20172018高一数学上学期期末考试试题及答案.doc

合集下载

2017-2018学年高一数学上学期期末统一考试试题及答案(新人教A版 第34套)

2017-2018学年高一数学上学期期末统一考试试题及答案(新人教A版 第34套)

中山市高一级2017-2018学年度第一学期期末统一考试数学科试卷本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。

共150分,考试时间100分钟。

注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上.2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上.3、不可以使用计算器.4、考试结束,将答题卡交回,试卷不用上交.5、参考公式:球的体积公式34,3V R π=球,其中R 是球半径. 锥体的体积公式V锥体13Sh =,其中S 是锥体的底面积,h 是锥体的高. 台体的体积公式V台体1()3h S S '=+,其中,S S '分别是台体上、下底面的面积,h 是台体的高.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的)1.已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则A .AB ⊆ B .C B ⊆ C .D C ⊆ D .A D ⊆ 2.下列函数中,在区间()0,1上是增函数的是( )A .x y =B .x y -=3C .xy 1=D .42+-=x y3.在同一坐标系中,函数y =x-2与y =log 2 x 的图象是( ).ABCD4.如左图是一个物体的三视图,则此三视图所描述的物体是下列几何 体中的( )正视图左视图俯视图5.已知lg 2,lg3,a b ==则lg 45的值用a ,b 表示为 ( ) A .21b a +-B .12b a +-C .3a b +D .2a b b ++6.若函数22)(23--+=x x x x f 的一个正数零点附近的函数值用二分法逐次计算,得到如下参考数据: 那么方程02223=--+x x x 的一个近似根(精确到0.1)为A .1.2B .1.3C .1.4D .1.57.若213211()(),22a a +-<则实数a 的取值范围是 A .(1,)+∞B .1(,)2+∞C .(,1)-∞D .1(,)2-∞8.已知直线b kx y +=经过一、二、三象限,则有( )A .k<0,b <0B .k<0,b>0C .k>0,b>0D .k>0,b<09.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒④//,//,m n m n αβαβ⊥⇒⊥其中正确命题的序号是( ) A .①③B .②④C .①④D .②③10.若()21231log log log 0a a a x x x ++==>,则123,,x x x 之间的大小关系为( ).A .3x <2x <1xB .2x <1x <3xC .1x <3x <2xD .2x <3x <1x第Ⅱ卷(非选择题 共100分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上) 11.点(1,1) 到直线:3430l x y ++=的距离为 . 12.某同学利用TI-Nspire 图形计算器作图作出幂函数34()f x x =的图象如右图所示. 结合图象,可得到34()f x x =在区间[1,4]上的最大值为 .ABCD(结果用最简根式表示)13.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .14.过点P (3,0)的直线m ,夹在两条直线03:1=++y x l 与022:2=--y x l 之间的线段恰被点P 平分,那么直线m 的方程为三、解答题:(本大题共 6 小题,共 80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分12分) (I)求值:022*******log 9log 3log 3log --+;(Ⅱ)设函数f (x )是定义在R 上的偶函数,且)2()(-=x f x f ,当x∈[0,1]时,1)(+=x x f ,求)23(f 的值.16.(本小题满分14分)(I)求两条平行直线01243=-+y x 与068=++y mx 之间的距离; (Ⅱ)求两条垂直直线022=++y x 与024=-+y nx 的交点坐标.17.(本小题满分13分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC ;(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.18.(本小题满分13分)A 、B 两城相距100km ,在两地之间距A 城x km 处D 地建一核电站给A 、B 两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数25.0=λ.若A 城供电量为20亿度/月,B 城为10亿度/月.(I)把月供电总费用y 表示成x 的函数,并求定义域;B 1 CB A DC 1A 1。

最新-高一数学上学期期末考试试题及答案

最新-高一数学上学期期末考试试题及答案

2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己の姓名、座号、考籍号分别填写在试卷和答题纸规定の位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体の体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高2.球の表面积公式24S R π=,球の体积公式343R V π=,其中R 为球の半径.一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出の四个选项中,只有一项是符合题目要求の.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线の两条直线 ( )A .平行B .相交C .异面D .以上均有可能 3.已知幂函数()αx x f =の图象经过点⎝ ⎛⎭⎪⎫2,22,则()4f の值等于 ( ) A .16 B.116 C .2 D.124. 函数()lg(2)f x x =+の定义域为 ( )A.(-2,1)B.[-2,1]C.()+∞-,2D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP|の最小值为 ( )AB .CD .26.设m 、n 是两条不同の直线,α、β是两个不同の平面,则下列命题中正确の是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上の奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭の值域是 ( )A .RB .⎣⎢⎡⎭⎪⎫12,+∞ C .(2,+∞) D. (0,+∞) 9.已知圆0964:221=+--+y x y x c ,圆019612:222=-+++y x y x c ,则两圆位置关系是 ( )A .相交B .内切C .外切D .相离10. 当10<<a 时,在同一坐标系中,函数xay -=与x y a log =の图象是 ( )A. B. C. D.11. 函数f(x)=e x-x1の零点所在の区间是 ( ) A.(0,21) B. (21,1) C. (1,23) D. (23,2) 、12. 已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若(21)()f a f a +>,则实数a の取值范围是( )A .1(,1)(,)3-∞-⋃-+∞ B . (,3)(1,)-∞-⋃-+∞C . 1(1,)3-- D .(3,1)--第Ⅱ卷(非选择题,共72分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 计算 =+⨯+2lg 5lg 2lg )5(lg 2________.14. 已知直线013:1=-+y ax l 与直线()0112:2=+-+y a x l 垂直,则实数a =_____. 15. 已知各顶点都在一个球面上の正方体の棱长为2,则这个球の体积为 . 16. 圆心在y 轴上且通过点(3,1)の圆与x 轴相切,则该圆の方程是 .三、解答题:本大题共6小题, 共56分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设集合{|13}A x x =-≤<,{|242}B x x x =-≥-, {|1}C x x a =≥-.(Ⅰ)求A B ;(Ⅱ)若B C C =,求实数a の取值范围.18.(本小题满分10分)已知函数()log (1)log (3) (01)a a f x x x a =-++<<. (Ⅰ)求函数()f x の零点;(Ⅱ)若函数()f x の最小值为4 ,求a の值.19.(本小题满分12分)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (Ⅰ)当a 为何值时,直线l 与圆C 相切;(Ⅱ)当直线l 与圆C 相交于A ,B 两点,且AB =22时,求直线l の方程.20.(本小题满分12分)三棱柱ABC ﹣A 1B 1C 1中,CC 1⊥平面ABC ,△ABC 是边长为4の等边三角形,D 为AB 边中点, 且CC 1=2AB .(Ⅰ)求证:平面C 1CD⊥平面ADC 1; (Ⅱ)求证:AC 1∥平面CDB 1; (Ⅲ)求三棱锥D ﹣CAB 1の体积.21. (本小题满分12分)已知f (x )是定义在[-1,1]上の奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f a +f ba +b>0成立.(Ⅰ)判断f (x )在[-1,1]上の单调性,并证明; (Ⅱ)解不等式:()()x f x f 3112-<-;(Ⅲ)若f (x )≤m 2-2am +1对所有のa ∈[-1,1]恒成立,求实数m の取值范围.2017-2018学年高一上学期期末考试高一数学答案一、选择题C D D D B D A B C D B A 二、填空题13、1 14、35 15、16、x 2+y 2-10y =0三、解答题17、解: (Ⅰ)由题意知,{|2}B x x =≥分 所以{}|23A B x x ⋂=≤<分 (Ⅱ)因为B C C ⋃=,所以B C ⊆分 所以12a -≤,即3a ≤分18、解:(Ⅰ)要使函数有意义:则有1030x x -⎧⎨+⎩>>,解之得:31x -<<2分函数可化为2()log (1)(3)log (23)a a f x x x x x =-+=--+由()0f x =,得2231x x --+=即2220xx +-=,1x =-±(3,1)±-∵-1()f x ∴の零点是1-5分(Ⅱ)函数化为:22()log (1)(3)log (23)log (1)4a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦31x -∵<< 201)44x ++≤∴<-(7分01a ∵<<2log (1)4log 4a a x ⎡⎤-++≥⎣⎦∴即min ()log 4a f x =由log 44a =-,得44a-=,14242a -==∴ 10分19、解:(Ⅰ)若直线l 与圆C 相切,则有圆心(0,4)到直线l :ax +y +2a =0の距离为21242=++a a3分解得43-=a . 5分 (Ⅱ)过圆心C 作CD ⊥AB ,垂足为D.则由AB =22和圆半径为2得CD = 27分因为21242=++=a a CD所以解得7-=a 或1-.故所求直线方程为7x -y +14=0或x -y +2=0.10分20、解:(Ⅰ)∵CC 1⊥平面ABC ,又AB ⊂平面ABC ,∴CC 1⊥AB ∵△ABC 是等边三角形,CD 为AB 边上の中线,∴C D ⊥AB2分∵CD ∩CC 1=C ∴AB ⊥平面C 1CD∵AB ⊂平面ADC 1∴平面C 1CD⊥平面ADC 1; 4分(Ⅱ)连结BC 1,交B 1C 于点O ,连结DO .则O 是BC 1の中点,DO 是△BAC 1の中位线.∴DO∥AC 1.∵DO ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1;8分(Ⅲ)∵CC 1⊥平面ABC ,BB 1∥CC 1,∴BB 1⊥平面ABC .∴BB 1 为三棱锥D ﹣CBB 1 の高.=.∴三棱锥D ﹣CAB 1の体积为.12分21、解:(Ⅰ)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+f -x 2x 1+-x 2·(x 1-x 2),2分由已知得f x 1+f -x 2x 1+-x 2>0,x1-x2<0,∴f(x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增. 4分(Ⅱ)∵f(x)在[-1,1]上单调递增,∴⎪⎩⎪⎨⎧-<-≤-≤-≤-≤-x xxx3112131111216分∴不等式の解集为⎭⎬⎫⎩⎨⎧<≤520x x . 7分(Ⅲ)∵f(1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]恒成立. 9分下面来求m の取值范围.设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为aの一次函数,若g (a)≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0且g (1)≥0,∴m ≤-2或m ≥2. 综上,m =0 或m ≤-2或m ≥212分。

