专题25 动态几何之线动形成的函数关系问题(预测题)-中考数学压轴题全揭秘精品(解析版)
动点的函数图象问题(压轴题专项讲练)解析版—2024-2025学年九年级数学上册压轴题专项(浙教版)
动点的函数图象问题数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。
【典例1】如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD=2,CD⊥AB于点D,点E、F、G分别是边CD、CA、AD的中点,连接EF、FG,动点M从点B出发,以每秒2个单位长度的速度向点A方向运动(点M运动到AB的中点时停止);过点M作直线MP∥BC与线段AC交于点P,以PM为斜边作Rt△PMN,点N在AB 上,设运动的时间为t(s),Rt△PMN与矩形DEFG重叠部分的面积为S,则S与t之间的函数关系图象大致为()A.B.C.D.本题考查几何动点问题的函数图象,正确分段并分析是解题的关键.根据题意先分段,分为0≤t≤0.5,0.5<t≤1,1<t≤2三段,分别列出三段的函数解析式便可解决,本题也可只列出0≤t≤0.5,1<t≤2两段,用排除法解决.解:分析平移过程,①从开始出发至PM与点E重合,由题意可知0≤t≤0.5,如图,则BM=2t,过点M作MT⊥BC于点T,∵∠B=60°,CD⊥AB,∴BC=2BD=4,CD==BT=12BM=t,∵∠ACB=90°,MP∥BC,∴∠ACB=∠MPA=90°,∴四边形CTMP为矩形,∴PM=CT=BC―BT=4―t,∵∠PMN=∠B=60°,PN⊥AB,∴MN=PM2=4―t2,∴DN=MN―MD=MN―BD+BM=3t2,∵E为CD中点,∴DE=CD2=∴S=DE⋅DN=∴S与t的函数关系是正比例函数;②当0.5<t≤1,即从PM与E重合至点M与点D重合,如图,由①可得QN=ED=DM=2―2t,DN=32t,S矩形EDNQ=∵∠PMN=∠B=60°,CD⊥AB,∴SD==,∴ES=ED―SD=∴ER ==2t ―1,∴S =S 矩形EDNQ ―S △ERS =12(2―2t ―1)=―2+此函数图象是开口向下的二次函数;③当1<t ≤2,即从点M 与点D 重合至点M 到达终点,如图,由①可得DN =32t ,MN =4―t 2,∵AD ==6, DG =12AD =3,∴NG =DG ―DN =3―32t ,∴QF =NG =3―32t ,∴PQ==,∴HQ ==1―12t ,∴S =(HQ+MN )×QN 2==―∴S 与t 的函数关系是一次函数,综上,只有选项A 的图象符合,故选:A .1.(2024·四川广元·二模)如图,在矩形ABCD 中,AB =4cm ,AD =2cm ,动点M 自点A 出发沿AB 方向以每秒1cm 的速度向点 B 运动,同时动点N 自点A 出发沿折线AD -DC -CB 以每秒2cm 的速度运动,到达点B 时运动同时停止.设△AMN的面积为y (cm2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A.B.C.D.【思路点拨】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.根据题意,分三段(0<x<1,1≤x<3,3≤x<4)分别求解y与x的解析式,从而求解.【解题过程】解:当0<x<1时,M、N分别在线段AB、AD上,此时AM=x cm,AN=2x cm,y=S△AMN=12×AM×AN=x2,为二次函数,图象为开口向上的抛物线;当1≤x<3时,M、N分别在线段、CD上,此时AM=x cm,△AMN底边AM上的高为AD=2cm,y=S△AMN=12×AM×AD=x,为一次函数,图象为直线;当3≤x<4时,M、N分别在线段AB、BC上,此时AM=x cm,△AMN底边AM上的高为BN=(8―2x)cm,y=S△AMN=12×AM×BN=12x(8―2x)=―x2+4x,为二次函数,图象为开口向下的抛物线;结合选项,只有A选项符合题意,故选:A.2.(22-23九年级上·安徽合肥·期中)如图,在△ABC中,∠C=135°,AC=BC=P为BC边上一动点,PQ∥AB交AC于点Q,连接BQ,设PB=x,S△BPQ=y,则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【思路点拨】过点Q作QE⊥BC交BC延长线于点E,根据S△BPQ=y=12QE⋅BP列出解析式再判断即可.【解题过程】解:如图,过点Q作QE⊥BC交BC延长线于点E,∵AC =BC =∴∠A =∠ABC∵PQ∥AB ,∴∠CQP =∠A,∠CPQ =∠ABC∴∠CQP =∠CPQ∴CQ =CP =―x .∵∠ACB =135°∴∠ECQ =45°在Rt △CEQ 中,∠ECQ =45°,∴QE ==―x )=2―,∴y =12QE ⋅BP =12x 2x =―2+x =――2+∴当x =y 最大值=故选:C.3.(2024·河北石家庄·二模)如图所示,△ABC 和△DEF 均为边长为4的等边三角形,点A 从点D 运动到点E 的过程中,AB 和DF 相交于点G ,AC 和EF 相交于点H ,(S △BGF +S △FCH )为纵坐标y ,点A 移动的距离为横坐标x ,则y 与x 关系的图象大致为( )A .B .C .D .【思路点拨】如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,证明四边形ACFD 为平行四边形,可得AD =CF =x ,BF =4―x ,求解CT =FT =12x ,TH ==,同理可得:GK =―x ),再利用面积公式建立函数关系式即可判断.