2020-2021学年华东师大新版八年级上册数学《第12章 整式的乘除》单元测试题(有答案)
华东师大新版八年级上册数学 第12章整式的乘除 单元测试卷(有答案)
2021-2022学年华东师大新版八年级上册数学《第12章整式的乘除》单元测试卷一.选择题(共10小题).1.计算a3•(﹣a)的结果是()A.a2B.﹣a2C.a4D.﹣a42.下列运算正确的是()A.﹣3﹣2=﹣1B.3×(﹣)2=﹣C.x3•x5=x15D.•=a3.计算a2•a4的结果是()A.a6B.a7C.a8D.a124.已知a m=2,a n=3,则a2m+3n等于()A.108B.54C.36D.185.计算(﹣ab2)3的结果是()A.ab6B.﹣ab6C.a3b6D.﹣a3b66.计算(ab3)2的结果是()A.2ab3B.ab6C.a2b5D.a2b67.下列计算中,正确的是()A.(x4)3=x12B.a2•a5=a10C.(3a)2=6a2D.a6÷a2=a3 8.下列计算正确的是()A.x3+x3=x6B.x3•x3=x9C.x3÷x﹣1=x4D.(2xy)3=2x3y9.下列计算正确的是()A.a2+a4=a6B.a2•a3=a6C.(a2)4=a8D.10.下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5二.填空题11.已知a m=3,a n=2,则a m+n=.12.若a x=2,a y=3,则a x﹣y=.13.我们知道,同底数幂乘法法则为:a m•a n=a m+n(其中a≠0,m、n为正整数)类似地我们规定关于任意正整数m,n的一种新运算:g(m+n)=g(m)•g(n),若g(1)=﹣,那么g(2020)•g(2021)=.14.若a m=3,a n=5,则a m+n=.15.若x+2y﹣3=0,则2x•4y的值为.16.计算:(﹣3a3)2=.17.若3x=4,9y=7,则3x+2y的值为.18.已知3m=8,3n=2,则3m+n=.19.计算(﹣2a2b)2=.20.计算a6÷a3的结果等于.三.解答题21.计算:a•a4.22.计算:(﹣a2)3•(﹣a3)2.23.同底数幂的乘法公式为:a m•a n=(m、n是正整数).请写出这一公式的推导过程.24.计算:(a﹣b)2•(b﹣a)3+(a﹣b)4•(b﹣a)25.若a n+1•a m+n=a6,且m﹣2n=1,求m n的值.26.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.27.比较3555,4444,5333的大小.参考答案与试题解析一.选择题1.解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.2.解:A、﹣3﹣2=﹣5,故此选项错误;B、3×(﹣)2=,故此选项错误;C、x3•x5=x8,故此选项错误;D、•=a,正确.故选:D.3.解:a2•a4=a2+4=a6,故选:A.4.解:a2m+3n=a2m•a3n=(a m)2•(a n)3=4×27=108.故选:A.5.解:(﹣ab2)3=﹣a3b6.故选:D.6.解:原式=a2b6,故选:D.7.解:A、(x4)3=x12,故A正确;B、x2•x5=x7,故B错误;C、(3a)2=9a2,故C错误;D、a6÷a2=a4,故D错误.故选:A.8.解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.9.解:A、a2与a4不是同类项,所以不能合并,故本选项不合题意;B、a2•a3=a5,故本选项不合题意;C、(a2)4=a8,故本选项符合题意;D、,故本选项不合题意;故选:C.10.解:A、x3与x2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、x3•x2=x5,原计算正确,故此选项符合题意;C、x6÷x2=x4,原计算错误,故此选项不符合题意;D、(x3)2=x6,原计算错误,故此选项不符合题意.故选:B.二.填空题11.解:a m+n=a m•a n=3×2=6,故答案为:6.12.解:∵a x=2,a y=3,∴a x﹣y=a x÷a y=2÷3=.故答案为:.13.解:由g(1)=﹣,得:原式=[g(1)]2020•[g(1)]2021=(﹣)4041=﹣.故答案为:﹣.14.解:∵a m=3,a n=5,∴a m+n=a m•a n=15,故答案为:15.15.解:2x•4y=2x•22y=2x+2y,x+2y﹣3=0,x+2y=3,2x•4y=2x+2y=23=8,故答案为:8.16.解:原式=(﹣3)2a3×2=9a6,故答案为:9a6.17.解:∵3x=4,9y=32y=7,∴3x+2y=3x×32y=4×7=28.故答案为:28.18.解:∵3m=8,3n=2,∴3m+n=3m•3n=8×2=16.故答案为:16.19.解:(﹣2a2b)2=4a4b2.故答案为:4a4b2.20.解:a6÷a3=a3.故答案为:a3.三.解答题21.解:a•a4=a1+4=a5.22.解:原式=﹣a6•a6=﹣a12.23.解:a m•a n=a m+n,对于任意的底数a,当m、n是正整数时,a m•a n=•==a m+n.故答案为:a m+n.24.解:原式=(b﹣a)2•(b﹣a)3+(b﹣a)4•(b﹣a),=(b﹣a)5+(b﹣a)5,=2(b﹣a)5.25.解:由题意得,a n+1•a m+n=a m+2n+1=a6,则m+2n=5,∵,∴,故m n=3.26.解:(1)∵x2n=4,∴x n﹣3•x3(n+1)=x n﹣3•x3n+3=x4n=(x2n)2=42=16;(2)∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368.27.解:∵3555=35×111=(35)111=243111,4444=44×111=(44)111=256111,5333=53×111=(53)111=125111,又∵256>243>125,∴256111>243111>125111,即4444>3555>5333.。
2024-2025学年华师版初中数学八年级(上)教案第12章整式的乘除12.5因式分解(第2课时)
第12章 整式的乘除12.5 因式分解第2课时 两数和与两数差的积——因式分解教学目标1.理解平方差公式,弄清平方差公式的形式和特点;2.让学生经历探究因式分解的过程,理解和领悟因式分解,发现因式分解的基本方法——公式法;3.掌握运用平方差公式因式分解的方法,能正确运用平方差公式把多项式分解因式,培养学生多步骤因式分解的能力.教学重难点重点:掌握公式法(两数和与两数差的积)进行因式分解. 难点:怎样进行多项式的因式分解,如何能将多项式分解彻底.复习巩固1.因式分解是怎样定义的?因式分解有什么特点?2.把下面多项式分解因式:(1)3222320515y x y x y x -+; (2)22230156mn mn n m +-; (3)()()b a y b a x +-+; (4)()()()22332a b a b a a b +--+. 【答案】(1)()224135y xy y x -+. (2)()32510mn m n n -+. (3)()()a b x y +-. (4)-()()23a b a b ++. 3.计算:()()a b a b +-. 【答案】 22b a -.教学过程导入新课【创设情境,课堂引入】我们知道,整式乘法与因式分解相反,因此,利用整式乘法与因式分解的这种关系,可以得到因式分解的方法.如果把乘法公式反过来用,就可以将某些多项式分解因式,这种因式分解的方法叫做公式法.探索:根据上面的计算,请你猜想22a b -的结果. 把乘法公式()()22a b a b a b +-=-反过来, 就得到:教学反思探究新知【实践探究,交流新知】思考:两数和与两数差的积——因式分解: (1)(2)用文字叙述:两个数的平方差,等于这两个数的和与这两个数的差的乘积. 【注意】(1)要弄清楚整式乘法中的两数和与两数差的积与因式分解中的两数和与两数差的积的区别,因式分解中左边是两个数的平方差,右边是这两个数的和乘以这两个数的差;(2)a ,b 可以是单独的数或具体的字母,也可以是多项式. 例如:【小组讨论,师生互学】例1 把下列多项式分解因式:(1)2251a -; (2)222z y x -; (3)2201.094n m -.解:(1)()()()222125151515a a a a -=-=+-;(2)()()()22222x y z xy z xy z xy z -=-=+-;(3)()222242220.010.10.10.19333m n m n m n m n ⎛⎫⎛⎫⎛⎫-=-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.例2 把下列各式分解因式:(1)()()22q x p x +-+; (2)()()22916b a b a +--.分析:()()22q x p x +-+是x p +与x q +的平方差;把式子()216a b -- ()29a b +改写成()[]()[]2234b a b a +--后,可以看出它是4()a b - 与()b a +3的平 方差,所以它们都可以运用两数和与两数差的积因式分解.教学反思解:(1)()()22q x p x +-+()()()()x p x q x p x q =++++-+⎡⎤⎡⎤⎣⎦⎣⎦()()2x p q p q =++-; (2)()()22916b a b a +--()()2243a b a b =--+⎡⎤⎡⎤⎣⎦⎣⎦()()()()4343a b a b a b a b =-++--+⎡⎤⎡⎤⎣⎦⎣⎦()()77a b a b =--. 例3 把下列各式分解因式:(1)35x x -; (2)44y x -. 解:(1)35x x - ()123-=x x()()311x x x =+-;(2)44y x -()()2222y x-=()()2222x y x y =+- ()()()22x y x y x y =++-.【注意】(1)如果多项式的各项含有公因式,那么先提公因式,再进一步因式分解.(2)因式分解要彻底,必须进行到每一个多项式都不能再分解为止. 同步练习:把下列各式分解因式:(1)3(a +b )2-27c 2 ; (2)16(x +y )2-25(x -y )2; (3)a 2(a -b )+b 2(b -a ); (4)(5m 2+3n 2)2−(3m 2+5n 2)2. 【答案】(1)3(a +b +3c )(a +b -3c );(2)(9x -y )(9y -x );(3)(a +b )(a -b )2;(4)16(m 2+n 2)(m +n )(m −n ).【合作探究,解决问题】用平方差公式因式分解解决综合问题.(师生互动)例4 已知2 48-1可以被60和70之间某两个自然数整除,求这两个数. 【探索思路】被自然数整除的含义是什么?248-1这个数比较大,怎样求出符合要求的两个数?解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1) =(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65, ∴这两个数是65和63.教学反思【题后总结】(学生总结,老师点评)解决整除的基本思路就是将数化为整数乘积的形式,然后分析被哪些数整除.例5 利用因式分解计算: (1)1012-992;(2)5722×14-4282×14.【探索思路】观察式子特点,用提公因式法和公式法进行因式分解. 解:(1)1012-992=(101+99)(101-99)=400.(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1 000×144×14=36 000.【题后总结】(学生总结,老师点评)对于一些比较复杂的计算,如果通过变形转化为平方差公式的形式,可以使运算简便.课堂练习1.下列代数式中能用两数和与两数差的积因式分解的是( ) A.a 2+b 2 B.−a 2−b 2 C.a 2−c 2−2ac D.−4a 2+b 22.将−4+0.09x 2分解因式的结果是( ) A.(0.3x +2)(0.3x -2) B.(2+0.3x )(2-0.3x ) C.(0.03x +2)(0.03x -2) D.(2+0.03x )(2-0.03x )3.已知多项式x +81b 4可以分解为(4a 2+9b 2)(2a +3b )(3b -2a ),则x 的值是( )A.16a 4B.-16a 4C.4a 2D.-4a 2 4. 因式分解:249x -=_____________.5. 因式分解:2()1xy -= . 6. 因式分解:4x 2-y 2= . 7. 因式分解:a 2−144b 2= .8. 已知4m +n =40,2m -3n =5,求(m +2n )2-(3m -n )2的值. 参考答案1.D2.A3.B4. (23)(23)x x -+5. (1)(1)xy xy +-6. (2x +y )(2x −y )7.(a +12b )(a −12b )8. 解:原式=(m +2n +3m −n )(m +2n −3m +n ) =(4m +n )(3n −2m ) =− (4m +n )(2m −3n ).当4m +n =40,2m −3n =5时,原式=−40×5=−200.课堂小结通过本节课的学习,要求同学们1.掌握两数和与两数差的积,并能灵活地利用两数和与两数差的积进行因式分解.2.进行因式分解过程中,有公因式的应先提取公因式,然后再分解,因教学反思式分解必须彻底.教学反思布置作业请完成本课时对应练习!板书设计因式分解——平方差法两数和与两数差的积:(1(2)用文字叙述:两个数的平方差,等于这两个数的和与这两个数的差的乘积.。
华师大版八年级上《第12章整式的乘除》单元测试含答案(2套).doc