安徽省滁州市2017-2018学年高一上学期期末考试数学试题Word版含解析

安徽省滁州市2017-2018学年高一上学期期末考试数学试题Word版含解析

滁州市2017-2018学年第一学期高一期末考试数学试卷第I 卷(选择题共60分)一、选择题:本大题共 12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的•1. 设集合.;.:丨二丨:丨;:,则占:「一 ( )A. :B.C. 、D.【答案】D【解析】并集由两个集合公共元素构成,故A u B = {1.2.3.4}.42. 已知角 的始边是 轴的正半轴,终边经过点:-<-:,且、I ,则I .、E ()4 3 43A. B. ——C. 一 D.3 434【答案】A3Sinn 4【解析】依题意可知,故'■■■■ = =.5coaa 35.若幕函数[文=叮的图象过点 ,则满足 的实数 的取值范围是()A.B. C. D.【答案】BA. 3B. 2C.D. I 十 ':•【答案】D1 I14若」卅打二1=()—;:-/<-<■?...;.-二,故I 口〕巧|【解析】原式4.已知向量匕一―二■' 一、 A. .. B. 9 C. 13 D.【答案】C【解析】由于两个向量垂直,故斗1 L【解析】依题意有〒x- 1 > l,x > 2f(x- i)=(x- iy> 1“6.函数il\iS..-!:■■.:「丰|弋I 的最大值是( )4 2 1 A. B.C. 1D.333【答案】B122 【解析】..,故最大值为-.3337.下列函数是奇函数,且在上是增函数的是( )十 1X —1….A. -------------B.------ C. [:=八:D. ■- - : IXX【答案】B【解析】选项为偶函数,选项为非奇非偶函数.选项 > ='在为减函数,在为x增函数.」.•选项:.=•:在:* - ■- ■上为增函数,符合题意.X【点睛】本题主要考查函数的奇偶性和单调性 .判断函数的奇偶性,首先判断函数的定义域是否关于原点对称, 选项定义域显然不关于原点对称,故为非奇非偶函数简后看等于还是..函数的单调性中< = •::"是对钩函数,在不是递增函数.x8.若•.,是第二象限角,则【答案】C.21 — . f 珂忑一&与帀•:. - .JJ ■■.:■: u ,故-n i| 2'.' |、 -...12 .." J I【点睛】本题主要考查同角三角函数的基本关系式,考查二倍角公式和两角差的正弦公式 先根据角的正弦值和所在的象限,求得角的余弦值,然后利用二倍角公式求得 的正弦值和余弦值,最后利用两角差的正弦公式展开所求式子,代入已知数值即可求得最后结果10. 在平行四边形中,是TC 中点,是三三中点,若\i.然后计算,化A.B.161616D.16【解析】由于角为第二象限角,故-',所以-I 门..."一厂48162a H)=34V °【答案】CD.【解析】,故函数的零点在区间in.\'-: : 则()A.B.C.D. I" i'42442224【答案】A 【解析】连接,由于0为;山中点,故.222) 4 2ii.曲线厂?二:w ,曲线;二;:心,下列说法正确的是 ()JEA.将 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移•个单位,得41兀到 B. 将 上所有点横坐标缩小到原来的 ,纵坐标不变,再将所得曲线向左平移个单2 4位,得到C.将 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移•个单位,得2一 1 一、JI到 D. 将 上所有点横坐标缩小到原来的 「,纵坐标不变,再将所得曲线向左平移 ;个单位,得到 【答案】B即h] /兀,故首先横坐标缩小到原来 得到 ,再向左平移 个单位得到 .故选.12.若不等式-■<..:: I ■▼对任意的巴:心+ 恒成立,则的取值范围是 ()【答案】D 【解析】当时,原不等式化为,不恒成立,排除,故选.HC. I-. - ■- 'D.-I GO第n卷(非选择题共90分)【答案】01 J【点睛】本题主要考查三角函数降次公式・考查AsirKsx + Q )- ACOStUJX +(D )的单调区间的求法•由 于题目给定明数是二次的形式,故首先利用降次公式将原函数化为次数为一次的形式•然后求出函数所 有的单调递减区间•再结合题目所给定的区间,列不等式组,可求得U )的取值范围+二、填空题:本大题共 4小题,每小题5分,满分20分,将答案填在答题纸上…卄cosfi m13.右,^ 9|.:口「『—- 【答案】3【解析】分子分母同时除以/ tancx 、:、得 ---tana + 12tana 1=、,解得心:二故」:◎:=.=l-tan _a 3【答案】10g^(l I x),x > 0l-x,x<0ii ' : 1八,二十故原式=.15.若函数J 二I 「::•在|…:|是单调函数,则实数的取值范围是【答案】(y 弓【解析】由于函数为二次函数,对称轴为 ' ,只需对称轴不在区间3 2a 31-,解得V 、:《上..2 2 2【点睛】本题主要考查二次函数单调区间的知识.对于二次函数来说,它的单调区间主要由开口方向和对称轴来决定.当开口向上时,左减右增,当开口向下是,左增右减 .本题中由于题 目只需要区间上的单调函数,不需要递增还是递减,故只需对称轴不在给定区间内即可16.已知函数.=oos 2(rox-5 在区间 内单调递减,则 的最大值为【解析】f(x) COS 2tOX ——,,、,,,,3T3/,根据单调性有2k?i < 2ox — < 2戲+兀,-------------- 327CkTC ~l ---解得--------- < x<2兀k?c +T ,故©OT7T,kjt + -67Um 62兀k^ +3 2?r,解得 H (O > 6k+ 13,, 当 k = 0 时 oo= I o><-k+I ,当时,2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合 ::i ::(1) 求i m(2) 若■- z ,求实数的取值范围.【答案】(1)I ; 「UP ; (2)[【解析】【试题分析】(1)首先求得-.:■<:,由此求得.二门三.―二的值.(2)— 由于.1…丨匸| 「,故:.,解得发乙【试题解析】 解::•: I 、..;;丨;:■- ■:(1) 2 门丨; 「 •. : U 丨-:: (2)T 二-J :.宀•-H ,••• =心 r r : J已知向量 I'. ■ I- 1 I ' 1 - < I 1 ■•-,二,• .18. (1) 若与共线,求的值;(2) 记I 卜,求「I ,啲最大值和最小值,及相应的的值.兀兀【答案】(1)〔 = (2)当1 =时,ii”取得最大值2;当飞-:时,取得最小值-1 .【解析】【试题分析】(1)利用两个向量共线,则有 v ;m ,解方程求得 的值.(2)利用向量坐标运算化简 ,进而求得「I"的最大值和最小值,及相应的 的值.【试题解析】解:(1):与共线,二「冷-「心门7T4 —■ / Kv(2) Z ;.卜I -"-I!..】-i --< sin x + -2 I 6.J7T,二 ,J C 7CJL当^一 -即时, 取得最大值2;当,即 时,取得最小值-1 .6 23663x I 119.已知函数i 「':的图象过点 -.x -I- a(1)若H = w ,求实数的值;(2)当::二|「.I |时,求函数的取值范围. 【答案】(1)• - (2)-【解析】【试题分析】(1)将点 •代入函数,由此求得的值,进而得出的表达式•解方程ii 、;;,可求得实数 的值•( 2)将:;I 分离常数,得到,它在I 「.1|上为减函数,x -2在区间端点取得最小值和最大值.由此求得函数的值域• 【试题解析】 解: ( 1)『:!,「• 一 ,1 + a弓/ + 1- ', X 2-2显然 在 与.上都是减函数, 「T ,「. 在上是减函数,7 7 :-••三• 「-7- 120.函数'■.:.; : ■. ': >■.- ■' 的部分图象如图所示.(1) 求•-•二4的值; (2)求图中的值及函数 的递增区间.JC ?7C【答案】(1)「= ”( 2) •: = !.【解析】【试题分析】(1)根据图像最大值求得.,根据;:]可求得,在根据图f 兀 \兀像上一个点I 石厂习,可求得舉的值• (2)利用此。

2017-2018高一数学上学期期末考试(带答案)

2017-2018高一数学上学期期末考试(带答案)

2017-2018学年上学期期末考试 高中一年级 数学 参考答案一、选择题二、填空题13. 1314. {}6,5,2- 15.55-16. {}1,0,1-三、解答题17.解:{}1A aa=-,,{}2,B b =,.................................2分 (Ⅰ)若2a =,则{}12A =,,A B=∴11b a =-=.若12a -=,则3a =,{}23A =,,∴3b =.综上,b的值为1或3.......................................5分 (Ⅱ)∵{|24}C x x =<<,,A C C A C=∴⊆,.................................7分 ∴24,214a a <<⎧⎨<-<⎩∴34a <<. ∴a的取值范围是(3,4).......................................10分 18.解:(I)直线BC的斜率32141BC k +==+.∴BC边上的高线斜率1-=k,........................... ......3分∴BC边上的高线方程为:()23y x-=-+即:10x y++=,......................... ..............6分(II) )2,1(),3,4(--CB由)2,1(),3,4(--CB得直线BC的方程为:10x y--=........................... ......9分A∴到直线BC的距离d==1152ABC S ∆∴=⨯=........................................12分19.解:根据上表销售单价每增加1元日均销售量就减少40桶,设在进价基础上增加x 元后,日均销售利润为y 元,而在此情况下的日均销售量就为()48040152040x x--=-,.......................3分 由于x >,且520x ->,即0x <<,.......................................6分于是,可得()520y x =-240522,x xx =-+-<<.......................9分 易知,当6.5x =时,y有最大值,所以,只需将销售单价定为11.5元,就可获得最大的利润.......................12分 20.证明(Ⅰ)CDEFABCD 平面平面⊥,CDCDEF ABCD =平面平面 ,在正方形CDEF中,ED DC ⊥∴ABCDED 平面⊥,ED BC∴⊥.................................2分取DC的中点G连接BG,12DG DC =,在四边形ABCD中,//,AB DC 12AB DC =,ABGD四边形∴为平行四边形,所以,点B在以DC为直径的圆上,所以DB BC⊥,............................4分 又ED BD D=,所以BBC 平面⊥,......................................6分 (Ⅱ)如图,取DC的中点G,连接AG,在DC上取点P使13DP DC =,连接NP13D ND P D ED C ==,//PN EC ∴,//PN BCE∴面,................8分连接MP,23DM DP G DC DA DG ∴==为中点,,//MP AG ∴.又//,,AB CG AB CG ABCG=∴为平行四边形,//AG BC∴,//MP BC∴,//MP BCE∴面,.................................10分 又MP NP P=,MNP BCE ∴平面//平面. MNPMN 平面⊂ ,所以MN//平面B........................................12分21.解:(Ⅰ)当3m =时, f(x)为R 上的奇函数。

高一数学上学期期末考试试题(含解析)

高一数学上学期期末考试试题(含解析)

2017―2018学年度第一学期期末试题高一年级数学一、选择题(本大题共12小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的)、1。

设集合 ,则( )A、 B、C。

D、【答案】B2、下列函数中,在其定义域上既是奇函数又是增函数的为( )A。

B、 C、 D。

【答案】D【解析】试题分析:A、是增函数但不是奇函数;B、是奇函数然而为减函数;是奇函数,但在定义域上不是增函数;D、,首先,,故该函数是奇函数,其次,该函数是增函数,故选D考点:函数的单调性和奇偶性视频3、f (x)=-x2+4x+a,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( )A。

-1 B、 0 C。

1 D、 2【答案】C【解析】因为对称轴,因此选C、4。

手表时针走过1小时,时针转过的角度( )A。

60°B、-60°C、30°D、-30°【答案】D【解析】因为顺时针为负,因此时针转过的角度为 ,选D。

5、( )A、 B。

C、 D。

【答案】C【解析】故选C6、已知向量 ,则等于( )A、B。

C、D、【答案】B【解析】,选B、7、已知 ,则等于( )A、 B、 C、 D。

【答案】A【解析】 ,选A、8。

函数的值域是( )A。

B。

C、 D。

【答案】B【解析】因为为单调递增,因此值域是,选B。

9、要得到函数的图象,只需将函数的图象( )A、向左平移个单位B、向左平移个单位C、向右平移个单位 D、向右平移个单位【答案】B【解析】因为 ,因此将函数的图象向左平移个单位得函数的图象,选B、点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移"也常出现在题目中,因此也必须熟练掌握、不管是哪种变形,切记每一个变换总是对字母而言。