【解题过程】解:如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,由题意可得:AD∥CF ,DF∥AC ,∴四边形ACFD 为平行四边形,∴AD =CF =x ,∴BF =4―x ,∵△ABC 和△DEF 均为边长为4的等边三角形,AD∥CF ,∴∠D =∠DFB =60°,而∠B =60°,∴△BGF 为等边三角形,同理:△CFH 为等边三角形,∵HT ⊥BC ,∴CT =FT =12x ,TH ==,同理可得:GK =―x ),∴y =12x +12(4―x )⋅―x )=2―+故选B4.(2023·辽宁铁岭·模拟预测)如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B→C→D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A .B .C .D .【思路点拨】本题考查了动点问题函数图象.根据矩形的性质求出点O 到BC 的距离等于4,到CD 的距离等于6,求出点Q 到达点C 的时间为6s ,点P 到达点C 的时间为12s ,点Q 到达点D 的时间为14s ,然后分①0≤t ≤6时,点P 、Q 都在BC 上,表示出PQ ,然后根据三角形的面积公式列式计算即可;②6<t ≤12时,点P 在BC 上,点Q 在CD 上,表示出CP 、CQ ,然后根据S ΔOPQ =S ΔCOP +S ΔCOQ ―S ΔPCQ 列式整理即可得解;③12<t ≤14时,表示出PQ ,然后根据三角形的面积公式列式计算即可得解.【解题过程】解:∵矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,∴点O 到BC 的距离=12AB =4,到CD 的距离=12AD =6,∵点M 是BC 的中点,∴CM =12BC =6,∴点Q到达点C的时间为6÷1=6s,点P到达点C的时间为12÷1=12s,点Q到达点D的时间为(6+8)÷1=14s,①0≤t≤6时,点P、Q都在BC上,PQ=6,△OPQ的面积=12×6×4=12;②6<t≤12时,点P在BC上,点Q在CD上,CP=12―t,CQ=t―6,SΔOPQ=SΔCOP+SΔCOQ―SΔPCQ,=12×(12―t)×4+12×(t―6)×6―12×(12―t)×(t―6),=12t2―8t+42,=12(t―8)2+10,③12<t≤14时,PQ=6,△OPQ的面积=12×6×6=18;纵观各选项,只有B选项图形符合.故选:B.5.(2023·江苏南通·模拟预测)如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD→DA方向运动,与点P同时出发,同时停止;这两点的运动速度均为每秒1个单位;若设他们的运动时间为x(s),△EPQ的面积为y,则y与x之间的函数关系的图像大致是()A.B.C.D.【思路点拨】先求出点P在BC上运动是时间为6秒,点Q在CD上运动是时间为4秒,再根据中点的定义可得AE =BE =12AB ,然后分①点Q 在CD 上时,表示出BP 、CP 、CQ ,再根据△EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,列式整理即可得解;②点Q 在AD 上时,表示出BP 、AQ ,再根据△EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,列式整理即可得解,再根据函数解析式确定出函数图象即可.【解题过程】解:∵点P 、Q 的速度均为每秒1个单位,∴点P 在BC 上运动的时间为6÷1=6(秒),点Q 在CD 上运动的时间为4÷1=4(秒),∵E 为AB 中点,∴AE =BE =12AB =12×4=2,①如图1,点Q 在CD 上时,0≤x ≤4,则BP =x,CP =6―x,CQ =x ,∴ △EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,=12(2+x )×6―12×2x ―12(6―x )⋅x =12x 2―x +6=12(x ―1)2+112②如图2,点Q 在AD 上时,4<x ≤6,则BP =x,AQ =6+4―x =10―x ,∴ △EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,=12(x +10―x )×4―12×2x ―12(10―x )⋅2=10,综上所述,y =2―x +6(0≤x ≤4)10(4<x ≤6),函数图象为对称轴为直线x =1的抛物线的一部分加一条线段,只有A 选项符合.故选:A .6.(2024·河南开封·一模)如图1,在△ABC 中,∠B =60°,点D 从点B 出发,沿BC 运动,速度为1cm/s .点P 在折线BAC 上,且PD ⊥BC 于点D .点D 运动2s 时,点P 与点A 重合.△PBD 的面积S (cm 2)与运动时间t (s)的函数关系图象如图2所示,E 是函数图象的最高点.当S (cm 2)取最大值时,PD 的长为( )A .B .(1+cm C .(1+cm D .(2+cm【思路点拨】本题考查动点函数图象,二次函数图象性质,三角形面积.本题属二次函数与几何综合题目.先根据点D 运动2s 时,点P 与点A 重合.从而求得PD ==,再由函数图象求得BC =(2+×1=(2+cm ,从而求得DC =BC ―BD =2+2=,得出PD =DC ,然后根据由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.所以当2≤t ≤2+点P 在AC边上,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,根据三角形面积公式求得S △PBD =―12t ―(13)2+2+【解题过程】解:由题意知,点D 运动2s 时,点P ,D 的位置如图1所示.