S参数精讲
s参数 阻抗
s参数阻抗摘要:1.S 参数的定义和意义2.S 参数与阻抗的关系3.S 参数的应用领域正文:1.S 参数的定义和意义S 参数(S-parameters)是一种描述电子器件特性的参数,主要用于表征无源和有源网络中的散射参数。
S 参数是一种广泛应用于微波和射频领域的技术,可以帮助工程师更好地了解和分析电子器件的性能。
在电子学中,阻抗是一个重要的概念,它反映了电路中电流和电压之间的关系。
阻抗可以通过S 参数来描述,S 参数可以描述器件在不同频率下的反射和吸收特性。
通过分析S 参数,工程师可以了解器件的阻抗特性,从而优化电路设计。
2.S 参数与阻抗的关系S 参数与阻抗之间的关系可以通过数学模型来描述。
在微波和射频领域,S 参数通常表示为复数形式,它可以描述器件在特定频率下的阻抗特性。
S 参数的实部和虚部分别表示阻抗的电阻和电感分量。
具体来说,S 参数可以表示为:S11 = 回波损耗+ 反射系数S21 = 传输系数S31 = 吸收系数其中,S11 表示器件输入端的反射系数,S21 表示器件输出端的传输系数,S31 表示器件的吸收系数。
通过分析S 参数,工程师可以了解器件在不同频率下的阻抗特性,从而优化电路设计。
3.S 参数的应用领域S 参数在电子工程领域具有广泛的应用。
它可以用于分析和优化微波和射频电路,如天线、放大器、滤波器和振荡器等。
通过分析S 参数,工程师可以了解器件在不同频率下的性能,从而提高电路的性能和稳定性。
此外,S 参数还可以用于电磁兼容性(EMC)分析。
在EMC 分析中,了解器件的阻抗特性对于减小电磁干扰和提高系统稳定性至关重要。
通过分析S 参数,工程师可以预测和解决电磁兼容性问题,从而提高系统的可靠性和稳定性。
总之,S 参数是一种描述电子器件特性的重要参数,它可以用于分析和优化微波和射频电路。
通过分析S 参数,工程师可以了解器件在不同频率下的阻抗特性,从而提高电路的性能和稳定性。
什么是s参数?s参数的含义?
什么是s参数?s参数的含义?什么是s参数微波网络法广泛运用于微波系统的分析,是一种等效电路法,在分析场分布的基础上,用路的方法将微波元件等效为电抗或电阻器件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络,把场的问题转化为路的问题来解决。
微波网络理论在低频网络理论的基础上发展起来,低频电路分析是微波电路分析的一个特殊情况。
微波系统主要研究信号和能量两大问题:信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输。
微波系统是分布参数电路,必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。
一般地,对于一个网络有Y、Z和S参数可用来测量和分析,Y称导纳参数,Z称为阻抗参数,S称为散射参数;前两个参数主要用于集总电路,Z和Y参数对于集中参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM波电压、电流的困难性,而且在微波频率测量电压和电流也存在实际困难。
因此,在处理高频网络时,等效电压和电流以及有关的阻抗和导纳参数变得较抽象。
与直接测量入射、反射及传输波概念更加一致的表示是散射参数,即S 参数矩阵,它更适合于分布参数电路。
S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。
同N端口网络的阻抗和导纳矩阵那样,用散射矩阵亦能对N端口网络进行完善的描述。
阻抗和导纳矩阵反映了端口的总电压和电流的关系,而散射矩阵是反映端口的入射电压波和反射电压波的关系。
散射参量可以直接用网络分析仪测量得到,可以用网络分析技术来计算。
只要知道网络的散射参量,就可以将它变换成其它矩阵参量。
下面以二端口网络为例说明各个S参数的含义,如图所示。
二端口网络有四个S参数,Sij代表的意思是能量从j口注入,在i口测得的能量,如S11定义为从Port1口反射的能量与输入能量比值的平方根,也经常被简化为等效反射电压和等效入射电压的比值,各参数的物理含义和特殊网络的特性如下:S11:端口2匹配时,端口1的反射系数;S22:端口1匹配时,端口2的反射系数;S12:端口1匹配时,端口2到端口1的反向传输系数;S21:端口2匹配时,端口1到端口2的正向传输系数;对于互易网络,有:S12=S21;对于对称网络,有:S11=S22 对于无耗网络,有:(S11)2+(S12)2=1 ;S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,S21越大传输的效率越高,一般建议S21>0.7,即-3dB。
频域s参数
频域s参数引言频域s参数(或称为频率域s参数)是一种在电磁学中常用的参量,用于描述电路和网络中的信号传递特性。
它是一个复数,包括幅度和相位两个方面的信息。
频域s参数经常用于设计和分析射频和微波电路,具有广泛的应用。
什么是频域s参数?频域s参数是指在频域下描述信号输送特性的参量。
它是电压和电流之间的关系,可以用来描述信号在电路或网络中的传输情况。
频域s参数包括两个复数,一是行波幅度s,即信号的衰减和放大情况;二是相位参数s,即信号的相位差情况。
频域s参数的意义频域s参数在射频和微波电路的设计和分析中具有重要的意义。
通过对网络的频域s参数进行测量和分析,可以深入了解电路特性,包括频率响应、增益、带宽等信息。
频域s参数可以帮助工程师在设计电路时进行优化,实现所需的信号传递特性。
频域s参数的计算和表示方法频域s参数可以通过实验测量或仿真计算得到。
在实验中,通常使用网络分析仪来测量频域s参数。
而在仿真中,可以使用各种电磁仿真软件进行计算。
频域s参数通常以矩阵形式表示,其中每个元素表示两个节点之间的传输特性。
下面是一个频域s参数矩阵的示例:Port 1 Port 2Port 1 s11 s12Port 2 s21 s22频域s参数的应用频域s参数在射频和微波电路中有广泛的应用。
以下是一些常见的应用领域:1. 无线通信在无线通信系统中,频域s参数可以用于分析天线和放大器的性能。
通过测量和分析频域s参数,可以优化无线信号传输的质量和范围。
2. 微波电路设计频域s参数在微波电路设计中起着至关重要的作用。
通过对频域s参数的测量和仿真,可以优化微波电路的功率传输、噪声特性和频率响应。
3. 封装和连接器设计在电子设备中,封装和连接器的设计对整个系统的性能具有重要的影响。
频域s参数可以用于评估封装和连接器的插损、回波损耗和误差特性。
4. 天线设计频域s参数在天线设计中也是一个重要的参量。
通过对天线频域s参数的测量和分析,可以优化天线的增益、驻波比和指向性。
一分钟带你快速认识S参数
一分钟带你快速认识S参数S参数是无线电电路分析的重要工具,它可以用来描述和分析电路的传输特性和稳定性。
S参数主要用于射频和微波领域,常用于设计和测试射频放大器、滤波器、混频器等电路。
S参数是指散射参数(Scattering Parameters),也称为传输参数(Transmission Parameters)。
对于一个线性、时不变的电路,S参数可以用复数矩阵来表示。
一个二端口的电路可以表示为以下形式:V1=S11*I1+S12*I2V2=S21*I1+S22*I2其中V1和V2是电路的两个端口的电压,I1和I2是电流,S11、S12、S21、S22是S参数矩阵的元素。
S参数的四个元素描述了电路的射频特性。
其中,S11描述的是电路的输入端口反射系数,表示输入信号通过电路后在输入端口被反射回来的程度。
S22描述的是电路的输出端口反射系数,表示输出信号通过电路后在输出端口被反射回来的程度。
S21描述的是电路的传输系数,表示输入信号能够经过电路传输到输出端口的程度。
S12描述的是电路的转移系数,即表示输出信号在经过电路后传输到输入端口的程度。
S参数的值是复数形式的,因此可以包含幅度和相位信息。
幅度表示信号的衰减或放大程度,而相位表示信号的相对相位差。
使用S参数可以进行电路参数的计算和仿真。
通过测量或仿真得到电路的S参数,可以进一步计算得到其他重要参数,如增益、带宽、稳定性等。
S参数还可以用于判断电路的稳定性,设计稳定的射频放大器。
在实际应用中,可以使用网络分析仪来测量电路的S参数。
网络分析仪可以通过电磁场的模拟或扫描方式,测量出电路在不同频率下的S参数,从而得到电路的传输特性。
总而言之,S参数是射频和微波领域中常用的一种电路特性描述方法。
它可以用复数矩阵表示电路的传输特性和稳定性,为电路的设计和测试提供了重要的工具。
通过S参数的测量和分析,可以更加准确地了解电路的工作情况,提高电路的性能和稳定性。
s参数计算
s参数计算在计算机科学中,s参数(或称散射参数)是用于描述电路元件和系统中电磁波的散射行为的一种参数。
这些参数可以用来衡量电路或系统的输入和输出端口之间的功率传输和反射。
因此,它们在通信和电子设备中扮演着重要角色。
以下是一些与s参数计算相关的参考内容。
1. 基本概念s参数是一个矩阵,通常用S表示,它的元素描述了在电路或系统中一组特定端口之间的功率传输和反射。
这个矩阵的大小取决于电路或系统的端口数量,并且每个元素都具有复数值。
与此相对应的是另一个参数T,用于描述“传输”性能,而不是散射系数。
2. 计算方法s参数计算的方法有很多种,其中一种基本方法是采用网络分析方法。
这种方法中,电路或系统被建模为一个网络,然后通过应用电路理论来计算每个元件的s参数。
这些参数可以根据电路中的通信方式(例如微波、射频或光通信)而变化。
3. 应用领域s参数计算在通信领域有着广泛的应用,通常用于分析和设计天线、放大器和滤波器等电路或系统。
在移动设备和通信设备中,s参数通常用于检验系统的性能,并对其进行优化。
另外,s参数也在雷达、卫星通信和电子游戏控制器等领域中有应用。
4. 电路仿真软件电路仿真是一种可以为电路元件建立模型,然后用来分析和模拟电路行为的技术。
仿真软件通常可以计算s参数。
例如,ADS和Simulink等软件可以用于设计度量电路中的s参数,以及优化电路性能。
5. s参数的限制s参数的计算方法基于线性模型,它只能用于描述线性系统中的电磁波的散射行为。
因此,对于高度非线性或非斯托克斯电路,s参数可能不适用。
实际上,非线性效应通常在高速通信和毫米波天线等技术中具有重要性。
在计算机科学和通信领域,s参数是一种非常有用的参数,可以用来衡量电路或系统中的电磁波的散射行为。
s参数的计算方法有很多种,包括基于网络分析方法的计算。
在各个领域中,s参数都有着广泛的应用,例如天线、放大器和滤波器的设计和优化,以及雷达和卫星通信等技术中的应用。
一篇文章了解S参数
一篇文章了解S参数在EDA仿真结果中,S参数是一个经常被提及的结果,关于S参数详细内容,其实不管是网上还是教科书都有较规范的介绍,但是大多数并不适用没有EDA背景的读者。
本文就S参数的相关应用背景,具体内容做一下介绍,主要针对没有任何EDA行业背景的朋友,EDA工程师可忽略。
S意为Scatter/Scattering,字面意思为散射。
S参数也就是散射参数。
1.S参数计算方法2.差分线和多端口3.S参数文件1.S参数计算方法:一般书上用电压,电流来描述信号,为了方便理解,这里用能量来描述。
如下图微带线,假设有100单位能量进入端口1,然后从端口2出来。
在传输过程中种种原因,能量并不能全部到达端口2,部分会反射。
情形1:假设有5单位能量反射。
则S参数计算如下:S11 = 5/100=0.05S12 = 95/100 = 0.95S11表示反射比例,学名回波损耗(Return Loss),简写RLS12表示传送到比例,学名插入损耗(Insertion Loss),简写IL对于对称网络: S11=S22S22 = 5/100 = 0.05S21 = 95/100 = 0.95情形2:如果反射值为0.01,则S11=0.01/100=0.0001S12-99.99/100=0.9999因为这种计算数据跨度较大,通常习惯取20*log10(S11),其中log10表示取以10为底的对数,也就是log10(10)=1,单位dB 上述情形1:S11=20*log10(0.05)=-26.021dBS12=20*log10(0.95)=-0.4455dB上述情形2:S11=20*log10(0.0001)=-80dBS12=20*log10(0.9999)=-8.68e-3dB几组dB值对应百分比S11(dB)S11-26 95%-13 80%-10 70%-6 50%-40 99%至此计算出的是一个频点的S参数值。
s参数幅值相位
s参数幅值相位摘要:1.引言2.s 参数的定义与性质3.幅值与相位的关系4.s 参数在通信系统中的应用5.总结正文:1.引言在通信系统中,s 参数是一个重要的概念,它用于描述信号在传输过程中的特性。
s 参数包括幅值和相位两个方面,它们共同决定了信号的传输效果。
本文将详细介绍s 参数的幅值和相位以及它们之间的关系。
2.s 参数的定义与性质s 参数,又称散射参数,是描述传输线或信号传输系统性能的一种参数。
对于一个线性时不变系统,其s 参数可以用以下公式表示:S = A / (1 + jωC)其中,A 表示幅值,ω表示角频率,C 表示传输线的特性阻抗,j 表示虚数单位。
由此可知,s 参数的幅值和相位分别由A 和ωC 决定。
3.幅值与相位的关系s 参数的幅值和相位是紧密相关的。
根据s 参数的定义,我们可以看出,当ωC 增大时,s 参数的相位会相应增大,而幅值减小。
反之,当ωC 减小时,s 参数的相位会减小,幅值增大。
因此,在实际应用中,我们需要根据具体需求调整s 参数的幅值和相位,以达到最佳的传输效果。
4.s 参数在通信系统中的应用在通信系统中,s 参数用于描述信号在传输过程中的损耗、相移等特性。
通过对s 参数的分析,我们可以了解到信号在传输过程中可能遇到的衰减、失真等问题,从而采取相应的措施进行改善。
例如,在设计滤波器、放大器等通信设备时,我们需要根据s 参数的要求来选择合适的器件参数,以保证信号的传输质量。