10、已知角的终边经过点 ,且,则m等于( )A。

-3 B、 3 C。

D。

【答案】B【解析】试题分析:,解得、考点:三角函数的定义、11。

-学年高一上学期期末考试数学试题及答案

-学年高一上学期期末考试数学试题及答案

2017-2018学年高一上学期期末考试数学试题一、选择题(每题5分,共计60分)1.已知集合}5,4,3,2,1{=A ,}03|{2<-=x x x B ,则B A 为( ) A .}3,2,1{ B.}3,2{ ﻩ C.}2,1{ ﻩD.)3,0(2.设函数⎩⎨⎧≤>=-0,20,log )(2x x x x f x,则)3log ()2(2-+f f 的值为( ) A.4 B.34C. 5 D . 63.斜率为4的直线经过点A(3,5),B(a,7),C(-1,b)三点,则a ,b 的值为 ( )A. a =72 ,b=0 B. a =-72,b=-11C . a=72,b=-11 D. a=-72,b =114.直线05)2()2(073)2(=-++-=+++y m x m my x m 与直线相互垂直,则m 的值( )A .21ﻩ B .-2 C.-2或2 D .21或-2 5.已知a =132-,b =21log 3,c =121log 3,则( ) A. a b c >> B. a c b >> C . c a b >> D. c b a >> 6. 某几何体的三视图如图所示,其中俯视图中圆的直径为4, 该几何体的表面积为( )A. (442)π+ B. (642)π+ C. (842)π+ D. (1242)π+7.若当时,函数始终满足,则函数的图象大致为( )x R ∈()xf x a =0()1f x <≤8.()f x 满足对任意的实数,a b 都有)()()(b f a f b a f ⋅=+,且(1)2f =. 则(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++=( )A.2017B.2018 C . 4034 D.4036 9.已知圆锥的底面半径为1,且它的侧面开展图是一个半圆,则这个圆锥的体积为( ) A 3ﻩ ﻩB 3π ﻩ5ﻩﻩ 5π10.设m 和n 是不重合的两条直线,α和β是不重合的两个平面,则下列判断中正确的个数为( )①若m ∥n ,m α⊥则n α⊥;②若m ∥n ,m ∥α,则n ∥α; ③若m α⊥,n α⊂则m n ⊥;④若m α⊥,m β⊂,则αβ⊥.ﻩ ﻩﻩA. 1 B. 2 C. 3 D.411.四面体ABCD 的四个顶点都在球O 的表面上,AB ⊥平面BCD ,三角形BCD 是边长为3的等边三角形,若AB=4,则球O 的表面积为( )A.π36 B.π28 C .π16 D .π4 12.直线3y kx =+与圆()()22234x y -+-=相交于M N 、两点,若23MN ≥k 的取值范围是( )A.2,03⎡⎤-⎢⎥⎣⎦B. 3,04⎡⎤-⎢⎥⎣⎦ C .3,3⎡-⎣ D.33⎡⎢⎣⎦二、填空题(每小题5分,共20分)13.函数22log (4)y x x =-的增区间为 ;14.经过点(3,1)P -,且在x 轴上的截距等于在y 轴上的截距的2倍的直线l 的方程是_____________________;15.如图,在四面体A -BCD 中,已知棱AC 的长为2 ,其余各棱长都为1, 则二面角A-C D-B 的平面角的余弦值为________;16.已知两点()()0,4,3,1B A ,直线012:=+-+a y ax l .当直线l 与线段AB 相交时, 试求直线l 斜率的取值范围___________.三、解答题(共70分) 17.(本小题满分10分)已知集合{}32221|A ≤≤=xx ,函数2lg(4)y x =-的定义域为B .(Ⅰ)求B A ;(Ⅱ)若{1}C x x a =≤-,且C A ⊆,求实数a 的取值范围.18.(本小题满分12分)已知ABC ∆的顶点()5,2A -,()7,3B .且边AC 的中点M 在y 轴上,边BC 的中点N 在x 轴上.(Ⅰ)求顶点C 的坐标; (Ⅱ)求直线MN 的一般式方程.19. (本小题满分12分) 已知函数13(),(0,),(2)2m f x x x f x =-∈+∞=且。

2017-2018学年高一(上)期末数学试卷(十)

2017-2018学年高一(上)期末数学试卷(十)

