多元非线性回归
第9章多元线性回归与非线性回归分析 《统计学》PPT课件
的偏导
ˆ1、ˆ2 ,ˆk
数必须等于零。将Q对
求偏导数,并
ˆ1、ˆ2 ,ˆk
令其等于零,加以整理后可得到以下k个方程式:
nˆ1 ˆ2 X 2 t ˆk X kt Yt
ˆ1 X 2 t ˆ2 X 22t ˆk X 2 t X kt X 2 tYt
变量Y与其他多个变量X 2 ,X 3 ,…,X k 之间线性相关程度的
指标,而不能反映其相互之间线性相关的方向。
• 复相关系数的取值区间为:0≤R≤1。
(二)偏相关系数
• 在对其他变量的影响进行控制的条件下,衡量多个变量
中某两个变量的线性相关程度和方向的指标称为偏相关
系数。
• 在多变量的场合,变量之间存在错综复杂的关系,偏相
能够做到以尽可能少的自变量去达到尽可能高的拟合优
度。
• 多元模型中回归系数的检验同样采用t检验和P检验,其
原理和基本步骤与一元回归模型基本相同,这里不再赘
述。下面仅给出回归系数显著性检验t统计量的一般计
算公式。
j=1,2,…,k
•
t ˆ ˆ j / Sˆ
j
(9.15)
ˆ j
j
S ˆ
式中,
是回归系数的估计值,
j
估计值,其按下式计算:
2
S
S
jj
•
ˆ
是的标准差的
j
(9.16)
jj
式中,
是(X’X) -1 的第j个对角线元素,S 2 是随机
误差项方差的估计值。上式的t 统计量背后的原假设
是
H : =0,因此 t的绝对值越大表明 为0的可能性
可以化为线性的多元非线性回归模型课件
特征选择
去除无关或冗余的特征,保留对模型 贡献最大的特征。
模型评估的指标
均方误差(MSE)
R方值
ቤተ መጻሕፍቲ ባይዱ
衡量预测值与真实值之间的平均平方差距 。
衡量模型解释的变异比例,值越接近1表示 模型解释的变异比例越高。
调整R方值
交叉验证误差
对R方值进行调整,以考虑模型中的自由度 和样本大小。
将数据分成多个子集,用其中的一部分训 练模型,另一部分测试模型,重复多次以 获得稳定的误差估计。
特点
具有非线性特征,无法通过简单变换 转化为线性模型,需要采用特定的方 法和技巧进行建模和数据分析。
多元非线性回归模型的重要性
揭示非线性关系
在许多实际问题中,变量之间的关系可能并非线性,此时需要采 用多元非线性回归模型来揭示其内在联系。
提高预测精度
相比于线性模型,多元非线性回归模型能够更准确地拟合数据,从 而提高预测精度。
可解释性
选择的模型应易于解释,有助于理解数据背后的机制。
模型优化的方法
参数优化
通过调整模型参数以改进模型的性能 ,如梯度下降法、牛顿法等。
集成学习
将多个模型的预测结果结合起来以提 高预测精度,如bagging、 boosting等。
正则化
通过在损失函数中添加惩罚项来防止 过拟合,如L1、L2正则化等。
03
02
幂回归模型
适用于因变量和自变量之间存在幂 关系的情况。
指数回归模型
适用于因变量和自变量之间存在指 数关系的情况。
04
03
模型选择与优化
模型选择的原则
适应性
选择的模型应能适应数据的特性,包括分布、自变量和因变量之间的关系等。
多元非线性回归
多元非线性回归目录1 什么是多元非线性回归分析2 多元非线性回归分析方程3 多元非线性回归分析模型[1]什么是多元非线性回归分析多元非线性回归分析是指包含两个以上变量的非线性回归模型。
对多元非线性回归模型求解的传统做法,仍然是想办法把它转化成标准的线性形式的多元回归模型来处理。
有些非线性回归模型,经过适当的数学变换,便能得到它的线性化的表达形式,但对另外一些非线性回归模型,仅仅做变量变换根本无济于事。
属于前一情况的非线性回归模型,一般称为内蕴的线性回归,而后者则称之为内蕴的非线性回归。
多元非线性回归分析方程如果自变数X_1,X_2,\cdots,X_m与依变数Y皆具非线性关系,或者有的为非线性有的为线性,则选用多元非线性回归方程是恰当的。
例如,二元二次多项式回归方程为:{y}=a+b_{11}x_1+b_{21}x_2+b_{12}x_1^2+b_{22}x_2^2+b_{11 \times22}x_1x_2令b_1=b_{11},b_2=b_{21},b_3=b_{12},b_4=b_{22},b_5=b_{11\tim es22},及x_3=x_1^2,x_4=x_2^2,x_5=x_1\cdot x_2,于是上式化为五元一次线性回归方程:\widehat{y}=a+b_1x_1+b_2x_2+b_3x_3+b_4x_4+b_5x_5这样以来,便可按多元线性回归分析的方法,计算各偏回归系数,建立二元二次多项式回归方程。
多元非线性回归分析模型[1]一、常见的内蕴多元性回归模型只要对模型中的变量进行数学变换,比如自然对数变换等,就可以将其转化具有标准形式特征的多元线性回归模型。
1.多重弹性模型(y_1;x_{11},x_{12}\cdots,x_{1k}),(y_2;x_{21},x_{22}\cdots,x_{2k}),\ cdots,(y_n;x_{n1},x_{n2}\cdots,x_{nk})是一组对的样本观察资料,则称存在下列关系的非线性回归模型为多重弹性模型y_i=\beta_0x_{i1}^{\beta_1}x_{i2}^{\beta_2}\cdots x_{ik}^{\beta_k}e^{\epsilon_{i}} (1)上述模型中的各解释变量的幂,能够说明解释变量的相对变化对被解释变量产生的相对影响,我们正式从这一角度说它是多重弹性模型的。
3第三章 多元线性回归模型及非线性回归模型new