第12章(整式乘除)单元测试(一)一•选择题(每小题3分,共30分).1. 计算(-X 3)2的结果是(). A.B. x 5 C.-x 6 D. x 62. 下列等式成立的是(). A.x+x= x 2 B.兀・x = FC. x 2 -i- x 2 =0D. (3x)2 = 6x 23. 若(x ・b )(x ・2)展开式中不含有x 的一次项,则b 的值为(). A.O B.2C.-2 D+24. 三个连续偶数,若屮问的一个为m,则它们的积是(). A. 一6mB. 4加'一 mC. m 3 -4mD. m 3 - m5.已知 M (-2兀2)= 8疋一18%y —2兀?,则 M=().A.-4X 3-9A >,3-1B.4/+9"—1A.33B.-33 7. 下列各式能分解因式的是(C. ci? + 2cib — b~8. 若x 2+2(m-3) + 16是完全平方式,则常数m 的值等于( ). A.3B.-5C.7D.7 或-19. 已知 a+b=2,则 a 2-b 2 +4Z?的值是( ).A.2B.3C.4D.61 °10. 已知x 为任意有理数,则多项式—一川+尢―1的值一定是().4A.正数B.负数C.非正数D.非负数备用题:1 .若 x 3y w ~' y M+/>2rt+2 = x 9y 9 ,则 m-n 等于().6•若 a+b 二0,ab 二-11,则cr-ab + b 1的值是().C.llD.-11).C 2 1 B. x — x —4A.OB.2C.4D.无法确定2.设⑶7? + 2/?)2 = (3m-2n)2+P ,则P 是().A.12mnB.24mnC.6mnD.48mn二•填空题(每小题3分,共30分).11.计算:32a2b2 m(・4ab)= __________ .12._________________________ 计算1600-39.8x40.2= .13._______________________________ 分解因式:4兀2 -12xy+9y2 = .14 若=9, Z =6, 2=4,则兀心我= ______________________ .地球与太阳的距离为1.5xl08km,光速是3xl05km/s,则太阳光射到地球上约需—s.15.___________________________________ 方程(3x+2)(2x-3)二(6x+5)(x-l)的解为 .16.已知X- —=2,则x2 +-V = ___________ .17.__________________________________________________ 已知a+b=4, ab=3,则代数式0% + 2/夕+。
华师大版八年级数学上册《第12章整式的乘除》章节测试含答案
八年级数学华师版整式的乘除章节测试(满分100分,考试时间60分钟)一、选择题(每小题3分,共24分)1.下列计算正确的是()A .a 4+a 5=a 9B .(-3a 2)3=-9a 6C .(m 2)3∙m =m 6D .(-q )∙(-q )3=q 42.下列因式分解正确的是()A .x (x 2-1)=x 3-xB .-a 2+6a -9=-(a -3)2C .x 2+y 2=(x +y )2D .a 3-2a 2+a =a (a +1)(a -1)3.若代数式y 2+a 可以分解因式,则常数a 不可以取()A .-1B .-3C .-4D .-94.计算(x 2-3x +n )(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为()A .m =3,n =1B .m =0,n =0C .m =-3,n =-9D .m =-3,n =85.若关于x 的代数式x 2+3x +2可以表示为(x -1)2+a (x -1)+b ,则a +b 的值为()A .13B .12C .11D .106.若x 2-xy -4m 是完全平方式,则m 为()A .2116yB .2116y -C .218yD .218y -7.已知x 3+3x -2=0,则2x 5+x 4+7x 3-x 2+x +1的值为()A .3B .1C .2D .-38.已知x 2+ax -12能分解成两个整系数的一次因式的乘积,则符合条件的整数a 有()A .3个B .4个C .6个D .8个二、填空题(每小题3分,共21分)9.3211()()=22x x ÷-10.如果a =255,b =344,c =433,判断a ,b ,c 的大小,用“<”连接为.11.已知13a+=,则21a+的值是.12.已知一个多项式与单项式7x3y3的积为28x7y3-21x5y5+2y(7x3y3)2,则这个多项式为.13.计算:1(1)-1(1)-1...(1-1(1-.14.若x m-2∙x3m=x6,求12m2-m+1的值为.15.设P=a2b2+5,Q=2ab-a2-4a,若P=Q,则a+b=_.三、计算题(本大题共8小题,满分55分)16.(9分)把下列各式因式分解.(1)4x2y-4y;(2)2m2-8mn+8n2;(3)1-x2+2xy-y2.17.(8分)计算:(1)(x-2)2-2(2-2x)-(1+x)(1-x);(2)(-2x3y)2·(-2y)+(-8x8y3+4x2)⎪(-2x2).18.(8分)化简求值:(1)已知3x+2 ∙5x+2=153x-4,求(x-1)2-3x(x-2)-4的值;(2)当a=-2,b=1时,求[a2(a3+b)(a3-b)+a2b2]÷231()2a-的值.19.(5分)已知△ABC的三边长分别为a,b,c,且满足a2-16b2-c2+6ab+10bc=0,求证:a+c=2b.20.(5分)如果(x+1)是多项式x2-mx+4的一个因式,求m的值和另一个因式.a -421.(8分)在求1+2+22+23+24+25+26+27+28+29的值时,小林发现:从第二个加数起每一个加数都是前一个加数的2倍,于是她设:S =1+2+22+23+24+25+26+27+28+29①然后在①式的两边都乘以2,得:2S =2+22+23+24+25+26+27+28+29+210②由②-①得2S -S =210-1,即S =210-1.按照小林的思路:(1)请你计算1+6+62+63+64+65+66+67+68+69的值;(2)如果把“2”换成字母“a ”(a ≠0且a ≠1),能否求出1+a +a 2+a 3+a 4+…+a 2016的值?22.(5分)如图,王大妈家有一块边长为a 米的正方形土地租给了邻居李大爷种植.今年,她对李大爷说:“我把你这块地一边减少4米,另一边增加4米,继续租给你,你也没吃亏,你看如何?”李大爷一听,就答应了.同学们,你认为李大爷吃亏了吗,为什么?a -4a 423.(7分)请用几何图形直观地解释(a+2b)(2a+b)=2a2+5ab+2b2.。
2020-2021学年华东师大 版八年级上册数学《第12章 整式的乘除》单元测试题(有答案)
2020-2021学年华东师大新版八年级上册数学《第12章整式的乘除》单元测试题一.选择题(共10小题)1.如果a m﹣1•a3=a6,那么m的值是()A.4B.3C.2D.12.下列计算中正确的是()A.a3•a2=a6B.(a2b)3=a6bC.a3+a2=a5D.(﹣x)5•(﹣x)3=x83.计算16a÷4a的结果是()A.4B.12C.4a D.12a4.如图所示分割正方形,各图形面积之间的关系,验证了一个等式,这个等式是()A.(y+x)2=y2+xy+x2B.(y+x)2=y2+2xy+x2C.(y+x)(y﹣x)=y2﹣x2D.(y+x)2﹣(y﹣x)2=4xy5.把多项式8a2b2﹣16a2b2c2分解因式,应提的公因式是()A.8a2b2B.4a2b2C.8ab2D.8ab6.下列计算:①a9÷(a7÷a)=a3;②3x2yz÷(﹣xy)=﹣3xz;③(10x3﹣16x2+2x)÷2x=5x2﹣8x;④(a﹣b)6÷(a﹣b)3=a3﹣b3,其中运算结果错误的是()A.①②B.③④C.①④D.②③7.计算1.252019×(﹣)2021的值是()A.B.﹣C.D.﹣18.化简:(﹣2a)•a﹣(2a)2的结果是()A.0B.2a2C.﹣4a2D.﹣6a29.如果(x2+x﹣3)(x2﹣2x+a)的展开式中不含常数项,则a的值是()A.B.0C.5D.﹣510.计算20192﹣2018×2020的结果是()A.﹣2B.﹣1C.0D.1二.填空题(共10小题)11.计算:3a2b3⋅2a2b=;﹣2x(x﹣2)=.12.因式分解:x3y(a﹣b)﹣xy(b﹣a)+y(a﹣b)=.13.李明爬山时,第一阶段的平均速度是v,所用时间为t1;第二阶段的平均速度为,所用时间是t2;下山时,李明的平均速度保持为3v,上山路程和下山路程相同.李明下山所用时间是.14.计算(﹣3x2y3)(﹣)2=.15.计算:(﹣2)2019×(﹣)2018=.16.分解因式:x3﹣2x2﹣3x=.17.计算:(1)(a m)3•a2÷a m=.(2)22a•8a•42=2().(3)(x﹣y)(x+y)(x2﹣y2)=.(4)32005×()2006=.18.(﹣ab2)5•(﹣ab2)2=,(﹣x﹣y)(x﹣y)=,(﹣3x2+2y2)()=9x4﹣4y4.19.计算:(﹣12)15÷(﹣12)8=(结果用12的幂的形式表示).20.232﹣1必能被10~20之间的整除.三.解答题(共7小题)21.(﹣2x3)2﹣(3x2)3﹣[﹣(2x)3]2.22.用简便方法计算:(1)99×101;(2)752+252﹣50×75.23.计算下列各题:(1)[(xy2)2]3+[(﹣xy2)2]3;(2)(﹣a2b)(b2﹣a+).24.计算:(s﹣t)7÷(s﹣t)6•(s﹣t).25.(﹣3x3y2+6x4y4﹣x5y)÷(﹣x2y).26.在实数范围内分解因式:4x4﹣4x2+1.27.若多项式x2+ax+b可分解为(x+1)(x﹣2),试求a,b的值.参考答案与试题解析一.选择题(共10小题)1.解:∵a m﹣1•a3=a m﹣1+3=a6,∴m﹣1+3=6,解得m=4.故选:A.2.解:A.a3•a2=a5,故本选项不合题意;B.(a2b)3=a6b3,故本选项不合题意;C.a3与a2不是同类项,所以不能合并,故本选项不合题意;D.(﹣x)5•(﹣x)3=(﹣x)5+3=x8,故本选项符合题意.故选:D.3.解:16a÷4a=42a÷4a=42a﹣a=4a.故选:C.4.解:如图,大正方形的面积=(y+x)2,小正方形的面积=(y﹣x)2,四个长方形的面积=4xy,则由图形知,大正方形的面积﹣小正方形的面积=四个矩形的面积,即(y+x)2﹣(y﹣故选:D.5.解:8a2b2﹣16a2b2c2=8a2b2(1﹣2c2).故选:A.6.解:①a9÷(a7÷a)=a9÷a6=a3,正确,不合题意;②3x2yz÷(﹣xy)=﹣3xz,正确,不合题意;③(10x3﹣16x2+2x)÷2x=5x2﹣8x+1,原式计算错误,符合题意;④(a﹣b)6÷(a﹣b)3=(a﹣b)3,原式计算错误,符合题意.故选:B.7.解:1.252019×(﹣)2021=()2019×(﹣)2021=﹣(×)2019×()2=﹣,8.解:(﹣2a)•a﹣(2a)2=﹣2a2﹣4a2=﹣6a2;故选:D.9.解:由多项式乘多项式的法则,可知(x2+x﹣3)(x2﹣2x+a)的展开式中的常数项为﹣3a,∵展开式中不含常数项,∴﹣3a=0,∴a=0.故选:B.10.解:20192﹣2018×2020=20192﹣(2019﹣1)(2019+1)=20192﹣(20192﹣1)=20192﹣20192+1=1.故选:D.二.填空题(共10小题)11.解:3a2b3⋅2a2b=6a4b4;﹣2x(x﹣2)=﹣2x2+4x.故答案为:6a4b4;﹣2x2+4x.12.解:x3y(a﹣b)﹣xy(b﹣a)+y(a﹣b)=x3y(a﹣b)+xy(a﹣b)+y(a﹣b)=y(a﹣b)(x3+x+1);故答案为:y(a﹣b)(x3+x+1).13.解:由题意可得,上山的路程为:vt1+vt2,故李明下山所用时间是:=.故答案为:.14.解:(﹣3x2y3)(﹣)2=(﹣3x2y3)•x2y4=﹣x4y7,故答案为:﹣x4y7.15.解:(﹣2)2019×(﹣)2018=(﹣2)2018×()2018×===1×=.故答案为:.16.解:x3﹣2x2﹣3x=x(x﹣3)(x+1).故答案为:x(x﹣3)(x+1).17.解:(1)(a m)3•a2÷a m =a3m•a2÷a m=a3m+2﹣m=a2m+2.故答案为:a2m+2.(2)22a•8a•42=22a•23a×24=25a+4;故答案为:5a+4;(3)(x﹣y)(x+y)(x2﹣y2)=(x2﹣y2)(x2﹣y2)=x4﹣2x2y2+y4,故答案为:x4﹣2x2y2+y4;(4)32005×()2006=32005×()2005×==1×=,故答案为:.18.解:原式=(﹣ab2)7=﹣a7b14;原式=(﹣y)2﹣x2=y2﹣x2;(﹣3x2+2y2)(﹣3x2﹣2y2)=9x4﹣4y4.故答案为:﹣a7b14;y2﹣x2;﹣3x2﹣2y2.19.解:(﹣12)15÷(﹣12)8=﹣127.故答案为:﹣127.20.解:∵232﹣1=(216+1)(216﹣1)=(216+1)(28+1)(28﹣1)=(216+1)(28+1)(24+1)(24﹣1),又∵24+1=17,24﹣1=15,∴232﹣1可以被10和20之间的15,17两个数整除;故答案为:15和17.三.解答题(共7小题)21.解:(﹣2x3)2﹣(3x2)3﹣[﹣(2x)3]2.=4x6﹣27x6﹣64x6=﹣87x6.22.解:(1)原式=(100﹣1)×(100+1)=1002﹣1=10000﹣1=9999;(2)原式=752﹣2×25×75+252=(75﹣25)2=502=2500.23.解:(1)[(xy2)2]3+[(﹣xy2)2]3=(x2y4)3+(x2y4)3;=x6y12+x6y12=2x6y12;(2)(﹣a2b)(b2﹣a+)=(﹣a2b)×b2﹣(﹣a2b)×a+(﹣a2b)×=﹣a2b3+a3b﹣a2b.24.解:原式=(s﹣t)7﹣6+1=(s﹣t)2.25.解:原式=xy﹣9x2y3+x3.26.解:4x4﹣4x2+1=(2x2﹣1)2=(x+1)2(x﹣1)2.27.解:由题意,得x2+ax+b=(x+1)(x﹣2).而(x+1)(x﹣2)=x2﹣x﹣2,所以x2+ax+b=x2﹣x﹣2.比较两边系数,得a=﹣1,b=﹣2.11 / 11。
华东师大版(新版)八年级数学上册:第12章整式的乘除小结与复习课件
8.因式分解的步骤 如果多项式的各项有公因式,那么先 提取公因式; 在各项提出公因式后或各项没有公因式的情况下,视察多项 式的次数:二项式可以尝试运用 平方差公式分解因式;三项 式可以尝试运用 两数和(差)公的式分解因式; 分解因式必须分解到每一个因式在指定的范围内都不能
再分解 为止.
9.图形面积与代数恒等式
整体思想
例6 若2a+5b-3=0,则4a·32b= 8 . 【解析】已知条件是2a+5b-3=0,无法求出a,b的值因此可以 逆用积的乘方先把4a·32b.化简为含有与已知条件相关的部分, 即4a·32b=22a·25b=22a+5b.把2a+5b看做一个整体,因为2a+5b3=0,所以2a+5b=3,所以4a·32b=23=8.
[注意] 其中的a、b代表的不仅可以是单独的数、单独的字
母,还可以是一个任意的代数式;这几个法则容易混淆,计算 时必须先搞清楚该不该用法则、该用哪个法则.
2.整式的乘法 单项式与单项式相乘,把它们的 系数 、 相同字母的幂 分别 相乘,对于只在一个单项式中出现的字母,则连同它的指数一 起作为积的一个 因式 . 单项式与多项式相乘,用 单项式 和 多项式 的每一项分别相 乘,再把所得的积 相加 . 多项式与多项式相乘,先用一个多项式的 每一项 与另一个 多项式的 每一项 相乘,再把所得的积 相加 .
5.因式分解的意义 把一个多项式化成几个整式的 积 的情势,叫做多项式的 因式分解.
因式分解的过程和 整式乘法 的过程正好相反.
6.用提公因式法分解因式 公因式的确定:公因式的系数应取多项式各项整数系数的 最大公约数 ;字母取多项式各项 相同 的字母;各字母 指数取次数最 低 的. 一般地,如果多项式的各项都含有公因式,可以把这个公 因式提到 括号 外面,将多项式写成 因式乘积 的情势,这 种分解因式的方法叫做提公因式法. [注意] 提公因式法是因式分解的首选方法,在因式分解时 先要考虑多项式的各项有无公因式.