2017-2018学年高一(上)期末数学试卷(十)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.设集合X={0,1,2,4,5,7},Y={1,3,6,8,9},Z={3,7,8},那么集合(X∩Y)∪Z是()A.{0,1,2,6,8}B.{3,7,8}C.{1,3,7,8}D.{1,3,6,7,8}2.下列直线中与直线x﹣2y+1=0平行的一条是()A.2x﹣y+1=0 B.2x﹣4y+2=0 C.2x+4y+1=0 D.2x﹣4y+1=03.下列各式错误的是()A.30.8>30.7B.log0.50.4>log0..50.6C.0.75﹣0.1<0.750.1D.lg1.6>lg1.44.当a>1时,在同一坐标系中,函数y=a﹣x与y=log a x的图象为()A.B.C.D.5.若圆C与圆(x+2)2+(y﹣1)2=1关于原点对称,则圆C的方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y﹣1)2=1 C.(x﹣1)2+(y+2)2=1 D.(x+1)2+(y﹣2)2=16.已知m、n是两条不同的直线,α、β是两个不同的平面,给出下列命题:①若α⊥β,m∥α,则m⊥β;②若m⊥α,n⊥β,且m⊥n,则α⊥β;③若m⊥β,m∥α,则α⊥β;④若m∥α,n∥β,且m∥n,则α∥β.其中正确命题的序号是()A.①④B.②③ C.②④ D.①③7.如图是一个几何体的三视图,则此几何体的直观图是()A.B.C.D.8.函数,若f(﹣4)=f(0),f(﹣2)=﹣2,则关于x的方程f(x)=x的解的个数为()A.1 B.2 C.3 D.49.如果函数f(x)=x2﹣(a﹣1)x+5在区间上是减函数,那么实数a的取值范围是()A.a≤2 B.a>3 C.2≤a≤3 D.a≥310.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,E,F,G分别是DD1,AB,CC1的中点,则异面直线A1E与GF所成角为()A.30°B.45°C.60°D.90°11.已知y=log a(2﹣ax)是[0,1]上的减函数,则a的取值范围为()A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)12.奇函数f(x)在(﹣∞,0)上单调递增,若f(﹣1)=0,则不等式f(x)<0的解集是()A.(﹣∞,﹣1)∪(0,1)B.(﹣∞,﹣1)(∪1,+∞)C.(﹣1,0)∪(0,1)D.(﹣1,0)∪(1,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.函数y=的定义域为.14.已知点(a,2)(a>0)到直线l:x﹣y+3=0的距离为1,则a=.15.一个长方体的顶点在球面上,它的长、宽、高分别为、、3,则球的体积为.16.已知P是直线3x+4y+8=0的动点,PA、PB是圆(x﹣1)2+(y ﹣1)2=1的两条切线,A、B是切点,C是圆心,则四边形PACB面积的最小值为.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.已知直线l经过两条直线2x+y﹣8=0和x﹣2y+1=0的交点,且平行于直线4x﹣3y﹣7=0,求直线l的方程.18.已知集合A={x|y=lg,B={x|23x﹣1>2x},C={x|log0.7(2x)<log0.7(x﹣1)},求A∩B,B∪C.19.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.(Ⅰ)证明:EF∥平面PAD;(Ⅱ)求三棱锥E﹣ABC的体积V.20.圆心在直线5x﹣3y﹣8=0上的圆与两坐标轴相切,求此圆的方程.21.如图,三棱锥P﹣ABC中,PB⊥平面ABC,PB=BC=CA=4,∠BCA=90°,E为PC的中点.(1)求证:BE⊥平面PAC;(2)求二面角E﹣AB﹣C的正弦值.22.已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.2017-2018高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.设集合X={0,1,2,4,5,7},Y={1,3,6,8,9},Z={3,7,8},那么集合(X∩Y)∪Z是()A.{0,1,2,6,8}B.{3,7,8}C.{1,3,7,8} D.{1,3,6,7,8}【考点】交、并、补集的混合运算.【分析】根据交集的含义取X、Y的公共元素写出X∩Y,再根据并集的含义求(X∩Y)∪Z.【解答】解:X∩Y={1},(X∩Y)∪Z={1,3,7,8},故选C2.下列直线中与直线x﹣2y+1=0平行的一条是()A.2x﹣y+1=0 B.2x﹣4y+2=0 C.2x+4y+1=0 D.2x﹣4y+1=0【考点】直线的一般式方程与直线的平行关系.【分析】由两直线平行的判定,逐个选项验证即可.【解答】解:选项A,1×(﹣1)﹣2×(﹣2)=3≠0,故不与已知直线平行;选项B,方程可化为x﹣2y+1=0,以已知直线重合,故不正确;选项C,1×4﹣2×(﹣2)=8≠0,故不与已知直线平行;选项D,1×(﹣4)﹣2×(﹣2)=0,且1×1﹣1×2≠0,与已知直线平行.故选D3.下列各式错误的是()A.30.8>30.7B.log0.50.4>log0..50.6C.0.75﹣0.1<0.750.1D.lg1.6>lg1.4【考点】不等式比较大小.【分析】利用对数函数和指数函数的增减性进行选择.【解答】解:A、∵y=3x,在R上为增函数,∵0.8>0.7,∴30.8>30.7,故A正确;B、∵y=log0.5x,在x>0上为减函数,∵0.4<0.6,∴log0..50.4>log0..50.6,故B正确;C、∵y=0.75x,在R上为减函数,∵﹣0.1<0.1,∴0.75﹣0.1>0.750.1,故C错误;D、∵y=lgx,在x>0上为增函数,∵1.6>1.4,∴lg1.6>lg1.4,故D正确;故选C.4.当a>1时,在同一坐标系中,函数y=a﹣x与y=log a x的图象为()A.B.C.D.【考点】函数的图象.【分析】当a>1时,根据函数y=a﹣x在R上是减函数,而y=log a x的在(0,+∞)上是增函数,结合所给的选项可得结论.【解答】解:当a>1时,根据函数y=a﹣x在R上是减函数,故排除A、B;而y=log a x的在(0,+∞)上是增函数,故排除D,故选:C.5.若圆C与圆(x+2)2+(y﹣1)2=1关于原点对称,则圆C的方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y﹣1)2=1 C.(x﹣1)2+(y+2)2=1 D.(x+1)2+(y﹣2)2=1【考点】圆的标准方程.【分析】求出已知圆的圆心关于原点对称的点的坐标,可得要求的圆的方程.【解答】解:由于圆(x+2)2+(y﹣1)2=1的圆心C′(﹣2,1),半径为1,圆C与圆(x+2)2+(y﹣1)2=1关于原点对称,故C(2,﹣1)、半径为1,故圆C的方程为:(x﹣2)2+(y+1)2=1,故选:A.6.已知m、n是两条不同的直线,α、β是两个不同的平面,给出下列命题:①若α⊥β,m∥α,则m⊥β;②若m⊥α,n⊥β,且m⊥n,则α⊥β;③若m⊥β,m∥α,则α⊥β;④若m∥α,n∥β,且m∥n,则α∥β.其中正确命题的序号是()A.①④B.②③C.②④D.①③【考点】命题的真假判断与应用;空间中直线与平面之间的位置关系.【分析】对于①当α⊥β,m∥α时,m⊥β不一定成立;对于②可以看成m是平面α的法向量,n是平面β的法向量即可;对于③可由面面垂直的判断定理作出判断;对于④m∥α,n∥β,且m∥n,α,β也可能相交.【解答】解:①当α⊥β,m∥α时,m⊥β不一定成立,所以错误;②利用当两个平面的法向量互相垂直时,这两个平面垂直,故成立;③因为m∥α,则一定存在直线n在β,使得m∥n,又m⊥β可得出n⊥β,由面面垂直的判定定理知,α⊥β,故成立;④m∥α,n∥β,且m∥n,α,β也可能相交,如图所示,,所以错误,故选B.7.如图是一个几何体的三视图,则此几何体的直观图是()A.B.C.D.【考点】由三视图求面积、体积.【分析】首先由几何体的三视图断定原几何体是一个圆锥和圆柱的组合体,分析四个答案可得结论.【解答】解:由已知可得原几何体是一个圆锥和圆柱的组合体,上部分是一个圆锥,下部分是一个圆柱,而且圆锥和圆柱的底面积相等,故此几何体的直观图是:故选:D8.函数,若f(﹣4)=f(0),f(﹣2)=﹣2,则关于x的方程f(x)=x的解的个数为()A.1 B.2 C.3 D.4【考点】分段函数的解析式求法及其图象的作法;函数的图象.【分析】由f(﹣4)=f(0),f(﹣2)=﹣2得关于b和c的两个方程,求出b、c,再分x ≤0和x>0两段,分别解方程f(x)=x即可.【解答】解:由题知,解得b=4,c=2故,当x≤0时,由f(x)=x得x2+4x+2=x,解得x=﹣1,或x=﹣2,即x≤0时,方程f(x)=x有两个解.又当x>0时,有x=2适合,故方程f(x)=x有三个解.故选C.9.如果函数f(x)=x2﹣(a﹣1)x+5在区间上是减函数,那么实数a的取值范围是()A.a≤2 B.a>3 C.2≤a≤3 D.a≥3【考点】二次函数的性质;函数单调性的性质.【分析】求出函数f(x)=x2﹣(a﹣1)x+5的对称轴x=,令≥1,即可解出a 的取值范围.【解答】解:函数f(x)=x2﹣(a﹣1)x+5的对称轴x=,∵函数在区间(,1)上是减函数,∴(,1)在对称轴的左侧,∴≥1,得a≥3.故选D.10.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,E,F,G分别是DD1,AB,CC1的中点,则异面直线A1E与GF所成角为()A.30°B.45°C.60°D.90°【考点】异面直线及其所成的角.【分析】连接B1G,EG,先利用长方形的特点,证明四边形A1B1GE为平行四边形,从而A1E∥B1G,所以∠B1GF即为异面直线A1E与GF所成的角,再在三角形B1GF中,分别计算三边的长度,利用勾股定理即可得此角的大小【解答】解:如图:连接B1G,EG∵E,G分别是DD1,CC1的中点,∴A1B1∥EG,A1B1=EG,∴四边形A1B1GE为平行四边形∴A1E∥B1G,∴∠B1GF即为异面直线A1E与GF所成的角在三角形B1GF中,B1G===FG===B1F===∵B1G2+FG2=B1F2∴∠B1GF=90°∴异面直线A1E与GF所成角为90°故选D11.已知y=log a(2﹣ax)是[0,1]上的减函数,则a的取值范围为()A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)【考点】对数函数的单调区间.【分析】本题必须保证:①使log a(2﹣ax)有意义,即a>0且a≠1,2﹣ax>0.②使log a (2﹣ax)在[0,1]上是x的减函数.由于所给函数可分解为y=log a u,u=2﹣ax,其中u=2﹣ax在a>0时为减函数,所以必须a>1;③[0,1]必须是y=log a(2﹣ax)定义域的子集.【解答】解:∵f(x)=log a(2﹣ax)在[0,1]上是x的减函数,∴f(0)>f(1),即log a2>log a(2﹣a).∴,∴1<a<2.故答案为:B.12.奇函数f(x)在(﹣∞,0)上单调递增,若f(﹣1)=0,则不等式f(x)<0的解集是()A.(﹣∞,﹣1)∪(0,1)B.(﹣∞,﹣1)(∪1,+∞)C.(﹣1,0)∪(0,1)D.(﹣1,0)∪(1,+∞)【考点】奇偶性与单调性的综合.【分析】根据题目条件,画出一个函数图象,再观察即得结果.【解答】解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(﹣∞,﹣1)∪(0,1)故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.函数y=的定义域为(﹣1,2).【考点】对数函数的定义域;函数的定义域及其求法.【分析】求函数的定义域,根据分母不等于0,及对数函数和根号有意义的条件进行求解.【解答】解:求函数y=的定义域,∴⇒﹣1<x<2,∴函数的定义域为{x|﹣1<x<2}故答案为(﹣1,2).14.已知点(a,2)(a>0)到直线l:x﹣y+3=0的距离为1,则a=.【考点】点到直线的距离公式.【分析】由点到直线的距离公式表示出已知点到直线l的距离d,让d等于1列出关于a的方程,求出方程的解,根据a大于0,得到满足题意的a的值.【解答】解:点(a,2)(a>0)到直线l:x﹣y+3=0的距离d==1,化简得:|a+1|=,解得a=﹣1或a=﹣﹣1,又a>0,所以a=﹣﹣1不合题意,舍去,则a=﹣1.故答案为:﹣115.一个长方体的顶点在球面上,它的长、宽、高分别为、、3,则球的体积为.【考点】球的体积和表面积.【分析】由已知得球的该球的半径R为长方体体对角线长的一半,由此能求出该球的体积.【解答】解:∵一个长方体的顶点在球面上,它的长、宽、高分别为、、3,∴该球的半径R==2,∴球的体积V===.故答案为:.16.已知P是直线3x+4y+8=0的动点,PA、PB是圆(x﹣1)2+(y﹣1)2=1的两条切线,A、B是切点,C是圆心,则四边形PACB面积的最小值为2.【考点】圆的切线方程.【分析】由圆的方程为求得圆心C,半径r,由“若四边形面积最小,则圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”,最后将四边形转化为两个直角三角形面积求解.【解答】解:∵圆的方程为:(x﹣1)2+(y﹣1)2=1,∴圆心C(1,1),半径r=1.根据题意,若四边形面积最小,当圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小.∵圆心到直线的距离为d==3,∴PA=PB=2.故四边形PACB面积的最小值为2S△PAC=2××PA×r=2.故答案为:2.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤). 17.已知直线l经过两条直线2x+y﹣8=0和x﹣2y+1=0的交点,且平行于直线4x﹣3y﹣7=0,求直线l的方程.【考点】直线的一般式方程与直线的平行关系.【分析】联立,解得P(3,2),设与直线4x﹣3y﹣7=0平行的直线方程为:4x﹣3y+m=0,把P(3,2)代入解出m即可得出.【解答】解:联立,解得P(3,2),设与直线4x﹣3y﹣7=0平行的直线方程为:4x﹣3y+m=0,把P(3,2)代入可得:4×3﹣3×2+m=0,m=﹣6.∴直线l的方程为:4x﹣3y﹣6=0.18.已知集合A={x|y=lg,B={x|23x﹣1>2x},C={x|log0.7(2x)<log0.7(x﹣1)},求A∩B,B∪C.【考点】交集及其运算;并集及其运算.【分析】求出A中x的范围确定出A,求出B与C中不等式的解集分别确定出B与C,求出A与B的交集,B与C的并集即可.【解答】解:由A中y=lg,得到4﹣x>0,即x<4,∴A={x|x<4},由B中不等式变形得:3x﹣1>x,即x>,∴B={x|x>},由C中不等式变形得:,即x>1,∴C={x|x>1},则A∩B={x|<x<4},B∪C={x|x>}.19.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.(Ⅰ)证明:EF∥平面PAD;(Ⅱ)求三棱锥E﹣ABC的体积V.【考点】棱柱、棱锥、棱台的体积.【分析】(Ⅰ)要证明:EF∥平面PAD,只需证明EF∥AD即可.(Ⅱ)求三棱锥E﹣ABC的体积V.只需求出底面△ABC的面积,再求出E到底面的距离,即可.【解答】解(Ⅰ)在△PBC中,E,F分别是PB,PC的中点,∴EF∥BC.又BC∥AD,∴EF∥AD,又∵AD⊂平面PAD,EF⊄平面PAD,∴EF∥平面PAD;(Ⅱ)连接AE,AC,EC,过E作EG∥PA交AB于点G,则EG⊥平面ABCD,且EG=PA.在△PAB中,AP=AB,∠PAB=90°,BP=2,∴AP=AB=,EG=.∴S△ABC=AB•BC=××2=,=S△ABC•EG=××=.∴V E﹣ABC20.圆心在直线5x﹣3y﹣8=0上的圆与两坐标轴相切,求此圆的方程.【考点】圆的切线方程.【分析】与坐标轴相切,所以圆心到两个坐标轴距离相等,结合圆心在5x﹣3y﹣8=0上,求出圆心坐标,可得圆的半径,从而可得圆的标准方程.【解答】解:与坐标轴相切,所以圆心到两个坐标轴距离相等,所以x=y或x=﹣y又圆心在5x﹣3y﹣8=0上若x=y,则x=y=4;若x=﹣y,则x=1,y=﹣1所以圆心是(4,4)或(1,﹣1)因为半径就是圆心到切线距离,即到坐标轴距离所以圆心是(4,4),则r=4;圆心是(1,﹣1),则r=1所以所求圆的标准方程为(x﹣4)2+(y﹣4)2=16和(x﹣1)2+(y+1)2=1.21.如图,三棱锥P﹣ABC中,PB⊥平面ABC,PB=BC=CA=4,∠BCA=90°,E为PC的中点.(1)求证:BE⊥平面PAC;(2)求二面角E﹣AB﹣C的正弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)推导出AC⊥AB,AC⊥CB,从而AC⊥平面PBC,进而AC⊥BE,再由BE ⊥PC,能证明BE⊥平面PAC.(2)过E作EF⊥BC,F为垂足,则EF∥PB,过F作FM⊥AB,M为垂足,连结EM,则∠EMF为二面角E﹣AB﹣C的平面角,由此能求出二面角E﹣AB﹣C的正弦值.【解答】证明:(1)∵PB⊥平面ABC,BC⊂平面ABC,∴AC⊥AB,又∵∠BCA=90°,∴AC⊥CB,∵CB⊂平面PBC,PB⊂平面PBC,PB∩CB=B,AC⊥平面PBC,又BE⊂平面PBC,∴AC⊥BE,∵E为PC中点,且PB=PC,∴BE⊥PC,PC⊂平面PAC,AC⊂平面PBC,PC∩AC=C,∴BE⊥平面PAC.(2)过E作EF⊥BC,F为垂足,则EF∥PB,∵PB⊥平面ABC,∴EF⊥平面ABC,∵AB⊂面ABC,∴EF⊥AB,过F作FM⊥AB,M为垂足,连结EM,∵EF∩FM=F,∴AB⊥面EFM,∵EM⊂面EFM,∴AB⊥EM,∴∠EMF为二面角E﹣AB﹣C的平面角,在Rt△EFM中,EF=,FM=FBsin∠B=,EM==,sin==,∴二面角E﹣AB﹣C的正弦值为.22.已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.【考点】指数函数单调性的应用;奇函数.【分析】(Ⅰ)利用奇函数定义,在f(﹣x)=﹣f(x)中的运用特殊值求a,b的值;(Ⅱ)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2﹣2t)+f(2t2﹣k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.【解答】解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,即又由f(1)=﹣f(﹣1)知.所以a=2,b=1.经检验a=2,b=1时,是奇函数.(Ⅱ)由(Ⅰ)知,易知f(x)在(﹣∞,+∞)上为减函数.又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式.所以k的取值范围是k<﹣.2016年7月31日。

苏教版2017-2018学年高一数学上学期期末考试试题(精品Word版,含答案解析)

苏教版2017-2018学年高一数学上学期期末考试试题(精品Word版,含答案解析)