各种因素对汽车销量影响的性质怎样?(正、负) 各种因素影响汽车销量的具体数量关系是什么? 所得到的数量结论是否可靠? 中国汽车行业今后的发展前景怎样?应当如何制定汽车的 产业政策? 很明显,只用一个解释变量已很难分析汽车产业的发展, 还需要寻求有更多个解释变量情况的回归分析方法。
注意
ˆ 是向量 (i 1, 2, n) β ( j 1, 2, n)
(由无偏性) (由OLS估计式)
ˆ β)( β ˆ β )] E[( β
E[( X X )1 X uuX ( X X )1 ] ( X X )1 X E(uu) X ( X X )1 ( X X )1 X 2 IX ( X X )1
计量经济学
第三章 多元线性回归模型
引子:中国已成为世界汽车产销第一大国
2009年,为应对国际金融危机、确保经济平稳较快增长, 国家出台了一系列促进汽车消费的政策,有效刺激了汽车消费市 场,汽车产销呈高增长态势,首次成为世界汽车产销第一大国。 2009年,汽车产销分别为1379.1万辆和1364.5万辆,同比增长
c c12 11 c21 c22 ck 1 ck 2
c1k c2 k ckk
所以
ˆ ~ N ( , c ) j j
中第 j 行第 j 列的元素) 2 (j=1,2,---k) jj
19
ˆ 的方差-协方差 β
ˆ ) E{[ β ˆ E( β ˆ )][ β ˆ E( β ˆ )]} COV ( β
因为样本回归函数为 两边左乘 X
X
e
0
ˆ +e Y = Xβ
ˆ + X e X Y = X Xβ
多元非线性回归
多元非线性回归分析是一种多元非线性回归模型。
传统的求解多元非线性回归模型的方法仍然是将其转化为标准的线性多元回归模型。
一些非线性回归模型通过适当的数学变换可以得到线性化的表达式,而对于其他非线性回归模型,仅仅通过变量变换是没有帮助的。
属于前者的非线性回归模型通常称为内在线性回归,而后者称为内在非线性回归。
补充资料:线性回归线性回归是利用数理统计中的回归分析来确定两个或多个变量之间的定量关系的一种统计分析方法。
表达式形式为y=w'x+e,e为误差的正态分布,平均值为0。
在回归分析中,只包含一个自变量和一个因变量,二者之间的关系可用直线近似。
这种回归分析称为单变量线性回归分析。
如果回归分析包含两个或两个以上的自变量,且因变量与自变量之间是线性关系,则称为多元线性回归分析。
在统计学中,线性回归是一种回归分析,它使用称为线性回归方程的最小二乘函数来建模一个或多个自变量和因变量之间的关系。
这个函数是一个或多个模型参数的线性组合,称为回归系数。
只有一个自变量的情况称为简单回归,有多个自变量的情况称为多元回归。
(这应该再次通过由多个因变量而不是单个标量变量预测的多元线性回归来区分。
)在线性回归中,数据由线性预测函数建模,未知模型参数由数据估计。
这些模型称为线性模型。
最常用的线性回归模型是仿射函数,其中给定值x的条件平均值为x。
在不太常见的情况下,线性回归模型可以是Y或其他分位数条件分布的中值。
与所有形式的回归分析一样,线性回归侧重于给定x值的Y的条件概率分布,而不是x和Y的联合概率分布(在多元分析领域)。
线性回归是第一个经过严格研究并在实际应用中得到广泛应用的回归分析方法。
这是因为与未知参数线性相关的模型比与位置参数非线性相关的模型更容易拟合,并且更容易确定结果估计值的统计特性。
线性回归模型通常采用最小二乘法进行拟合,但也可以采用其他方法进行拟合,如最小化其他规范中的“拟合缺陷”(如最小绝对误差回归)或最小化桥梁回归的惩罚函数最小二乘法,最小二乘法可用于拟合这些非线性模型。
多元非线性回归
多元非线性回归今天给大家展示的内容是关于多元非线性回归模型,一般对统计分析略有了解的人都会知道,回归模型一般分为一元线性回归模型,多元线性回归模型,还有非线性回归模型,非线性回归模型有一元的,也有两元的,还有多元的!其中最复杂的应该是多元非线性回归模型,复杂在何处:第一,我们事前并不知道该用什么样的非线性模型去拟合数据?第二,即使我们知道了需要的非线性模型,但是里面的参数设置,要靠自己专业和经验来设置,没错——靠经验!问题是我们(除了一些大牛)是没经验的。
为了降低难度,结合今天设计学院一位学姐问的问题,赋文君利用别人的模型,去尝试的复现别人的结果,顺便介绍非线性回归分析的基本步骤!注意,以下内容基本在百度上搜不到!都是赋文君自己摸索出来的。
问题背景为了研究建筑材料的抗压强度,某个硕士研究生设计了一个实验,实验材料:石灰,细砂,水玻璃;实验器材:若见先进设备,其实我也没用那些工程机械。
通过一些列物理等方面的参数分析检验,得出了一些实验结果,在利用回归模型分析和相关性分析深入了解石灰,水玻璃和细砂,抗压强度四者之间的数量关系和相关程度。
抗压强度是因变量,石灰,水玻璃和细砂是自变量。
2.原始数据3.非线性回归分析步骤将数据导入或者录入spss中,接着就可以对其进行回归分析了。
按钮点击顺序,找到“分析”——“回归”——“非线性”:将抗压强度选为因变量,接着要输入模型了,案例论文用的是二阶混料规范多项式:为了便于录入模型和分析,把上面的模型分解开:变量x的前面系数(即参数)分别设定为a,b,c,其中a1表示石灰的系数,a2表示水玻璃的系数,a3表示细砂的系数,b1表示石灰*水玻璃的系数,b2表示石灰*细砂的系数,b3表示水玻璃*细砂的系数,c1 c2 c3分别表示,石灰,水玻璃和细砂平方的系数,d是常数量。
多元非线性回归
多元非线性回归
第一,我们事前并不知道该用什么样的非线性模型去拟合数据?