华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷(附答案)
华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷(附答案)一、选择题1.下列运算正确的是( )A. a2⋅a3=a6B. (−a2)3=−a5C. a10÷a9=a(a≠0)D. (−bc)4÷(−bc)2=−b2c22.下列等式从左到右的变形,属于因式分解的是( )A. a(x−y)=ax−ayB. x3−x=x(x+1)(x−1)C. (x+1)(x+3)=x2+4x+3D. x2+2x+1=x(x+2)+13.(−3)100×(−13)101等于( )A. −1B. 1C. −13D. 134.将9.52变形正确的是( )A. 9.52=92+0.52B. 9.52=(10+0.5)(10−0.5)C. 9.52=102−2×10×0.5+0.52D. 9.52=92+9×0.5+0.525.若(a+b)2=7,(a−b)2=3则a2+b2−3ab的值为( )A. 0B. 2C. 3D. 46.一个三角形的面积为(x3y)2,它的一条边长为(2xy)2,那么这条边上的高为( )A. 12x4 B. 14x4 C. 12x4y D. 12x27.若(x−3)(2x+1)=2x2+ax−3,则a的值为( )A. −7B. −5C. 5D. 78.一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62−32,63= 82−12故27,63都是“创新数”,下列各数中,不是“创新数”的是( )A. 31B. 41C. 16D. 549.已知正方形的面积是(16−8x+x2)cm2(x>4cm),则正方形的周长是( )A. (4−x)cmB. (x−4)cmC. (16−4x)cmD. (4x−16)cm10.已知4m=a,8n=b其中m,n为正整数,则22m+6n=( )A. ab2B. a+b2C. a2b3D. a2+b3二、填空题11.分解因式:x4−4x2=______.12.若2a−3b=−1,则代数式4a2−6ab+3b的值为________.13.若x+y=2,x−y=1则代数式(x+1)2−y2的值为____.14.计算:20182−2019×2017=______.15.已知a+1a =3,则a2+1a2=________.16.已知a+1a =√ 10,则a−1a的值为_________;17.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)10的展开式中第三项的系数为______.三、解答题18.规定a∗b=2a×2b,求:(1)求2∗3;(2)若2∗(x+1)=16,求x的值.19.先化简,再求值:(a+b)(a−b)−(a−b)2+2b2,其中a=−3,b=12.20.(1)已知a m=5,a n=12求a2m−3n的值;(2)已知9m×27n=81,求(−2)2m+3n的值.21.如果a∗b=c,则a c=b,例如:2∗8=3则,23=8.(1)根据上述规定,若3∗27=x,求x的值;(2)记3∗5=a,3∗6=b,3∗2=c求32a+b−c的值.22.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a、b的代数式分别表示S1、S2;(2)若a+b=10,ab=23求S1+S2的值;(3)当S1+S2=29时,求出图3中阴影部分的面积S3.答案和解析1.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、幂的乘方与积的乘方进行计算即可.【解答】解:A.a2⋅a3=a5故A错误;B.(−a2)3=−a6故B错误;C.a10÷a9=a(a≠0)故C正确;D.(−bc)4÷(−bc)2=b2c2故D错误;故选C.2.【答案】B【解析】解:因式分解是指将一个多项式化为几个整式的乘积故选:B.根据因式分解的定义即可判断.本题考查因式分解的定义,解题的关键是正确理解因式分解的定义,本题属于基础题型.3.【答案】C【解析】【分析】本题考查了积的乘方公式,正确进行公式的变形是关键.逆用积的乘方公式即可求解.【解答】解:原式=[(−3)×(−13)]100×(−13)=−13.故选C.4.【答案】C【解析】【分析】本题考查的是完全平方公式,完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.根据完全平方公式进行计算,判断即可.【解答】解:9.52=(10−0.5)2=102−2×10×0.5+0.52故选:C.5.【答案】B【解析】【分析】此题考查的是完全平方公式的应用以及代数式的求值.先根据完全平方公式将已知条件中的等式展开,再联立方程组,利用加减消元即可求出整体ab的值和a2+b2的值.然后把得到的数值代入a2+b2−3ab计算即可.【解答】解:∵(a+b)2=7∴a2+2ab+b2=7①∵(a−b)2=3∴a2−2ab+b2=3②①+②,得:2a2+2b2=10∴a2+b2=5;①−②得4ab=4∴ab=1a2+b2−3ab=5−3=2故选B.6.【答案】A【解析】【分析】本题考查整式的运算,解题的关键是数量运用整式的运算法则,本题属于基础题型.根据整式的运算法则即可求出答案.【解答】解:设这条边上的高为ℎ×ℎ×(2xy)2=x6y2由三角形的面积公式可知:12x4,故选A.∴ℎ=127.【答案】B【解析】【分析】本题考查了多项式乘以多项式,熟练掌握整式乘法的相关运算法则是解题的关键.将题中所给等式左边利用多项式乘多项式的运算法则进行计算,再与等式右边比较即可得出答案.【解答】解:(x−3)(2x+1)=2x2+x−6x−3=2x2−5x−3∵(x−3)(2x+1)=2x2+ax−3∴a=−5.故选:B.8.【答案】D【解析】【分析】本题考查了平方差公式在新定义类计算中的简单应用,正确将所给的数字拆成平方差的形式是解题的关键.根据数字的特点,分别将31、41和16写成两个正整数的平方差的形式,而54不能写成两个正整数的平方差的形式,则问题得解.【解答】解:因为31=(16+15)×(16−15)=162−15241=(21+20)×(21−20)=212−20216=(5+3)×(5−3)=52−3254不能表示成两个正整数的平方差.所以31、41和16是“创新数”,而54不是“创新数”.故选D.9.【答案】D【解析】解:∵16−8x+x2=(4−x)2,x>4cm∴正方形的边长为(x−4)cm∴正方形的周长为:4(x−4)=4x−16(cm)故选:D.首先利用完全平方公式进行因式分解,即可得到正方形的边长,进而可计算出正方形的周长.此题主要考查了因式分解法的应用,关键是利用完全平方公式进行因式分解,从而得到正方形的边长.10.【答案】A【解析】【分析】本题考查的是幂的乘方与积的乘方,同底数幂的乘法有关知识.将已知等式代入22m+6n=22m×26n=(22)m⋅(23)2n=4m⋅82n=4m⋅(8n)2可得.【解答】解:∵4m=a,8n=b∴22m+6n=22m×26n=(22)m⋅(23)2n=4m⋅82n=4m⋅(8n)2=ab2故选A.11.【答案】x2(x+2)(x−2)【解析】解:x4−4x2=x2(x2−4)=x2(x+2)(x−2);故答案为x2(x+2)(x−2);先提取公因式再利用平方差公式进行分解,即x4−4x2=x2(x2−4)=x2(x+2)(x−2);本题考查因式分解;熟练运用提取公因式法和平方差公式进行因式分解是解题的关键.12.【答案】1【解析】【分析】本题综合考查了因式分解中提取公因式法的应用,分组法和整体代入求值法和相反数等相关知识点,重点掌握提取公因式法.由已知字母a、b的系数为2、−3,代数式中前二项的系数分别为4、−6,提取此二项的公因式2a后,代入求值变形得−2a+3b,与已知条件互为相反数,可求出代数式的值为1.【解答】解:∵2a−3b=−1∴4a2−6ab+3b=2a(2a−3b)+3b=2a×(−1)+3b=−2a+3b=−(2a−3b)=−(−1)=1.故答案为1.13.【答案】6【解析】【分析】此题主要考查了公式法分解因式,正确将原式变形是解题关键.直接利用平方差公式将原式变形进而得出答案.【解答】解:∵x+y=2,x−y=1∴(x+1)2−y2=(x+1−y)(x+1+y)=2×3=6.故答案为6.14.【答案】1【解析】解:原式=20182−(2018+1)×(2018−1)=20182−20182+1=1故答案是:1.原式变形后,利用平方差公式计算即可求出值.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.【答案】7【解析】【分析】本题主要考查了代数式求值及完全平方公式,熟记完全平方公式的几个变形是解决本题的关键.将已知等式的两边完全平方后求得a2+1a2的值即可.【解答】解:∵a+1a=3∴(a+1a )2=9,即a2+2+1a2=9∴a2+1a2=7.故答案是7.16.【答案】±√ 6【解析】【分析】本题主要考查了完全平方公式的应用,把a+1a =√ 10的两边平方得出a2+1a2的值,再进一步配方得出(a−1 a )2的值,从而得到a−1a的值.【解答】解:∵a+1a=√ 10∴(a+1a)2=(√ 10)2=10∴a2+1a2+2=10∴a2+1a2=8∴a2+1a2−2=8−2=6即(a−1a)2=6∴a−1a的值为±√ 6.故答案为±√ 6.17.【答案】45【解析】【解析】[分析]:根据“杨辉三角”确定出所求展开式第三项的系数即可。
华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案
华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 计算(12x4y2+3x3y)÷3x3y的结果是()A. 4xy+1B. 4xyC. 4x2y+3D. 4x3y+3x3y2. 在下列各式中的括号内填入a3后成立的是()A. a12=()2B. a12=()3C. a12=()4D. a12=()63. 把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是()A. x+1B. x+3C. 2xD. x+24. 下列多项式中,不能进行因式分解的是()A. x2-2x+1B. x2-9C. x2+1D. 6x2+3x5. 若计算(x+my)(x+ny)时能使用平方差公式,则m,n应满足()A. m,n同号B. m,n异号C. m+n=0D. mn=16. 下列因式分解正确的是()A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)27. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-7xy(2y-x-3)=-14xy2+7x2y□,□的地方被钢笔水弄污了,你认为□处应是()A. +21xyB. -21xyC. -3D. -10xy8. 如图1-①,将一张长方形纸板四个角各切去一个同样的正方形,制成图1-①的无盖纸盒,若该纸盒的容积为4a2b,则图①中纸盒底部长方形的周长为()A. 4abB. 8abC. 4a+bD. 8a+2b① ①图19. 已知a=314,b=96,c=275,则a,b,c的大小关系为()A. c>a>bB. a>c>bC. c>b>aD. b>c>a10. 课本第37页“阅读材料”中介绍了贾宪三角,贾宪三角可以看作是对两数和平方公式的推广,也告诉我们二项式乘方展开式的系数规律:…… …………根据上述规律,(a+b)7展开式的系数和是()A. 32B. 64C. 88D. 128二、填空题(本大题共6小题,每小题3分,共18分)11. 多项式x2-9与x2-6x+9的公因式是.12. 火星的体积约为1.35×1020立方米,地球的体积约为1.08×1021立方米,地球体积约是火星体积的__________倍.13. 一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:___________.14. 若2a=5,8b=11,则2a+3b的值为____________.15. 一个正方形的边长增加3 cm,它的面积增加了45 cm2,则原来这个正方形的面积为________cm2.16. 已知:31=3,32=9,33=27,34=81,35=243,36=729,…,设A=2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1,则A的个位数字是______________.三、解答题(本大题共6小题,共52分)17. (每小题4,共8分)因式分解:(1)a2(m-2)-b2(m-2);(2)3m3-6m2n+3mn2;18. (6分)先化简,再求值:(2x+y)2-(2x+y)(2x-y)-2y(x+y),其中x=12,y=2.19.(8分)如图2,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.图2(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:______________;(2)利用上述乘法公式计算:1002-98×102;20. (9分)如图3,小明用若干个长为a,宽为b的小长方形拼出图形,把这些拼图置于图①,②所示的正方形和大长方形内,请解答下列问题.(1)分别求出图①,图②中空白部分的面积S1,S2;(用含a,b的代数式表示)(2)若S1=11,S2=32,求ab的值.①②图321.(9分)发现:任意两个连续偶数的平方和是4的奇数倍.验证:(1)计算22+42的结果是4的倍;(2)设两个连续偶数较小的一个为2n(n为整数),请说明“发现”中的结论正确;拓展:(3)任意三个连续偶数的平方和是4的倍数吗?是(填“是”或“不是”)22. (12分)如图4,阴影部分是一个边长为a的大正方形剪去一个边长为b的小正方形和两个宽为b的长方形之后所剩余的部分.(1)①图1中剪去的长方形的长为_____________ ,面积为_____________.①用两种方式表示阴影部分的面积为__________________或________________,由此可以验证的公式为____________________.图4 图5(2)请设计一个新的图形验证公式:(a+b)2=a2+2ab+b2.(3)如图5,S1,S2分别表示边长为a,b的正方形的面积,且A,B,C三点在一条直线上,若S1+S2=40,AB=8,求图中阴影部分的面积.附加题(20分,不计入总分)形如a2±2ab+b2的式子叫做完全平方式.有些多项式虽然不是完全平方式,但可以通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在因式分解、代数最值等问题中都有着广泛的应用.(1)用配方法因式分解:a2+6a+8.解:原式=a2+6a+9-1=(a+3)2-1=(a+3-1)(a+3+1)=(a+2)(a+4).(2)用配方法求代数式a2+6a+8的最小值.解:原式=a2+6a+9-1=(a+3)2-1.因为(a+3)2≥0,所以(a+3)2-1≥-1.所以a2+6a+8的最小值为-1.解决问题:(1)因式分解:a2-12a+32= ;(2)用配方法求代数式4x2+4x+5的最小值;拓展应用:(3)若实数a,b满足a2-5a-b+7=0,则a+b的最小值为.参考答案一、1. A 2. C 3. B 4. C 5. C 6. C 7. A 8. D 9. A 10. D二、11. x-3 12. 8 13. x2-1(答案不唯一)14. 55 15. 36 16. 110. D 解析:当n=0时,展开式的系数和为1=20;当n=1时,展开式的系数和为1+1=2=21;当n=2时,展开式的系数和为1+2+1=4=22;当n=3时,展开式的系数和为1+3+3+1=8=23;当n=4时,展开式的系数和为1+4+6+4+1=16=24;当n=5时,展开式的系数和为1+5+10+10+5+1=32=25;……当n=8时,展开式的系数和为28=256.16. 1 解析:A=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(34-1)(34+1)(38+1)(316+1)(332+1)+1=(38-1)(38+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364.观察已知等式,个位数字以3,9,7,1循环,且64÷4=16,能整除,所以A的个位数字是1.三、17. 解:(1)原式=(m-2)(a2-b2)=(m-2)(a+b)(a-b);(2)原式=3m(m2-2mn+n2)=3m(m-n)2.18. 解:(2x+y)2-(2x+y)(2x-y)-2y(x+y)=4x2+4xy+y2-4x2+y2-2xy-2y2=2xy.当x=12,y=2时,原式=2×12×2=2.19. 解:(1)(a+b)(a-b)=a2-b2.(2)1002-98×102=1002-(100-2)(100+2)=1002-(1002-22)=1002-1002+22=4.20. 解:(1)S1=(a+b)2-3ab=a2+b2-ab.S2=(2a+b)(a+2b)-5ab=2a2+2b2.(2)因为S1=a2+b2−ab=11,S2=2a2+2b2=32,所以a2+b2=16.所以ab=5.21. 解:(1)5(2)因为两个连续偶数较小的一个为2n(n为整数),则较大的偶数为2n+2.所以(2n)2+(2n+2)2=4n2+4n2+8n+4=8n2+8n+4=4(2n2+2n+1).因为n为整数,所以2n2+2n+1为奇数.所以任意两个连续偶数的平方和是4的奇数倍.(3)是解析:设三个连续偶数较小的一个为2n(n为整数),则中间的偶数为2n+2,最大的偶数为2n+4.所以(2n)2+(2n+2)2+(2n+4)2=4n2+4n2+8n+4+4n2+16n+16=12n2+24n+20=4(3n2+6n+5).所以任意三个连续偶数的平方和是4的倍数.22. 解:(1)①a-b ab-b2①(a-b)2a2-2ab+b2(a-b)2=a2-2ab+b2(2)如图所示:(3)因为S1+S2=40,AB=8,所以a2+b2=40,a+b=8.因为(a+b)2=a2+2ab+b2,所以82=40+2ab.所以ab=12.所以图中阴影部分的面积=2×12ab=ab=12.附加题解:(1)(a-4)(a-8)解析:a2-12a+32=a2-12a+36-4=(a-6)2-4=(a-6+2)(a-6-2)=(a-4)(a-8).(2)4x2+4x+5=4x2+4x+1+4=(2x+1)2+4.因为(2x+1)2≥0,所以(2x+1)2+4≥4.所以4x2+4x+5的最小值为4.(3)3 解析:因为a2-5a-b+7=0,所以a2-4a-a-b+7=0.所以a+b=a2-4a+4+3=(a-2)2+3. 因为(a-2)2≥0,所以(a-2)2+3≥3.所以a+b的最小值为3.。