2017-2018学年高一(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A. B. C. D.2.如图,正三棱柱ABC-A1B1C1中,各棱长都相等,则二面角A1-BC-A的平面角的正切值为()A.B.C. 1D.3.在正三棱柱ABC-A1B1C1中,若AB=BB1,D是CC1中点,则CA1与BD所成角的大小是()A. B. C. D.4.若圆有且仅有三个点到直线的距离为1,则实数a的值为()A. B. C. D.5.已知f(x)=为奇函数,g(x)=ln(x2-b),若对∀x1、x2∈R,f(x1)≤g(x2)恒成立,则b的取值范围为()A. B. C. D.6.已知两条直线ax-y-2=0和(2-a)x-y+1=0互相平行,则a等于()A. 2B. 1C. 0D.7.下列函数中,既是偶函数又在区间(0,+∞)上单调增的是()A. B. C. D.8.设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若α∥β,l⊂α,则l∥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若l∥α,l⊥β,则α⊥β;④m⊂α,n⊂α,且l⊥m,l⊥n,则l⊥α;其中真命题的序号是()A. B. C. D.9.圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-1=0的位置关系是()A. 外离B. 外切C. 相交D. 内含10.如图是一个几何体的三视图,则该几何体的表面积为()A. 46B. 48C. 50D. 52二、填空题(本大题共4小题,共16.0分)11.直线x+ay=3与圆(x-1)2+y2=2相切,则a=______.12.过A(-1,1),B(1,3),圆心在x轴上的圆的标准方程为______.13.已知函数f(x)=与g(x)=log2x,则函数h(x)=f(x)-g(x)的零点个数是______.14.在四面体S-ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为______.三、解答题(本大题共4小题,共44.0分)15.如图,在直三棱柱ABC-A1B1C1(侧棱与底面垂直的棱柱称为直棱柱)中,AB=AC=AA1=2,∠BAC=90°.(1)求证:BA⊥A1C;(2)求三棱锥A-BB1C1的体积.16.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A,B两点,若|AB|=,求直线l的方程.17.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=,现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.(1)求证:AM∥平面BEC;(2)求证:BC⊥平面BDE;(3)求直线DC与平面BEC所成角的正弦值.18.已知线段AB的端点B(4,0),端点A在圆(x+4)2+y2=16上运动(Ⅰ)求线段AB的中点C的轨迹方程.(Ⅱ)设动直线y=k(x-1)(k≠0)与圆C交于A,B两点,问在x轴正半轴上是否存在定点N,使得直线AN与直线BN关于x轴对称?若存在,请求出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】【分析】将a=0.32,c=20.3分别抽象为指数函数y=0.3x,y=2x之间所对应的函数值,利用它们的图象和性质比较,将b=log20.3,抽象为对数函数y=log2x,利用其图象可知小于零.最后三者得到结论.本题主要通过数的比较,来考查指数函数,对数函数的图象和性质.【解答】解:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C.2.【答案】D【解析】【分析】本题主要考查二面角的平面角及求法.解决本题的关键在于通过取BC的中点E,得二面角A1-BC-A的平面角为∠A1EA,进而求出结论.先取BC的中点E,可得二面角A1-BC-A的平面角为∠A1EA,再在直角三角形A1EA中求出其正切即可.【解答】解:设棱长为a,BC的中点为E,连接A1E,AE,由正三棱柱ABC-A1B1C1中,各棱长都相等.可得A1E⊥BC,AE⊥BC所以;二面角A1-BC-A的平面角为:∠A1EA,在RT△ABC中,AE=a,所以:tan∠A1EA===.即二面角A1-BC-A的平面角的正切值为:故选D.解:如图过D作DE∥CA1交A1C1于E,则E是A1C1的中点,连接BE,则∠BDE为CA1与BD所成角,设AB=2,则BD=,DE=,B1E=,BE=,在△BDE中,cos∠BDE==0,所以∠BDE=;故选:C.由题意,画出图形,通过作平行线得到所求角的平面角,利用余弦定理求大小.本题考查了正三棱柱的性质以及异面直线所成的角的求法;关键是找到平面角,利用余弦定理求值.4.【答案】B【解析】解:化圆x2+y2+2x-6y+6=0为(x+1)2+(y-3)2=4.可得圆心坐标为C(-1,3),半径r=2.如图:要使圆x2+y2+2x-6y+6=0有且仅有三个点到直线x+ay+1=0的距离为1,则圆心C到直线x+ay+1=0的距离为1,即,解得a=.故选:B.化圆的一般方程为标准方程,求出圆心坐标与半径,把圆x2+y2+2x-6y+6=0上有且仅有三个点到直线x+ay+1=0的距离为1,转化为圆心C到直线x+ay+1=0的距离为1,再由点到直线的距离公式求解得答案.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法和数学转化思想方法,是中档题.解:由于f(x)=为奇函数,故f(0)=0,a=1;则f(x)==1-∈(-1,1),由题意,要求f(x)max≤g(x)min,而f(x)∈(-1,1),从而要求ln(x2-b)≥1,x2-b≥e在R上恒成立,b≤(x2-e)min,b≤-e,故选:A根据f(x)为奇函数,求出a值,进而求出值域,将对∀x1,x2∈R,f(x1)≤g(x2)恒成立,转化为:f(x)≤g(x)min,可得答案.max本题考查的知识点是函数奇偶性性质,熟练掌握函数奇偶性的性质是解答的关键.6.【答案】B【解析】解:∵两条直线ax-y-2=0和(2-a)x-y+1=0互相平行,∴,解得a=1.故选:B.利用直线与直线平行的性质求接求解.本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线平行的性质的合理运用.7.【答案】C【解析】根据函数的单调性以及函数的奇偶性判断即可.本题考查了成绩函数的奇偶性和单调性的性质,是一道基础题.解:对于A,函数是奇函数,不合题意,对于B,函数是非奇非偶函数,不合题意,对于C,函数是偶函数,x>0时,y=x-1,递增,符合题意,对于D,函数是偶函数,在(0,+∞)递减,不合题意,故选:C.8.【答案】C【解析】解:若α∥β,l⊂α,由面面平行的性质定理可得l∥β,故正确;若m⊂α,n⊂α,m∥β,n∥β,若m∥n,则α∥β不一定成立,故错误;若l∥α,由线面平行的性质定理可得存在b⊂α,使b∥l,又由l⊥β,可由线面垂直的第二判定定理得b⊥β,由面面垂直的判定定理可得α⊥β,故正确;m⊂α,n⊂α,且l⊥m,l⊥n,若m∥n,则l⊥α不一定成立,故错误;故选C由面面平行的性质定理,可得的真假;由面面平行的判定定理,可得的真假;根据线面平行的性质定理,线面垂直的判定方法及面面垂直的判定定理可得的真假;由线面垂直的判定定理可得的真假,进而得到答案.本题考查空间中直线与平面之间的位置关系,解题的关键是掌握空间中线面位置关系判断的定理,本题是考查双基的题,知识性较强.9.【答案】C【解析】解:∵圆C1:x2+y2+2x+8y-8=0的圆心C1(-1,-4),半径r1==5,圆C2:x2+y2-4x-4y-1=0的圆心C2(2,2),半径r2==3,∴|CC2|==3,|r1-r2|=2,,1∵|r1-r2|<|C1C2|<r1+r2,∴圆C1与圆C2相交.故选C.由圆C1:x2+y2+2x+8y-8=0的圆心C1(-1,-4),半径r1=5,圆C2:x2+y2-4x-4y-1=0的圆心C2(2,2),半径r2=3,知|r1-r2|<|C1C2|<r1+r2,由此得到圆C1与圆C2相交.本题考查圆与圆的位置关系的判断,是基础题.解题时要认真审题,仔细解答.10.【答案】B【解析】解:由三视图知,几何体是一个四棱锥,高为3,四棱锥的一条侧棱与底面垂直,底面是边长为4的正方形,∴该几何体的表面积为2××3×4+2××4×5+4×4=12+20+16=48.故选:B.几何体是一个四棱锥,四棱锥的一条侧棱与底面垂直,高为3,底面是边长为4的正方形,即可求出该几何体的表面积本题考查由三视图求该几何体的表面积,考查由三视图还原几何体的直观图.11.【答案】±1【解析】解:圆心坐标为(1,0),半径R=,∵直线和圆相切,∴圆心到直线的距离d===,即2=•,平方得1+a2=2,得a2=1,则a=±1,故答案为:±1求出圆心和半径,结合直线和圆相切的等价条件,建立方程关系进行求解即可.本题主要考查直线和圆相切的位置关系的应用,结合圆心到直线的距离等于半径是解决本题的关键.12.【答案】(x-2)2+y2=10【解析】解:∵圆的圆心在x轴上,设圆心为M(a,0),由圆过点A(-1,1)和B(1,3),即|MA|=|MB|可得MA2=MB2,即(a+1)2+1=(a-1)2+9,求得a=2,可得圆心为M(2,0),半径为|MA|=,故圆的方程为(x-2)2+y2=10.故答案为:(x-2)2+y2=10.设圆心为M(a,0),由|MA|=|MB|求得a的值,可得圆心坐标以及半径的值,从而求得圆的方程.本题主要考查求圆的标准方程,求出圆心的坐标,是解题的关键,属于基础题.13.【答案】3【解析】解:可由题意在同一个坐标系中画出f(x)和g(x)的图象其中红色的为g(x))=log2x的图象,由图象可知:函数f(x)和g(x)的图象由三个公共点,即h(x)=f(x)-g(x)的零点个数为3,故答案为:3由题意可作出函数f(x)和g(x)的图象,图象公共点的个数即为函数h(x)=f(x)-g(x)的零点个数.本题为函数零点个数的求解,转化为函数图象的交点个数来求是解决问题的关键,属中档题.14.【答案】【解析】解:解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S-AC-B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE===,∴该四面体外接球的表面积S=4πR2=4=.故答案为:.取AC中点D,连接SD,BD,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE,由此能求出该四面体外接球的表面积.本题考查四面体的外接球的表面积的求法,考查四面体、球等基础知识,考查推理论证能力、运算求解能力,数形结合思想,是中档题.15.【答案】证明:(1)∵在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°.∴A1A⊥平面ABC,∴BA⊥AA1,又∵∠BAC=90°,∴BA⊥AC,A1A∩AC=A,∴BA⊥平面ACC1A1,∴BA⊥A1C.解:(2)∵AC⊥AB,AC⊥AA1,AB∩AA1=A,∴AC⊥平面ABB1,∴C1到平面ABB1的距离为AC=2,∵在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°.∴△ =2,∴三棱锥A-BB1C1的体积:==△=.【解析】(1)推导出A1A⊥平面ABC,从而BA⊥AA1,由∠BAC=90°,得BA⊥AC,从而BA⊥平面ACC1A1,由此能证明BA⊥A1C.(2)三棱锥A-BB1C1的体积=,由此能求出结果.本题考查线线垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.16.【答案】证明:(1)直线l:mx-y+1-m=0转化为m(x-1)-y+1=0,∴直线l经过定点(1,1),∵12+(1-1)2<5,∴定点(1,1)在圆C内,∴对m∈R,直线l与圆C总有两个不同的交点.解:(2)由圆心(0,1)到直线mx-y+1-m=0的距离d==,而圆的弦长|AB|=2=,即2=,17=4(4+),m2=3,解得m=,故所求的直线方程为或-.【解析】(1)直线l经过定点(1,1),定点(1,1)在圆C内,由此能证明对m∈R,直线l与圆C总有两个不同的交点.(2)由圆心(0,1)到直线mx-y+1-m=0的距离d=,圆的弦长|AB|=2=,由此能求出直线方程.本题考查直线与圆总有两个交点的证明,考查直线方程的求法,考查直线过定点、圆、点到直线的距离公式、弦长等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.17.【答案】证明:(1)取EC中点N,连结MN,BN,在△EDC中,M,N分别为ED、EC的中点,∴MN∥CD,且MN=CD.由已知AB∥CD,AB=CD,∴四边形ABMN为平行四边形.∴BN∥AM.又∵BN⊂平面BEC,且AM⊄平面BEC,∴AM∥平面BEC.(2)在正方形ADEF中,ED⊥AD,又∵平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,∴ED⊥平面ABCD,∴ED⊥BC,在直角梯形ABCD中,AB=AD=1,CD=2,得BC=.在△BCD中,BD=BC=,CD=2,BD2+BC2=CD2,∴BC⊥BD.∵ED∩BD=D,∴BC⊥平面BDE.解:(3)作DH⊥平面BEC于点H,连接CH,则∠DCH为CD与平面BEC所成角,由(2)知,BC⊥BE,BC⊥BD,∴S△BCD=,又∵ED⊥平面ABCD,△ =.∴DH=,∴sin∠ ==.∴CD与平面BEC所成角的正弦值为.【解析】11(1)取EC中点N,连结MN,BN,推导出四边形ABMN为平行四边形,从而BN∥AM,由此能证明AM∥平面BEC.(2)推导出ED⊥AD,ED⊥BC,BC⊥BD,由此能证明BC⊥平面BDE.(3)作DH⊥平面BEC于点H,连接CH,则∠DCH为CD与平面BEC所成角,由此能求出CD与平面BEC所成角的正弦值.本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.18.【答案】解:(Ⅰ)设线段AB中点为C(x,y),点A(x0,y0),∵B(4,0),∴2x=x0+4,2y=y0+0,∴x0=2x-4,y0=2y,∴(2x-4+4)2+4y2=16,∴x2+y2=4,(Ⅱ)设N(t,0),A(x1,y1),B(x2,y2).由,得(k2+1)x2-2k2x+k2-4=0.∴x1+x2=,x1x2=若直线AN与直线BN关于x轴对称,则k AN=-k BN⇒+=0⇒+=0,即2x1x2-(t+1)(x1+x2)+2t=0⇒-+2t=0,解得t=4.∴在x轴正半轴上存在定点N(4,0),使得AN与直线BN关于x轴对称【解析】(Ⅰ)设出C和A点的坐标,由中点坐标公式得到两点坐标的关系,把A的坐标用C的坐标表示,代入圆的方程后整理得答案.(Ⅱ)设N(t,0),A(x1,y1),B(x2,y2).可得,得(k2+1)x2-2k2x+k2-4=0,根据根与系数的关系以及k AN=-k BN,即可求出N的坐标本题考查了圆的方程,点的轨迹,定点问题直线和圆的位置关系,考查了运算能力,属于中档题.1。