此时,在Rt △PBD 中,BD =2cm ,∠B =60°,PD ⊥BC ,∴PB =2BD =4(cm),∴PD ==.由函数图象得BC =(2+×1=(2+cm ,∴DC =BC ―BD =2+2=,∴PD =DC .由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.当2≤t ≤2+P 在AC 边上,如图2,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,∴S △PBD =12×BD ×PD =12×t ×(2+t )=―12t 2+(1+t .∵S △PBD =――(1+3)2+2+又∵―12<0,∴当t =1+S △PBD 的值最大,此时PD =CD =2+―(1+=(1+cm .故选:B .7.(2024·安徽·一模)如图,在四边形ABCD 中,∠A =60°,CD ⊥AD ,∠BCD =90°, AB =BC =4,动点P ,Q 同时从A 点出发,点Q 以每秒2个单位长度沿折线A ―B ―C 向终点C 运动;点P 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,△APQ 的面积为y 个平方单位,则y 随x 变化的函数图象大致为( )A .B .C .D .【思路点拨】分当0≤x <2时,点Q 在AB 上和当2≤x ≤4时,点Q 在BC 上,根据三角形的面积公式即可得到结论.【解题过程】解:过Q 作QN ⊥AD 于N ,当0≤x <2时,点Q 在AB 上,∵∠A =60°,∴∠AQN =90°―60°=30°,∴AN = 12AQ =12×2x =x ,∴QN ==,∴y =12×AP ×NQ =12×x ×=2,当2≤x ≤4时,点Q 在BC 上,过点B 作BM ⊥AD 于点M ,∵BM ⊥AD ,∠A =60°,∴∠ABM =30°,∴AM = 12AB =12×4=2,∴BM ==∵CD ⊥AD ,QN ⊥AD ,∴QN ∥CD ,∴∠BQN =∠BCD =90°,∵BM ⊥AD, CD ⊥AD ,∴四边形BMNQ 是矩形,∴QN =BM = ,y =12AP ⋅QN =12x ×=,综上所述,当0≤x <2时的函数图象是开口向上的抛物线的一部分,当2≤x ≤4时,函数图象是直线的一部分,故选:D .8.(23-24九年级上·浙江温州·期末)某兴趣小组开展综合实践活动:在Rt △ABC 中,∠C =90°,CD =,D 为AC 上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C→B→A 匀速运动,到达点A 时停止,以DP 为边作正方形DPEF ,设点P 的运动时间为t s ,正方形DPEF 的面积为S ,当点P 由点C 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象,若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等,当t 3=5t 1时,则正方形DPEF 的面积为( )A .3B .349C .4D .5【思路点拨】由题意可得:CD =CP =t ,当点P 在BC 上运动时S =t 2+2,由图可得,当点P 与点B 重合时,S =6,求出t=2,即BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,求出抛物线解析式为S=(t―2)2+2,从两个函数表达式看,两个函数a相同,都为1,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,t1+t2=4①,t2+t3=8②,结合t3=5t1③,求出t的值即可得出答案.【解题过程】解:由题意可得:CD=CP=t,当点P在BC上运动时,S=DP2=CP2+CD2=t2+2,由图可得,当点P与点B重合时,S=6,∴t2+2=6,∴t=2或t=―2(不符合题意,舍去),∴BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,则抛物线的表达式为S=a(t―4)2+2,将2,6代入得:a(2―4)2+2=6,∴a=1,∴抛物线的表达式为:S=(t―4)2+2,从两个函数表达式看,两个函数a相同,都为1,若存在3个时刻t1,t2,t3(t1<t2t3)对应的正方形DPEF的面积均相等,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,∴t1+t2=4①,t2+t3=8②,∵t3=5t1③,由①③③解得t1=1,∴S=t2+2=1+2=3,故选:A.9.(22-23九年级上·浙江嘉兴·期中)如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC=6,点O为AC 中点,点D为线段AB上的动点,连接OD,设BD=x,OD2=y,则y与x之间的函数关系图像大致为( )A .B .C .D .【思路点拨】如图:过O 作OE ⊥AB ,垂足为E ,先根据直角三角形的性质求得AB =12,AC =OA =12AC =AE ==92可得DE =152―x ,然后再根据勾股定理求得函数解析式,最后确定函数图像即可.【解题过程】解:如图:过O 作OE ⊥AB ,垂足为E∵∠C =90°,∠ABC =60°∴∠A =30°∵BC =6∴AB =2BC =12∴AC ===∵点O 为AC 中点∴OA =12AC =∵∠A =30°∴OE =12AO =∴AE ===92∴DE =|152―x |∴OD 2=OE 2+DE 2,即y =+―x 2=x +274当x =0时,y =0―+274=63当x =152时,y =―+274=274当x =12时,y =12+274=27则函数图像为.