第二,即使我们知道了需要的非线性模型,但是里面的参数设置,要靠自己专业和经验来设置,没错——靠经验!问题是我们(除了一些大牛)是没经验的。
为了降低难度,结合今天设计学院一位学姐问的问题,赋文君利用别人的模型,去尝试的复现别人的结果,顺便介绍非线性回归分析的基本步骤!
问题背景:
为了研究建筑材料的抗压强度,某个硕士研究生设计了一个实验,实验材料:石灰,细砂,水玻璃;实验器材:若见先进设备,其实我也没用那些工程机械。
通过一些列物理等方面的参数分析检验,得出了一些实验结果,在利用回归模型分析和相关性分析深入了解石灰,水玻璃和细砂,抗压强度四者之间的数量关系和相关程度。
抗压强度是因变量,石灰,水玻璃和细砂是自变量。
3.非线性回归分析步骤
将数据导入或者录入spss中,接着就可以对其进行回归分析了。
按钮点击顺序,找到“分析”——“回归”——“非线性”:
为了便于录入模型和分析,把上面的模型分解开:变量x的前面系数(即参数)分别设定为a,b,c,其中a1表示石灰的系数,a2表示水玻璃的系数,a3表示细砂的系数,b1表示石灰*水玻璃的系数,b2表示石灰*细砂的系数,b3表示水玻璃*细砂的系数,c1 c2 c3分别表示,石灰,水玻璃和细砂平方的系数,d是常数量。
多元非线性回归的动力学分析
多元非线性回归的动力学分析(续)Johannes OpfermannNETZSCH-Gerätebau GmbH,Wittelsbacherstrabe42,D-95100Selb/Germany编译:戴世琨,曾智强德国耐驰仪器制造有限公司上海代表处4.从实际测量数据获取热力学模型下面以Ca(OH)2的热分解为例说明:尽管实际测试有误差,多元数据分析仍可将其成功校正。
实验部分:分析仪器:NETZSCH STA429气氛:N2气流速率:50ml/min升温速率:5,10.3,21K/min样品称重:47-51mg单曲线分析:图5描述了升温速率为10.3K/min的动力学分析结果。
图中可见,不同反应类型的动力学分析均可得到良好的拟合效果。
需要注意的是,上述拟合结果只是来自于10K/min升温速率的测量数据。
对于其它的升温速率,单曲线拟合时也可能得到不同的动力学参数,甚至得到不同的反应类型。
图5:Ca(OH)2分解的TG测试拟合。
反应类型:D4,D2,R2。
升温速率:10.3K/min表5:Ca(OH)2热分解的单曲线分析结果(反应类型:D4,D2,R2,D3)升温速率(K/min)反应类型lg(A/s-1)E/(kJ/mol)校正系数Fexp Fcrit(0.05)21.5D4D2R2R3D313.8013.465.796.3215.65246.4233.0121.0130.3271.60.999900.999900.999810.999390.999351.001.031.835.966.321.181.181.181.181.1810.3D4D2R2D3R315.2014.786.2917.316.93262.1248.0128.0290.0138.60.999950.999930.999870.999500.999471.001.502.6410.0210.441.191.191.191.191.195.0D2D4R2D3R315.1915.646.3317.827.00249.8263.9128.6292.0139.20.999960.999920.999780.999390.999321.002.095.8515.8917.741.201.201.201.201.20多曲线分析由此,我们有必要将多种不同升温速率的曲线综合分析。
A题思路之一——多元非线性回归分析
A题思路之一——多元非线性回归分析本题求解关键为建立工资与其他7个因素之间的关系模型,可以考虑采用回归分析法,也可以考虑其他方法;以下仅以回归分析法过程为例给出分析思路,仅供参考:注意:根据下述结果发现本问题应该考虑为多元非线性回归,因此请大家优先挑出使用非线性回归模型的论文,其余酌情考虑。
1.数据预处理1)为数据分析方便,应该考虑名义变量或有序变量的量化处理(编码),如可以考虑如下编码方案(含符号约定):y-日平均工资的对数,便于回归分析;作为因变量。
11~ 0~x⎧=⎨⎩男性女性;2x:工龄31~ 0~x⎧=⎨⎩男性或单身女性已婚女性;40x ⎧⎪⎪⎨⎪⎪⎩~本科1~硕士(受教育状况)=2~博士3~博士后;51~ ()0~x⎧=⎨⎩管理岗位工作部门性质技术岗位;61~ 0~x⎧=⎨⎩受过培训(培训情况)未受过培训;71~ 0~x⎧=⎨⎩两年以上未从事一线工作(一线工作情况)其它情况2)分别作出y与各自变量之间的散点图,发现与x2非线性关系较为明显(下图所示),所以应该考虑为非线性模型,data=xlsread('Adata.xls',2);y=data(:,1);x=data(:,2:8);plot(x(:,2),y,'r*')title('lny vs x2')0501001502002503003504004505003.43.63.844.24.44.64.85lny vs x23)相关性分析data=xlsread('Adata.xls',2);y=data(:,1);x=data(:,2:8);s=corrcoef(data);xlswrite('coef.xls',s)lny X1 X2 X3 X4 X5 