高一数学第一学期期末试卷及答案

高一数学第一学期期末试卷及答案

高一数学第一学期期末试卷及答案2017 —2018学年度第一学期期末试卷高一数学2018.1试卷满分:150分考试时间:120分钟A卷[三角函数与平面向量] 本卷满分:100分题号一二三本卷总分17 18 19分数一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知sin0α<,且tan0α>,则α的终边所在的象限是()(A)第一象限(B)第二象限(C)第三象限(D)第四象限2.函数()sin 2f x x =的最小正周期为() (A )2π (B )π(C )2π(D )4π3.如果向量(1,2)=a ,(3,4)=b ,那么2-=a b () (A )(-1,0) (B )(-1,-2) (C )(1,0)(D )(1,-2)4.计算sin()sin()ααπ-+π+=() (A )0(B )1(C )sin α2 (D )2sin α-5.如图,在矩形ABCD 中,AO OB AD ++=u u u r u u u r u u u r ()(A )AB u u u r(B )AC uu u r(C )AD u u u r(D )BD u u u r6.已知向量,a b 满足2=a ,1=b ,2⋅=-a b ,则向量,a b 的夹角为() (A )4π- (B )4π (C )32π (D )34πABC D O7.已知m 是函数()cos f x x =图象一个对称中心的横坐标,则()f m =() (A )1-(B )0(C )21 (D )19.函数()sin f x A x =(0A >)的图象如图所示,,P Q 分别为图象的最高点和最低点,O 为坐标 原点,若OP OQ ⊥,则A =() (A )3(B )32π (C )33π (D )110.已知在直角三角形ABC 中,A 为直角,1AB =,2BC =,若AM 是BC 边上的高,8.要得到函数sin(2)3y x π=+的图象,只需将函数sin 2y x=的图象()(A )向左平移3π个单位长度 (B )向右平移3π个单位长度(C )向左平移6π个单位长度 (D )向右平移6π个单位长度点P 在△ABC 内部或边界上运动,则AM BP⋅u u u u r u u u r 的取值范围是()(A )[1,0]- (B )1[,0]2- (C )31[,]42- (D )3[,0]4-二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.7sin 6π=_____.12.已知向量(1,2)=a ,(,2)x =-b ,若//a b ,则实数x =______.13.角θ的始边与x 轴正半轴重合,终边上一点坐标为(1,2)-,则tan θ=______.14.函数()sin cos f x x x =+的最大值为______.15. 已知点(0,4)A ,(2,0)B ,如果2AB BC =u u u r u u u r,那么点C 的坐标为______;设点(3,)P t ,且APB ∠是钝角,则t 的取值范围是______.16.已知函数()sin tan f x x x =. 给出下列结论:①函数()f x 是偶函数; ②函数()f x 在区间(,0)2π-上是增函数;③函数()f x 的最小正周期是2π; ④函数()f x 的图象关于直线x =π对称. 其中正确结论的序号是_____.(写出所有正确结论的序号)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知(,)2απ∈π,且3cos 5α=-. (Ⅰ)求tan α的值;(Ⅱ)求cos2sin 21αα+的值.18.(本小题满分12分)已知函数π()sin(2)6f x x =+. (Ⅰ)请用“五点法”画出函数()f x 在一个周期上的图象;(Ⅱ)求()f x 在区间[,]122ππ上的最大值和最小值; (Ⅲ)写出()f x 的单调递增区间.Oxy 1-12π π23π 2π- g19.(本小题满分12分)如图,已知AB BC ⊥,33AB BC a ==,[1,3]a ∈,圆A 是以A 为圆心、半径为2的圆,圆B 是以B 为圆心、半径为1的圆,设点E 、F 分别为圆A 、圆B 上的动点,//AE BF u u u r u u u r (且AE u u u r 与BF u u u r 同向),设BAE θ∠=([0,]θ∈π). (Ⅰ)当3a =6θπ=时,求AE AC⋅u u u r的值;(Ⅱ)用,a θ表示出CE CF ⋅u u u r,并给出一组,a θ的值,使得CE CF ⋅u u u r最小.BAFE CB卷[学期综合]本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.1.设全集U =R ,集合{|0}A x x =<,{|1}B x x =>,则()U A B =Uð_____.2.函数()28x f x =-的定义域为_____.3.已知函数122,1,()log ,01,x x f x x x ⎧>⎪=⎨<≤⎪⎩则1(())4f f =_____;若()1f x =,则x =_____. 4.sin 2,13log 2,121log 3三个数中最大的是_____. 5.某购物网站在2017年11月开展“买三免一”活动,规则是“购买3件商品,最便宜的一件商品免费”,比如如下结算案例:如果在此网站上购买的三件商品价格如下图所示,按照“买三免一”的规则,购买这三件商品的实际折扣为______折.题号 一 二 本卷总分 6 7 8 分数在这个网站上购买3件商品,按照“买三免一”的规则,这3件商品实际折扣力度最大约为_______折(保留一位小数).二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数21()f x ax x =+是偶函数.(Ⅰ)求a 的值;(Ⅱ)判断函数()f x 在区间(0,)+∞上的单调性,并用函数单调性的定义证明你的结论.7.(本小题满分10分)设a 为实数,函数2()1f x x x a =--+,x ∈R .(Ⅰ)当0a =时,求()f x 在区间[0,2]上的最大值和最小值; (Ⅱ)求函数()f x 的最小值.8.(本小题满分10分)若函数()f x 满足:对于,[0,)s t ∈+∞,都有()0f s ≥,()0f t ≥,且()()()f s f t f s t +≤+,则称函数()f x 为“T 函数”.(Ⅰ)试判断函数21()f x x =与2()lg(1)f x x =+是否是“T 函数”,并说明理由;(Ⅱ)设()f x 为“T 函数”,且存在0[0,)x ∈+∞,使0(())f f x x =,求证:0()f x x =;(Ⅲ)试写出一个“T 函数”()f x ,满足(1)1f =,且使集合{|(),01}y y f x x =≤≤中元素的个数最少.(只需写出结论)2017—2018学年度第一学期期末试卷高一数学参考答案及评分标准2018.1 A卷[三角函数与平面向量] 满分100分一、选择题:本大题共10小题,每小题4分,共40分. 1.C2.B 3.A 4.A 5.B 6.D 7.B8.C 9.B 10.D.二、填空题:本大题共6小题,每小题4分,共24分. 11.12-12.1-13.2-215.(3,2)-;(1,3)16.①③④注:第15题每空2分.第16题少选得2分,多选、错选不得分.三、解答题:本大题共3小题,共36分. 17.(本小题满分12分)解:解:(Ⅰ)因为(,)2απ∈π,3cos 5α=-, 所以2sin 1cos αα=-………………3分2341()55=--=. ………………4分所以sin 4tan cos 3ααα==-.………………6分 (Ⅱ)由(Ⅰ)4sin 5α=,3cos 5α=-,所以4324sin 22sin cos 2()5525ααα==⨯⨯-=-. ………………9分2237cos22cos 12()1525αα=-=⨯--=-. ………………11分所以7cos 225724sin 21125αα-==-+-+. ………………12分18.(本小题满分12分) 解:(Ⅰ)()f x 在[,]1212π11π-上的图象如图所示. ………………5分说明:其它周期上的图象同等给分; 个别关键点错误酌情给分.(Ⅱ)π()sin(2)6f x x =+. 因为122x ππ≤≤,所以ππ7π2366x ≤+≤,………………7分 当π262x π+=,即π6x =时, πsin(2)6x +最大值等于1,即()f x 的最大值等于O xy1-112π-6π125π1211π32π1;………………8分当π266x 7π+=,即π2x =时, πsin(2)6x +最小值等于12-,即()f x 的最小值等于21-.………………9分所以()f x 在区间[,]122ππ上的最大值为1,最小值为21-. 注:根据图象求出最大、最小值相应给分. (Ⅲ)函数()f x 的单调递增区间为[,]36k k ππ-+π+π(k ∈Z ).………………12分19.(本小题满分12分) 解:(Ⅰ)如图,以点A 为原点,AB 所在直线为x 轴,与AB 垂直的直线为y 轴建立平面直角坐标系.则(0,0)A ,(3,3)C ,(3,1)E ,………………2分 (3,1)(3,3)23AE AC ⋅=⋅-=u u u r u u u r. ………………4分(Ⅱ)(0,0)A ,(3,)C a a -,(2cos ,2sin )E θθ,(3cos ,sin )F a θθ+,………………7分(2cos 3,2sin )(cos ,sin )CE CF a a a θθθθ⋅=+⋅+u u u r223sin()26a a θπ=+⋅-+………………9分 22[3sin()]23sin ()66a θθππ=-+--因为[0,]θ∈π,所以1sin()[,1]62θπ-∈-, BAFECxy以a 为变量的二次函数的对称轴33sin()[3,]6θπ--∈. 因为[1,3]a ∈,所以当1a =时,CE CF⋅u u u r的最小值为323sin()6θπ+-,………10分又1sin()[,1]62θπ-∈-,所以CE CF⋅u u u r的最小值为330θ=.所以,当1a =,0θ=时,CE CF ⋅u u u r的最小值为33-. ………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1.{1}x x ≤2.[3,)+∞3.4;124.121log35.7.5;6.7. 注:第3题、第5题每空2分.二、解答题:本大题共3小题,共30分.6.(本小题满分10分) 解:(Ⅰ)函数()f x 的定义域为(,0)(0,)-∞+∞U .由()()f x f x -=得2211ax ax x x -=+.………………3分 所以0ax =.因为0ax =对于定义域中任意的x 都成立, 所以0a =.………………5分(Ⅱ)函数21()f x x =在区间(0,)+∞上是减函数.………………7分证明:在(0,)+∞上任取1x ,2x ,且12x x <, 则12211222221212()()11()()x x x x f x f x x x x x +--=-=, ………………9分由120x x <<,得120x x +>,210x x ->,22120x x >, 于是12()()0f x f x ->,即12()()f x f x >.所以函数21()f x x =在区间(0,)+∞上是减函数. ………………10分7.(本小题满分10分) 解:(Ⅰ)当0a =,[0,2]x ∈时,函数2()1f x x x =-+,………………2分因为()f x 的图象抛物线开口向上,对称轴为12x =, 所以,当12x =时,()f x 值最小,最小值为34; 当2x =时,()f x 值最大,最大值为3. ………………4分(Ⅱ)①当x a ≤时,函数2213()1()24f x xx a x a =+-+=+-+.若12a ≤-,则()f x 在(,]a -∞上单调递减,在(,]a -∞上的最小值为2()1f a a =+;若12a >-,则函数()f x 在(,]a -∞上的最小值为13()24f a-=-;………………6分②当x a >时,2213()1()24f x xx a x a =-++=-++.若12a <,则()f x 在[,)a +∞上的最小值为13()24f a =+;若12a ≥,则()f x 在[,)a +∞上单调递增,2()()1f x f a a >=+.………………7分所以,当12a ≤-时,22311()()042aa a +-+=-≥,()f x 的最小值为34a +. 当12a ≥时,22311()()042aa a +--=+≥,()f x 的最小值为34a -. 当1122a -<<时,()f x 的最小值为34a +与34a -中小者. 所以,当102a -<<时,()f x 的最小值为34a +;当102a ≤<时,()f x 的最小值为34a -.………………9分综上,当0a <时,()f x 的最小值为34a +;当0a ≥时,()f x 的最小值为34a -. ………………10分8.(本小题满分10分) 解:(Ⅰ)对于函数21()f x x =,当,[0,)s t ∈+∞时,都有1()0f s ≥,1()0f t ≥,又222111()()()()20f s f t f s t s t s t st +-+=+-+=-≤,所以111()()()f s f t f s t +≤+. 所以21()f x x =是“T 函数”.………………2分对于函数2()lg(1)f x x =+,当2s t ==时,22()()lg9f s f t +=,2()lg5f s t +=, 因为lg9lg5>,所以222()()()f s f t f s t +>+. 所以2()lg(1)f x x =+不是“T 函数”. ………………4分 (Ⅱ)设12,[0,)x x ∈+∞,21x x >,21x x x =+∆,0x ∆>.则211111()()()()()()0f x f x f x x f x f x x x f x -=+∆-≥+∆-=∆≥ 所以,对于12,[0,)x x ∈+∞,12x x <,一定有12()()f x f x ≤. ………………6分因为()f x 是“T 函数”,0[0,)x ∈+∞,所以0()0f x ≥. 若00()f x x >,则000(())()f f x f x x ≥>,不符合题意. 若00()f x x <,则0(())()f f x f x x ≤<,不符合题意.高一数学第一学期期末试卷第21页共21页 所以00()f x x =. ………………8分(Ⅲ)20,[0,1),(),[1,).x f x x x ∈⎧⎪=⎨∈+∞⎪⎩(注:答案不唯一)………………10分。