故选C .10.(2024·广东深圳·三模)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =8,点D 和点E 分别是AB 和AC 的中点,点M 和点N 分别从点A 和点E 出发,沿着A→C→B 方向运动,运动速度都是1个单位/秒,当点N 到达点B 时,两点间时停止运动.设△DMN 的面积为S ,运动时间为t ,则S 与t 之间的函数图象大致为( )A .B .C .D .【思路点拨】本题主要考查动点问题,依托三角形面积考查二次函数的图象和分类讨论思想,取BC 的中点F,连接DF 根据题意得到DF 和DE ,分三种情况讨论三角形的面积:(1)当0<t ≤6时,得MN =AE =6,结合三角形面积公式求解即可;(2)当6<t ≤12时,得AM ,MC ,CN 和BN ,结合S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN ;(3)当12<t ≤14时,点M 、N 都在BC 上,结合DF 和MN 求面积即可.【解题过程】解:如图,取BC 的中点F ,连接DF ,∴DF ∥AC ,DF =12AC =6∵点D 、E 是中点,∴DE =12BC =4,DF ∥CB ,∵∠C =90°,∴四边形DECF 为矩形,当0<t ≤6时,点M 在AE 上,点N 在EC 上,MN =AE =6,∴S =12MN ⋅DE =12×6×4=12;如图,当6<t ≤12时,点M 在EC 上,点N 在BC 上,∵AM =t ,∴MC =12―t ,CN =t ―6,BN =14―t ,∴S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN=12×8×12―12×4t ―12×6(14―t)―12(12―t)(t ―6)=12t 2―8t +42;如图,当12<t ≤14时,点M 、N 都在BC 上,∴S =12MN ⋅DF =12×6×6=18,综上判断选项A 的图象符合题意.故选:A .11.(2024·河南南阳·二模)如图是一种轨道示意图,其中A 、B 、C 、D 分别是菱形的四个顶点,∠A =60°.现有两个机器人(看成点)分别从A ,C 两点同时出发,沿着轨道以相同的速度匀速移动,其路线分别为A→B→C 和C→D→A .若移动时间为t ,两个机器人之间距离为d .则 d²与t 之间的函数关系用图象表示大致为( )A .B .C .D .【思路点拨】设菱形的边长为2,根据菱形的性质求出关于两个机器人之间的距离d2的解析式,再利用二次函数的性质即可解答.【解题过程】解:①设AD=2,如图所示,∵移动时间为t,∠A=60°,∴CK=1,FT=KB=∴AE=t,CF=2―t,∴FK=2―t―1=1+t,∴ET=2―t―(1+t)=1+2t,∴在Rt△EFT中,EF2=ET2+FT2=(1+2t)2+2=4t2+4t+4;②设AD=2,如图所示,∵移动时间为t,∠A=60°,∴BM=t―2,CM=2―(t―2)=4―t,CP=1,PD=LQ=∴MQ=CM―CQ=(4―t)―1=―t,∴在Rt△LMQ中,ML2=MQ2+LQ2=(3―t)2+2=t2―6t+12,∴函数图像为两个二次函数图象;③当从A出发的机器人在B点,从C出发的机器人在D点,此时距离是BD;从A出发的机器人在A点,从C出发的机器人在C点,此时距离是AC;∵设AD=2,∠A=60°,∴BD=2,AE=∴AC=2AE=∴BD<AC,∴函数图象的起点和终点高于中间点;综上所述:A项符合题意;故选A.12.(2024·山东聊城·二模)如图,等边△ABC与矩形DEFG在同一直角坐标系中,现将等边△ABC按箭头所指的方向水平移动,平移距离为x,点C到达点F为止,等边△ABC与矩形DEFG重合部分的面积记为S,则S关于x的函数图象大致为()A.B.C.D.【思路点拨】本题主要考查了动点问题的函数图象,二次函数的图象,等腰三角形的性质等知识,如图,作AQ⊥BC于点Q,可知AQ=0<x≤1或1<x≤2或2<x≤3三种情形,分别求出重叠部分的面积,即可得出图象.【解题过程】解:如图①,设AC与DE交于点H,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=BC=AC=2,BC=1,过点A作AQ⊥BC于点Q,则BQ=CQ=12∴AQ===∵四边形DEFG 是矩形,∴∠DEF =90°,DE =AQ ==OF ―OE =5―2=3,当0<x ≤1时,在Rt △HCE 中,∠ACE =60°,EC =x,∴∠CHE =30°,∴HC =2x ,∴HE ===∴S =12EC ×HE =12x ×=2,所以,S 关于x 的函数图象是顶点为原点,开口向上且在0<x ≤1内的一段;当1<x ≤2时,如图,设AB 与DE 交于点P ,∵EC =x,BC =2,∴BE =BC ―EC =2―x,同理可得,PE =x ―2),∴S =S △ABC ―S △PBE =12×2―12(2―x )⋅―x )=―x ―2)2+所以,图象为1<x ≤2时开口向下的一段抛物线索;当2<x ≤3时,如图,S =12×2×=此时的函数图象是在2<x≤3范围内的一条线段,即S=<x≤3),故选:C13.(2024·河南·模拟预测)如图,在等腰直角三角形ABC中,∠ABC=90°,BD是AC边上的中线,将△BCD 沿射线BA方向匀速平移,平移后的三角形记为△B1C1D1,设△B1C1D1与△ABD重叠部分的面积为y,平移距离为x,当点B1与点A重合时,△B1C1D1停止运动,则下列图象最符合y与x之间函数关系的是()A.B.C.D.【思路点拨】本题考查了二次函数与几何图形的综合,涉及等腰直角三角形,平移的性质,二次函数的性质等知识,解题的关键是灵活运用这些性质,学会分类讨论.