5.总结s 参数是通信系统中描述信号传输特性的重要参数,包括幅值和相位两个方面。
它们之间的关系是相互影响的,我们需要根据实际需求对s 参数进行调整,以达到最佳的传输效果。
内部资料S参数的基本含义
内部资料S参数的基本含义S参数(Scattering parameters)是一种用于描述电子元件或电路中电磁波的传输和散射性质的参数,其由四个复数参数(S11、S12、S21、S22)组成。
S参数常用于射频和微波的应用中,用来评估电子元件或电路的性能,并进行系统设计和优化。
具体地,S11参数表示从端口1输入的电磁波在元件中的反向散射功率与输入功率的比例。
这个参数可以用来表示双端口元件的匹配性能,即电磁波从端口1输入后在元件内部是否被完全吸收,而没有散射回端口1、S11越小越好,表示元件的匹配性能越好。
S12参数表示从端口2输出的电磁波与从端口1输入的电磁波的关系。
这个参数可以用来衡量元件的耦合性能,即从一个端口输入的电磁波在另一个端口输出时的转移效率。
S12越大越好,表示从端口1输入的信号能够更有效地传输到端口2S21参数表示从端口1输入的电磁波与从端口2输出的电磁波的关系。
这个参数可以用来描述元件的放大或衰减性能,即信号从一个端口输入到另一个端口时的增益或损耗。
S21越大越好,表示从端口1输入的信号在端口2更大的增益。
S22参数表示从端口2输入的电磁波在元件中的反向散射功率与输入功率的比例。
这个参数用来描述双端口元件的匹配性能,即电磁波从端口2输入后在元件内部是否被完全吸收,而没有散射回端口2、S22越小越好,表示元件的匹配性能越好。
除了这四个基本的S参数,还有其他高阶S参数,用于描述多端口元件或复杂电路的性能。
这些高阶S参数可以提供更详细的性能信息,如多端口间的互相耦合、反射等。
S参数在电子元件和电路设计中起着重要的作用。
通过测量和分析S 参数,可以评估元件或电路的匹配性能、耦合性能、增益损耗等,帮助设计者选择合适的元件、优化电路结构,提高电路的性能和可靠性。
此外,S参数也被广泛应用于无线通信系统中,用于建立模型和优化系统性能。
总结起来,S参数是用来描述电子元件或电路中电磁波的传输和散射特性的复数参数。
图文详细解说S参数
图文详细解说S参数前言S 参数是SI与RF领域工程师必备的基础知识,大家很容易从网络或书本上找到S,Y,Z参数的说明,笔者也在多年前写了S参数 -- 基础篇。
但即使如此,在相关领域打滚多年的人,可能还是会被一些问题困扰着。
你懂S参数吗? 请继续往下看...一、个别参数与串联S参数的差别问题1:为何有时候会遇到每一段的S参数个别看都还好,但串起来却很差的情况(loss不是1+1=2的趋势)?Quick answer : 如果每一线段彼此连接处的real port Zo是匹配的,那loss会是累加的趋势,但若每一线段彼此连接处的real port Zo差异很大,那就会看到loss不是累加的趋势,因为串接的接面上会有多增加的反射损失。
下图所示的三条传输线Line1是一条100mm长,特性阻抗设计在50ohm的微带线,左边50mm,右边50mm。
Line2也是一条100mm长的微带线,左边50mm维持特性阻抗50ohm,但右边50mm线宽加倍,特性阻抗变小到33。
Line3也是一条100mm长的微带线,左边50mm维持特性阻抗50ohm,但右边50mm线宽加倍,特性阻抗变小到33,且呈135o转折。
观察Line1的S21发现,左右两段的S参数有累加特性观察Line2, Line3的S21发现,整条线的S参数比起左右两段个别看的S参数之累加差一些问题2:为何各别抽BGA与PCB的S参数后,在Designer内串接看总loss,与直接抽BGA+PCB看S参数的结果不同?Quick answer : 这与结构在3D空间上的交互影响,还有下port 位置有时也有影响。
下图所示是两层板BGA封装,放上有完整参考平面的PCB两层板,这是在消费性电子产品很常见的应用条件。
黄色是高速的差动对讯号,其在PCB上走线的部分,有很好的完整参考平面,但在BGA端则完全没有参考平面。
HFSS 3D Layout模拟结果二、双埠S参数对地回路效应的处理问题1:RLC等效电路可以估出讯号线与地回路每一段的RLC特性,但S参数却不行,原因是什么? S参数带有地回路的寄生效应吗?Quick answer : RLC等效电路是terminal base model,而S参数是port base model,后者看的昰一个port的正负两端之间的差值。
s参数的一点总结
微波系统主要研究信号和能量两大问题:信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输。
微波系统是分布参数电路,必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。
微波网络法广泛运用于微波系统的分析,是一种等效电路法,在分析场分布的基础上,用路的方法将微波元件等效为电抗或电阻器件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络,把场的问题转化为路的问题来解决。
微波网络理论在低频网络理论的基础上发展起来,低频电路分析是微波电路分析的一个特殊情况。
一般地,对于一个网络有Y、Z和S参数可用来测量和分析,Y称导纳参数,Z称为阻抗参数,S称为散射参数;前两个参数主要用于集总电路,Z和Y参数对于集中参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM波电压、电流的困难性,而且在微波频率测量电压和电流也存在实际困难。
因此,在处理高频网络时,等效电压和电流以及有关的阻抗和导纳参数变得较抽象。
与直接测量入射、反射及传输波概念更加一致的表示是散射参数,即S参数矩阵,它更适合于分布参数电路。
S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。
同N端口网络的阻抗和导纳矩阵那样,用散射矩阵亦能对N端口网络进行完善的描述。
阻抗和导纳矩阵反映了端口的总电压和电流的关系,而散射矩阵是反映端口的入射电压波和反射电压波的关系。
散射参量可以直接用网络分析仪测量得到,可以用网络分析技术来计算。
只要知道网络的散射参量,就可以将它变换成其它矩阵参量。
下面以二端口网络为例说明各个S参数的含义,如图所示。
二端口网络有四个S 参数,Sij代表的意思是能量从j口注入,在i口测得的能量,如S11定义为从 Port1口反射的能量与输入能量比值的平方根,也经常被简化为等效反射电压和等效入射电压的比值,各参数的物理含义和特殊网络的特性如下:S11:端口2匹配时,端口1的反射系数;S22:端口1匹配时,端口2的反射系数;S12:端口1匹配时,端口2到端口1的反向传输系数;S21:端口2匹配时,端口1到端口2的正向传输系数;对于互易网络,有:S12=S21;对于对称网络,有:S11=S22 对于无耗网络,有:(S11)2+(S12)2=1 ;我们经常用到的单根传输线,或一个过孔,就可以等效成一个二端口网络,一端接输入信号,另一端接输出信号,如果以Port1作为信号的输入端口, Port2作为信号的输出端口,那么S11表示的就是回波损耗,即有多少能量被反射回源端(Port1),这个值越小越好,一般建议S11< 0.1,即-20dB,S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,S21越大传输的效率越高,一般建议S21>0.7,即-3dB。
S参数详解
电子元器件S参数的含义和用途在进行射频、微波等高频电路设计时,节点电路理论已不再适用,需要采用分布参数电路的分析方法,这时可以采用复杂的场分析法,但更多地时候则采用微波网络法来分析电路,对于微波网络而言,最重要的参数就是S参数。
在个人计算机平台迈入GHz阶段之后,从计算机的中央处理器、显示界面、存储器总线到I/O接口,全部走入高频传送的国度,所以现在不但射频通信电路设计时需要了解、掌握S参数,计算机系统甚至消费电子系统的设计师也需要对相关知识有所掌握。
S参数的作用S参数的由来和含义在低频电路中,元器件的尺寸相对于信号的波长而言可以忽略(通常小于波长的十分之一),这种情况下的电路被称为节点(Lump)电路,这时可以采用常规的电压、电流定律来进行电路计算。
其回路器件的基本特征为:●具体来说S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。
●针对射频和微波应用的综合和分析工具几乎都许诺具有用S参数进行仿真的能力,这其中包括安捷伦公司的ADS(Advanced Design System),ADS被许多射频设计平台所集成。
●在进行需要较高频率的设计时,设计师必须利用参数曲线以及预先计算的散射参数(即S-参数)模型,才能用传输线和器件模型来设计所有物理元件。
○电阻:能量损失(发热)○电容:静电能量○电感:电磁能量但在高频微波电路中,由于波长较短,组件的尺寸就无法再视为一个节点,某一瞬间组件上所分布的电压、电流也就不一致了。
因此基本的电路理论不再适用,而必须采用电磁场理论中的反射及传输模式来分析电路。
元器件内部电磁波的进行波与反射波的干涉失去了一致性,电压电流比的稳定状态固有特性再也不适用,取而代之的是“分布参数”的特性阻抗观念,此时的电路被称为分布(Distributed)电路。
分布参数回路元器件所考虑的要素是与电磁波的传送与反射为基础的要素,即:○反射系数○衰减系数○传送的延迟时间分布参数电路必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。
S参数精讲
S参数测量是射频设计过程中的基本手段之一。
S参数将元件描述成一个黑盒子,并被用来模拟电子元件在不同频率下的行为。
在有源和无源电路设计和分析中经常会用到S参数。
S参数是RF工程师/SI工程师必须掌握的内容,业界已有多位大师写过关于S参数的文章,即便如此,在相关领域打滚多年的人,可能还是会被一些问题困扰着。
你懂S参数吗? 请继续往下看...台湾同行图文独特讲解!1、简介:从时域与频域评估传输线特性良好的传输线,讯号从一个点传送到另一点的失真(扭曲),必须在一个可接受的程度内。
而如何去衡量传输线互连对讯号的影响,可分别从时域与频域的角度观察。
S参数即是频域特性的观察,其中"S"意指"Scatter",与Y或Z参数,同属双端口网络系统的参数表示。
S参数是在传输线两端有终端的条件下定义出来的,一般这Zo=50奥姆,因为V NA port也是50奥姆终端。
所以,reference impedance of port的定义不同时,S参数值也不同,即S参数是基于一指定的port Zo条件下所得到的。
2. 看一条线的特性:S11、S21看一条线的特性:S11、S21如下图所示,假设port1是讯号输入端,port2是讯号输出端S11表示在port 1量反射损失(return loss),主要是观测发送端看到多大的的讯号反射成份;值越接近0越好(越低越好,一般-25~-40dB),表示传递过程反射(reflection)越小,也称为输入反射系数(Input Reflection Coefficient)。
S21表示讯号从port 1传递到port 2过程的馈入损失(insertion loss),主要是观测接收端的讯号剩多少;值越接近1越好(0dB),表示传递过程损失(loss)越小,也称为顺向穿透系数(Forward Transmission Coefficient)。
3、看两条线的相互关系:S31、S41虽然没有硬性规定1、2、3、4分别要标示在线哪一端,但[Eric Bogatin大师]建议奇数端放左边,且一般表示两条线以上cross-talk交互影响时,才会用到S31。
s参数详解
Agilent AN 154S-Parameter Design Application NoteThe need for new high-frequency, solid-state circuit design techniques has been recognized both by micro-wave engineers and circuit designers. These engi-neers are being asked to design solid state circuits that will operate at higher and higher frequencies. The development of microwave transistors and Agilent Technologies’ network analysis instrumen-tation systems that permit complete network char-acterization in the microwave frequency range have greatly assisted these engineers in their work. The Agilent Microwave Division’s lab staff has developed a high frequency circuit design seminar to assist their counterparts in R&D labs through-out the world. This seminar has been presentedin a number of locations in the United States and Europe.From the experience gained in presenting this orig-inal seminar, we have developed a four-part video tape, S-Parameter Design