湖北省黄石市九年级上学期期末数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省黄石市九年级上学期期末数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分) (2019九上·宁波期中) 在Rt△ABC中,∠C=90°,AC=3cm, AB=5cm,若以C为圆心,4cm为半径画一个圆,则下列结论中,正确的是()
A . 点A在圆C内,点B在圆C外
B . 点A在圆C外,点B在圆C内
C . 点A在圆C上,点B在圆C外
D . 点A在圆C内,点B在圆C上
2. (2分) (2019九上·灌云月考) 关于概率,下列说法正确的是()
A . 某地“明天降雨的概率是90%”表明明天该地有90%的时间会下雨;
B . 13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月;
C . “打开电视,正在播放新闻节目”是不可能事件;
D . 经过有交通信号灯的路口,一定遇到红灯.
3. (2分)(2017·杭州模拟) 一个圆锥的侧面展开图是圆心角为120°且半径为6的扇形,则这个圆锥的底面半径为()
A . 1.5
B . 2
C . 2.5
D . 3
4. (2分)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()
A . y=(x+2)2+2
B . y=(x+2)2-2
C . y=(x-2)2+2
D . y=(x-2)2-2
5. (2分)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()
A .
B .
C .
D .
6. (2分)(2018·枣庄) 如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()
A .
B .
C .
D .
7. (2分)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()
A . 116°
B . 32°
C . 58°
D . 64°
8. (2分)已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是
A .
B .
C .
D .
9. (2分)如图,四个二次函数的图象中,分别对应的是:① ;② ;③ ;④ ,则的大小关系为()
A .
B .
C .
D .
10. (2分) (2019九上·天台月考) 如图,反比例函数y=(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<时,则x的取值范围是()
A . 1<x<3
B . x<1或x>3
C . 0<x<1
D . 0<x<1或x>3
二、填空题 (共6题;共6分)
11. (1分) (2018九上·崇明期末) 已知点和是抛物线上的两点,如果,那么 ________ .(填“>”、“=”或“<”)
12. (1分)(2017·天山模拟) 有5张看上去无差别的卡片,上面分别写着0,π,,,1.333.随机抽取1张,则取出的数是无理数的概率是________.
13. (1分) (2019九下·包河模拟) 如图,OC是⊙O的半径,弦AB⊥OC于点D,点E在⊙O上,EB恰好经过圆心O,连接EC。
若∠B=∠E,OD= ,则劣弧AB的长为________。
14. (1分)某市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图象上(如图所示),则6楼房子的价格为________元/平方米。
15. (1分)(2019·常德模拟) 如图,△ABC中,BD和CE是两条高,如果∠A=45°,则=________.
16. (1分) (2018八下·扬州期中) 如图,P为反比例函数y= (x>0)在第一象限内图象上的一点,过点P分别作x轴、y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若AO、BO分别平分∠BAP、∠ABP,则k的值为 ________.
三、解答题 (共8题;共102分)
17. (10分)计算:
(1)(﹣)﹣( + )
(2)(﹣3)0﹣ +|1﹣2 |.
18. (12分)在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.
(1)请估计:当n很大时,摸到白球的概率将会接近________ (精确到0.01),假如你摸一次,你摸到白球的概率为________
(2)试估算盒子里白、黑两种颜色的球各有多少个?
(3)在(2)条件下如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?
19. (15分)(2017·浦东模拟) 已知:抛物线y=ax2+bx﹣3经过点A(7,﹣3),与x轴正半轴交于点B(m,0)、C(6m、0)两点,与y轴交于点D.
(1)求m的值;
(2)求这条抛物线的表达式;
(3)点P在抛物线上,点Q在x轴上,当∠PQD=90°且PQ=2DQ时,求点P、Q的坐标.
20. (10分) (2020九下·无锡月考) 如图1是超市的手推车,如图2是其侧面示意图,已知前后车轮半径均为5 cm,两个车轮的圆心的连线AB与地面平行,测得支架AC=BC=60cm,AC、CD所在直线与地面的夹角分别为
30°、60°,CD=50cm.
(1)求扶手前端D到地面的距离;
(2)手推车内装有简易宝宝椅,EF为小坐板,打开后,椅子的支点H到点C的距离为10 cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的宽度.(本题答案均保留根号)
21. (15分)(2018·东莞模拟) 如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D 作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,.
(1)求证:DF是⊙O的切线;
(2)若AD=DP,OB=3,求的长度;
(3)若DE=4,AE=8,求线段EG的长.
22. (10分) (2017九上·桂林期中) 将进货单价为40元的商品按50元售出时,能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个,若这种商品涨价x元,则可赚得y元的利润.
(1)写出x与y之间的关系式;
(2)为了赚得8000元利润,售价应定为多少元,这时应进货多少个?
23. (15分)(2020·阜阳模拟) 已知在中,,,点为射线上一点(与点不重合),过点作于点,且(点与点在射线同侧),连接,.
(1)如图1,当点在线段上时,请直接写出的度数.
(2)当点在线段的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.
(3)在(1)的条件下,与相交于点,若,直接写出的最大值.
24. (15分)(2018·北部湾模拟) 如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3) M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1 ,点A、O、B的对应点分别是点A1、O1、B1 .若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共8题;共102分)
17-1、
17-2、
18-1、
18-2、18-3、
19-1、19-2、
19-3、
20-1、20-2、
21-1、21-2、
21-3、22-1、
22-2、23-1、
23-2、23-3、
24-1、
24-2、
24-3、。