过点D作DM⊥AB于M,由△ABC为等腰直角三角形,∠ABC=90°,可设AB=BC=2,可得AD=CD=BD=DM=AM=BM=1,然后分情况讨论:当0<x≤1时,当1<x≤2时,分别求出关于S、x的函数,再数形结合即可求解.【解题过程】解:过点D作DM⊥AB于M,∵△ABC为等腰直角三角形,∠ABC=90°,∴ AB =BC ,设AB =BC =2,∴ AD =CD =BD =DM =AM =BM =1,当0<x ≤1时,设B 1D 1交AC 于点G ,B 1C 1交BD 于N ,∴ AB 1=AB ―BB 1=2―x ,由平移知B 1G ∥BD ,∠AB 1G =∠ABD ,∴ △AB 1G 是等腰直角三角形,∴ S △AB 1G =12AB 1·12AB 1=14(2―x )2,又∵ S △ABD =12×12×2×2=1,S △BB 1N =12x 2∴ S =S △ABD ―S △AB 1G ―S △BB 1N =1―14(2―x )2―12x 2=―34x 2+x ,当x =―=23时取得最大值,故排除A 、B 选项当1<x ≤2时,B 1D 1交AC 于点G ,B 1C 1交AC 于点H ,∵ B 1H ∥BC ,∴ ∠B 1HG =∠ACB =45°,又∵ ∠D 1B 1C 1=45°,∴ △B 1GH 为等腰三角形,∵ ∠AB 1D 1=∠ABD =45°=∠A ,∴ AB 1G 为等腰三角形,∴ B 1G =1=―x ),∴ S =S △B 1GH =12·―x )―x )=14(2―x )2,即当1<x ≤2时,函数图像为开口向上的抛物线,故排除C 选项故选:D .14.(23-24九年级上·安徽滁州·期末)如图,菱形ABCD的边长为3cm,∠B=60°,动点P从点B出发以3cm/ s的速度沿着边BC―CD―DA运动,到达点A后停止运动;同时动点Q从点B出发,以1cm/s的速度沿着边BA 向A点运动,到达点A后停止运动.设点P的运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象为()A.B.C.D.【思路点拨】根据题意可知分情况讨论,分别列出当点P在BC上时,点P在CD上时,点P在AD上时表达式,再画图得到函数解析式,即可得到本题答案.【解题过程】解:设点P的运动时间为x(s),△BPQ的面积为y(cm2),①当0≤x≤1时,点P在BC上时,过点P作PE⊥BA,,∵根据题知:∠B =60°,PB =3x,BQ =x ,∴BE =32x ,PE =,∴y =12BQ·PE =12x·=2;②当1<x ≤2时,点P 在CD 上时,过点P 作PH ⊥BA ,,∵根据题知:∠B =60°,BC =3,BQ =x ,∴PH =∴y =12BQ·PH =12x·=;③当2<x ≤3时,点P 在AD 上时,过点P 作PF ⊥BA 交DA 延长线于F ,,∵根据题知:∠B =60°,即∠FAD =60°,∵BC +CD +AD =3+3+3=9cm ,BC +CD +DP =3x ,∴AP =(9―3x)cm ,∴PF =9―3x 2·∴y =12BQ·PF =12x·9―3x 2·=―2;∴结合三种情况,图像如下所示:,故选:D.15.(2023·辽宁盘锦·中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,D,P(―1,―1).点M在菱形的边AD和DC上运动(不与点A,C重合),过点M作MN∥y轴,与菱形的另一边交于点N,连接PM,PN,设点M的横坐标为x,△PMN的面积为y,则下列图象能正确反映y与x之间函数关系的是()A.B.C.D.【思路点拨】先根据菱形的性质求出各点坐标,分M的横坐标x在0∼1,1∼2,2∼3之间三个阶段,用含x的代数式表示出△PMN的底和高,进而求出分段函数的解析式,根据解析式判断图象即可.【解题过程】解:∵菱形ABCD 的顶点A 在y 轴的正半轴上,顶点B 、C 在x 轴的正半轴上,∴ AB =AD =2,OA=∴ OB===1,∴ OC =OB +BC =1+2=3,∴ A ,B (1,0),C (3,0),设直线AB 的解析式为y =kx +b ,将A ,B (1,0)代入,得:k +b = ,解得k =b =∴直线AB 的解析式为y =―+∵ MN∥y 轴,∴N 的横坐标为x ,(1)当M 的横坐标x 在0∼1之间时,点N 在线段AB 上,△PMN 中MN 上的高为1+x ,∴ N (x,―+,∴ MN=(―+=,∴ S △PMN =12MN ⋅(1+x )=⋅(1+x)=2+,∴该段图象为开口向上的抛物线;(2)当M 的横坐标x 在1∼2之间时,点N 在线段BC 上,△PMN 中MN =MN 上的高为1+x ,∴ S △PMN =12MN ⋅(1+x)=(1+x)=∴该段图象为直线;(3)当M 的横坐标x 在2∼3之间时,点N 在线段BC 上,△PMN 中MN 上的高为1+x ,由D ,C (3,0)可得直线CD 的解析式为y =―+∴ M (x,―+,N (x,0),∴ MN =―+∴ S △PMN =12MN ⋅(1+x )=12(+⋅(1+x )=―2∴该段图象为开口向下的抛物线;观察四个选项可知,只有选项A 满足条件,故选A .16.(22-23九年级上·安徽蚌埠·期末)如图,在平面直角坐标系中,点A (2,0),点B,点C (―,点P从点O出发沿O→A→B路线以每秒1个单位的速度运动,点Q从点O出发沿O→C→B的速度运动,当一个点到达终点时另一个点随之停止运动,设y=PQ2,运动时间为t秒,则正确表达y与t 的关系图象是()A.B.C.D.