Seminar.While the tech-nology of high frequency circuit design is ever changing, the concepts upon which this technology has been built are relatively invariant.The content of the S-Parameter Design Seminar is as follows:A.S-Parameter Design Techniques–Part I(Part No. 90i030A586, VHS; 90030D586, 3/4”)1.Basic Microwave Review–Part IThis portion of the seminar contains a review of:a.Transmission line theoryb.S-parametersc.The Smith Chartd.The frequency response of RL-RC-RLCcircuits2.Basic Microwave Review–Part IIThis portion extends the basic concepts to:a.Scattering-Transfer or T-parametersb.Signal flow graphsc.Voltage and power gain relationshipsd.Stability considerations B.S-Parameter Design Techniques Part II(Part No. 90030A600, VHS; 90030D600, 3/4”)1.S-Parameter MeasurementsIn this portion, the characteristics ofmicrowave transistors and the network ana-lyzer instrumentation system used to meas-ure these characteristics are explained.2.High Frequency Amplifier DesignThe theory of Constant Gain and ConstantNoise Figure Circles is developed in this por-tion of the seminar. This theory is thenapplied in the design of three actual amplifiercircuits.The style of this application note is somewhat informal since it is a verbatim transcript of these video tape programs.Much of the material contained in the seminar, and in this application note, has been developed in greater detail in standard electrical engineering textbooks, or in other Agilent application notes.The value of this application note rests in its bringing together the high frequency circuit design concepts used today in R&D labs throughout the world.We are confident that Application Note 154 and the video taped S-Parameter Design Seminar will assist you as you continue to develop new high fre-quency circuit designs.Introduction23IntroductionThis first portion of Agilent Technologies’ S-Para-meter Design Seminar introduces some fundamen-tal concepts we will use in the analysis and design of high frequency networks.These concepts are most useful at those frequencies where distributed, rather than lumped, parameters must be considered. We will discuss: (1) scattering or S-parameters, (2) voltage and power gain rela-tionships, (3) stability criteria for two-port net-works in terms of these S-parameters; and we will review (4) the Smith Chart.Network CharacterizationS-parameters are basically a means for characteriz-ing n-port networks. By reviewing some traditional network analysis methods we’ll understand why an additional method of network characterization is necessary at higher frequencies.Figure 1A two-port device (Fig. 1) can be described by a number of parameter sets. We’re all familiar with the H-, Y-, and Z-parameter sets (Fig. 2). All of these network parameters relate total voltages and total currents at each of the two ports. These are the network variables.Figure 2The only difference in the parameter sets is the choice of independent and dependent variables.The parameters are the constants used to relate these variables.To see how parameter sets of this type can be determined through measurement, let’s focus on the H-parameters. H 11is determined by setting V 2equal to zero—applying a short circuit to the output port of the network. H 11is then the ratio of V 1to I 1—the input impedance of the resulting network.H 12is determined by measuring the ratio of V 1to V 2—the reverse voltage gain-with the input port open circuited (Fig. 3). The important thing to note here is that both open and short circuits are essen-tial for making these measurements.Figure 3Moving to higher and higher frequencies, some problems arise:1. Equipment is not readily available to measure total voltage and total current at the ports of the network.2. Short and open circuits are difficult to achieve over a broad band of frequencies.3. Active devices, such as transistors and tunnel diodes, very often will not be short or open circuit stable.Some method of characterization is necessary to overcome these problems. The logical variables to use at these frequencies are traveling waves ratherthan total voltages and currents.4Transmission LinesLet’s now investigate the properties of traveling waves. High frequency systems have a source of power. A portion of this power is delivered to a load by means of transmission lines (Fig. 4).Figure 4Voltage, current, and power can be considered to be in the form of waves traveling in both directions along this transmission line. A portion of thewaves incident on the load will be reflected. It thenS ≠Z o ), resulting in a If this transmission line is uniform in cross sec-tion, it can be thought of as having an equivalent series impedance and equivalent shunt admittance per unit length (Fig. 5).Figure 5.A lossless line would simply have a series induc-tance and a shunt capacitance. The characteristic impedance of the lossless line, Z o , is defined as Z o =L/C. At microwave frequencies, most trans-mission lines have a 50-ohm characteristic imped-ance. Other lines of 75-, 90-, and 300-ohm imped-ance are often used.Although the general techniques developed in this seminar may be applied for any characteristicimpedance, we will be using lossless 50-ohm trans-mission lines.We’ve seen that the incident and reflected voltages on a transmission line result in a standing voltage wave on the line.The value of this total voltage at a given point along the length of the transmission line is the sum of the incident and reflected waves at that point (Fig. 6a).Figure 6The total current on the line is the differencebetween the incident and reflected voltage waves divided by the characteristic impedance of the line (Fig. 6b).Another very useful relationship is the reflection coefficient, Γ. This is a measure of the quality of the impedance match between the load and the charac-teristic impedance of the line. The reflection coeffi-cient is a complex quantity having a magnitude, rho,and an angle, theta (Fig. 7a). The better the match between