华东师大版八年级数学上册第十二单元《整式的乘除》教案
第12章整式的乘除12.1 幂的运算1.同底数幂的乘法【基本目标】1.掌握同底数幂的乘法法则,并能运用它进行熟练的计算.2.能利用同底数幂的乘法法则解决简单实际的问题.【教学重点】同底数幂乘法法则的推导与运用.【教学难点】同底数幂乘法法则的运用.一、创设情景,导入新课【情境导入】“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【教师提问】盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远呢?【学生活动】开始动笔计算,大部分学生可以列出算式:3×105×5×102=15×105×102=15×?(引入课题)二、师生互动,探究新知同底数幂的乘法法则.【教师活动】到底105×102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论.【学生活动】分四人小组讨论、交流,举手发言,上台演示.计算过程:105×102=(10×10×10×10×10)×(10×10)=10×10×10×10×10×10×10=107.【教师活动】下面引例.请同学们计算并探索规律.(1)23×24=(2×2×2)×(2×2×2×2)=2();(2)53×54= =5();(3)(-3)7×(-3)6= =(-3)();(4)(110)3×(110)= =(110)( );(5)a3·a4= =a().提出问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?【学生活动】独立完成,并在黑板上演算.【教师总结】从而得出同底数幂的乘法法则a m·a n=a m+n(m、n为正整数)即同底数幂相乘,底数不变,指数相加.【教学说明】通过以上5个计算,让学生根据乘方的意义从特殊到一般探索同底数幂的乘法法则,水到渠成.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分.四、典例精析,拓展新知例如果x m-n·x2n+1=x11,且y m-1·y4-n=y5,求m、n的值.【分析】根据同底数幂的乘法法则得:(m-n)+(2n+1)=11,(m-1)+(4-n)=5,用方程组解决.【答案】m=6,n=4【教学说明】教师提问:由两个等式我们想到了什么知识?如何建立m与n 之间的等量关系?教师深入强化数学中的转化思想.五、运用新知,深化理解【教学说明】注意同底数幂乘法可以推广到多个因式相乘,遇到形如(-a)6·a9转化为a6·a9.六、师生互动,课堂小结这节课你学习到什么?有什么收获?有何疑问与困惑与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课从故事引入为激发学生探究同底数幂乘法法则的兴趣,探究同底数幂乘法法则时,注意用乘方的意义让学生自己发现归纳.始终遵循从特殊到一般的认知规律.在同底数幂乘法法则的运用中,不断渗透转化方程的数学思想.2.幂的乘方【基本目标】1.理解幂的乘方法则.2.运用幂的乘方法则计算.【教学重点】三理解幂的乘方法则.【教学难点】幂的乘方法则的灵活运用.一、创设情景,导入新课大家知道太阳、木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=43πr3)【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V木星=43π(102)3.二、师生互动,探究新知【教师引导】(102)3=?利用幂的意义来推导.【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a3代表什么?(102)3呢?【学生回答】a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106,因此(102)3=106.【教师活动】利用上面推导方法求(1)(a3)2;(2)(24)3;(3)(b n)+.【学生活动】推导上面几个算式并板演.【教师推进】请同学们根据所推导的几个题目,推导一下(a m)n的结果是多少?【学生活动】归纳总结并进行小组讨论,最后得出结论:【教学说明】通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分.四、典例精析,拓展新知【教学说明】教师提问x6m与x2m在指数上有何关系,你想到了如何变形,化未知为已知(逆用幂的乘方法则).五、运用新知,深化理解【教学说明】从跟踪练习中捕捉学生知识上、思维上的不足并及时跟进.六、师生互动,课堂小结这节课你学到了什么?有什么收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课在熟悉乘方的意义与同底数幂的法则的前提下推导幂的乘方法则,在教学过程中注意引导学生运用转化思想来解决新问题.在拓展新知时,注意联想与逆向思维能力的培养.3.积的乘方【基础目标】1.理解积的乘方法则.2.运用积的乘方法则计算.【教学重点】理解并掌握积的乘方法则.【教师难点】积的乘方法则的灵活运用.一、回顾交流,导入新课【教学说明】提问学生在前面学过的同底数幂的运算法则;幂的乘方运算法则的内容以及区别.【学生活动】踊跃举手发言,解说老师的提问.【课堂演练】计算:(1)(x4)3;(2)a·a5;(3)x7·x9(x2)3.【学生活动】完成上面的演练题,并从中领会这两个幂的运算法则.【教师活动】巡视,关注学生的练习,并请3位学生上台演示,然后再提出下面的问题.二、师生互动,探究新知【教师活动】请同学们完成教材P20填空,并注意每步变形的依据.【学生活动】完成书本填空并回答教师问题.【教师活动】你发现了什么规律?如何解释这个规律?【学生活动】分组讨论,解释.【师生互动】教师在学生发言的基础上板书.即积的乘方,把积中每一个因式分别乘方,再把所得的幂相乘.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分.四、典例精析,拓展新知例1 计算:(1)[(-x2y)3·(-x2y)2]3;(2)a3·a4·a+(a2)4+(-2a4)2.【分析】(1)按积的乘方法则先算括号里面的;(2)第一项是同底数幂的乘法,第二项是幂的乘方,第三项是积的乘方.【答案】(1)-x30y15;(2)6a8例2 用简便方法计算:【分析】先将指数化为相同的再逆用积的乘方法则.【答案】13/5【教学说明】例1由小组讨论交流解题思路,小组活动后,展示计算结果.教师根据反馈的情况总评.如(-2a4)2中的负号处理.例2在教师引导下,由小组合作完成,并强调遇到高指数时化成同指数,再利用积的乘方法则.五、运用新知,深化理解1.计算:(-3a3)2·a3+(-4a)2·a7-(5a3)3.b =0,求a2014·b2013的值.2.已知:(a-2)2+21【答案】1.-100a9; 2.-2【教学说明】由跟踪练习情况及时点评,如第一题中符号问题引起重视.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课釆用探究与自主学习相结合的模式完成的,探究的目的是让学生会推导积的乘方法则.通过小组合作学习增强学习的主动性,突出学生的主体地位.并注意在其中的及时引导,发挥教师主导作用.教学中的简便运算应让学生体会转化思想的核心作用.4.同底数幂的除法【基本目标】1.理解同底数幂的除法法则.2.运用同底数幂的除法法则计算.【教学重点】掌握同底数幂的除法法则.【教学难点】同底数幂除法的应用.一、创设情景,导入新课【教师活动】地球的体积是1.1×1012km3,月球的体积2.2×1010km3,求地球的体积是月球的多少倍?如何列式?【学生活动】学生代表发言:(1.1×1012)÷(2.2×1010)【教师活动】1012÷1010=?下面我们一起探究.二、师生互动,探究新知【教师活动】完成教材P22填空,由填空你得出了什么规律?【学生活动】经小组交流后,汇报结果.【教学说明】板书:a m÷a n=a m-n,(a≠0,m>n,且m、n为正整数)同底数相除,底数不变,指数相减.【教师活动】乘法与除法互为逆运算,我们能由同底数幂乘法法则来推导它吗?教师引导a n·()=a m.设()=a k.【学生活动】由小组讨论交流后汇报推导结果.【教学说明】我们的认知规律:猜测——归纳——证明.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分.【教学说明】根据反馈情况及时订正,并与法则对比,找准错因.四、典例精析,拓展新知例1一张数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的照片?【分析】用储量26M除以每张照片的存储量的大小.【答案】28张【教学说明】教师可将此问题类比成总价、单价与数量关系,从而化为同底数幂的除法.例2若32×92a+1÷27a+1=81,求a的值.【分析】将左右都化成3的指数幂再比较对应.【答案】a=3【教学说明】左右两边能否化成同底数幂的运算,如何使用幂的运算法则,强调转化思想.小组活动时注意对学困生的辅导.五、运用新知,深化理解1.一种计算机每秒可进行1012运算,它工作1015次运算需要秒时间.2.若y2m-1÷y=y2,求m+2的值.【答案】1.103 2.4【教学说明】由跟踪练习情况及时点评,如y的指数不是0等.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何疑惑?与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课探究新知部分,注意如何使学生从特殊中发现规律,得到一般性结论,再由同底数幂的乘法法则(同底数幂除法法则)证明规律.积极鼓励学生主动地探究数学问题,加深对数学问题的理解,养成良好思维习惯,提高学生的数学素养.12.2整式的乘法1.单项式与单项式相乘【基本目标】1.通过学生自主探索,掌握单项式相乘的法则.2.掌握单项式相乘的几何意义.3.会运用单项式相乘的法则进行计算,并解决一些实际生活和科学计算中的问题.4.培养学生合作、探究的意识,养成良好的学习习惯.【教学重点】单项式与单项式相乘的法则.【教学难点】单项式与单项式相乘的法则的应用;单项式相乘的几何意义.一、复习旧知,导入新课我们已经学习了幂的运算性质,你能解答下面的问题吗?【教师活动】我们刚才已经复习了幂的运算性质.从本节开始,我们学习整式的乘法.我们知道,整式包括什么?(包括单项式和多项式.)因此整式的乘法可分为单项式乘以单项式、单项式乘以多项式、多项式乘以多项式.这节课我们就来学习最简单的一种:单项式与单项式相乘.二、师生互动,探究新知1.一个长方体的底面积是4xy,高度是3x,那么这个长方体的体积是多少?【学生活动】小组合作完成,在小组交流讨论后由代表发言.【教师活动】每一步的依据是什么?(乘法交换律)因此4xy·3x=4·xy·3·x=(4·3)·(x·x)·y=12x2y.(要强调解题的步骤和格式)2.仿照刚才的作法,你能解出下面的题目吗?【教师活动】第(2)题中在第二个单项式-4b2c中出现的c怎么办?【学生活动】由小组讨论归纳单项式乘单项式的法则.【教学说明】教师板书:单项式和单项式相乘,系数与系数相乘,相同字母的幂分别相乘;对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分。
2020年华东师大新版八年级(上)《第12章+整式的乘除》名校试题套卷(1) (1)【附答案】
2020年华东师大新版八年级(上)《第12章整式的乘除》名校试题套卷(1)一、选择题(共10小题)1.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1C.a2﹣1D.2.下列各式,从左到右变形是因式分解的是()A.a(a+2b)=a2+2ab B.x﹣1=x(1﹣)C.x2+5x+4=x(x+5)+4D.4﹣m2=(2+m)(2﹣m)3.若x2﹣kx+81是完全平方式,则k的值应是()A.16B.9或﹣9C.﹣18D.18或﹣184.下列各式中,正确分解因式的个数为()①x3+2xy+x=x(x2+2y)②x2+2xy+4y2=(x+2y)2③﹣2x2+8y2=﹣(2x+4y)(x﹣2y)④a3﹣abc+a2b﹣a2c=a(a﹣c)(a+b)⑤(m﹣n)(2x﹣5y﹣7z)+(m﹣n)(3y﹣10x+3z)=﹣(m﹣n)(8x+2y+4z)A.1B.2C.3D.45.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)6.(x2+ax+8)(x2﹣3x+b)展开式中不含x3和x2项,则a、b的值分别为()A.a=3,b=1B.a=﹣3,b=1C.a=0,b=0D.a=3,b=8 7.下列运算正确的是()A.2x+3y=5xyB.(﹣3x2y)3=﹣9x6y3C.4x3y2•(﹣xy2)=﹣2x4y4D.(x﹣y)3=x3﹣y38.某工厂生产A,B两种型号的螺丝,在2016年12月底时,该工厂统计了2016年下半年生产的两种型号螺丝的总量,据统计2016年下半年生产的A型号螺丝的总量为a12个,A型号螺丝的总量是B型号的a4倍,则2016年下半年该工厂生产的B型号螺丝的总量为()A.a4个B.a8个C.a3个D.a48个9.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32.即8,16均为“和谐数”),在不超过200的正整数中,所有的“和谐数”之和为()A.2700B.2701C.2601D.260010.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.D.二、填空题(共10小题)11.若a2+b2=5,ab=2,则(a+b)2=.12.若2x=3,2y=6,则2x+2y的值为.13.若多项式2x2﹣5x+m有一个因式为(x﹣1),那么m=.14.如图中阴影部分的面积等于.15.(﹣3xy)2=,(a2b)2÷a4=.16.分解因式:4x2﹣12xy+9y2=.17.有A、B、C三种不同型号的卡片,每种卡片各有7张,其中A型卡片是边长为2的正方形,B型卡片是长为2、宽为1的矩形,C型卡片是边长为1的正方形,从其中取出若干张卡片,每种卡片至少取一张,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分),可以拼成种面积不同的正方形.18.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形,分别计算这两个图形的阴影部分的面积,验证了公式.19.若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2018=.20.若规定符号的意义是:=ad﹣bc,则当m2﹣2m﹣3=0时,的值为.三、解答题(共10小题)21.