【思路点拨】先分析各个线段的长,在Rt△OAB中,可知,OA=2,OB AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,易得△OBC是等边三角形,OC=BC=OB P在OA上运动用时2s,在AB上运动用时4s,点Q在OC上运动用时2s,在OC上运动用时2s,则点P和点Q共用时4s,可排除D选项;再算出点P在OA上时,y的函数表达式,结合选项可得结论.【解题过程】解:如图,∵点A(2,0),点B(0,∴OA=2,OB∴AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,则OM =BM CM =3,∴OC =BC ∴△OBC 是等边三角形,∠BOC =60°,∴点P 在OA 上运动用时2s ,在AB 上运动用时4s ,点Q 在OC 上运动用时2s ,在OC 上运动用时2s ,即点P 和点Q 共运动4s 后停止;由此可排除D 选项.当点P 在线段OA 上运动时,点Q 在线段OC 上运动,过点Q 作QN ⊥x 轴于点N ,由点P ,点Q 的运动可知,OP =t ,OQ ,∴QN =12OQ ==32t,∴PN =52t,∴y =PQ 2=(52t)2+2=7t 2.即当0<t <2时,函数图象为抛物线,结合选项可排除A ,C .故选:B .17.(2022·辽宁·中考真题)如图,在等边三角形ABC 中,BC =4,在Rt △DEF 中,∠EDF =90°,∠F =30°,DE =4,点B ,C ,D ,E 在一条直线上,点C ,D 重合,△ABC 沿射线DE 方向运动,当点B 与点E 重合时停止运动.设△ABC 运动的路程为x ,△ABC 与Rt △DEF 重叠部分的面积为S ,则能反映S 与x 之间函数关系的图象是( )A.B.C.D.【思路点拨】分三种情形∶①当0<x≤2时,△CDG,②当2<x≤4时,重叠部分为四边形AGDC,③当4<x≤8时,重叠部分为△BEG,分别计算即可.【解题过程】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,BC=2,AM=∴BM=CM=12BC•AM=∴S△ABC=12①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DGCD•DG2;∴S=12②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG4﹣x),×(4﹣x)4﹣x),∴S=S△ABC﹣S△BDG=﹣12∴S=2﹣x﹣4)2③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD =x ,则CE =x ﹣4,DB =x ﹣4,∴BE =x ﹣(x ﹣4)﹣(x ﹣4)=8﹣x ,∴BM =4﹣12x在Rt △BGM 中,GM 4﹣12x ),∴S =12BE •GM =12(8﹣x )4﹣12x ),∴S x ﹣8)2,综上,选项A 的图像符合题意,故选:A .18.(2023·山东聊城·三模)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ―ED ―DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒,设P ,Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图像如图(2)(曲线OM 为抛物线的一部分),则下列结论不正确的是( )A .AB:AD =4:5B .当t =2.5秒时,PQ =C .当t =294时,BQ PQ =53D .当△BPQ 的面积为4cm 2时,t 或475秒【思路点拨】先由图2中的函数图像得到当t =5时,点Q 到达点C ,即BC =5cm ,然后由5<t <7时,y =10可知△BPQ的面积是定值10cm 2、BE =5cm,ED=2cm ,当t =7时点P 到达点D ,AE ==4cm ,可以判定A ;当0<t ≤5时,根据y =25t 2得到y =2.5cm 2,过点P 作PH ⊥BC 于点H ,根据y =12BQ·PH =12×2.5cm ×PH =2.5cm 2求得PH =2,设QH =x cm ,根勾股定理计算QH =1cm ,可计算PQ =根据AB =CD =4cm ,得到再运动4秒到达C 点即H (11,0),N (7,10),确定直线HN 或475秒;当t =294>284=7时,故点Q 在DC 上,把t =294代入直线HN 的解析式计算BQ PQ =43.【解题过程】解:设抛物线的解析式为y =at 2,当t =5时,y =10,∴10=25a ,解得a =25,∴y =25t 2,由图2中的函数图像得当t =5时,点Q 到达点C ,即BC =BE =5cm ,∵5<t <7时,y =10,∴△BPQ 的面积是定值10cm 2且BE =5cm,ED=2cm ,当t =7时点P 到达点D ,∴AE =5―2==4cm,AD=BC =5cm ,∴AB:AD =4:5,故A 正确,不符合题意;当0<t ≤5时,∵y =25t 2,t =2.5,∴BP =BQ =2.5cm ,y =2.5cm 2,过点P 作PH ⊥BC 于点H ,∴y =12BQ·PH =12×2.5cm ×PH =2.5cm 2解得PH =2,设QH =x cm ,则BH =BQ ―QH =(2.5―x )cm ,∴2.52=22+(2.5―x )2,解得x =1,x =4(舍去),∴QH =1cm ,∴PQ==故B 正确,不符合题意;根据AB =CD =4cm ,∴再运动4秒到达C 点即H (11,0),N (7,10),设直线HN 的解析式为y =kt +b ,根据题意,得11k +b =07k +b =10 ,解得k =―52b =552 ,∴直线HN 的解析式为y =―52t +552,∵△BPQ 的面积为4cm 2,故4=25t 2或4=―52t +552解得t==―t =475,故D 正确,不符合题意;∵t =294>284=7时,故点Q 在DC 上,当t =294时,y =―52×294+552=758,12PQ·BC =758解得PQ=154∴BQ PQ =5154=43.