the load and the characteristic impedance of the line, the smaller the reflected voltage wave and the smaller the reflection coefficient.Figure 75This can be seen more clearly if we express the reflection coefficient in terms of load impedance or load admittance. The reflection coefficient can be made equal to zero by selecting a load, Z L , equal to the characteristic impedance of the line (Fig. 7b).To facilitate computations, we will often want to normalize impedances to the characteristic imped-ance of the transmission line. Expressed in terms of the reflection coefficient, the normalized imped-ance has this form (Fig. 8).Figure 8S-ParametersHaving briefly reviewed the properties of transmis-sion lines, let’s insert a two-port network into the line (Fig. 9). We now have additional traveling waves that are interrelated. Looking at E r2, we see that it is made up of that portion of E i2reflected from the output port of the network as well as that portion of Ei 1that is transmitted through the net-work. Each of the other waves are similarly made up of a combination of two waves.Figure 9It should be possible to relate these four traveling waves by some parameter set. While the derivation of this parameter set will be made for two-port net-works, it is applicable for n-ports as well. Let’s start with the H-parameter set (Fig. 10).Figure 10Figure 11By substituting the expressions for total voltage and total current (Fig. 11) on a transmission line into this parameter set, we can rearrange these equations such that the incident traveling voltage waves are the independent variables; and thereflected traveling voltage waves are the dependent variables (Fig. 12).Figure 12The functions f 11, f 21and f 12, f 22represent a new set of network parameters relating traveling voltage waves rather than total voltages and total currents.In this case these functions are expressed in terms of H-parameters. They could have been derived from any other parameter set.It is appropriate that we call this new parameter set “scattering parameters,” since they relate those waves scattered or reflected from the network to those waves incident upon the network. Thesescattering parameters will commonly be referred to as S-parameters.Let’s go one step further. If we divide both sides of these equations by Z o , the characteristic imped-ance of the transmission line, the relationship will not change. It will, however, give us a change in variables (Fig. 13). Let’s now define the new vari-ables:Figure 136Notice that the square of the magnitude of these new variables has the dimension of power. |a 1|2can then be thought of as the incident power on port one; |b 1|2as power reflected from port one.These new waves can be called traveling power waves rather than traveling voltage waves.Throughout this seminar, we will simply refer to these waves as traveling waves.Looking at the new set of equations in a little more detail, we see that the S-parameters relate these four waves in this fashion (Fig. 14):Figure 14S-Parameter MeasurementWe saw how the H-parameters are measured. Let’s now see how we go about measuring the S-parame-ters. For S 11, we terminate the output port of the network and measure the ratio b 1to a 1(Fig. 15).Terminating the output port in an impedance equal to the characteristic impedance of the transmission line is equivalent to setting a 2= 0, because a travel-ing wave incident on this load will be totally absorbed.S 11is the input reflection coefficient of the network.Under the same conditions, we can measure S 21, thethe ratio of b 2to a 1sive network.Figure 15Figure 16By terminating the input side of the network, we set a 1= 0. S 22, the output reflection coefficient, and S 12, the reverse transmission coefficient, can then be measured (Fig. 17).Figure 17A question often arises about the terminations used when measuring the S-parameters. Because the transmission line is terminated in the charac-teristic impedance of the line, does the network port have to be matched to that impedance as well?The answer is no!To see why, let’s look once again at the network enmeshed in the transmission line (Fig. 18). If the load impedance is equal to the characteristic imped-ance of the line, any wave traveling toward the load would be totally absorbed by the load. It would not reflect back to the network. This sets a 2= 0. This condition is completely independent from the net-work’s output impedance.Figure 18Multiple-Port NetworksSo far we have just discussed two-port networks.These concepts can be expanded to multiple-port networks. To characterize a three-port network, for example, nine parameters would be required (Fig. 19).S 11, the input reflection coefficient at port one, is measured by terminating the second and third ports with an impedance equal to the characteris-tic impedance of the line at these ports. This again ensures that a 2= a 3= 0. We could go through the remaining S-parameters and measure them in a similar way, once the other two ports are properly terminated.7Figure 19What is true for two- and three-port networks is similarly true for n-port networks (Fig. 20). The number of measurements required for characteriz-ing these more complex networks goes up as the square of the number of ports. The concept and method of parameter measurement, however, is the same.Figure 20Let’s quickly review what we’ve done up to this point. We started off with a familiar networkparameter set relating total voltages and total cur-rents at the ports of the network. We thenreviewed some transmission line concepts. Apply-ing these concepts, we derived a new set of param-eters for a two-port network relating the incident and reflected traveling waves at the network ports.The Use of S-ParametersTo gain further insight into the use of S-parame-ters, let’s see how some typical networks can be represented in terms of S-parameters.A reciprocal network is defined as having identical transmission characteristics from port one to port two