X6 X71 0.266995 0.775291 0.286135 0.505526 0.277929 0.199178 0.489786 0.266995 1 0.160389 0.679446 0.312348 0.417621 -0.10498 0.316025 0.775291 0.160389 1 0.226096 0.103146 0.098854 0.151146 0.156321 0.286135 0.679446 0.226096 1 0.266937 0.213363 -0.27966 0.229535 0.505526 0.312348 0.103146 0.266937 1 0.412745 0.219762 0.855236 0.277929 0.417621 0.098854 0.213363 0.412745 1 -0.05307 0.423355 0.199178 -0.10498 0.151146 -0.27966 0.219762 -0.05307 1 0.255665 0.489786 0.316025 0.156321 0.229535 0.855236 0.423355 0.255665 1相关系数表也提示y 仅与x2,x4关系密切.与婚姻状况x1,x3关系不明显.2、建模及简易求解(第1、3问)以下考虑分别用多元线性回归模型、线性逐步回归模型、非线性模型分析,从中选择相对最优的模型。
多元线性回归和非线性回归-PPT课件
bi 表示假定其他变量不变,当 xi 每变动一个单 位时,y 的平均变动值
二元线性回归方程
考虑二元线性回归模型
y b b x b x 0 1 1 2 2
E ( y ) b b x b x 0 1 1 2 2
1. b 1 表示 x 2 保持不变时, x 1 每变动一个单位时 E ( y ) 的相应变化量.
bb b
b
b0 ,b1,b2 ,,bp是参数 是被称为误差项的随机变量 y 是x1,,x2 , ,xp 的线性函数加上误差项 包含在y里面但不能被p个自变量的线性关系 所解释的变异性
多元线性回归模型
(基本假定)
1. 解释变量x1,x2,…,xp是确定性变量.不是 随机变量,且要求样本容量的个数应大于解释变 量的个数。 2. 误 差 项 ε 是 一 个 期 望 值 为 0 的 随 机 变 量 , 即 E()=0 3. 对于自变量x1,x2,…,xp的所有值,的方差 2都相同 4. 误差项 ε 是一个服从正态分布的随机变量,即 ε~N(0,2),且相互独立
a. Dependent Variable: y
参数的最小二乘法
y 4 1 2 2 9 0 1 2 5 . 7 0 2 x 2 6 . 7 4 1 x 5 . 8 7 8 x 9 5 . 6 6 8 x 1 2 3 4 4 2 . 2 8 8 x 1 1 . 7 2 4 x 1 8 7 . 5 3 2 x 5 0 . 2 8 0 x 5 8 . 0 8 2 x 5 6 7 8 9 8 1 . 7 2 6 x 4 6 . 7 9 1 x 5 4 . 8 1 7 x 4 1 . 1 2 3 x 1 0 1 1 1 2 1 3
多元非线性回归
多元非线性回归多元非线性回归分析是具有两个以上变量的非线性回归模型。
解决多元非线性回归模型的传统方法仍然是找到一种将其转换为标准线性多元回归模型的方法。
一些非线性回归模型可以通过适当的数学变换来获得其线性化表达式,但是对于其他非线性回归模型,仅变量变换没有帮助。
属于前一种情况的非线性回归模型通常称为内在线性回归,而后者称为内在非线性回归。
补充数据:线性回归线性回归是一种统计分析方法,在数学统计中使用回归分析来确定两个或多个变量之间的定量关系。
表达式形式为y = w'x + e,E为误差的正态分布,平均值为0。
在回归分析中,仅包含一个自变量和一个因变量,并且两者之间的关系可以近似地由一条直线表示。
这种回归分析称为单变量线性回归分析。
如果回归分析包括两个或多个自变量,并且因变量和自变量之间的关系是线性的,则称为多元线性回归分析。
在统计中,线性回归是一种回归分析,它使用称为线性回归方程的最小二乘函数对一个或多个自变量与因变量之间的关系进行建模。
此函数是一个或多个称为回归系数的模型参数的线性组合。
仅一个自变量的情况称为简单回归,而一个以上自变量的情况称为多重回归。
(这又应通过多个因变量而不是单个标量变量预测的多个线性回归来区分。
)在线性回归中,数据是通过线性预测函数建模的,未知模型参数是通过数据估算的。
这些模型称为线性模型。
最常用的线性回归建模是给定x值的Y的条件平均值是X的仿射函数。
在不太常见的情况下,线性回归模型可以是Y的条件分布的中位数或其他分位数像所有形式的回归分析一样,线性回归关注于给定x值的Y的条件概率分布,而不是X和Y的联合概率分布(在多元变量领域)分析)。
线性回归是经过严格研究并在实际应用中广泛使用的第一类回归分析。
这是因为与未知参数线性相关的模型比对位置参数非线性相关的模型更容易拟合,并且更容易确定结果估计的统计特征。
线性回归模型通常通过最小二乘近似进行拟合,但也可以通过其他方法进行拟合,例如最小化某些其他规范中的“拟合缺陷”(例如最小绝对误差回归)或最小化最小二乘的惩罚桥回归中的损失函数,最小二乘近似可用于拟合那些非线性模型。
巧用Excel解决多元非线性回归分析