(1)计算:3×(﹣2)+(﹣2)2+.(2)化简:(a+2)2+4a(a﹣1).22.先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=.23.(s﹣2t)(﹣s﹣2t)﹣(s﹣2t)2.24.因式分解(1)ax2﹣4ay2(2)x3﹣8x2+16x25.简便计算:(1)0.62021×(﹣)2020;(2)2021×2021﹣2022×2020.26.(3x2y2﹣4y)÷(﹣y).27.阅读理解;我们来定义下面两种数:①平方和数:若一个三位数或三位以上的整数分成左,中,右三个数后满足:中间数=左边数的平方加上右边数的平方,我们就称该整数为平方和数,比如:对于整数251,它的中间数是5,左边数是2,右边数是1,∵22+12=5,∴251为一个平方和数;再比如3254,∵32+42=25,∴3254为一个平方和数;当然.152,4253这两个数肯定也是平方和数;②双倍积数:若一个三位数或三位以上的整数分成左,中,右三个数后满足:中间数=2×左边数×右边数,我们就称该整数为双倍积数;比如:对于整数163,它的中间数为6,左边数为1,右边数为3,∵2×1×3=6,∴163是一个双倍积数;再比如3305,2×3×5=30,∴3305是一个双倍积数;当然,361,5303这两个数也是双倍积数;注意:在下列问题中,我们统一用字母a表示一个整数分出来的左边数,用字母b表示一个整数分出来的右边数,请根据上述定义来完成下面问题:(1)如果一个三位整数为平方和数,且十位数字是8,则该三位整数是;如果一个三位整数为双倍积数,且十位数字是4,则该三位整数是;(2)若一个整数既是平方和数又是双倍积数,则a,b满足什么数量关系?请说明理由.(3)若为一个平方和数,为一个双倍积数,求a2﹣b2.28.(1)若a+=2,则a2+=,a4+=(2)若a+=n,则a2+=,a4+=,(用含有n的式子的表示).(3)若a+=2,下列等式:①(a2+)+(a4+)+…+(a2n+)=2n;②(a2+)+(a4+)++…+(a2n+)=2n,当n为自然数时,有且仅有一个成立,请选择,并说明理由.29.因式分解(1)2mx2﹣8my2(2)a2﹣6a﹣2730.分解因式:3a2﹣5ab﹣b22020年华东师大新版八年级(上)《第12章整式的乘除》名校试题套卷(1)参考答案与试题解析一、选择题(共10小题)1.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1C.a2﹣1D.【解答】解:A、∵2a2+2a=2a(a+1),故本选项正确;B、a2+2a+1=(a+1)2,故本选项正确;C、a2﹣1=(a+1)(a﹣1),故本选项正确;D、=(a+2,故本选项错误.故选:D.2.下列各式,从左到右变形是因式分解的是()A.a(a+2b)=a2+2ab B.x﹣1=x(1﹣)C.x2+5x+4=x(x+5)+4D.4﹣m2=(2+m)(2﹣m)【解答】解:A.从左边到右边变形是整式乘法,不是因式分解,故本选项不符合题意;B.等式的右边不是整式积的形式是整式乘法,不是因式分解,故本选项不符合题意;C.从左边到右边变形不是因式分解,故本选项不符合题意;D.从左边到右边变形是因式分解,故本选项符合题意;故选:D.3.若x2﹣kx+81是完全平方式,则k的值应是()A.16B.9或﹣9C.﹣18D.18或﹣18【解答】解:∵x2﹣kx+81是完全平方式,81=92,∴k=±2×1×9=±18.故选:D.4.下列各式中,正确分解因式的个数为()①x3+2xy+x=x(x2+2y)②x2+2xy+4y2=(x+2y)2③﹣2x2+8y2=﹣(2x+4y)(x﹣2y)④a3﹣abc+a2b﹣a2c=a(a﹣c)(a+b)⑤(m﹣n)(2x﹣5y﹣7z)+(m﹣n)(3y﹣10x+3z)=﹣(m﹣n)(8x+2y+4z)A.1B.2C.3D.4【解答】解:①左边为三项,右边乘开为两项,故错误;②右边(x+2y)2=x2+4xy+4y2≠左边,故错误;③公因数2未提出来,故错误;④a3﹣abc+a2b﹣a2c=(a3+a2b)﹣(abc+a2c)=a2(a+b)﹣ac(a+b)=a(a﹣c)(a+b)④正确;⑤等式右边的(8x+2y+4z)未提取公因数2,故错误.综上,只有④正确.故选:A.5.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.6.(x2+ax+8)(x2﹣3x+b)展开式中不含x3和x2项,则a、b的值分别为()A.a=3,b=1B.a=﹣3,b=1C.a=0,b=0D.a=3,b=8【解答】解:(x2+ax+8)(x2﹣3x+b)=x4﹣3x3+bx2+ax3﹣3ax2+abx+8x2﹣24x+8b=x4+(﹣3+a)x3+(b﹣3a+8)x2+(ab﹣24)x+8b,由展开式中不含x3和x2项,得到﹣3+a=0,b﹣3a+8=0,解得:a=3,b=1.故选:A.7.下列运算正确的是()A.2x+3y=5xyB.(﹣3x2y)3=﹣9x6y3C.4x3y2•(﹣xy2)=﹣2x4y4D.(x﹣y)3=x3﹣y3【解答】解:A、2x与3y不是同类项,不能合并.本选项不符合题意.B、(﹣3x2y)3=﹣27x6y3,本选项不符合题意.C、4x3y2•(﹣xy2)=﹣2x4y4,本选项符合题意.D、(x﹣y)3=x3﹣3x2y+3xy2﹣y3≠x3﹣y3,本选项不符合题意,故选:C.8.某工厂生产A,B两种型号的螺丝,在2016年12月底时,该工厂统计了2016年下半年生产的两种型号螺丝的总量,据统计2016年下半年生产的A型号螺丝的总量为a12个,A型号螺丝的总量是B型号的a4倍,则2016年下半年该工厂生产的B型号螺丝的总量为()A.a4个B.a8个C.a3个D.a48个【解答】解:由题可得,2016年下半年该工厂生产的B型号螺丝的总量为:a12÷a4=a8个,故选:B.9.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32.即8,16均为“和谐数”),在不超过200的正整数中,所有的“和谐数”之和为()A.2700B.2701C.2601D.2600【解答】解:∵512﹣492=(51+49)(51﹣49)=200,∴在不超过200的正整数中,所有的“和谐数”之和为:(﹣12+32)+(﹣32+52)+(﹣52+72)+……+(﹣492+512)=﹣12+32﹣32+52﹣52+72+……﹣492+512=512﹣12=(51+1)(51﹣1)=52×50=2600,故选:D.10.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.D.【解答】解:令S=1+5+52+53+ (52012)则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=.故选:D.二、填空题(共10小题)11.若a2+b2=5,ab=2,则(a+b)2=9.【解答】解:∵(a+b)2=a2+b2+2ab,∴把a2+b2与ab代入,得(a+b)2=5+2×2=9.12.若2x=3,2y=6,则2x+2y的值为108.【解答】解:∵2x=3,2y=6,∴2x+2y=2x•22y=2x•(2y)2=3×62=3×36=108.故答案为:108.13.若多项式2x2﹣5x+m有一个因式为(x﹣1),那么m=3.【解答】解:由2x2﹣5x+m有一个因式为(x﹣1),得∴x=1时.2﹣5+m=0,∴m=3.故答案为:3.14.如图中阴影部分的面积等于4a2+2ab+3b2.【解答】解:由题意可得,阴影部分的面积=(a+a+3b)×(2a+b)﹣2a×3b=4a2+2ab+3b2.故答案为:4a2+2ab+3b2.15.(﹣3xy)2=9x2y2,(a2b)2÷a4=b2.【解答】解:(﹣3xy)2=9x2y2,(a2b)2÷a4=a4b2÷a4=b2,故答案为:9x2y2,b2.16.分解因式:4x2﹣12xy+9y2=(2x﹣3y)2.【解答】解:原式=(2x﹣3y)2.故答案是:(2x﹣3y)2.17.有A、B、C三种不同型号的卡片,每种卡片各有7张,其中A型卡片是边长为2的正方形,B型卡片是长为2、宽为1的矩形,C型卡片是边长为1的正方形,从其中取出若干张卡片,每种卡片至少取一张,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分),可以拼成5种面积不同的正方形.【解答】解:A型卡片的面积为22,B型卡片的面积为2×1,C型卡片的面积为12.应该有五种,最大是七张都取,面积为49,最小是各取一张,面积为7,7到49之间完全平方数有9、16、25、36、49故答案为5.18.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形,分别计算这两个图形的阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【解答】解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b).则a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b).19.若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2018=﹣2021.【解答】解:∵x2﹣2x﹣1=0∴x2﹣2x=1∴2x3﹣7x2+4x﹣2018=2x3﹣4x2﹣3x2+4x﹣2018=2x(x2﹣2x)﹣3x2+4x﹣2018=2x﹣3x2+4x﹣2018=﹣3(x2﹣2x)﹣2018=﹣3﹣2018=﹣2021故答案为:﹣2021.20.若规定符号的意义是:=ad﹣bc,则当m2﹣2m﹣3=0时,的值为9.【解答】解:由题意可得,=m2(m﹣2)﹣(m﹣3)(1﹣2m)=m3﹣7m+3,∵m2﹣2m﹣3=0,∴m2=2m+3,m2﹣2m=3∴m3﹣7m+3=m(m2)﹣7m+3=m(2m+3)﹣7m+3=2m2﹣4m+3=2(m2﹣2m)+3=2×3+3=9,所以当m2﹣2m﹣3=0时,的值为9.故答案为:9.三、解答题(共10小题)21.(1)计算:3×(﹣2)+(﹣2)2+.(2)化简:(a+2)2+4a(a﹣1).【解答】解:(1)原式=﹣6+4+=﹣2+;(2)原式=a2+4a+4+4a2﹣4a=5a2+4.22.先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=.【解答】解:原式=x2+4x﹣5+x2﹣4x+4=2x2﹣1,当x=时,原式=2()2﹣1=5.23.(s﹣2t)(﹣s﹣2t)﹣(s﹣2t)2.【解答】解:(s﹣2t)(﹣s﹣2t)﹣(s﹣2t)2=﹣(s﹣2t)(s+2t)﹣(s2﹣4st+4t2)=﹣s2+4t2﹣s2+4st﹣4t2=﹣2s2+4st.24.因式分解(1)ax2﹣4ay2(2)x3﹣8x2+16x【解答】解:(1)ax2﹣4ay2=a(x2﹣4y2)=a(x+2y)(x﹣2y);(2)x3﹣8x2+16x=x(x2﹣8x+16)=x(x﹣4)2.25.简便计算:(1)0.62021×(﹣)2020;(2)2021×2021﹣2022×2020.【解答】解:(1)原式=0.62020×(﹣)2020×0.6=[0.6×(﹣)]2020×0.6=(﹣1)2020×0.6=1×0.6=0.6;(2)原式=20212﹣(2021+1)×(2021﹣1)=20212﹣(20212﹣1)=20212﹣20212+1.=1.26.(3x2y2﹣4y)÷(﹣y).【解答】解:原式=(3x2y2)÷(﹣y)﹣4y÷(﹣y)=﹣6x2y+8.27.阅读理解;我们来定义下面两种数:①平方和数:若一个三位数或三位以上的整数分成左,中,右三个数后满足:中间数=左边数的平方加上右边数的平方,我们就称该整数为平方和数,比如:对于整数251,它的中间数是5,左边数是2,右边数是1,∵22+12=5,∴251为一个平方和数;再比如3254,∵32+42=25,∴3254为一个平方和数;当然.152,4253这两个数肯定也是平方和数;②双倍积数:若一个三位数或三位以上的整数分成左,中,右三个数后满足:中间数=2×左边数×右边数,我们就称该整数为双倍积数;比如:对于整数163,它的中间数为6,左边数为1,右边数为3,∵2×1×3=6,∴163是一个双倍积数;再比如3305,2×3×5=30,∴3305是一个双倍积数;当然,361,5303这两个数也是双倍积数;注意:在下列问题中,我们统一用字母a表示一个整数分出来的左边数,用字母b表示一个整数分出来的右边数,请根据上述定义来完成下面问题:(1)如果一个三位整数为平方和数,且十位数字是8,则该三位整数是282;如果一个三位整数为双倍积数,且十位数字是4,则该三位整数是142或241;(2)若一个整数既是平方和数又是双倍积数,则a,b满足什么数量关系?请说明理由.(3)若为一个平方和数,为一个双倍积数,求a2﹣b2.【解答】解:(1)因为22+22=8所以一个三位整数为平方和数,且十位数字是8,则该三位整数是282;因为2×1×2=4,所以一个三位整数为双倍积数,且十位数字是4,则该三位整数是142或241.故答案为:282,142或241.(2)a,b满足相等关系,即a=b.理由:一个整数,字母a表示左边数,字母b表示右边数,该整数的中间部分用字母c表示由于该整数是平方数,所以a2+b2=c,由于该整数是双倍积数,所以c=2ab,所以a2+b2=2ab,即a2+b2﹣2ab=0所以(a﹣b)2=0,即a=b.(3)若为一个平方和数,则a2+b2=585为一个双倍积数,则2ab=504所以a2﹣b2=(a+b)(a﹣b)=×当a>b时原式=×=33×9=297;当a<b时原式=×(﹣)=33×﹣9=﹣297;28.(1)若a+=2,则a2+=2,a4+=2(2)若a+=n,则a2+=n2﹣2,a4+=n4﹣4n2+2,(用含有n的式子的表示).(3)若a+=2,下列等式:①(a2+)+(a4+)+…+(a2n+)=2n;②(a2+)+(a4+)++…+(a2n+)=2n,当n为自然数时,有且仅有一个成立,请选择,并说明理由.【解答】解:(1)∵a+=2,则(a+)2=4,∴a2+=2,∴(a2+)2﹣2=2∴a4+=2.故答案为:2,2;(2)∵a+=n,∴(a+)2=n2,则a2+=n2﹣2,∴(a2+)2=(n2﹣2)2,∴a4+=n4﹣4n2+2,(用含有n的式子的表示);故答案为:n2﹣2,n4﹣4n2+2;(3)若a+=2,(a2+)+(a4+)+…+(a2n+)=2n;当n为自然数时,上式成立,理由:由(1)得:a2+=2,a4+=2,则a2n+=2;故(a2+)+(a4+)+…+(a2n+)=2+2+…+2=2n.29.因式分解(1)2mx2﹣8my2(2)a2﹣6a﹣27【解答】解:(1)原式=2m(x2﹣4y2)=2m(x+2y)(x﹣2y);(2)原式=(a﹣9)(a+3).30.分解因式:3a2﹣5ab﹣b2【解答】解:令3a2﹣5ab﹣b2=0,解得:a=b=b,∴3a2﹣5ab﹣b2=3(a+b)(a﹣b)。
华师大版八年级数学上册单元测试 第12章 整式的乘除(含部分答案)