or from port two to port one (Fig. 21). This implies that the S-parameter matrix is equal to its transpose. In the case of a two-port network, S 12 = S 21.Figure 21A lossless network does not dissipate any power.The power incident on the network must be equal to the power reflected, or ∑|a n |2= ∑|b n |2(Fig. 22).In the case of a two-port, |a 1|2+ |a 2|2= |b 1|2+|b 2|2. This implies that the S-matrix is unitary as defined here. Where: I is the identity matrix and S*is the complex conjugate of the transpose of S. This is generally referred to as the hermetian conjugate of S. Typically, we will be using lossless networks when we want to place matching networks between amplifier stages.Figure 22For a lossy network,the net power reflected is less than the net incident power (Fig. 23). The differ-ence is the power dissipated in the network. This implies that the statement I – S* S is positive defi-nite, or the eigen-values for this matrix are in the left half plane so that the impulse response of the network is made up of decaying exponentials.Figure 238Change in Reference PlaneAnother useful relationship is the equation for chang-ing reference planes. We often need this in the meas-urement of transistors and other active devices where, due to device size, it is impractical to attach RF connectors to the actual device terminals.Imbedding the device in the transmission line structure, we can then measure the S-parameters at these two planes (Fig. 24). We’ve added a length of line, φ1, to port one of the device and another length, φ2, to port two.Figure 24The S-parameter matrix, S ’, measured at these two planes is related to the S-parameter matrix of the device, S, by this expression. We’ve simply pre-multiplied and post-multiplied the device’s S-parameter matrix by the diagonal matrix, Φ.To see what’s happening here, let’s carry through the multiplication of the S 11term. It will be multi-plied by e –j φ1twice, since a 1travels through this length of line, φ1, and gets reflected and then travels through it again (Fig. 25). The transmission term,S ’21, would have this form, since the input wave, a 1, travels through φ1and the transmitted wave, b 2,through φ2. From the measured S-parameters, S ’, we can then determine the S-parameters of the device,S, with this relationship (Fig. 26).Figure 25Figure 26Analysis of Networks Using S-ParametersLet’s now look at a simple example which willdemonstrate how S-parameters can be determined analytically.Figure 27Using a shunt admittance, we see the incident and reflected waves at the two ports (Fig. 27). We first normalize the admittance and terminate the net-work in the normalized characteristic admittance of the system (Fig. 28a). This sets a 2= 0. S 11, the input reflection coefficient of the terminated net-work, is then: (Fig. 28b).To calculate S 21, let’s recall that the total voltage at the input of a shunt element, a 1+ b 1, is equal to the total voltage at the output, a 2+ b 2(Fig. 28c). Because the network is symmetrical and reciprocal, S 22= S 11and S 12= S 21. We have then determined the four S-parameters for a shunt element.Figure 289The Smith ChartAnother basic tool used extensively in amplifier design will now be reviewed. Back in the thirties,Phillip Smith, a Bell Lab engineer, devised a graph-ical method for solving the oft-repeated equations appearing in microwave theory. Equations like the one for reflection coefficient, Γ= (Z – 1)/(Z + 1).Since all the values in this equation are complex numbers, the tedious task of solving this expres-sion could be reduced by using Smith’s graphical technique. The Smith Chart was a natural name for this technique.This chart is essentially a mapping between two planes—the Z (or impedance) plane and the Γ(or reflection coefficient) plane. We’re all familiar with the impedance plane—a rectangular coordinate plane having a real and an imaginary axis. Any impedance can be plotted in this plane. For this discussion, we’ll normalize the impedance plane to the characteristic impedance (Fig. 29).Figure 29Let’s pick out a few values in this normalized plane and see how they map into the Γplane. Let z = 1.In a 50-ohm system, this means Z = 50 ohms. For this value, |Γ| = 0, the center of the Γplane.We now let z be purely imaginary (i.e., z = jx where x is allowed to vary from minus infinity to plus infinity). Since Γ= (jx – 1)/(jx + 1), |Γ| = 1 and its phase angle varies from 0 to 360°. This traces out a circle in the Γplane (Fig. 29). For positive reac-tance, jx positive, the impedance maps into the upper half circle. For negative reactance, the impedance maps into the lower half circle. The upper region is inductive and the lower region is capacitive.Now let’s look at some other impedance values. A constant resistance line, going through the point z = 1 on the real axis, maps into a circle in the Γplane. The upper semicircle represents an imped-ance of 1 + jx, which is inductive; the lower semi-circle, an impedance of 1 – jx or capacitive (Fig. 30).Figure 30The constant reactance line, r + j1, also maps into the Γplane as a circle. As we approach the imagi-nary axis in the impedance plane, Γapproaches the unit radius circle. As we cross the imaginary axis, the constant reactance circle in the Γplane goes outside the unit radius circle.If we now go back and look at z real, we see at z = –1, Γ = ∞. When z is real and less than one, we move out toward the unit radius circle in the Γplane. When the real part of z goes negative, Γcon-tinues along this circle of infinite radius. The entire region outside the unit radius circle represents impedances with negative real parts. We will use this fact later when working with transistors and other active devices, which often have negative realimpedances.10In the impedance plane, constant resistance and constant reactance lines intersect. They also cross in the Γplane. There is a one-to-one correspon-dence between points in the impedance plane and points in the Γplane.The Smith