巧用Excel解决多元非线性回归分析巧用Excel解决多元非线性回归分析随着数据分析在各个行业和领域的广泛应用,多元非线性回归分析成为一种常见的数据处理方法。
而作为一款强大且易于使用的电子表格软件,Excel也可用于解决多元非线性回归分析的问题。
本文将介绍如何巧用Excel进行多元非线性回归分析,并结合实例进行说明。
一、多元非线性回归分析简介多元非线性回归分析是在使用多个自变量预测因变量时,自变量与因变量之间存在非线性关系的情况下进行回归分析的方法。
与简单线性回归模型相比,多元非线性回归模型更贴近实际情况,能够更准确地描述自变量与因变量之间的关系。
在多元非线性回归分析中,可以选择不同的非线性函数作为方程的形式,常用的非线性函数包括指数函数、对数函数、幂函数等。
根据具体问题的需求,可以选择最适合的非线性函数来进行回归分析。
二、Excel的数据准备在进行多元非线性回归分析之前,首先需要准备好相关的数据。
数据应该包括多个自变量和一个因变量,并且这些变量之间应该存在一定的关系。
假设我们要研究一个商品的销售量与价格、广告费用和季节性因素的关系。
我们可以收集一段时间内的销售数据,同时记录价格、广告费用和季节因素的数值。
将数据整理成一个表格,其中每一列表示一个变量,每一行表示一个样本。
确保每一列都有相应的变量名称,并为数据添加适当的标签,以便于后续的分析。
三、Excel的数据分析工具Excel提供了丰富的数据分析工具,可以用于解决多元非线性回归分析的问题。
其中最常用的工具是回归分析工具,它能够帮助我们建立回归模型,并计算模型的拟合度和参数估计值。
在Excel的工具栏中,选择“数据”-“数据分析”-“回归”,即可打开回归分析对话框。
在对话框中,选择自变量和因变量的范围,并勾选“输出范围”。
在输出范围中,选择一个单元格作为回归分析结果的起始位置。
点击确定后,Excel会自动计算回归方程的系数、确定系数和预测值,并将结果显示在选定的单元格区域中。
可以化为线性的多元非线性回归模型精品文档
若回归结果如下所示
ln ES ˆX t 7.78 90.007 tt 43
Se = (0.0023) (0.00017)
t = (3387.619) (44.2826)
R2=0.9894
结果表示对外劳务输出每年以0.743%的速 度增长。
如果设定的非线性模型为
j表示在其他解释变量保持不变的情况下,Xj
每变化1个单位时,Y的均值E(Y)的变化。
非线性的情况:
(1 )ln Y i12ln X i u i (2 )ln Y i12X i u i (3 )Y i12ln X i u i (4 )Y i12X i3X i2 u i
回归结果如下:
GDPˆGi 0.0130.062RGDPi 0.061RGDPi2
Se = (0.004) (0.027)
(0.033)
这个回归结果表明,在一定范围内发展中国家 GDPG随着RGDP的提高而递增,但增加的速 度递减。
(五)倒数函数模型
如果设定的非线性模型为
Y i12(1X i)u i
非线性回归模型的线性化
一、双对数模型 二、半对数模型 三、幂函数模型 四、多项式函数模型 五、倒数函数模型
一元线性回归模型
Yi ห้องสมุดไป่ตู้12Xiui
i=1,2…,n
1表X 示 每变化一Y的 个均 单 E( Y 值 位 )时 的, 变
多元线性回归模型
Y i 1 2 X 2 i 3 X 3 i k X k i u i i=1,2…,n
2
E(lnYi)E(lnYi1) Xi Xi1
Y的X的 均绝 值对 的变 相化 对变化
斜率系数 2 衡量的是当变量X的绝对量每发生单位变动 时,引起被解释变量Y平均值的相对变动比率。
可以化为线性的多元非线性回归模型
i=1,2,…,n 如果参数估计值已经得到,则应使得残差平方和
最小。即 S ( ) ( yi f ( xi , )) 2 (1) 最小。也即是:
i 1
n dS )( df ( xi , ) ) 0 2 ( y i f ( x i , d d i 1
y
。
x
但是,大部分非线性关系又可以通过一些简单 的数学处理,使之化为数学上的线性关系,从而可 以运用线性回归的方法进行计量经济学方面的处理。
一、模型的类型与变换
1、倒数模型、多项式模型与变量的直接置换法 例如,描述税收与税率关系的拉弗曲线:抛物线 s = a + b r + c r2 c<0 s:税收; r:税率 设X1 = r,X2 = r2, 则原方程变换为 s = a + b X1 + c X2 c<0
i 1
n
(5)
最小。 比较(3)与(5)后发现, 满足使 (5)达到最小的估计值 (1) 同时也是使 (3)达到最小的 。 换句话说,线性模型(4)的普通最小二乘估计值就是模型(1)的一个近似估计值。因为它是在 给定参数估计值 的初值 ( 0) 的情况下得到的,将它记作为参数估计值 的第一次迭代值
(***) (****)
考虑到零阶齐次性时
ln( Q ) 0 1 ln( X / P0 ) 2 ln( P1 / P0 )
(****)式也可看成是对(***)式施加如下约束而得 1 2 3 0
因此,对(****)式进行回归,就意味着原需 求函数满足零阶齐次性条件。