故C错误,符合题意.故选:C.19.(2023·辽宁·中考真题)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【思路点拨】分三种情况分别求出S与x的函数关系式,根据函数的类型与其图象的对应关系进行判断即可.【解题过程】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFGH全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠MAD=∠AGE=30°,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,∠EAF=60°,∴EF==,∴S=2;②如图3时,当AE+AF=GE+AF=AF+CF=AC,x=6,解得x=4,则x+12由图2到图3,此时3<x≤4,如图4,记BC,EG的交点为Q,则△EQB是正三角形,∴EQ=EB=BQ=6―x,∴GQ=x―(6―x)=2x―6,而∠PQG=60°,∴PG==2x―6),∴S=S矩形EFHG―S△PQG=2x 2―12×(2x ―6)×2x ―6)=―2― ③如图6时,x =6,由图3到图6,此时4<x ≤6,如图5,同理△EKB 是正三角形,∴EK =KB =EB =6―x ,FC =AC ―AF =6―12x ,EF =, ∴S =S 梯形EKCF=―x +6―12x 2=―2, 因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线, 故选:A .20.(22-23九年级上·安徽滁州·期末)如图,在平面直角坐标系中,菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,现将菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,设平移时间为t (秒),菱形ABCD 位于y 轴右侧部分的面积为S ,则S 关于t 的函数图像大致为( )A .B .C .D .【思路点拨】过点B 作x 轴的垂线,垂足为点E ,如图所示,由菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,分①当0≤t ≤2时;②当2<t <4时;③当4≤t ≤6时;④当t >6时;四种情况,作图求解S 关于t 的函数解析式,作出图像即可得到答案.【解题过程】解:过点B 作x 轴的垂线,垂足为点E ,如图所示:∵菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,∴OE =2,OB =4,∴∠OBE =30°,∴∠BOE =60°,BE =①当0≤t ≤2时,如图(1)所示:S =12OA ⋅OF =12×t ×=2;②当2<t <4时,如图(2)所示:S =S △ABE +S 矩形OEBG =12AE ⋅BE +BE ⋅OE =12×2×t ―2)=―③当4≤t ≤6时,如图(3)所示:∵∠C =60°,OD =OA ―AD =t ―4,∴∠KDO =60°,OK=t ―4),∵HO =BE =∴HK =HO ―OK =―t ―4)=―+∵HB =OE =OA ―AE =t ―2,∴CH =BC ―HB =4―(t ―2)=―t +6,S =S 菱形ABCD ―S △CHK =AD ⋅BE ―12CH ⋅HK =4×―12(―t +6)(―+=―2―+=―2―当t >6时,S =S 菱形ABCD =AD ⋅BE=综上所述S =20≤t ≤2―2<t <4t2+―4≤t ≤6t >6 ,∴第一段二次函数部分,开口向上;第二段一次函数部分;第三段二次函数部分,开后向下;第四段平行于x轴的射线,故选:A.。
中考数学压轴题策略之动态几何问题
中考数学压轴题策略之动态几何问题
面对中考,考生对待考试需保持平常心态,复习时仍要按知识点、题型、易混易错的问题进行梳理,不断总结,不断反思,从中提炼最正确的解题方法,进一步提高解题能力。
下文准备了动态几何问题的解题策略的内容。
解这类问题的基本策略是:
1.动中觅静:这里的〝静〞就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:〝静〞只是〝动〞的瞬间,是运动的一种特殊形式,动静互化就是抓住〝静〞的瞬间,使一般情形转化为特殊问题,从而找到〝动〞与〝静〞的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
总之,解决动态几何问题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变。
具体做法是:
①全面阅读题目,了解运动的方式与形式,全方位考察运动中的变与变的量及其位置关系;
②应用分类讨论思想,将在运动过程中导致图形本质发生变化的各种时刻的图形分类画出,变〝动〞为〝静〞;
③在各类〝静态图形〞中运用相关的知识和方法(如方程、相似等)
进行探索,寻找各个相关几何量之间的关系,建立相应的数学模型进行求解。
另外,需要强调的是此类题型一般起点低,第一步往往是一个非常简单的问题,考生一般都能拿分,但恰恰是这一步问题的解题思想和方法是此题基本的做题思想和方法,是特殊到一般数学思想和方法的具体应用,所以考生在解决第一步时不仅要准确计算出【答案】,更重要的是明确此题的方法和思路。
中考数学专题:动态几何与函数问题