Chart can be completed by continuing to draw other constant resistance and reactance circles (Fig. 31).Figure 31Applications of the Smith ChartLet’s now try a few examples with the Smith ChartConverting a can be accomplished quite easily. Let’s first plot the point representing the value of z on the Smith Chart (Fig. 32). From these relationships, we see that while the magnitude of admittance is thereciprocal of the magnitude of impedance, the mag-nitude of Γis the same—but its phase angle ischanged by 180°. On the Smith Chart, the Γvector would rotate through 180°. This point could then be read off as an admittance.Figure 32We can approach this impedance to admittance conversion in another way. Rather than rotate the Γvector by 180°, we could rotate the Smith Chart by 180°(Fig. 33). We can call the rotated chart an admittance chart and the original an impedance chart. Now we can convert any impedance to admittance, or vice versa, directly.Figure 332. Impedances with negative real parts: Let’s now takea look at impedances with negative real parts. Here again is a conventional Smith Chart defined by the boundary of the unit radius circle. If we have an impedance that is inductive with a negative real part, it would map into the Γplane outside the chart (Fig. 34). One way to bring this point back onto the chart would be to plot the reciprocal of Γ, rather than Γitself. This would be inconvenient because the phase angle would not be preserved. What was a map of an inductive impedance appears to be capacitive.Figure 34If we plot the reciprocal of the complex conjugate of Γ, however, the phase angle is preserved. This value lies along the same line as the original Γ. Typically in the Agilent Technologies transistor data sheets, impedances of this type are plotted this way.There are also compressed Smith Charts available that include the unit radius chart plus a great deal of the negative impedance region. This chart has a radius that corresponds to a reflection coefficient whose magnitude is 3.16 (Fig. 35).Figure 35In the rest of this seminar, we will see how easily we can convert measured reflection coefficient data to impedance information by slipping a Smith Chart overlay over the Agilent Technologies net-work analyzer polar display.3. Frequency response of networks:One final point needs to be covered in this brief review of the Smith Chart, and that is the frequency response for a given net-work. Let’s look at a network having an impedance, z = 0.4 + jx (Fig. 36). As we increase the frequency of the input signal, the impedance plot for the net-work moves clockwise along a constant resistance circle whose value is 0.4. This generally clockwise movement with increasing frequency is typical of impedance plots on the Smith Chart for passive networks. This is essentially Foster’s ReactanceTheorem.Figure 36If we now look at another circuit having a real part of 0.2 and an imaginary part that is capacitive, the impedance plot again moves in a clockwise direc-tion with an increase in frequency.Another circuit that is often encountered is the tank circuit. Here again, the Smith Chart is useful for plotting the frequency response (Fig. 37). For this circuit at zero frequency, the inductor is a short circuit. We start our plot at the point, z = 0. As the frequency increases, the inductive reac-tance predominates. We move in a clockwise direc-tion. At resonance, the impedance is purely real, having the value of the resistor. If the resistor had a higher value, the cross-over point at resonance would be farther to the right on the Smith Chart. As the frequency continues to increase, the response moves clockwise into the capacitive region of the Smith Chart until we reach infinite frequency, where the impedance is again zero.Figure 37In theory, this complete response for a tank circuit would be a circle. In practice, since we do not gen-erally have elements that are pure capacitors or pure inductors over the entire frequency range, we would see other little loops in here that indicate other resonances. These could be due to parasitic inductance in the capacitor or parasitic capaci-tance in the inductor. The diameter of these circles is somewhat indicative of the Q of the circuit. If we had an ideal tank circuit, the response would be the outer circle on the Smith Chart. This would indicate an infinite Q.Agilent Technologies Application Note 117-1 describes other possible techniques for measuring the Q of cavities and YIG spheres using the Smith Chart. One of these techniques uses the fact that with a tank circuit, the real part of the circuit equals the reactive part at the half-power points. Let’s draw two arcs connecting these points on theSmith Chart (Fig. 38). The centers for these arcs are at ±j1. The radius of the arcs is 2.Figure 38We then increase the frequency and record its value where the response lies on the upper arc. Continuing to increase the frequency, we record the resonant frequency and the frequency where the response lies on the lower arc. The formula for the Q of the circuit is simply f o, the resonant fre-quency, divided by the difference in frequency between the upper and lower half-power points. Q = f o/∆f.SummaryLet’s quickly review what we’ve seen with the Smith Chart. It is a mapping of the impedance plane and the reflection coefficient or Γplane. We discovered that impedances with positive real parts map inside the unit radius circle on the Smith Chart. Impedances with negative real parts map outside this unit radius circle. Impedances having positive real parts and inductive reactance map into the upper half of the Smith Chart. Those with capacitive reactance map into the lower half. In the next part of this S-Parameter Design Semi-nar, we will continue our discussion of network analysis using S-parameters and flow graph tech-niques.This second portion of Agilent Technologies’ Basic Microwave Review will introduce some additional concepts that are used in high frequency amplifier