X:人均消费 X1:人均食 品消费 GP:居民消 费价格指数 FP:居民食品 消费价格指数 XC:人均消 费(90年价) Q:人均食品 消费(90年价) P0:居民消费 价格缩减指数 (1990=100) P:居民食品 消费价格缩减 指数 (1990=100
实验三多元线性回归模型和非线性回归模型介绍
实验三多元线性回归模型和非线性回归模型【实验目的】掌握建立多元线性回归模型和非线性回归模型,以及比较、筛选模型的方法。
【实验内容】建立我国国有独立核算工业企业生产函数。
根据生产函数理论,生产函数的基本形式为:(,,,)Y f t L Kε=。
其中,L、K 分别为生产过程中投入的劳动与资金,时间变量t反映技术进步的影响。
表3.1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。
表3.1 我国国有独立核算工业企业统计资料年份时间t 工业总产值Y(亿元)职工人数L(万人)固定资产K(亿元)1978 1 3289.18 3139 2225.70 1979 2 3581.26 3208 2376.34 1980 3 3782.17 3334 2522.81 1981 4 3877.86 3488 2700.90 1982 5 4151.25 3582 2902.19 1983 6 4541.05 3632 3141.76 1984 7 4946.11 3669 3350.95 1985 8 5586.14 3815 3835.79 1986 9 5931.36 3955 4302.25 1987 10 6601.60 4086 4786.05 1988 11 7434.06 4229 5251.90 1989 12 7721.01 4273 5808.71 1990 13 7949.55 4364 6365.79 1991 14 8634.80 4472 7071.35 1992 15 9705.52 4521 7757.25 1993 16 10261.65 4498 8628.77 1994 17 10928.66 4545 9374.34【实验步骤】一、建立多元线性回归模型(一)建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件:CREATE A 1978 1994⒉输入统计资料:DATA Y L K⒊生成时间变量t:GENR T=@TREND(77)⒋建立回归模型:LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。
多元非线性回归
多元非线性回归分析是具有两个以上变量的非线性回归模型。
解决多元非线性回归模型的传统方法仍然是找到一种将其转换为标准线性多元回归模型的方法。
一些非线性回归模型可以通过适当的数学变换来获得其线性化表达式,但是对于其他非线性回归模型,仅变量变换没有帮助。
属于前一种情况的非线性回归模型通常称为内在线性回归,而后者称为内在非线性回归。
补充数据:线性回归线性回归是一种统计分析方法,在数学统计中使用回归分析来确定两个或多个变量之间的定量关系。
表达式形式为y = w'x + e,E为误差的正态分布,平均值为0。
在回归分析中,仅包含一个自变量和一个因变量,并且两者之间的关系可以近似地由一条直线表示。
这种回归分析称为单变量线性回归分析。
如果回归分析包括两个或多个自变量,并且因变量和自变量之间的关系是线性的,则称为多元线性回归分析。
在统计中,线性回归是一种回归分析,它使用称为线性回归方程的最小二乘函数对一个或多个自变量与因变量之间的关系进行建模。
此函数是一个或多个称为回归系数的模型参数的线性组合。
仅一个自变量的情况称为简单回归,而一个以上自变量的情况称为多重回归。
(这又应通过多个因变量而不是单个标量变量预测的多个线性回归来区分。
)在线性回归中,数据是通过线性预测函数建模的,未知模型参数是通过数据估算的。
这些模型称为线性模型。
最常用的线性回归建模是给定x值的Y的条件平均值是X的仿射函数。
在不太常见的情况下,线性回归模型可以是Y的条件分布的中位数或其他分位数像所有形式的回归分析一样,线性回归关注于给定x值的Y的条件概率分布,而不是X和Y的联合概率分布(在多元变量领域)分析)。
线性回归是经过严格研究并在实际应用中广泛使用的第一类回归分析。
这是因为与未知参数线性相关的模型比对位置参数非线性相关的模型更容易拟合,并且更容易确定结果估计的统计特征。
线性回归模型通常通过最小二乘近似进行拟合,但也可以通过其他方法进行拟合,例如最小化某些其他规范中的“拟合缺陷”(例如最小绝对误差回归)或最小化最小二乘的惩罚桥回归中的损失函数,最小二乘近似可用于拟合那些非线性模型。
35可化为线性的多元非线性回归模型
王中昭制作
警告各位!
采用NLS迭代法应注意的问题
第一、选择多组(不同的)初始值进行多次迭 代求解.初始值的选取是NLS法的关键,选取不合
适会得到错误结果。
• 第二、 param用于非线性模型,对于线性模型
param设置初始值无用。
王中昭制作
三、实例
• 例1 C-D生产函数 • 资料来源:《中国统计年鉴》 • 数据文件:HXQ400.WF1 • 分别采用两种函数形式:可线性化的与不可线 性化的C-D生产函数模型估计GDP(亿元)与 总资金投入K(亿元)和总就业人数L的模型。 • 设模型为C-D生产函数: • GDP=Aert KαLβμ,t为时间,取值为(也可用 年份)1,2,…..11.
