为α、β、γ磷酸基团。
ATP的结构式是:分析ATP的结构式可以看出,腺嘌呤与核糖结合形成腺苷,腺苷通过核糖中的第5位羟基,与3个相连的磷酸基团结合,形成ATP。
ATP分子既可以水解一个磷酸基团(γ磷酸基团),而形成二磷酸腺苷(ADP)和磷酸(Pi);又可以同时水解两个磷酸基团(β磷酸基团和γ磷酸基团),而形成一磷酸腺苷(AMP)和焦磷酸(PPi;AMP可以在腺苷酸激酶的作用下,由ATP提供一个磷酸基团而形成ADP,ADP又可以迅速地接受另外的磷酸基团而形成ATP。
另外,ATP的ΔG0’值在所有含磷酸基团的化合物中处于中间位置。
这使ATP有可能在磷酸基团转移中作为中间传递体而起作用。
⒎ATP水解成ADP+Pi的ΔG0’是-30.5kJ/mol,①试计算此反应中的平衡常数。
②此反应在细胞内是否处于平衡状态?答:①K'eq=2.2×105 ;②否]⒏在细胞内是否ATP水解的ΔG0通常比ΔG0’更负?为什么?[是,ΔG'=ΔG0’+RTInK,ΔG'≈-41.84kJ/mol]⒐利用表20-3的数据试计算:ATP+丙酮酸Ⅼ⒜⒜⒜→磷酸烯醇式丙酮酸+ADP的反应在25℃下,其ΔG0’和K'eq值。
若ATP与ADP之比为10时,求丙酮酸与磷酸烯醇式丙酮酸的平衡比。
答:ΔG0’=+31.38kJ/mol,K'eq=3.06×106,平衡比是3.82×104。
⒑假设有一个由A向B的转化反应(A⒜→B),它的ΔG0’=20kJ/mol请计算:①在达到平衡时[B]/[A]的比值。
②假设A和B参加的反应与ATP水解为ADP和Pi同时进行,总反应是:A+ATP+H2O ⒜⒜⒜→B+ADP+Pi请计算此反应达平衡时[B]/[A]的比值,假设ATP 、ADP和Pi都是1mol浓度,请问在什么时候反应才达到到平衡?③已知[ATP] 、[ADP]和[Pi]在生理条件下都远非1mol浓度。
当和浓度依次为[ATP] 、[ADP]和[Pi]8.05mmol,0.93mmol和8.05mmol时,求出一个与偶联反应的[B]/[A]比值。
答:①比值=3.1×10-4 ②[B]/[A]=69.4 ③[B]/[A]=7.5×104第21章生物膜与物质运输⒈试述物质的被动运输和主动运输的基本特点。
研究物质运输的意义是什么?答:主动运输是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向高浓度的一侧进行跨膜转运的方式,需要与某种释放能量的过程相偶联。
主动运输过程可分为由ATP直接提供能量和间接提供能量等基本类型。
被动运输包括简单扩散和载体介导的协助扩散,运输方向是由高浓度向低浓度,运输的动力来自物质的浓度梯度,不需要细胞提供代谢能量。
⒉什么是Na+泵和Ca+泵,其生理作用是什么?答:Na+/K+泵是动物细胞中由ATP驱动的将Na+ 输出到细胞外同时将K+输入细胞内的运输泵,又称Na+泵或Na+/K+交换泵。
实际上是一种Na+ /K+ ATPase。
Na+ /K+ ATPase是由两个大亚基(α亚基)和两个小亚基(β亚基)组成。
α亚基是跨膜蛋白,在膜的内侧有ATP结合位点,细胞外侧有乌本苷(ouabain)结合位点;在α亚基上有Na+和K+结合位点。
其生理意义: Na+/K+ 泵具有三个重要作用,一是维持了细胞Na+离子的平衡,抵消了Na+离子的渗透作用;二是在建立细胞质膜两侧Na+离子浓度梯度的同时,为葡萄糖协同运输泵提供了驱动力;三是Na+泵建立的细胞外电位,为神经和肌肉电脉冲传导提供了基础。
Ca2+-ATPase有10个跨膜结构域,在细胞膜内侧有两个大的细胞质环状结构,第一个环位于跨膜结构域2和3之间,第二个环位于跨膜结构域4和5之间。
在第一个环上有Ca2+离子结合位点;在第二个环上有激活位点,包括ATP的结合位点。
Ca2+-ATPase的氨基端和羧基端都在细胞膜的内侧,羧基端含有抑制区域。
在静息状态,羧基端的抑制区域同环2的激活位点结合,使泵失去功能,这就是自我抑制。
Ca2+-ATPase泵有两种激活机制,一种是受激活的Ca2+/钙调蛋白(CaM)复合物的激活,另一种是被蛋白激酶C激活。
当细胞内Ca2+浓度升高时,Ca2+同钙调蛋白结合,形成激活的Ca2+/钙调蛋白复合物,该复合物同抑制区结合,释放激活位点,泵开始工作。
当细胞内Ca2+浓度下降时,CaM同抑制区脱离,抑制区又同激活位点结合,使泵处于静息状态。
在另一种情况下,蛋白激酶C使抑制区磷酸化,从而失去抑制作用;当磷酸酶使抑制区脱磷酸,抑制区又同激活位点结合,起抑制作用。