design.Scattering Transfer ParametersLet’s now proceed to a set of network parameters used when cascading networks. We recall that we developed the S-parameters by defining thereflected waves as dependent variables, and inci-dent waves as independent variables (Fig. 39a). We now want to rearrange these equations such that the input waves a 1and b 1are the dependent vari-ables and the output waves a 2and b 2the independ-ent variables. We’ll call this new parameter set scattering transfer parameters or T-parameters (Fig. 39b).Figure 39The T-parameters can be developed by manipulat-ing the S-parameter equations into the appropriate form. Notice that the denominator of each of these terms is S 21(Fig. 40).Figure 40We can also find the S-parameters as a function of the T-parameters.While we defined the T-parameters in a particular way, we could have defined them such that the out-put waves are the dependent variables and the input waves are the independent variables. This alter-nate definition can result in some problems when designing with active unilateral devices (Fig. 41).Figure 41Using the alternate definition for the transfer parameters, the denominator in each of these terms is S 12rather than S 21as we saw earlier.Working with amplifiers, we often assume thedevice to be unilateral, or S 12= 0. This would cause this alternate T-parameter set to go to infinity.Both of these definitions for T-parameters can be encountered in practice. In general, we prefer to define the T-parameters with the output waves as the dependent variables, and the input waves as the independent variables.We use this new set of transfer parameters when we want to cascade networks—two stages of an ampli-fier, or an amplifier with a matching network for example (Fig. 42a). From measured S-parameter data, we can define the T-parameters for the two networks. Since the output waves of the first net-work are identical to the input waves of the sec-ond network, we can now simply multiply the two T-parameter matrices and arrive at a set of equa-tions for the overall network (Fig. 42b).Figure 42Since matrix multiplication is, in general, not com-mutative, these T-parameter matrices must be mul-tiplied in the proper order. When cascading networks, we’ll have to multiply the matrices in the same order as the networks are connected. Using the alternate definition for T-parameters previously described, this matrix multiplication must be done in reverse order.This transfer parameter set becomes very useful when using computer-aided design techniques where matrix multiplication is an easy task. Signal Flow GraphsIf we design manually, however, we can use still another technique—signal flow graphs—to follow incident and reflected waves through the networks. This is a comparatively new technique for microwave network analysis.A. RulesWe’ll follow certain rules when we build up a net-work flow graph.1. Each variable, a1, a2, b1, and b2will be desig-nated as a node.2. Each of the S-parameters will be a branch.3. Branches enter dependent variable nodes, and emanate from the independent variable nodes.4. In our S-parameter equations, the reflected waves b1and b2are the dependent variables and the incident waves a1and a2are the independent variables.5. Each node is equal to the sum of the branches entering it.Let’s now apply these rules to the two S-parameter equations (Fig. 43a). The first equation has three nodes: b l, a1, and a2. b1is a dependent node and is connected to a1through the branch S11and to node a2through the branch S12. The second equation is constructed similarly. We can now overlay these to have a complete flow graph for a two-port network (Fig. 43b).Figure 43The relationship between the traveling waves is now easily seen. We have a1incident on the net-work. Part of it transmits through the network to become part of b2. Part of it is reflected to become part of b1. Meanwhile, the a2wave entering port two is transmitted through the network to become part of b1as well as being reflected from port two as part of b2. By merely following the arrows, we can tell what’s going on in the network.This technique will be all the more useful as wecascade networks or add feedback paths.。
s参数幅值相位
s参数幅值相位摘要:1.引言2.s 参数的定义与性质3.幅值和相位在s 参数中的表现4.s 参数在通信系统中的应用5.s 参数在信号处理中的应用6.总结正文:1.引言s 参数,全称为散射参数,是无线通信和射频电路中描述电磁波在传输过程中与物体相互作用的一种参数。
s 参数可以帮助我们分析信号在传输过程中的损耗、反射、折射等现象,从而优化通信系统和射频电路的设计。
2.s 参数的定义与性质s 参数是复数形式的参数,通常表示为S11、S21、S12 和S22。
它们分别代表了入射波与反射波之间的幅度和相位关系。
s 参数具有以下性质:- S11、S21 为正实数,表示反射系数;- S12、S22 为负实数,表示传输系数;- S11、S22 具有实部为零的性质;- S12、S21 具有虚部为零的性质。
3.幅值和相位在s 参数中的表现在s 参数中,幅值和相位是两个重要的概念。
幅值表示信号的强度,而相位表示信号的相对时间。
在无线通信系统中,信号的幅度和相位受到多种因素的影响,如多径传播、频率选择性衰落等。
s 参数可以清晰地揭示这些影响,从而指导系统设计和性能优化。
4.s 参数在通信系统中的应用s 参数在通信系统中具有广泛的应用,如:- 在天线设计中,通过优化s 参数,可以降低天线系统的反射损耗,提高天线增益;- 在滤波器设计中,s 参数可以帮助设计师预测滤波器的传输特性和抑制性能;- 在信号处理中,s 参数可以用于分析和设计信号的频谱搬移、信号解调等功能。
5.s 参数在信号处理中的应用除了在通信系统中,s 参数在信号处理领域也有广泛应用,如在无线通信信号的估计、阵列信号处理、自适应滤波器设计等方面。
通过分析s 参数,可以更好地理解和处理信号在传输过程中的各种特性。
6.总结s 参数作为一种重要的参数,在无线通信、射频电路和信号处理等领域具有广泛的应用。
通过分析s 参数的幅值和相位,可以更好地优化系统设计和提高信号处理性能。
S参数详解
电子元器件S参数的含义和用途在进行射频、微波等高频电路设计时,节点电路理论已不再适用,需要采用分布参数电路的分析方法,这时可以采用复杂的场分析法,但更多地时候则采用微波网络法来分析电路,对于微波网络而言,最重要的参数就是S参数。
在个人计算机平台迈入GHz阶段之后,从计算机的中央处理器、显示界面、存储器总线到I/O接口,全部走入高频传送的国度,所以现在不但射频通信电路设计时需要了解、掌握S参数,计算机系统甚至消费电子系统的设计师也需要对相关知识有所掌握。
S参数的作用S参数的由来和含义在低频电路中,元器件的尺寸相对于信号的波长而言可以忽略(通常小于波长的十分之一),这种情况下的电路被称为节点(Lump)电路,这时可以采用常规的电压、电流定律来进行电路计算。
其回路器件的基本特征为:●具体来说S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。
●针对射频和微波应用的综合和分析工具几乎都许诺具有用S参数进行仿真的能力,这其中包括安捷伦公司的ADS(Advanced Design System),ADS被许多射频设计平台所集成。
●在进行需要较高频率的设计时,设计师必须利用参数曲线以及预先计算的散射参数(即S-参数)模型,才能用传输线和器件模型来设计所有物理元件。
○电阻:能量损失(发热)○电容:静电能量○电感:电磁能量但在高频微波电路中,由于波长较短,组件的尺寸就无法再视为一个节点,某一瞬间组件上所分布的电压、电流也就不一致了。
因此基本的电路理论不再适用,而必须采用电磁场理论中的反射及传输模式来分析电路。
元器件内部电磁波的进行波与反射波的干涉失去了一致性,电压电流比的稳定状态固有特性再也不适用,取而代之的是“分布参数”的特性阻抗观念,此时的电路被称为分布(Distributed)电路。
分布参数回路元器件所考虑的要素是与电磁波的传送与反射为基础的要素,即:○反射系数○衰减系数○传送的延迟时间分布参数电路必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。
S参数的含义
S 参数的由来:在低频电路中信号的波长和器件的尺寸相差很大,一般都小于波长的1/10 ,可以用集总参数模型来分析电路,包括网络法和节点法。