王中昭制作
二、非线性模型在Eviews中的实现
• 有如下几种方式:
• • • • • • •
(1)、直接在命令窗口中输入命令。 如:Ls Y c X^0.5 Z^0.5 相当于:y=a0+a1X1/2+a2Z1/2+μ (2)、QUick→estimate equation 在弹出窗口中输入: Y c X^0.5 Z^0.5 或 Y=c(1)+c(2)*X^0.5+c(3)*Z^0.5
王中昭制作
一. 模型的类型与变换
王中昭制作
1、倒数模型、多项式模型
模型中参数是线性的,而其中一个或者多 个变量是非线性时,通过简单的变量置换就 可以化为参数和变量都是线性的模型。 • 例如,需求函数模型中需求量与价格之间的 关系为非线性时: 1 1 t
•
Qt
pt
令
yt
3386.000 3846.000 4322.000 5495.000 6095.000 6444.000 7517.000 9636.000 14998.00 18944.00
matlab多元非线性回归教程
matlab 回归(多元拟合)教程前言1、学三条命令polyfit(x,y,n)---拟合成一元幂函数(一元多次) regress(y,x)----可以多元,nlinfit(x,y,’fun ’,beta0) (可用于任何类型的函数,任意多元函数,应用范围最主,最万能的)2、同一个问题,这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。
相当于咨询多个专家。
3、回归的操作步骤:根据图形(实际点),选配一条恰当的函数形式(类型)---需要数学理论与基础和经验。
(并写出该函数表达式的一般形式,含待定系数)------选用某条回归命令求出所有的待定系数。
所以可以说,回归就是求待定系数的过程(需确定函数的形式)一、回归命令一元多次拟合polyfit(x,y,n);一元回归polyfit;多元回归regress---nlinfit(非线性)二、多元回归分析对于多元线性回归模型(其实可以是非线性,它通用性极高):e x x y p p++++=βββ 110设变量12,,,p x x x y 的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n =记 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=np n n p p x x x x x x x x x x 212222111211111,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y y 21,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββ 10 的估计值为排列方式与线性代数中的线性方程组相同(),拟合成多元函数---regress使用格式:左边用b=[b, bint, r, rint, stats]右边用=regress(y, x)或regress(y, x, alpha) ---命令中是先y 后x,---须构造好矩阵x(x 中的每列与目标函数的一项对应) ---并且x 要在最前面额外添加全1列/对应于常数项---y 必须是列向量---结果是从常数项开始---与polyfit 的不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
例如,常替代弹性CES生产函数模型
Q A[ K (1 ) L ] e ,
Q:产出量, K:资本, L:劳动, :替代参数, :分配参数。 方程两边取对数后,得到:
ln Q ln A 1
1
ln[ K (1 ) L ] ,
f ''(0) [ ln K (1 )ln L]2 ln 2 K (1 )ln 2 L K (1 )(ln K ln L) (1 )ln , L
2 2
于是
1 2 k ln Q ln A ln K (1 )ln L (1 )ln . 2 L
对数变换: lnQ = 0 +1 ln X + 2 ln P1 + 3 ln P0 + . (***) 考虑到零阶齐次性时, lnQ = 0 +1 ln(X P0 ) + 2 ln(P1 P0 ) + , (****)
Q = AX 1 P1 2 P0 3 e ,
(****)式也可看成是对(***)式施加如下约束而得 1 + 2 + 3 = 0.