高一数学第一学期期末答案

高一数学第一学期期末答案

2017—2018学年第一学期期末质量检测高一年级数学试题答案一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一个选项符合题目要求.请将答...案填涂在答题卡上........)二、填空题(本大题共4小题,每小题5分,共20分.)13、Φ;14、; 15、; 16、①④三、解答题(本大题共6小题,共70分.)17.(本小题满分10分)不使用计算器,计算下列各题:(1)32215.0)27102(75.0)1()1615(---+÷-+;(2)27log3+lg25+lg4+2log77+(﹣9.8)0.解:(1)原式=…………(5分)(2)原式=………(10分)18.(本小题满分12分)如图所示,一个空间几何体的正视图,侧视图,俯视图均为全等的等腰直角三角形,如果等腰直角三角形的直角边为1.(1)画出几何体的直观图.(2)求几何体的表面积和体积.解:(1)由几何体的三视图知,该几何体是一个三棱锥,几何体的直观图如图. ……6分(2)S表=3×12×1×1+12×2×222(2)()2-=3333222++= (9)分题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C B D C D D A C D A D BV=13×S △ABC ×PB=13×12×1=16………………………….12分19.(本小题满分12分)如图,四棱锥P ﹣ABCD 中,底面ABCD 为菱形,∠BAD=60°,Q 是AD 的中点. ( I )若PA=PD ,求证:平面PQB ⊥平面PAD ;( II )若平面APD ⊥平面ABCD ,且PA=PD=AD=2,线段BC 的中点为M ,求M 到平面APB 的距离d .解:( I )证明:连BD ,四边形ABCD 菱形,∵AD=AB ,∠BAD=60°,∴△ABD 是正三角形,Q 为 AD 中点,∴AD ⊥BQ , ∵PA=PD ,Q 为 AD 中点,∴AD ⊥PQ ,又BQ ∩PQ=Q ,∴AD ⊥平面PQB ,∵AD ⊂平面PAD ,∴平面PQB ⊥平面PAD ;…………6分 ( II )解:如图,连接QM ,QB ,显然QM ∥平面PAB , ∴M 到平面PAB 的距离就等于Q 到平面PAB 的距离,运用等体积法V P ﹣ABQ =V Q ﹣PAB,即,∴d=.…………12分20.(本小题满分12分)如图所示,在正三棱柱ABC ﹣A 1B 1C 1中,底面边长和侧棱长都是2,D 是侧棱CC 1上任意一点,E 是A 1B 1的中点.(Ⅰ)求证:A 1B 1∥平面ABD ; (Ⅱ)求证:AB ⊥CE ;解:(I )∵三棱柱ABC ﹣A 1B 1C 1中,侧面ABB 1A 1是平行四边形∴A 1B 1∥AB 又∵A 1B 1⊈平面ABD ,AB ⊆平面ABD ,∴A 1B 1∥平面ABD ;…………6分 (II )取AB 中点F ,连接EF 、CF∵三棱柱ABC ﹣A 1B 1C 1是正三棱柱,∴侧面AA 1B 1B 是矩形 ∵E 、F 分别是A 1B 1、AB 的中点,∴EF ∥AA 1,∵AA 1⊥平面ABC ,AB ⊆平面ABC ,∴AA 1⊥AB ,可得EF ⊥AB , ∵正△ABC 中,CF 是中线,∴CF ⊥AB ∵EF ∩CF=F ,∴AB ⊥平面CEF∵CE ⊆平面CEF ,∴AB ⊥CE ;…………12分21.(本小题满分12分)36.已知边长为2的正方形ABCD与菱形ABEF所在平面互相垂直,M为BC中点.(Ⅰ)求证:EM∥平面ADF.(Ⅱ)若∠ABE=60°,求四面体M﹣ACE的体积.解:(Ⅰ)方法一:取AD中点N,连结MN.∵四边形ABCD是正方形,M为BC中点,∴MN AB.∵四边形ABEF是菱形,∴AB EF.∴MN EF.∴四边形MNFE是平行四边形.∴EM∥NF.∵EM∥平面ADF,NF在平面ADF内,∴EM∥平面ADF.…方法二:∵四边形ABCD是正方形,∴BC∥AD.∵BC∥平面ADF,AD在平面ADF内,∴BC∥平面ADF.∵四边形ABEF是菱形,∴BE∥AF.∵BE∥平面ADF,AF在平面ADF内,∴BE∥平面ADF.∵BC∥平面ADF,BE∥平面ADF,BC∩BE=B,∴平面BCE∥平面ADF.∵EM在平面BCE内,∴EM∥平面ADF.…………6分(Ⅱ)方法一:取AB中点P,连结PE.∵在菱形ABEF中,∠ABE=60°,∴△AEB为正三角形,∴EP⊥AB.∵AB=2,∴.∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,∴EP⊥平面ABCD,∴EP为四面体E﹣ACM的高.∴.…方法二:取BE中点Q,连结AQ.∵在菱形ABEF,∠ABE=60°,∴△AEB为正三角形,∴AQ⊥BE.∵AB=2,∴.∵四边形ABCD为正方形,∴BC⊥AB.∵平面ABCD⊥平面ABEF,∴BC⊥平面ABEF.∵AQ⊂平面ABEF,BE⊂平面ABEF,∴AQ⊥BC,BC⊥BE.∴AQ⊥平面BEC.∴AQ为四面体A﹣EMC的高.∵CB⊥EB,∴.∴.…………12分22.(本小题满分12分)函数f(x)的定义域为(0,+∞)且对一切x>0,y>0,都有,当x>1时,总有f(x)>0.(1)求f(1)的值;(2)判断f(x)的单调性并证明;(3)若f(4)=6,解不等式f(x﹣1)+f(x﹣2)≤3.解:(1)令x=y=1,代入可得,f()=f(1)﹣f(1)=0,即f(1)=0;…………3分(2)f(x)是(0,+∞)上的增函数;证明如下:任取,∵,∴>0,即f(x2)>f(x1),∴f(x)是(0,+∞)上的增函数;…………8分(3)令x=4,y=2,可得,f(2)=f(4)﹣f(2),则f(2)=3,则原不等式等价于f(x2﹣3x+2)≤f(2),即,解得2<x≤3.…………12分。