在高频电路中,当信号的频率达到GHz 级别时,信号波长和器件尺寸可以相比拟器件上的等效电压、电流值在期间不同位置处会有不同值,这时要用分布参数模型来分析,而此时路的概念已经失效,需要引入网络的概念来分析。
S 参数就是建立在入射波和反射波的关系基础上的网络参数,以器件端口的反射信号以及从该端口川香另一端口的信号来描述网络。
电阻:能量损失(发热)电容:静电能量电感:电磁能量在高频电路中需要的是分布参数和特性阻抗的概念,分布参数回路元器件所考虑的要素是与电磁波的传送与反射为基础的要素:反射系数衰减系数传送的延迟时间S 参数的含义:网络对应参数:Y:导纳参数Z:阻抗参数(前两个用于节点分析非常有效,但对于高频电路等效的电压电流以及相关参数的概念会变得十分抽象)S:散射参数(描述分散程度和大小的量)散射矩阵可以反映端口的入射电压波和反射电压波的关系以一个二端口的例子来分析S 参数的含义:Sij:能量从j 口注入,在i 口测得的能量,如S11定义为从Portl 口反射的能量与输入的能量的比值的平方根,也经常被简化为等效反射电压与等效入射电压的比值。
511 :端口2 匹配时,端口1 的反射系数S22 :端口1 匹配时,端口2 的反射系数512 :端口1 匹配时,端口2 到端口1 的反向传输系数S21 :端口2 匹配时,端口1 到端口2 的正向传输系数对于2 端口网络Port1 输入信号,Port2 输出信号,则有:S11 表示回波损耗,即有多少能量返回了Port1 ,当然越小越好,一般S11<0.1(-20dB) ;S21 表示插入损耗,即有多少能量传输到Port2 ,当然越大越好,一般S21>0.7(-3dB) ;摘自新浪博客:中心议题:« S参数介绍的由来和含义・S参数的使用范围* S参数在电路仿真中的应用解决方案:・对于高频电路,需要采用网络法来进行分析,此时需要用到S参数・可以使用元器件厂家的S参数也可以自己搭建测试电路使用网络分析仪来测得S参数*要想深刻的理解S参数,需要具备足够的高频电子电路的基础知识在进行射频、微波等高频电路设计时,节点电路理论已不再适用,需要采用分布参数电路的分析方法,这时可以采用复杂的场分析法,但更多地时候则采用微波网络法来分析电路,对于微波网络而言,最重要的参数就是S参数。
S 参数解释
S参数:S参数包括四个值,S11,S21,S12,S22,都是复数的一个二端口网络(二端口电路)拿放大器说事,放大器有两个端口,输入端,输出端,当高频信号输入到放大器的输入端,放大器输出端接匹配电阻。
这时输入信号的入射波与反射波的比值就是S11输出信号与输入信号的入射波的比值就是S21实际就是放大器的放大倍数当高频信号输入到放大器的输出端,放大器输入端接匹配电阻。
这时输入信号的入射波与反射波的比值就是S22输出信号与输入信号的入射波的比值就是S12实际就是放大器的隔离度S参数的原文名称是“Scattering-Parameter”以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。
在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。
假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,越大传输的效率越高,一般建议S21>0.7,即-3dB,如果网络是无耗的,那么只要Port1上的反射很小,就可以满足S21>0.7的要求,但通常的传输线是有耗的,尤其在GHz以上,损耗很显著,即使在Port1上没有反射,经过长距离的传输线后,S21的值就会变得很小,表示能量在传输过程中还没到达目的地,就已经消耗在路上了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S参数测量是射频设计过程中的基本手段之一。
S参数将元件描述成一个黑盒子,并被用来模拟电子元件在不同频率下的行为。
在有源和无源电路设计和分析中经常会用到S参数。
S参数是RF工程师/SI工程师必须掌握的内容,业界已有多位大师写过关于S参数的文章,即便如此,在相关领域打滚多年的人,可能还是会被一些问题困扰着。
你懂S参数吗? 请继续往下看...台湾同行图文独特讲解!1、简介:从时域与频域评估传输线特性良好的传输线,讯号从一个点传送到另一点的失真(扭曲),必须在一个可接受的程度内。
而如何去衡量传输线互连对讯号的影响,可分别从时域与频域的角度观察。
S参数即是频域特性的观察,其中"S"意指"Scatter",与Y或Z参数,同属双端口网络系统的参数表示。
S参数是在传输线两端有终端的条件下定义出来的,一般这Zo=50奥姆,因为V NA port也是50奥姆终端。
所以,reference impedance of port的定义不同时,S参数值也不同,即S参数是基于一指定的port Zo条件下所得到的。
2. 看一条线的特性:S11、S21看一条线的特性:S11、S21如下图所示,假设port1是讯号输入端,port2是讯号输出端S11表示在port 1量反射损失(return loss),主要是观测发送端看到多大的的讯号反射成份;值越接近0越好(越低越好,一般-25~-40dB),表示传递过程反射(reflection)越小,也称为输入反射系数(Input Reflection Coefficient)。
S21表示讯号从port 1传递到port 2过程的馈入损失(insertion loss),主要是观测接收端的讯号剩多少;值越接近1越好(0dB),表示传递过程损失(loss)越小,也称为顺向穿透系数(Forward Transmission Coefficient)。
3、看两条线的相互关系:S31、S41虽然没有硬性规定1、2、3、4分别要标示在线哪一端,但[Eric Bogatin大师]建议奇数端放左边,且一般表示两条线以上cross-talk交互影响时,才会用到S31。
以上图为例,S31意指Near End Cross-talk (NEXT),S41意指Far End Cross-talk (FEXT).4、看不同模式的讯号成份:SDD、SCC、SCD、SDC以上谈的都是single ended transmission line (one or two line),接着要谈differential pair结构。
5、以史密斯图观察S参数因为S11、S22是反映传输线的reflection,不难理解S11其实也可以直接以反射系数表示。
既然是反射系数,那就可以用史密斯图来观察了,史密斯图可以想做是把直角坐标的Y轴上下尽头拉到X轴最右边所形成水平轴表示实数R,水平轴以上平面表示电感性,水平轴以下平面表示电容性以一条四英寸长,50欧姆的传输线为例,从15M~2GHz的史密斯图,S11会呈现螺旋状往圆心收敛,而这螺旋就是dielectric losses absorb造成,越高频lo ss越大。
6、仿真范例取一条100mm长,线宽7mils、铜厚0.7mils、堆栈高4mils,特性阻抗50奥姆的microstrip,以下方reference plane是否有被slot切开做比对。
Trace1的地回路是完整的,而Trace2的地有一个横切的slot造成地回路不连续。
6.1观察Trace 1的S11、S21:S11从1~5GHz都维持在-35dB以下,表示反射成份很小;S21从1~5GHz都很接近0dB,表示大部分的讯号成份都完整的从port 1传到port 2。
一条良好的传输线,S11、S21会拉蛮开的,随着频率增加彼此才会慢慢靠近一些。
另外,从S11可以很清楚看到由线长所决定的共振频点.一般50歐姆特性阻抗的microstrip on FR4,有效介電限數大約3.0~3.1,可以透過Design/Nexxim得到.6.2观察Trace 2的S11、S21:S11在1GHz以上时,就超过-20dB了,表示反射成份很大;S21与Trace1比较起来,随频率降低的速度也大一倍,表示有较多讯号成份在port 1传到port 2的过程中损耗。
7.问题与讨论7.1 埠端阻抗是如何影响S11参数的?Ans:端口阻抗(referenced impedance, Zport)会影响Zin,进而影响S11 For the transmission line with characteristic impedance Zo, the max. impedance referenced to Zport is Zin=Zo*2/Zport ,S11=(Zin-Zport)/(Zi n+Zport)在HFSS内,上式S11中的Zport以实数考虑(non-conjugate matched load fo r S-parameter),而在Designer或一般电路仿真软件中,上式S11中的Zport 以复数考虑(conjugate matched load for S-parameter)。
在一些天线或wav eguide的应用中,如果埠端阻抗含虚部,而又希望可以在Designer内看到跟H FSS的S参数同样结果,可从以下设定[Tools] \ [Options] \ [Circuit Opti ons],un-check [Use circuit S-parameter definition]。
请注意:这只是S参数埠端定义的不同,结果都是对的,所以不管哪一种定义下,如果转到Y或Z参数(或是从Designer透过dynamic link HFSS)去看,其值是一样的。
7.2 Touchstone file (.snp)跟S-parameter是什么关系?Ans:Touchstone file (.snp)是基于每个频点的S参数,所定义的一种频域模型,其格式如下所示:7.3 为何端口阻抗会影响S参数,但不影响Z参数(Z11)?Ans:Z11=Vi/Iin与埠端阻抗无关。
7.4 除了靠软件,还有其他方法检查Passivity、Causality吗?Ans:如图所示,透过观察TDR\NEXT\FEXT是否在T=0之前有响应。
7.5 史密斯图(Smith Chart)与Causality、Passivity是否有关联性?Ans:有的7.5.1 满足Causality与Passivity传输线的史密斯图,会呈现以顺时针方向往中心螺旋收敛的曲线。
将线长从10mm拉长一倍到20mm,发现越长的线,其Smith Chart中随频率增加而顺时针向中心旋转收敛的步幅也会增加。
把介质loss tangent从0.02改0.06,发现Smith Chart中随频率增加而顺时针向中心旋转的收敛会加快。
顺时针向中心旋转与lossy有关。
7.5.2 满足Causality但a bit violate Passivity传输线的史密斯图,会出现部份频段贴合,没有往中心旋转收敛。
近几年的HFSS性能一直提升,想要用简单的例子搞出non-passivity还不太容易。
本例是四条传输线(.s8p),故意降低mesh performance(放大error perc entage=0.1%),低频DC~0.1GHz刻意不求解,并且使用lossless介质。
7.5.3 non-causality and non-passivity的史密斯图,相对于n*n matrix中不同矩阵区块内的violate程度,曲线可能会折弯 (低频violate passivity 严重,在Smith Chart也看到低频曲线有不规则的折弯),或是不往中心收敛笔者还看不到HFSS产生的non-causal S参数的Smith Chart会逆时针旋转,或其时域响应提前发生的现象。
但可以用Designer内的de-embedded功能产生逆时针旋转的Smith Chart。
8、Reference[1] Chapter1 -- 宜兰大学, 邱建文教授[2] In-Situ De-embedding (ISD) p.6~8 from AtaiTec Corp. (推荐)[3] Power Integrity for I/O Interfaces: With Signal Integrity/ Power IntegrityIn a passive high-speed channel, the speedy way to check for causalit y is to examine the S-parameter Smith Chart. If the data rotate clock wise, it has positive group delay; implying it to be causal. On the o ther hand, if the data rotates counterclockwise, this implies it is n oncausal.[4] 一篇利用Smith Chart补偿Passivity与Causality的专利技术Smith Chart can be used to monitor the passivity and causality of net works under study. For instance, Foster's reaction theorem dictates a general motion in the clockwise direction with frequency for the par ameters of an arbitrary network.[5] touchstone spec. 2.0[6] TS1.0 and TS2.0 (推荐)[7] Converting S-Parameters from 50Ω to 75Ω Impedance[8] Scattering Parameters:Concept, Theory, and Applications[9] RF Matching Design[10] Why have non-causality (推荐)。