意味着:所建立的食品需求函数满足零阶齐次性特征。
(2)双曲线模型
1 Y = 0 + 1 + , X 1 设 Z = , 原方程变换为 X Y = 0 +1 Z + .
例如,Y :儿童死亡率; X:人均GDP。
(3)对数模型
ln Y 0 1 X ; 半对数模型 Y 0 1 ln X ,
这时,就需要选择适当类型的曲线模型拟合这种 关系,这就是非线性回归模型或曲线回归模型。 但是,大部分非线性关系又可以通过一些简单的 数学处理,使之化为数学上的线性关系,从而可以运 用线性回归的方法进行计量经济学方面的处理。
一、模型的类型与变换
1、直接置换法 这类模型通过简单的变量换元可直接化为线性回 归模型。由于这类模型的被解释变量没有变形,所以 可直接采用OLS估计回归系数并进行检验和预测。
§3.5 回归模型的其他函数形式
一、模型的类型与变换 二、非线性回归实例
前面我们学习的线性回归模型,解释变量和被解 释变量之间都呈现线性关系,但社会经济现象是极其 复杂的,有时解释变量和被解释变量之间的 依存关系 不一定是线性的,而可能存在某种非线性关系。 如著名的恩格尔曲线(Engle curves)表现为幂函数 曲线形式、宏观经济学中的菲利普斯曲线(Pillips cuves)表现为双曲线形式等。
设 f ( ) ln[ K (1 ) L ], 其在ρ=0 处展开,
有
f (0) = 0,
1 f '(0) [ K ln K (1 ) L ln L] 0 K (1 ) L ln K (1 )ln L,
因此,对( ****)式进行回归,就意味着原需求函数 满足零阶齐次性条件。
表 3.5.1 中国城镇居民消费支出(元)及价格指数
X 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 456.8 471.0 505.9 559.4 673.2 799.0 884.4 1104.0 1211.0 1278.9 1453.8 1671.7 2110.8 2851.3 3537.6 3919.5 4185.6 4331.6 4615.9 4998.0 5309.0 X1 420.4 432.1 464.0 514.3 351.4 418.9 472.9 567.0 660.0 693.8 782.5 884.8 1058.2 1422.5 1766.0 1904.7 1942.6 1926.9 1932.1 1958.3 2014.0 GP 102.5 102.0 102.0 102.7 111.9 107.0 108.8 120.7 116.3 101.3 105.1 108.6 116.1 125.0 116.8 108.8 103.1 99.4 98.7 100.8 100.7 FP 102.7 102.1 103.7 104.0 116.5 107.2 112.0 125.2 114.4 98.8 105.4 110.7 116.5 134.2 123.6 107.9 100.1 96.9 95.7 97.6 100.7 XC (1990年价 ) 646.1 659.1 672.2 690.4 772.6 826.6 899.4 1085.5 1262.5 1278.9 1344.1 1459.7 1694.7 2118.4 2474.3 2692.0 2775.5 2758.9 2723.0 2744.8 2764.0 Q (1990年价 ) 318.3 325.0 337.0 350.5 408.4 437.8 490.3 613.8 702.2 693.8 731.3 809.5 943.1 1265.6 1564.3 1687.9 1689.6 1637.2 1566.8 1529.2 1539.9 P0 (1990=100) 70.7 71.5 75.3 81.0 87.1 96.7 98.3 101.7 95.9 100.0 108.2 114.5 124.6 134.6 143.0 145.6 150.8 157.0 169.5 182.1 192.1 P1 (1990=100) 132.1 132.9 137.7 146.7 86.1 95.7 96.5 92.4 94.0 100.0 107.0 109.3 112.2 112.4 112.9 112.8 115.0 117.7 123.3 128.1 130.8
(1)指数函数模型
Y = 0 X1 X 2 e ,
两边取对数,
lnY = ln 0 +1 ln X1 + 2 ln X 2 + .
1
2
例如,Cobb-Dauglas生产函数模型 Q = A K L eμ,
Q:产出量,K:投入的资本;L:投入的劳动
方程两边取对数: ln Q = ln A + ln K + ln L+μ.
为
Q: 居民对食品的需求量,X:消费者的消费支出总额
P1: 食品价格指数,
P0:居民消费价格总指数。
零阶齐次性,当所有商品和消费者货币支出总额 按同一比例变动时,需求量保持不变。 (**) Q f ( X P , P P ),
0 1 0
为了进行比较,将同时估计(*)式与(**)式。
首先,确定具体的函数形式: 根据恩格尔定律,居民对食品的消费支出与居民 的总支出间呈幂函数的变化关系:
(2)幂函数模型
Y = abX e ,
两边取对数,
lnY = lna +X lnb + .
3、复杂函数模型与级数展开法 有些模型非但不是线性的,而且也无法采取变量 替换的方法化为线性形式,如
Y = 0 +1 X1 +2 X 2 +.
对这类模型的参数估计,一般采用高斯-牛顿迭代 法。即先将非线性模型在初始值处展开成泰勒级数, 略去高次项,用低次项近似替代,然后用OLS法估计 参数。重复上述两个步骤,得到参数估计值的收敛点 列,将收敛点列的极限作为最后估计的结果。
X:人均消费 X1:人均食品 消费 GP:居民消费 价格指数 FP:居民食品 消费价格指数 XC:人均消费 (90年价) Q:人均食品消 费(90年价) P0:居民消费价 格缩减指数 (1990=100) P1:居民食品消 费价格缩减指数 (1990=100
(当年价 ) (当年价 ) (上年 =100) (上年 =100)
ˆ ) 3.63 1.05 ln( X ) 0.08 ln( P ) 0.92 ln( P ) ln(Q 1 0
(9.03) (25.35) (-2.28) (-7.34)
按零阶齐次性表达式回归:
ˆ ) 3.83 1.07 ln( X / P ) 0.09 ln( P / P ) ln(Q 0 1 0
(1)多项式模型
Y = 0 +1 X + 2 X 2 ++ k X k 2 , , Zk = X k , 原方程变换为
Y = 0 +1 Z1 + 2 Z2 ++ k Zk + .
例如,描述税收与税率关系的拉弗曲线:抛物线 s = a + b r + c r2+μ , c<0 s:税收; r:税率, 设X1 = r,X2 = r2, 则原方程变换为 s = a + b X1 + c X2 + μ , c<0 .
1800
中 国 城 镇 居 民 人 均 食 品 消 费
1600 1400 1200 1000 800 600 400 200 82 84 86 88 90 92 94 96 98 00 Q
特征:
消费行为在 1981~1995年间表 现出较强的一致性 1995年之后呈现出 另外一种变动特征。
建立1981~1994年中国城镇居民对食品的消费需求模型:
(75.86) (52.66) (-3.62)
为了比较,改写该式为:
ˆ 3.83 1.07 (ln X ln P ) 0.09 (ln P ln P ) ln Q 0 1 0 3.83 1.07 ln X 0.09 ln P1 0.98 ln P0
发现与 接近。
ˆ ) 3.63 1.05 ln( X ) 0.08 ln( P ) 0.92 ln( P ) ln(Q 1 0