华师版八年级数学上册单元测试卷第12章整式的乘除班级姓名第一卷(选择题共30分)一、选择题(每题3分 ,共30分)1.以下运算正确的选项是( A)A.|2-1|=2-1 B.x3·x2=x6C.x2+x2=x4 D.(3x2)2=6x42.以下计算 ,正确的选项是( C)A.a2·a2=2a2 B.a2+a2=a4C.(-a2)2=a4 D.(a+1)2=a2+13.以下式子变形是因式分解的是( D)A.x2-2x-3=x(x-2)-3B.x2-2x-3=(x-1)2-4C.(x+1)(x-3)=x2-2x-3D.x2-2x-3=(x+1)(x-3)4.假设a-b=8, a2-b2=72 ,那么a+b的值为( A)A.9 B.-9 C.27 D.-275.利用因式分解计算57×99+44×99-99 ,正确的选项是( B) A.99×(57+44)=99×101=9999B.99×(57+44-1)=99×100=9900C.99×(57+44+1)=99×102=10098D.99×(57+44-99)=99×2=1986.通过计算比拟图1、图2中阴影局部的面积 ,可以验证的计算式子是( D) A.a(a-2b)=a2-2abB.(a-b)2=a2-2ab+b2C.(a+b)(a-b)=a2-b2D.(a+b)(a-2b)=a2-ab-2b27.因式分解3y2-6y+3 ,结果正确的选项是( A)A.3(y-1)2 B.3(y2-2y+1)C.(3y-3)2 D.3(y-1)28.多项式x-a与x2+2x-1的乘积中不含x2项 ,那么常数a的值是( D)A.-1 B.1 C.-2 D.29.m+n=3 ,那么m2+2mn+n2-6的值为( C)A.12 B.6 C.3 D.010.a=2019x+2019 ,b=2019x+2019 ,c=2019x+2020 ,那么a2+b2+c2-ab-ac-bc的值是( D)A.0 B.1 C.2 D.3第二卷(非选择题共70分)二、填空题(每题3分 ,共18分)11.n是正整数 ,且x2n=5 ,那么(3x2n)2的值为__225__.12.计算:a(a2÷a)-a2=__0__.13.假设ab=2 ,a-b=1 ,那么代数式a2b-ab2的值等于__2__.14.将x2+6x+3配方成(x+m)2+n的形式 ,那么m=__3__.15.x=m时 ,多项式x2+2x+n2的值为-1 ,那么x=-m时 ,该多项式的值为__3__.16.在日常生活中如取款、上网等都需要密码 ,有一种用“因式分解〞法产生的密码方便记忆 ,原理是:如对多项式x4-y4因式分解的结果是(x-y)(x+y)(x2+y2) ,假设取x=9 ,y=9时 ,那么因式x-y=0 ,x+y=18 ,x2+y2=162 ,于是就可以把“018 162〞作为一个六位数的密码 ,对于多项式4x3-xy2 ,取x=10 ,y=10时 ,用上述方法产生的密码是__103__010 ,101__030或301__010__.(写出一个即可)三、解答题(共52分)17.(4分)化简[2019·舟山] (m+2)(m-2)-m3×3m.18.(8分)先化简 ,再求值:(1)x(x-2)+(x+1)2 ,其中x=1.(2)3a2-4a-7=0 ,求代数式(2a-1)2-(a+b)(a-b)-b2的值.19.(7分)x+y=7 ,xy=2 ,求:(1)2x2+2y2的值;(2)(x-y)2的值.20.(7分)将多项式(x-2)(x2+ax-b)展开后不含x2项和x项.求2a2-b的值.21.(8分)对于任意有理数a、b、c、d ,我们规定符号(a ,b)·(c ,d)=ad-bc ,例如:(1 ,3)·(2 ,4)=1×4-2×3=-2.(1)(-2 ,3)·(4 ,5)的值为__-22__;(2)求(3a+1 ,a-2)·(a+2 ,a-3)的值 ,其中a2-4a+1=0.22.(8分)阅读以下文字:,图2),图3) ,图4)我们知道 ,对于一个图形 ,通过两种不同的方法计算它的面积 ,可以得到一个数学等式 ,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答以下问题:(1)写出图2中所表示的数学等式__(a+b+c)2=a2+b2+c2+2ab+2ac+2bc__;(2)利用(1)中所得到的结论 ,解决下面的问题:a+b+c=11 ,ab+bc+ac=38 ,求a2+b2+c2的值;(3)图3中给出了假设干个边长为a和边长为b的小正方形纸片及假设干个边长分别为a、b的长方形纸片.①请按要求利用所给的纸片拼出一个几何图形 ,并画在图4所给的方框中 ,要求所拼出的几何图形的面积为2a2+5ab+2b2;②再利用另一种计算面积的方法 ,可将多项式2a2+5ab+2b2分解因式.即2a2+5ab +2b2=__(2a+b)(a+2b)__.23.(10分)材料阅读:假设一个整数能表示成a2+b2(a、b是正整数)的形式 ,那么称这个数为“完美数〞.例如:因为13=32+22 ,所以13是“完美数〞;再如:因为a2+2ab+2b2=(a+b)2+b2(a、b是正整数) ,所以a2+2ab+2b2也是“完美数〞.(1)请你写出一个大于20小于30的“完美数〞 ,并判断53是否为“完美数〞;(2)试判断(x2+9y2)·(4y2+x2)(x、y是正整数)是否为“完美数〞 ,并说明理由.。
2022年华东师大版数学八年级上册第12章整式的乘除 单元测试题含答案
2022-2023学年八年级数学上册《第12章整式的乘除》单元综合达标测试题(附答案)一.选择题(共10小题,满分30分)1.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10D.a2b2=c22.下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)C.﹣x2+y2=(x+y)(y﹣x)D.x2﹣4x+4=(x+2)(x﹣2)3.下列计算正确的是()A.(﹣a2)3=a6B.a12÷a2=a6C.a4+a2=a6D.a5•a=a64.下列算式能用平方差公式计算的是()A.(2x﹣y)(﹣2x+y)B.(2x+1)(﹣2x﹣1)C.(3a+b)(3b﹣a)D.(﹣m﹣n)(﹣m+n)5.若2x2+m与2x2+3的乘积中不含x的二次项,则m的值为()A.﹣3B.3C.0D.16.多项式3x2y2﹣12x2y4﹣6x3y3的公因式是()A.3x2y2z B.x2y2C.3x2y2D.3x3y2z7.已知a=5+4b,则代数式a2﹣8ab+16b2的值是()A.16B.20C.25D.308.有两个正方形A,B.现将B放在A的内部得图甲,将A,B并列放置后,构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B,如图丙摆放,则阴影部分的面积为()A.28B.29C.30D.319.观察:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,据此规律,当(x﹣1)(x5+x4+x3+x2+x+1)=0时,代数式x2021﹣1的值为()A.1B.0C.1或﹣1D.0或﹣210.三角形的三边a,b,c满足(a+b)2﹣c2=2ab,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形二.填空题(共10小题,满分40分)11.已知10m=2,10n=3,则103m﹣2n=.12.因式分解:3mx﹣9my=.13.如果x2+3x=2022,那么代数式x(2x+1)﹣(x﹣1)2的值为.14.将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的恒等式是:.15.如果3a=5,3b=10,那么9a﹣b的值为.16.分解因式:mx2﹣4mxy+4my2=.17.计算:6m6÷(﹣2m2)3=.18.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为.19.如图,两个正方形的边长分别为a、b,如果a+b=7,ab=10,则阴影部分的面积为.20.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.若a+b=8,ab=10,则S1+S2=.三.解答题(共7小题,满分50分)21.先化简后求值:(x+5)(x﹣5)﹣(x﹣2)2+(x+2)(x﹣1),其中x=3.22.将下列多项式进行因式分解:(1)4x3﹣24x2y+36xy2;(2)(x﹣1)2+2(x﹣5).23.化简:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2.24.阅读:已知正整数a、b、c,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂a b和c b,当a>c时,则有a b>c b,根据上述材料,回答下列问题.(1)比较大小:520420(填写>、<或=).(2)比较233与322的大小(写出比较的具体过程).(3)计算42021×0.252020﹣82021×0.1252020.25.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.26.实践与探索如图1,边长为a的大正方形有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)上述操作能验证的等式是;(请选择正确的一个)A.a2﹣b2=(a+b)(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)(2)请应用这个公式完成下列各题:①已知4a2﹣b2=24,2a+b=6,则2a﹣b=.②计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.27.阅读与思考:分组分解法指通过分组分解的方式来分解用提公因式法和公式法无法直接分解多项式,比如:四项的多项式一般按照“两两”分组或“三一”分组,进行分组分解.例1:“两两分组”:ax+ay+bx+by.解:原式=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(a+b)(x+y).例2:“三一分组”:2xy+x2﹣1+y2.解:原式=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1).归纳总结:用分组分解法分解因式要先恰当分组,然后用提公因式法或运用公式法继续分解.请同学们在阅读材料的启发下,解答下列问题:(1)分解因式:①x2﹣xy+5x﹣5y;②m2﹣n2﹣4m+4;(2)已知△ABC的三边a,b,c满足a2﹣b2﹣ac+bc=0,试判断△ABC的形状.参考答案一.选择题(共10小题,满分30分)1.解:A、原式=a6,符合题意;B、原式=a6,不合题意;C、原式=a5,不合题意;D、原式=8a3b3,不合题意;故选:A.2.解:A.左边不是多项式,从左至右的变形不属于因式分解,故本选项不符合题意;B.从左至右的变形属于因式分解,故本选项符合题意;C.从左至右的变形不属于因式分解,故本选项不符合题意;D.从左至右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;故选:B.3.解:∵(x﹣a)(x+2)=x2+(2﹣a)x﹣2a,(x﹣a)(x+2)=x2﹣3x﹣10,∴x2﹣3x﹣10=x2+(2﹣a)x﹣2a,∴2﹣a=﹣3,﹣2a=﹣10,∴a=5,故选:A.4.解:∵M=(x﹣2)(x﹣5)=x2﹣5x﹣2x+10=x2﹣7x+10;N=(x﹣3)(x﹣4)=x2﹣4x﹣3x+12=x2﹣7x+12,∴M﹣N=x2﹣7x+10﹣(x2﹣7x+12)=x2﹣7x+10﹣x2+7x﹣12=﹣2<0,∴M<N.故选:C.5.解:∵关于x的二次三项式4x2+mxy+9y2是一个完全平方式,∴m=±2×2×3=±12.故选:D.6.解:当3m=x,32n=y时,9m+2n=9m×92n=(3m)2×(32n)2=x2y2.故选:A.7.解:∵边长为a、b的长方形周长为20,面积为16,∴a+b=10,ab=16,∴a2b+ab2=ab(a+b)=16×10=160.故选:B.8.解:A、4x2﹣4x+1=(2x﹣1)2,故A符合题意;B、x2+2x+1=(x+1)2,故B不符合题意;C、x2+xy+y2=(x+y)2,故C不符合题意;D、9+x2﹣6x=(x﹣3)2,故D不符合题意;故选:A.9.解:∵x﹣y=2,xy=,∴原式=xy•(x2+xy+y2)=xy•[(x﹣y)2+3xy]=×[22+3×]=×(4+)=×=.故选:D.10.解:设AB=DC=x,AD=BC=y,由题意得:化简得:将①两边平方再减去②得:2xy=20∴xy=10故选:D.1.解:∵5×10=50,∴2a•2b=2c,∴2a+b=2c,∴a+b=c,故选:B.2.解:A.﹣x2+4x=﹣x(x﹣4),故A不符合题意;B.x2+xy+x=x(x+y+1),故B不符合题意;C.﹣x2+y2=(x+y)(y﹣x),故C符合题意;D.x2﹣4x+4=(x﹣2)2,故D不符合题意;故选:C.3.解:A、(﹣a2)3=﹣a6,故A不符合题意;B、a12÷a2=a10,故B不符合题意;C、a4与a2不属于同类项,不能合并,故C不符合题意;D、a5•a=a6,故D符合题意;故选:D.4.解:A、原式=﹣(2x﹣y)(2x﹣y)=﹣(2x﹣y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B、原式=﹣(2x+1)(2x+1)=﹣(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C、原式=(3a+b)(﹣a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D、原式=(﹣m)2﹣n2=m2﹣n2,原式能用平方差公式进行计算,此选项符合题意;故选:D.5.解:(2x2+m)(2x2+3)=4x4+6x2+2mx2+3m,∵2x2+m与2x2+3的乘积中不含x的二次项,∴6+2m=0,∴m=﹣3.故选:A.6.解:多项式3x2y2﹣12x2y4﹣6x3y3的公因式是3x2y2,故选:C.7.解:∵a=5+4b,∴a﹣4b=5,∴a2﹣8ab+16b2=(a﹣4b)2=52=25.故选:C.8.解:设正方形A,B的边长各为a、b(a>b),得图甲中阴影部分的面积为(a﹣b)2=a²﹣2ab+b²=1,解得a﹣b=1或a﹣b=﹣1(舍去),图乙中阴影部分的面积为(a+b)2﹣(a2+b2)=2ab=12,可得(a+b)²=a²+2ab+b²=a²﹣2ab+b²+4ab=(a﹣b)²+4ab=1+2×12=25,解得a+b=5或a+b=﹣5(舍去),∴图丙中阴影部分的面积为(2a+b)²﹣(3a²+2b²)=a²+4ab﹣b²=(a+b)(a﹣b)+2×2ab=5×1+2×12=5+24=29,故选:B.9.解:∵(x﹣1)(x5+x4+x3+x2+x+1)=0.∴x6﹣1=0.∴x6=1.∴(x3)2=1.∴x3=±1.∴x=±1.当x=1时,原式=12021﹣1=0.当x=﹣1时,原式=12021﹣1=﹣2.故选:D.10.解:∵三角形的三边a,b,c满足(a+b)2﹣c2=2ab,∴a2+2ab+b2﹣c2﹣2ab=0,∴a2+b2=c2,∴三角形为直角三角形.故选:B.二.填空题(共10小题,满分40分)11.解:∵3x+1•5x+1=152x﹣3,∴(3×5)x+1=152x﹣3,即15x+1=152x﹣3,∴x+1=2x﹣3,解得:x=4.故答案为:4.12.解:(﹣0.125)2020×82021=(﹣0.125)2020×82020×8=(﹣0.125×8)2020×8=(﹣1)2020×8=1×8=8.故答案为:8.13.解:ax2﹣4ax+4a=a(x2﹣4x+4)=a(x﹣2)2.故答案为:a(x﹣2)2.14.解:∵a2+4b2+4ab=(a+b)2,∴还需取丙纸片4块,故答案为:4.15.解:﹣b3(﹣b)2﹣(﹣b)3b2=﹣b3•b2﹣(﹣b3)•b2=﹣b5+b5=0.故答案为:0.16.解:(a+b)2=a2+2ab+b2,将a2+b2=25,(a+b)2=49代入,可得:2ab+25=49,则2ab=24,所以ab=12,故答案为:12.17.解:(x﹣1)(x2+nx+2)=x3+nx2+2x﹣x2﹣nx﹣2=x3+(n﹣1)x2+(2﹣n)x﹣2,∵展开式中不含x2项,∴n﹣1=0,∴n=1,故答案为:1.18.解:(9m2n﹣6mn2)÷(﹣3mn)=9m2n÷(﹣3mn)﹣6mn2÷(﹣3mn)=﹣3m+2n.故答案为:﹣3m+2n.19.解:如图,将剩余部分拼成一个长方形.这个长方形一边长为3,另一边长为a+(a+3),即2a+3,故答案为:2a+3.20.解:原式=20222﹣(2022+1)(2022﹣1)=20222﹣20222+1=1,故答案为:1.11.解:103m﹣2n=103m÷102n=(10m)3÷(10n)2=23÷32=.12.解:3mx﹣9my=3m(x﹣3y).故答案为:3m(x﹣3y).13.解:原式=2x2+x﹣x2+2x﹣1=x2+3x﹣1,当x2+3x=2022时,原式=2022﹣1=2021.故答案为:2021.14.解:∵甲图中阴影部分的面积为两个正方形的面积差,∴.∵乙图中的阴影部分面积是长为(a+b),宽为(a﹣b)的矩形的面积,∴S乙阴影=(a+b)(a﹣b).∵S甲阴影=S乙阴影,∴a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b).15.解:∵3n=5,3b=10,∴9a﹣b=(3a﹣b)2=(3a÷3b)2=()2=,故答案为:.16.解:mx2﹣4mxy+4my2=m(x2﹣4xy+4y2)=m(x﹣2y)2.故答案为:m(x﹣2y)2.17.解:原式=6m6÷(﹣8m6)=.故答案为:.18.解:因式分解x2+ax+b时,∵甲看错了a的值,分解的结果是(x+6)(x﹣2),∴b=6×(﹣2)=﹣12,又∵乙看错了b的值,分解的结果为(x﹣8)(x+4),∴a=﹣8+4=﹣4,∴原二次三项式为x2﹣4x﹣12,因此,x2﹣4x﹣12=(x﹣6)(x+2),故答案为:(x﹣6)(x+2).19.解:根据题意得:当a+b=7,ab=10时,S阴影=a2﹣b(a﹣b)=a2﹣ab+b2=[(a+b)2﹣2ab]﹣ab=9.5.故答案为:9.520.解:图1阴影部分的面积是两个正方形的面积差,即S1=a2﹣b2;图2中阴影部分是两个边长为b的正方形减去长为a,宽为b的长方形的面积,即:S2=2b2﹣ab;∴S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab=(a+b)2﹣3ab=82﹣3×10=34;故答案为:34.