2017-2018学年第一学期期末考试高一数学

2017-2018学年第一学期期末考试高一数学

2017-2018学年第一学期期末考试高一数学(考试时间:100分钟 卷面分值:150分)一、选择题(每小题5分,共60分)1.设全集}9,8,7,6,5,4,3,2,1,0{=U ,集合}8,7,6,2,0{=A ,}9,7,5,2{=B ,则=)(B A C UA. }7,2{B. }4,3,1{C. }9,8,7,6,5,2,0{D.}9,8,6,5,4,3,1,0{选D ;7}{2,=B A2.函数xxx f lg 3)(-=的定义域为 A. ]3,(-∞ B. ),(30 C. ]0,3( D.]3,1()1,0(选D ;⎪⎩⎪⎨⎧≠>≥-0lg 003x x x3.已知向量m )12,(-=x x 与向量n )3,1(x -=是共线向量,则=xA. 31-或1- B. 31或1- C.32或1- D.32 选B ;∥,则x x x ⋅=-⨯-3)12()1(4.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出了计算弧田面积所用的经验方式为:弧田面积=21(弦×矢+矢2),弧田(如图)由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差;现有圆心角为π32,半径等于2米的弧田,按照上述经验公式计算所得弧田面积约是____平方米 A.2 B.3 C. 4 D.5,选A ;半径等于2,圆心角120°,所以矢等于1,弦等于32 解得面积等于 2.230.53≈+ 5.9.03=a ,2lg 5lg -=b ,9.0log 3=c ,则三者的大小关系是A. a c b >>B.b c a >>C. c b a >>D.b >选C ;130.9>,25lg 2lg 5lg =-,125lg 0<<,01log 9.0log 33=<6.在△OAB 中,P 为线段AB 上的一点,若OB y OA x OP +=,且3=,则=yx A.21 B.31C.3D.2 选C ;PA BP 3=,)(3-=-;整理得OB OA OP 4143+= 7.若43tan =α,则=-αα2sin cos 2 A. 258- B. 53- C. 58 D.2533选A ;解得⎪⎪⎩⎪⎪⎨⎧==54cos 53sin αα或⎪⎪⎩⎪⎪⎨⎧-=-=54cos 53sin αα;代入即得8.函数x x f x +=2)(的零点所在的一个区间是A. )1,2(--B. )0,1(-C. )1,0(D.)2,1(选B ;根据连续函数零点存在定理9.已知向量b a ,1=,⊥-)(,则向量b 在向量a 方向上的投影为A.2B. 1-C. 1D.2-选C ;,0)(=∙-,12==∙,向量在向量1=10.函数⎩⎨⎧+=xaa x x f 32)(22≥<x x (0>a ,且1≠a )是R 上的增函数,则a 的取值范围是 A. )1,0( B.]4,1( C.),1(+∞ D.),4[+∞选D ;⎩⎨⎧+>>4312a a a11.函数)s i n ()(ϕω+=x A x f (2,0,0πϕω<>>A )的部分图象如图所示,则)4()0(πf f +的值为 A.31+ B.31+- C.31- D.31--x选C ;如图函数最小值-2,最小正周期πππ=+⨯)(1264,2=ω;062=+⨯ϕπ,3πϕ-=;所以函数解析式为)32sin(2)(π-=x x f ,3)0(-=f ,1)4(=πf 12.已知函数1)1ln()(2+++=x x x f ,若0)1()(lg >-f x f ,则实数x 的取值范围是A. )1,101(B. )10,101(C. ),10()1,0(+∞D.),10()101,0(+∞ 选D ;易得函数)(x f 是偶函数,且在),0[+∞是增函数;所以0)1()(lg >-f x f 得1lg >x ,解之即得二、填空题(每小题5分,共20分)13.98)3(log -+=x y a (0>a ,且1≠a )的图象恒过定点A ,若点A 在函数b x f x +=3)(的图象上,则=)2(log 3f ____填1;01log =a 得)98,2(--A 代入得到1-=b ,13)(-=x x f 又因为N a Na =log ,所以112)2(log 3=-=f14.已知43)6sin(-=-πα,则)3cos(πα+=____ 填43;236,43)6sin(ππααπαπ=++-=-;所以两角互余 15.已知函数⎪⎩⎪⎨⎧-=-)1(log 3)(231x ex f x 22≥<x x ,则=))2((f f _____ 填3;1)2(=f ;3)1(=f16.已知函数1cos sin 2cos 2)(2-+=x x x x f ①函数)(x f 关于)0,6(π对称 ②函数)(x f 关于π43=x 对称 ③函数)(x f 最小正周期为π2 ④函数)(x f 向左平移8π个单位后的新函数)(x g 为偶函数 以上四个命题中,正确的命题的序号是_______ 填②④;)42sin(2)(π+=x x f三、解答题(本大题共6小题,其中第22小题10分,其余各题均为12分,共70分,要求有必要的解题步骤和推理过程)17.设全集R U =,集合}41|{<≤=x x A ,}32|{a x a x B -<≤= ⑴若2-=a ,求A B ,A C B U ⑵若A B A = ,求实数a 的取值范围解:⑴若2-=a ,}54|{<≤-=x x B ,}41|{<≤=x x A B ,1|{<=x x A C U ,或}4≥x ,,14|{<≤-=x x A C B U 或}54<≤x⑵若A B A = ,得到A B ⊆ ⅰ∅=B ,a a -≥32,得到1≥aⅱ∅≠B ,⎪⎩⎪⎨⎧≤-≥<43121a a a 解得121<≤a综上得21≥a 18.已知向量)sin ,(cos αα=a ,)sin ,(cos ββ=b ,παβ<<<02=-,求证:b a ⊥⑵设)1,0(=,若=+,求βα,的值1=1=2=,由勾股逆定理得⊥1=)1,0(=,所以362,3262πππβπππα=-==+=19.已知向量)21,(cos -=x ,)2cos ,sin 3(x x =,R x ∈,设函数x f ⋅=)( ⑴求)(x f 的最小正周期 ⑵求)(x f 在]2,0[π上的最大值和最小值解:⑴x x x x f 2cos 21cos sin 3)(-=;整理得)62sin()(π-=x x f ,π=T⑵]2,0[π∈x ,]65,6[62πππ-∈-x ,]1,21[)62sin(-∈-πx 20.设函数R x x x f ∈+=),sin()(ϕω,其中2,0πϕω<>,若1)2(=πf ,0)4(=-πf ,且)(x f 的最小正周期大于π2 ⑴求函数)(x f 的解析表达式⑵讨论)(x f 在区间]43,2[ππ-内的单调性 解:⑴πππ3)24(4=+⨯=T ,32=ω,2232πϕπ=+⨯,6πϕ=,)632sin()(π+=x x f⑵]43,2[ππ减区间;]2,2[ππ-增区间 21.已知二次函数)(x f 的图象过点)4,0(,对任意x 满足)()3(x f x f =-,且最小值是47⑴求)(x f 的解析表达式⑵设函数x t x f x h )32()()(--=,其中R t ∈,求)(x h 在区间]1,0[上的最小值)(t g ⑶若在区间]3,1[-上,函数)(x f y =的图象恒在函数m x y +=2的图象上方,试确定实数m 的取值范围解:⑴设)(x f 的解析表达式)0(2≠++a c bx ax ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=47442324)0(2ab ac a b f ,解得⎪⎩⎪⎨⎧-===314b a c 43)(2+-=x x x f⑵函数42)(2+-=tx x x h ,对称轴t x =ⅰ0<t ,)(x h 在区间]1,0[上是增函数,最小值4)0(=hⅱ10≤≤t ,)(x h 在区间],0[t 上是减函数,在]1,[t 增函数,最小值24)(t t h -=ⅲ1>t ,)(x h 在区间]1,0[上是减函数,最小值t h 25)1(-=⎪⎩⎪⎨⎧--=t t t g 2544)(21100>≤≤<t t t⑶由题意知,m x x f +≥2)(在区间]3,1[-上恒成立,即452+-≤x x m ,]3,1[-∈x 恒成立,49-≤m 22.已知)(x f y =满足)()()(y f x f y x f +=+,又当0>x 时,0)(>x f ⑴求)0(f⑵证明)(x f y =是奇函数 ⑶证明)(x f y =在R 上单调递增解:⑴令0==y x ,)0()0()0(f f f +=,解得0)0(=f⑵令0=+y x ,)()()0(x f x f f -+=,得到)()(x f x f -=- ⑶设21,x y x x x =+=,且21x x <,则0>y0)()()()()(21<-=+-=-y f y x f x f x f x f ,)(x f y =在R 上单调递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己の姓名、座号、考籍号分别填写在试卷和答题纸规定の位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体の体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高2.球の表面积公式24S R π=,球の体积公式343R V π=,其中R 为球の半径.一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出の四个选项中,只有一项是符合题目要求の.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线の两条直线 ( )A .平行B .相交C .异面D .以上均有可能 3.已知幂函数()αx x f =の图象经过点⎝ ⎛⎭⎪⎫2,22,则()4f の值等于 ( ) A .16 B.116 C .2 D.124. 函数()lg(2)f x x =+の定义域为 ( )A.(-2,1)B.[-2,1]C.()+∞-,2D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP|の最小值为 ( )AB .CD .26.设m 、n 是两条不同の直线,α、β是两个不同の平面,则下列命题中正确の是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上の奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭の值域是 ( )A .RB .⎣⎢⎡⎭⎪⎫12,+∞ C .(2,+∞) D. (0,+∞) 9.已知圆0964:221=+--+y x y x c ,圆019612:222=-+++y x y x c ,则两圆位置关系是 ( )A .相交B .内切C .外切D .相离10. 当10<<a 时,在同一坐标系中,函数xay -=与x y a log =の图象是 ( )A. B. C. D.11. 函数f(x)=e x-x1の零点所在の区间是 ( ) A.(0,21) B. (21,1) C. (1,23) D. (23,2) 、12. 已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若(21)()f a f a +>,则实数a の取值范围是( )A .1(,1)(,)3-∞-⋃-+∞ B . (,3)(1,)-∞-⋃-+∞C . 1(1,)3-- D .(3,1)--第Ⅱ卷(非选择题,共72分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 计算 =+⨯+2lg 5lg 2lg )5(lg 2________.14. 已知直线013:1=-+y ax l 与直线()0112:2=+-+y a x l 垂直,则实数a =_____. 15. 已知各顶点都在一个球面上の正方体の棱长为2,则这个球の体积为 . 16. 圆心在y 轴上且通过点(3,1)の圆与x 轴相切,则该圆の方程是 .三、解答题:本大题共6小题, 共56分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设集合{|13}A x x =-≤<,{|242}B x x x =-≥-, {|1}C x x a =≥-.(Ⅰ)求A B ;(Ⅱ)若B C C =,求实数a の取值范围.18.(本小题满分10分)已知函数()log (1)log (3) (01)a a f x x x a =-++<<. (Ⅰ)求函数()f x の零点;(Ⅱ)若函数()f x の最小值为4 ,求a の值.19.(本小题满分12分)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (Ⅰ)当a 为何值时,直线l 与圆C 相切;(Ⅱ)当直线l 与圆C 相交于A ,B 两点,且AB =22时,求直线l の方程.20.(本小题满分12分)三棱柱ABC ﹣A 1B 1C 1中,CC 1⊥平面ABC ,△ABC 是边长为4の等边三角形,D 为AB 边中点, 且CC 1=2AB .(Ⅰ)求证:平面C 1CD⊥平面ADC 1; (Ⅱ)求证:AC 1∥平面CDB 1; (Ⅲ)求三棱锥D ﹣CAB 1の体积.21. (本小题满分12分)已知f (x )是定义在[-1,1]上の奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f a +f ba +b>0成立.(Ⅰ)判断f (x )在[-1,1]上の单调性,并证明; (Ⅱ)解不等式:()()x f x f 3112-<-;(Ⅲ)若f (x )≤m 2-2am +1对所有のa ∈[-1,1]恒成立,求实数m の取值范围.2017-2018学年高一上学期期末考试高一数学答案一、选择题C D D D B D A B C D B A 二、填空题13、1 14、35 15、16、x 2+y 2-10y =0三、解答题17、解: (Ⅰ)由题意知,{|2}B x x =≥分 所以{}|23A B x x ⋂=≤<分 (Ⅱ)因为B C C ⋃=,所以B C ⊆分 所以12a -≤,即3a ≤分18、解:(Ⅰ)要使函数有意义:则有1030x x -⎧⎨+⎩>>,解之得:31x -<<2分函数可化为2()log (1)(3)log (23)a a f x x x x x =-+=--+由()0f x =,得2231x x --+=即2220xx +-=,1x =-±(3,1)±-∵-1()f x ∴の零点是1-5分(Ⅱ)函数化为:22()log (1)(3)log (23)log (1)4a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦31x -∵<<201)44x ++≤∴<-( 7分01a ∵<<2log (1)4log 4a a x ⎡⎤-++≥⎣⎦∴即min ()log 4a f x =由log 44a =-,得44a-=,1442a -==∴ 10分19、解:(Ⅰ)若直线l 与圆C 相切,则有圆心(0,4)到直线l :ax +y +2a =0の距离为21242=++a a3分解得43-=a . 5分 (Ⅱ)过圆心C 作CD ⊥AB ,垂足为D.则由AB =22和圆半径为2得CD = 27分因为21242=++=a a CD所以解得7-=a 或1-.故所求直线方程为7x -y +14=0或x -y +2=0.10分20、解:(Ⅰ)∵CC 1⊥平面ABC ,又AB ⊂平面ABC ,∴CC 1⊥AB ∵△ABC 是等边三角形,CD 为AB 边上の中线,∴C D ⊥AB2分∵CD ∩CC 1=C ∴AB ⊥平面C 1CD∵AB ⊂平面ADC 1∴平面C 1CD⊥平面ADC 1;4分 (Ⅱ)连结BC 1,交B 1C 于点O ,连结DO .则O 是BC 1の中点,DO 是△BAC 1の中位线.∴DO∥AC 1.∵DO ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1;8分(Ⅲ)∵CC 1⊥平面ABC ,BB 1∥CC 1,∴BB 1⊥平面ABC .∴BB 1 为三棱锥D ﹣CBB 1 の高.=.∴三棱锥D ﹣CAB 1の体积为.12分21、解:(Ⅰ)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+f -x 2x 1+-x 2·(x 1-x 2),2分由已知得f x 1+f -x 2x 1+-x 2>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增.4分(Ⅱ)∵f (x )在[-1,1]上单调递增,∴⎪⎩⎪⎨⎧-<-≤-≤-≤-≤-x x x x 3112131111216分∴不等式の解集为⎭⎬⎫⎩⎨⎧<≤520x x . 7分(Ⅲ)∵f (1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1. 问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]恒成立. 9分下面来求m の取值范围.设g (a )=-2m ·a +m 2≥0. ①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a の一次函数,若g (a )≥0,对a ∈[-1,1]恒成立, 必须g (-1)≥0且g (1)≥0,∴m ≤-2或m ≥2. 综上,m =0 或m ≤-2或m ≥212分。

相关文档
最新文档