三.解答题(共7小题,满分50分)21.解:(x+1)2﹣(x+2)(x﹣2)=x2+2x+1﹣x2+4=2x+5,当x=﹣3时,原式=2×(﹣3)+5=﹣6+5=﹣1.22.解:原式=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4).23.解:原式=x2﹣4xy+4y2+x2﹣4y2﹣2x2+2xy =﹣2xy.当,y=4时,原式=.24.解:x3y﹣2x2y2+xy3=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)a2(x﹣1)2+4a(1﹣x)=a(x﹣1)[a(x﹣1)﹣4]=a(x﹣1)(ax﹣a﹣4);(3)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.25.解:(1)∵x2﹣8x+16=(x﹣4)2,故答案为:16,4.(2)x2﹣10x+2=x2﹣10x+25﹣23=(x﹣5)2﹣23.∵(x﹣5)2≥0,∴当x=5时,原式有最小值﹣23.(3)M﹣N=6a2+19a+10﹣5a2﹣25a=a2﹣6a+10=a2﹣6a+9+1=(a﹣3)2+1.∵(a﹣3)2≥0,∴M﹣N>0.∴M>N.26.解:(1)图1中阴影部分的面积为边长为a,边长为b的面积差,即a2﹣b2,图2长方形的长为a+b,宽为a﹣b,因此面积为(a+b)(a﹣b),所以有a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(2)①∵4a2﹣b2=24,∴(2a+b)(2a﹣b)=24,又∵2a+b=6,∴2a﹣b=24÷6=4,故答案为:4;②原式====.27.解:(1)由图形知,大正方形的面积为(a+b)2,中间小正方形的面积为(b﹣a)2,大正方形的面积减去小正方形的面积等于4个长宽分别为a,b的长方形面积,∴(a+b)2﹣(a﹣b)2=4ab,故答案为:(a+b)2﹣(a﹣b)2=4ab;(2)∵(a+b)2﹣(a﹣b)2=4ab,将m+n=6,mn=5代入得:62﹣(m﹣n)2=4×5,∴(m﹣n)2=16,∴m﹣n=±4,故答案为:±4;(3)∵正方形ABCD的边长为x,∴DE=x﹣5,DG=x﹣15,∴(x﹣5)(x﹣15)=300,设m=x﹣5,n=x﹣15,mn=300,∴m﹣n=10,∴S阴影=(m+n)2=(m﹣n)2+4mn=102+4×300=1300,∴图中阴影部分的面积为1300.21.解:原式=x2﹣25﹣(x2﹣4x+4)+x2+x﹣2=x2﹣25﹣x2+4x﹣4+x2+x﹣2=x2+5x﹣31,当x=3时,原式=32+5×3﹣31=﹣7.22.解:(1)原式=4x(x2﹣6xy+9y2)=4x(x﹣3y)2;(2)原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).23.解:原式=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab.24.解:(1)∵5>4,∴520>420,故答案为:>;(2)∵233=(23)11=811,322=(32)11=911,又∵811<911,∴233<322;(3)42021×0.252020﹣82021×0.1252020==4×12020﹣8×12020=4﹣8=﹣4.25.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=2(x﹣2022),∴x﹣2022=,(x﹣2022)2=()2=,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.26.解:(1)图1中阴影部分的面积为两个正方形的面积差,即a2﹣b2,图2中的阴影部分是长为(a+b),宽为(a﹣b)的长方形,因此面积为(a+b)(a﹣b),所以有a2﹣b2=(a+b)(a﹣b),故答案为:A;(2)①∵4a2﹣b2=24,∴(2a+b)(2a﹣b)=24,又∵2a+b=6,∴6(2a﹣b)=24,即2a﹣b=4,故答案为:4;②∵1002﹣992=(100+99)(100﹣99)=100+99,982﹣972=(98+97)(98﹣97)=98+97,…22﹣12=(2+1)(2﹣1)=2+1,∴原式=100+99+98+97+…+4+3+2+1=5050.27.解:(1)①x2﹣xy+5x﹣5y=(x2﹣xy)+(5x﹣5y)=x(x﹣y)+5(x﹣y)=(x﹣y)(x+5);②m2﹣n2﹣4m+4=(m2﹣4m+4)﹣n2=(m﹣2)2﹣n2=(m﹣2+n)(m﹣2﹣n);(2)∵a2﹣b2﹣ac+bc=0,∴(a2﹣b2)﹣(ac﹣bc)=0,∴(a+b)(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a+b﹣c)=0,∵a,b,c是△ABC的三边,∴a+b﹣c>0,∴a﹣b=0,∴a=b,即△ABC是等腰三角形.。
华师大八年级数学上 第12章 整式的乘除单元检测题(含答案解析)
第12章整式的乘除单元检测题(时间:90分钟,满分:100分)一。
选择题(每小题3分,共30分)1。
若3•9m•27m=321,则m的值为()A。
3B。
4C。
5D。
62。
要使多项式(x2+p x+2)(x-q)不含关于x的二次项,则p与q的关系是()A。
相等B。
互为相反数C。
互为倒数D。
乘积为13。
若x+y+1与(x-y-2)2互为相反数,则(3x-y)3值为()A。
1B。
9C。
–9D。
274。
若x2-kxy+9y2是一个两数和(差)的平方公式,则k的值为()A。
3B。
6C。
±6D。
±815。
已知多项式(17x2-3x+4)-(ax2+b x+c)能被5x整除,且商式为2x+1,则a-b+c=()A。
12B。
13C。
14D。
196。
下列运算正确的是()A。
a+b=ab B。
a2•a3=a5C。
a2+2ab-b2=(a-b)2D。
3a-2a=1 7。
若a4+b4+a2b2=5,ab=2,则a2+b2的值是()A。
-2B。
3C。
±3D。
28。
下列因式分解中,正确的是()A。
x2y2-z2=x2(y+z)(y-z)B。
-x2y+4xy-5y=-y(x2+4x+5)C。
(x+2)2-9=(x+5)(x-1)D。
9-12a+4a2=-(3-2a)29。
设一个正方形的边长为a,若边长增加3,则新正方形的面积增加了()A。
B。
C。
D。
无法确定10。
在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图①),把余下的部分拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证()a aa ab bb b①②第10题图3 (A 。
(a + b )2 = a 2 + 2ab + b 2B 。
(a - b )2 = a 2 - 2ab + b 2C 。
a 2 - b 2 = (a + b )(a - b )D 。
(a + 2b )(a - b ) = a 2 + ab - 2b 2二。
第12章整式的乘除本章归纳总结-2024-2025学年初中数学八年级上册(华师版)上课课件
(2)(a+b)2+2(a+b)+1 =(a+b+1)2
(3)4x4+4x3+x2 =x2(4x2+4x+1) =x2(2x+1)2
(4)x2-16ax+64a2 =(x2-8a)2
14.把下列多项式分解因式:
(5)(x-1)(x-3)+1
(6)(ab+a)+(b+1)
=(x2-4x+3)+1 =x2-4x+4 =(x-2)2
6.计算:
(1)(6a4-4a3-2a2)÷(-2a2) =6a4÷(-2a2)-4a3÷(-2a2)-2a2÷(-2a2) =-3a2+2a+1
(2)(4x3y+6x2y2-xy3)÷2xy =4x3y÷2xy+6x2y2÷2xy-xy3÷2xy =2x2+3xy-0.5y2
6.计算:
(3)(x4+2x3- 1 x2)÷(- 1 x)2
(2)(m+n)43;n) =-(m+n)(m+n) =-(m2+2mn+n2) =-m2-2mn-n2
(5)(-m+n)(m-n) =-(m-n)(m-n) =-(m2-2mn+n2) =-m2+2mn-n2
(6)
2 3
x
3 4
y
2
= 4 x2 xy 9 y2
2.计算: (1)2a·3a2 =2·3a·a2 =6a3
(3)(-2a2)2·(-5a3) =4a4·(-5a3) =4×(-5)a4·a3 =-20a7
(2)(-3xy)·(-4yz) =(-3)×(-4)xy·yz =12xy2z
(2021年整理)华师大版八年级数学上册单元测试《第12章整式的乘除》(解析版)
华师大版八年级数学上册单元测试《第12章整式的乘除》(解析版) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(华师大版八年级数学上册单元测试《第12章整式的乘除》(解析版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为华师大版八年级数学上册单元测试《第12章整式的乘除》(解析版)的全部内容。
《第12章整式的乘除》一、选择题1.计算(﹣a)3•(a2)3•(﹣a)2的结果正确的是( )A.a11B.﹣a11C.﹣a10D.a132.下列计算正确的是()A.x2(m+1)÷x m+1=x2 B.(xy)8÷(xy)4=(xy)2C.x10÷(x7÷x2)=x5D.x4n÷x2n•x2n=13.已知(x+a)(x+b)=x2﹣13x+36,则ab的值是()A.36 B.13 C.﹣13 D.﹣364.若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为( )A.﹣2 B.0 C.1 D.25.已知x+y=1,xy=﹣2,则(2﹣x)(2﹣y)的值为()A.﹣2 B.0 C.2 D.46.若(x+a)(x+b)=x2+px+q,且p>0,q<0,那么a、b必须满足的条件是()A.a、b都是正数B.a、b异号,且正数的绝对值较大C.a、b都是负数D.a、b异号,且负数的绝对值较大7.一个长方体的长、宽、高分别是3x﹣4、2x﹣1和x,则它的体积是( )A.6x3﹣5x2+4x B.6x3﹣11x2+4x C.6x3﹣4x2D.6x3﹣4x2+x+48.观察下列多项式的乘法计算:(1)(x+3)(x+4)=x2+7x+12;(2)(x+3)(x﹣4)=x2﹣x﹣12;(3)(x﹣3)(x+4)=x2+x﹣12;(4)(x﹣3)(x﹣4)=x2﹣7x+12根据你发现的规律,若(x+p)(x+q)=x2﹣8x+15,则p+q的值为()A.﹣8 B.﹣2 C.2 D.89.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①②B.③④C.①②③ D.①②③④二、填空题10.计算:(1)(﹣3ab2c3)2= ;(2)a3b2•(﹣ab3)3= ;(3)(﹣x3y2)(7xy2﹣9x2y)= .11.若3m=81,3n=9,则m+n= .12.若a5•(a m)3=a4m,则m= .13.若x2+kx﹣15=(x+3)(x+b),则k= .三、解答题14.计算:(1)(a2)3•a3﹣(3a3)3+(5a7)•a2;(2)(﹣4x2y)•(﹣x2y2)•(y)3(3)(﹣3ab)(2a2b+ab﹣1);(4)(m﹣)(m+);(5)(﹣xy)2•[xy(x﹣y)+x(xy﹣y2)].15.若多项式x2+ax+8和多项式x2﹣3x+b相乘的积中不含x3项且含x项的系数是﹣3,求a和b的值.16.如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按折痕做一个有底无盖的长方形盒子,试求盒子的体积.17.化简求值:(3x+2y)(4x﹣5y)﹣11(x+y)(x﹣y)+5xy,其中.18.解方程:(2x+5)(3x﹣1)+(2x+3)(1﹣3x)=28.19.已知x2﹣8x﹣3=0,求(x﹣1)(x﹣3)(x﹣5)(x﹣7)的值.《第12章整式的乘除》参考答案与试题解析一、选择题1.计算(﹣a)3•(a2)3•(﹣a)2的结果正确的是()A.a11B.﹣a11C.﹣a10D.a13【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】根据幂的乘方的性质,单项式的乘法法则,计算后直接选取答案即可.【解答】解:(﹣a)3•(a2)3•(﹣a)2=﹣a3•a6•a2=﹣a11.故选B.【点评】本题考查了单项式的乘法的法则,幂的乘方的性质,熟练掌握运算法则和性质是解题的关键.2.下列计算正确的是( )A.x2(m+1)÷x m+1=x2B.(xy)8÷(xy)4=(xy)2C.x10÷(x7÷x2)=x5D.x4n÷x2n•x2n=1【考点】整式的除法.【分析】此题需对各项进行单项式的乘、除运算后再作判断.【解答】解:A、错误,应为x2(m+1)÷x m+1=x m+1;B、错误,应为(xy)8÷(xy)4=(xy)4;C、x10÷(x7÷x2)=x5,正确;D、错误,应为x4n÷x2n•x2n=x4n.故选C.【点评】本题考查了单项式的乘、除运算,比较简单,容易掌握.3.已知(x+a)(x+b)=x2﹣13x+36,则ab的值是( )A.36 B.13 C.﹣13 D.﹣36【考点】多项式乘多项式.【专题】计算题.【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出a与b的值,即可确定出ab的值.【解答】解:(x+a)(x+b)=x2+(a+b)x+ab=x2﹣13x+36,则a+b=﹣13,ab=36,故选A【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.4.若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为()A.﹣2 B.0 C.1 D.2【考点】多项式乘多项式.【专题】计算题;方程思想.【分析】将(ax+2y)(x﹣y)展开,然后合并同类项,得到含xy的项系数,根据题意列出关于a的方程,求解即可.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故选D.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.5.已知x+y=1,xy=﹣2,则(2﹣x)(2﹣y)的值为()A.﹣2 B.0 C.2 D.4【考点】多项式乘多项式.【专题】计算题.【分析】所求式子利用多项式乘多项式法则计算,变形后,将已知等式代入计算即可求出值.【解答】解:∵x+y=1,xy=﹣2,∴(2﹣x)(2﹣y)=4﹣2(x+y)+xy=4﹣2﹣2=0.故选B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.若(x+a)(x+b)=x2+px+q,且p>0,q<0,那么a、b必须满足的条件是( )A.a、b都是正数B.a、b异号,且正数的绝对值较大C.a、b都是负数D.a、b异号,且负数的绝对值较大【考点】多项式乘多项式.【专题】计算题.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件表示出a+b与ab,根据p与q的正负即可做出判断.【解答】解:已知等式变形得:(x+a)(x+b)=x2+(a+b)x+ab=x2+px+q,可得a+b=p>0,ab=q<0,则a、b异号,且正数的绝对值较大,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.7.一个长方体的长、宽、高分别是3x﹣4、2x﹣1和x,则它的体积是()A.6x3﹣5x2+4x B.6x3﹣11x2+4x C.6x3﹣4x2D.6x3﹣4x2+x+4【考点】多项式乘多项式;单项式乘多项式.【专题】计算题.【分析】根据长方体的体积等于长×宽×高,计算即可得到结果.【解答】解:根据题意得:x(3x﹣4)(2x﹣1)=x(6x2﹣11x+4)=6x3﹣11x2+4x.故选B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.观察下列多项式的乘法计算:(1)(x+3)(x+4)=x2+7x+12;(2)(x+3)(x﹣4)=x2﹣x﹣12;(3)(x﹣3)(x+4)=x2+x﹣12;(4)(x﹣3)(x﹣4)=x2﹣7x+12根据你发现的规律,若(x+p)(x+q)=x2﹣8x+15,则p+q的值为()A.﹣8 B.﹣2 C.2 D.8【考点】多项式乘多项式.【分析】根据观察等式中的规律,可得答案.【解答】解:(x+p)(x+q)=x2﹣8x+15,p+q=﹣8,故选:A.【点评】本题考查了多项式成多项式,观察等式发现规律是解题关键.9.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有( )A.①②B.③④C.①②③ D.①②③④【考点】多项式乘多项式.【专题】计算题.【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【解答】解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.二、填空题10.计算:(1)(﹣3ab2c3)2= 9a2b4c6;(2)a3b2•(﹣ab3)3= ﹣a6b11;(3)(﹣x3y2)(7xy2﹣9x2y)= ﹣7x4y4+9x5y3.【考点】整式的混合运算.【专题】计算题;整式.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果;(3)原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=9a2b4c6;(2)原式=a3b2•(﹣a3b9)=﹣a6b11;(3)原式=﹣7x4y4+9x5y3.故答案为:(1)9a2b4c6;(2)﹣a6b11;(3)﹣7x4y4+9x5y3【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.11.若3m=81,3n=9,则m+n= 6 .【考点】幂的乘方与积的乘方.【分析】先把81,9化为34,32的形式,求出mn的值即可.【解答】解:∵3m=81,3n=9,∴3m=34,3n=32,∴m=4,n=2,∴m+n=4+2=6.故答案为:6.【点评】本题考查的是幂的乘方与积的乘方法则,先根据题意把81,9化为34,32的形式是解答此题的关键.12.若a5•(a m)3=a4m,则m= 5 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方与积的乘方法则进行计算即可.【解答】解:∵原式可化为a5•a3m=a4m,∴a3m+5=a4m,∴3m+5=4m,解得m=5.故答案为:5.【点评】本题考查的是幂的乘方与积的乘方,熟知幂的乘方法则是底数不变,指数相乘是解答磁体的关键.13.若x2+kx﹣15=(x+3)(x+b),则k= ﹣2 .【考点】多项式乘多项式.【专题】计算题.【分析】已知等式右边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出k的值.【解答】解:x2+kx﹣15=(x+3)(x+b)=x2+(b+3)x+3b,∴k=b+3,3b=﹣15,解得:b=﹣5,k=﹣2.故答案为:﹣2.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.三、解答题14.计算:(1)(a2)3•a3﹣(3a3)3+(5a7)•a2;(2)(﹣4x2y)•(﹣x2y2)•(y)3(3)(﹣3ab)(2a2b+ab﹣1);(4)(m﹣)(m+);(5)(﹣xy)2•[xy(x﹣y)+x(xy﹣y2)].【考点】整式的混合运算.【分析】(1)根据幂的乘方和同底数幂的乘法进行计算即可;(2)根据积的乘方以及单项式乘以单项式的法则进行计算即可;(3)根据单项式乘以多项式的法则进行计算即可;(4)根据多项式乘以多项式的法则进行计算即可;(5)根据积的乘方以及单项式乘以多项式的法则进行计算即可.【解答】解:(1)原式=﹣21a9;(2)原式=(﹣4x2y)•(﹣x2y2)(y3)=x4y6;(3)原式=(﹣4x2y)•(﹣x2y2)(y3)=x4y6;(3)原式=﹣6a3b2﹣3a2b2+3ab;(4)原式=m2+(﹣m+m)+(﹣)×=m2﹣m﹣;(5)原式=x2y2(2x2y﹣2xy2)=x4y3﹣x3y4.【点评】本题考查了整式的混合运算,掌握幂的乘方和同底数幂的乘法以及单项式乘以多项式的法则是解题的关键.15.若多项式x2+ax+8和多项式x2﹣3x+b相乘的积中不含x3项且含x项的系数是﹣3,求a和b的值.【考点】多项式乘多项式.【分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.根据结果中不含x3项且含x项的系数是﹣3,建立关于a,b等式,即可求出.【解答】解:∵(x2+ax+8)(x2﹣3x+b)=x4+(﹣3+a)x3+(b﹣3a+8)x2﹣(﹣ab+24)x+8b,又∵不含x3项且含x项的系数是﹣3,∴,解得.【点评】本题考查了多项式乘以多项式,根据不含x3项且含x项的系数是﹣3列式求解a、b 的值是解题的关键.16.(2009春•江阴市校级期中)如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按折痕做一个有底无盖的长方形盒子,试求盒子的体积.【考点】多项式乘多项式.【专题】应用题.【分析】根据长方体的体积=长×宽×高,列式利用单项式乘多项式,多项式乘多项式的法则计算.长方体的长是10﹣2x,宽是6﹣2x,高是x.【解答】解:盒子的体积v=x(10﹣2x)(6﹣2x),=x(4x2﹣32x+60),=4x3﹣32x2+60x.【点评】此题考查了长方体的体积的公式,单项式乘以多项式、多项式乘多项式的法则,熟记公式和法则是解题的关键.17.化简求值:(3x+2y)(4x﹣5y)﹣11(x+y)(x﹣y)+5xy,其中.【考点】整式的混合运算-化简求值.【分析】首先利用多项式的乘法法则以及平方差公式计算,然后去括号、合并同类项即可化简,然后代入数值计算即可.【解答】解:原式=(12x2﹣15xy+8xy﹣10y2)﹣11(x2﹣y2)+5xy=12x2﹣15xy+8xy﹣10y2﹣11x2+11y2+5xy=x2﹣2xy+y2=(x﹣y)2.当时.原式=36.【点评】本题考查的是整式的混合运算,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.18.解方程:(2x+5)(3x﹣1)+(2x+3)(1﹣3x)=28.【考点】多项式乘多项式;解一元一次方程.【分析】首先利用多项式乘法去括号,进而合并同类项,解方程即可.【解答】解:(2x+5)(3x﹣1)+(2x+3)(1﹣3x)=286x2+13x﹣5﹣6x2﹣9x+2x+3=28,整理得:6x=30,解得:x=5.【点评】此题主要考查了多项式乘以多项式以及解一元一次方程,正确合并同类项是解题关键.19.已知x2﹣8x﹣3=0,求(x﹣1)(x﹣3)(x﹣5)(x﹣7)的值.【考点】整式的混合运算-化简求值.【分析】根据x2﹣8x﹣3=0,可以得到x2﹣8x=3,对所求的式子进行化简,第一个式子与最后一个相乘,中间的两个相乘,然后把x2﹣8x=3代入求解即可.【解答】解:∵x2﹣8x﹣3=0,∴x2﹣8x=3(x﹣1)(x﹣3)(x﹣5)(x﹣7)=(x2﹣8x+7)(x2﹣8x+15),把x2﹣8x=3代入得:原式=(3+7)(3+15)=180.【点评】本题考查了整式的混合运算,正确理解乘法公式,对所求的式子进行变形是关键.。
2021秋八年级数学上册第12章整式的乘除全章热门考点整合应用华东师大版
全章热门考点整合应用
习题链接
温馨提示:点击 进入讲评
1A 2D 32 4
5 6 7D 8
答案呈现
9 10 11 12
习题链接
温馨提示:点击 进入讲评
13 14 15 16
17 18 B 19
答案呈现
1 若x2+5x+c分解因式的结果为(x+1)(x+4),则c的 值为( A ) A.4 B.3 C.-4 D.-3
13 已知m,n满足(m+n)2=169,(m-n)2=9,求m2+n2 -mn的值.
解:∵(m+n)2+(m-n)2=m2+2mn+n2+m2-2mn+n2= 2(m2+n2),∴2(m2+n2)=169+9=178,∴m2+n2=89. ∵(m+n)2-(m-n)2=m2+2mn+n2-m2+2mn-n2=4mn, ∴4mn=169-9=160,∴mn=40. ∴m2+n2-mn=89-40=49.
解:(qx-5)2=(qx)2-2×5×(qx)+25=q2x2-10qx+25. ∵px2-60x+25=(qx-5)2, ∴px2-60x+25=q2x2-10qx+25, ∴p=q2,-60=-10q, 解得q=6,p=36.
12 已知△ABC的三边长a,b,c满足a2-b2=ac-bc, 试判断△ABC的形状.
解:∵a2-b2=ac-bc,∴(a-b)(a+b)=c(a-b). ∴(a-b)(a+b)-c(a-b)=0. ∴(a-b)(a+b-c)=0. ∵a,b,c是△ABC的三边长, ∴a+b-c≠0.∴a-b=0.∴a=b. ∴△ABC为等腰三角形.
6
计算:
5ab2-2a2b-[3a2b-ab(b-2a)]÷-12ab.
【点拨】去括号时要确定各项的符号,对于较复杂的 运算一般先确定运算顺序,再按顺序进行运算.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年华东师大新版八年级上册数学《第12章整式的
乘除》单元测试题
一.选择题(共10小题)
1.如果a m﹣1•a3=a6,那么m的值是()
A.4B.3C.2D.1
2.下列计算中正确的是()
A.a3•a2=a6B.(a2b)3=a6b
C.a3+a2=a5D.(﹣x)5•(﹣x)3=x8
3.计算16a÷4a的结果是()
A.4B.12C.4a D.12a
4.如图所示分割正方形,各图形面积之间的关系,验证了一个等式,这个等式是()
A.(y+x)2=y2+xy+x2B.(y+x)2=y2+2xy+x2
C.(y+x)(y﹣x)=y2﹣x2D.(y+x)2﹣(y﹣x)2=4xy
5.把多项式8a2b2﹣16a2b2c2分解因式,应提的公因式是()
A.8a2b2B.4a2b2C.8ab2D.8ab
6.下列计算:①a9÷(a7÷a)=a3;②3x2yz÷(﹣xy)=﹣3xz;③(10x3﹣16x2+2x)÷2x=5x2﹣8x;④(a﹣b)6÷(a﹣b)3=a3﹣b3,其中运算结果错误的是()A.①②B.③④C.①④D.②③
7.计算1.252019×(﹣)2021的值是()
A.B.﹣C.D.﹣1
8.化简:(﹣2a)•a﹣(2a)2的结果是()
A.0B.2a2C.﹣4a2D.﹣6a2
9.如果(x2+x﹣3)(x2﹣2x+a)的展开式中不含常数项,则a的值是()
A.B.0C.5D.﹣5
10.计算20192﹣2018×2020的结果是()
A.﹣2B.﹣1C.0D.1
二.填空题(共10小题)
11.计算:3a2b3⋅2a2b=;﹣2x(x﹣2)=.
12.因式分解:x3y(a﹣b)﹣xy(b﹣a)+y(a﹣b)=.
13.李明爬山时,第一阶段的平均速度是v,所用时间为t1;第二阶段的平均速度为,所用时间是t2;下山时,李明的平均速度保持为3v,上山路程和下山路程相同.李明下山所用时间是.
14.计算(﹣3x2y3)(﹣)2=.
15.计算:(﹣2)2019×(﹣)2018=.
16.分解因式:x3﹣2x2﹣3x=.
17.计算:
(1)(a m)3•a2÷a m=.
(2)22a•8a•42=2().
(3)(x﹣y)(x+y)(x2﹣y2)=.
(4)32005×()2006=.
18.(﹣ab2)5•(﹣ab2)2=,(﹣x﹣y)(x﹣y)=,(﹣3x2+2y2)()=9x4﹣4y4.
19.计算:(﹣12)15÷(﹣12)8=(结果用12的幂的形式表示).
20.232﹣1必能被10~20之间的整除.
三.解答题(共7小题)
21.(﹣2x3)2﹣(3x2)3﹣[﹣(2x)3]2.
22.用简便方法计算:
(1)99×101;
(2)752+252﹣50×75.
23.计算下列各题:
(1)[(xy2)2]3+[(﹣xy2)2]3;
(2)(﹣a2b)(b2﹣a+).
24.计算:(s﹣t)7÷(s﹣t)6•(s﹣t).
25.(﹣3x3y2+6x4y4﹣x5y)÷(﹣x2y).
26.在实数范围内分解因式:4x4﹣4x2+1.
27.若多项式x2+ax+b可分解为(x+1)(x﹣2),试求a,b的值.
参考答案与试题解析
一.选择题(共10小题)
1.解:∵a m﹣1•a3=a m﹣1+3=a6,
∴m﹣1+3=6,
解得m=4.
故选:A.
2.解:A.a3•a2=a5,故本选项不合题意;
B.(a2b)3=a6b3,故本选项不合题意;
C.a3与a2不是同类项,所以不能合并,故本选项不合题意;
D.(﹣x)5•(﹣x)3=(﹣x)5+3=x8,故本选项符合题意.
故选:D.
3.解:16a÷4a
=42a÷4a
=42a﹣a
=4a.
故选:C.
4.解:如图,大正方形的面积=(y+x)2,
小正方形的面积=(y﹣x)2,
四个长方形的面积=4xy,
则由图形知,大正方形的面积﹣小正方形的面积=四个矩形的面积,即(y+x)2﹣(y﹣x)2=4xy.
故选:D.
5.解:8a2b2﹣16a2b2c2=8a2b2(1﹣2c2).
故选:A.
6.解:①a9÷(a7÷a)
=a9÷a6
=a3,正确,不合题意;
②3x2yz÷(﹣xy)=﹣3xz,正确,不合题意;
③(10x3﹣16x2+2x)÷2x
=5x2﹣8x+1,原式计算错误,符合题意;
④(a﹣b)6÷(a﹣b)3
=(a﹣b)3,原式计算错误,符合题意.
故选:B.
7.解:1.252019×(﹣)2021
=()2019×(﹣)2021
=﹣(×)2019×()2
=﹣,
故选:B.
8.解:(﹣2a)•a﹣(2a)2=﹣2a2﹣4a2=﹣6a2;
故选:D.
9.解:由多项式乘多项式的法则,可知(x2+x﹣3)(x2﹣2x+a)的展开式中的常数项为﹣3a,
∵展开式中不含常数项,
∴﹣3a=0,
∴a=0.
故选:B.
10.解:20192﹣2018×2020
=20192﹣(2019﹣1)(2019+1)
=20192﹣(20192﹣1)
=20192﹣20192+1
=1.
故选:D.
二.填空题(共10小题)
11.解:3a2b3⋅2a2b=6a4b4;
﹣2x(x﹣2)=﹣2x2+4x.
故答案为:6a4b4;﹣2x2+4x.
12.解:x3y(a﹣b)﹣xy(b﹣a)+y(a﹣b)=x3y(a﹣b)+xy(a﹣b)+y(a﹣b)
=y(a﹣b)(x3+x+1);
故答案为:y(a﹣b)(x3+x+1).
13.解:由题意可得,上山的路程为:vt1+vt2,故李明下山所用时间是:=.故答案为:.
14.解:(﹣3x2y3)(﹣)2
=(﹣3x2y3)•x2y4
=﹣x4y7,
故答案为:﹣x4y7.
15.解:(﹣2)2019×(﹣)2018
=(﹣2)2018×()2018×
=
=
=1×
=.
故答案为:.
16.解:x3﹣2x2﹣3x=x(x﹣3)(x+1).
故答案为:x(x﹣3)(x+1).
17.解:(1)(a m)3•a2÷a m
=a3m•a2÷a m=a3m+2﹣m
=a2m+2.
故答案为:a2m+2.
(2)22a•8a•42
=22a•23a×24
=25a+4;
故答案为:5a+4;
(3)(x﹣y)(x+y)(x2﹣y2)
=(x2﹣y2)(x2﹣y2)
=x4﹣2x2y2+y4,
故答案为:x4﹣2x2y2+y4;
(4)32005×()2006
=32005×()2005×
=
=1×
=,
故答案为:.
18.解:原式=(﹣ab2)7=﹣a7b14;
原式=(﹣y)2﹣x2=y2﹣x2;
(﹣3x2+2y2)(﹣3x2﹣2y2)=9x4﹣4y4.
故答案为:﹣a7b14;y2﹣x2;﹣3x2﹣2y2.
19.解:(﹣12)15÷(﹣12)8=﹣127.
故答案为:﹣127.
20.解:∵232﹣1=(216+1)(216﹣1)
=(216+1)(28+1)(28﹣1)
=(216+1)(28+1)(24+1)(24﹣1),
又∵24+1=17,24﹣1=15,
∴232﹣1可以被10和20之间的15,17两个数整除;
故答案为:15和17.
三.解答题(共7小题)
21.解:(﹣2x3)2﹣(3x2)3﹣[﹣(2x)3]2.
=4x6﹣27x6﹣64x6
=﹣87x6.
22.解:(1)原式=(100﹣1)×(100+1)
=1002﹣1
=10000﹣1
=9999;
(2)原式=752﹣2×25×75+252
=(75﹣25)2
=502
=2500.
23.解:(1)[(xy2)2]3+[(﹣xy2)2]3
=(x2y4)3+(x2y4)3;
=x6y12+x6y12
=2x6y12;
(2)(﹣a2b)(b2﹣a+)
=(﹣a2b)×b2﹣(﹣a2b)×a+(﹣a2b)×
=﹣a2b3+a3b﹣a2b.
24.解:原式=(s﹣t)7﹣6+1
=(s﹣t)2.
25.解:原式=xy﹣9x2y3+x3.
26.解:4x4﹣4x2+1=(2x2﹣1)2=(x+1)2(x﹣1)2.27.解:由题意,得x2+ax+b=(x+1)(x﹣2).
而(x+1)(x﹣2)=x2﹣x﹣2,
所以x2+ax+b=x2﹣x﹣2.
比较两边系数,得a=﹣1,b=﹣2.。