中考数学专题:动态几何与函数问题以下是查字典数学网为您引荐的中考数学专题:静态几何与函数效果,希望本篇文章对您学习有所协助。
中考数学专题:静态几何与函数效果【前言】在第三讲中我们曾经研讨了静态几何效果的普通思绪,但是那时分没有对其中夹杂的函数效果展开来剖析。
全体说来,代几综合题大约有两个侧重,第一个是侧重几何方面,应用几何图形的性质结合代数知识来调查。
而另一个那么是侧重代数方面,几何性质只是一个引入点,更多的调查了考生的计算功夫。
但是这两种侧重也没有很严厉的分野,很多题型都很相似。
所以相比昨天第七讲的效果,这一讲将重点放在了对函数,方程的运用上。
其中经过图中已给几何图形构建函数是重点调查对象。
不过从近年中考的趋向上看,要求所构建的函数为很复杂的二次函数能够性略小,大多是一个较为复杂的函数式,表达了中考数学的考试说明当中增加复杂性增大灵敏性的主体思想。
但是这也不能抓紧,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。
【例1】如图①所示,直角梯形OABC的顶点A、C区分在y轴正半轴与轴负半轴上.过点B、C作直线 .将直线平移,平移后的直线与轴交于点D,与轴交于点E.(1)将直线向右平移,设平移距离CD为 (t0),直角梯形OABC 被直线扫过的面积(图中阴影部份)为,关于的函数图象如图②所示,OM为线段,MN为抛物线的一局部,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积.(2)当时,求S关于的函数解析式.【思绪剖析】此题虽然不难,但是十分考验考生关于函数图像的了解。
很多考生看到图二的函数图像没有数学觉得,反响不下去那个M点是何含义,于是无从下手。
其实M点就表示当平移距离为2的时分整个阴影局部面积为8,相对的,N 点表示移动距离超越4之后阴影局部面积就不动了。
脑中模拟一下就能想到阴影面积固定就是当D移动过了0点的时分.所以依据这么几种状况去作答就可以了。
【决胜】(预测题)中考数学 专题24 动态 几何之双(多)动点形成的函数关系问题(含解析)
专题24 动态几何之双(多)动点形成的函数关系问题数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
动态几何形成的函数关系和图象问题是动态几何中的基本问题,包括单动点形成的函数关系和图象问题,双(多)动点形成的函数关系和图象问题,线动形成的函数关系和图象问题,面动形成的函数关系和图象问题。
本专题原创编写单动点形成的函数关系问题模拟题。
双动点和多动点问题就是在一些基本几何图形上,设计几个动点,并对这些点在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究。
解决点动问题常常用的是“类比法”,也就是通过对两个或几个相类似的数学研究对象的异同进行观察和比较,从一个容易探索的研究对象所具有的性质入手,去猜想另一个或几个类似图形所具有的类似性质,从而获得相关结论。
类比法大致可遵循如下步骤:(1)根据已知条件,先从动态的角度去分析观察可能出现的情况。
(2)结合某一相应图形,以静制动,运用所学知识(常见的有三角形全等、三角形相似等)得出相关结论。
(3)类比猜想并证明其他情况中的图形所具有的性质。
在中考压轴题中,双(多)动点形成的函数关系和图象问题命题形式主要有选择题和解答题。
其考点类型主要有两类,一是根据条件求出函数关系式,由函数关系式判断函数图象或求相应变量的值;二是根据条件研究动点的变化趋势(特殊位置)来判断函数图象。
决胜2021年上海中考数学压轴题全揭秘精解专题25 上海中考预测卷(2)
绝密★启用前上海市2021年初中毕业统一学业考试数学预测试题二考生注意: 1.本试卷共25题。
2.试卷满分150分,考试时间100分钟。
3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效。
4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一.选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确的代号并填涂在答题纸的相应位置上】1.方程230x -+=根的情况( ) A. 有两个不相等的实数根 B. 有一个实数根; C. 无实数根D. 有两个相等的实数根2.若m n >,下列不等式不一定成立的是( ) A .33m n +>+B .33m n -<-C .33m n> D .22m n >3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内,y 随着x 的增大而增大,那么它的图像的两个分支分别在( ) A. 第一、三象限 B. 第二、四象限 C. 第一、二象限D. 第三、四象限4.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是( )A .该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一组数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是25.顺次联结四边形ABCD各边中点所形成的四边形是矩形,那么四边形ABCD是()A. 平行四边形B. 矩形C. 菱形D. 等腰梯形6.已知,在△ABC中,∠A=30°,∠B=135°,CD⊥AB,且CD=1.若以点A为圆心,√3为半径作⊙A,以点B为圆心,1为半径作⊙B,则⊙A与⊙B的位置关系是()A.内切B.外切C.相交D.外离二.填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.若2a b=+,则代数式222a ab b-+的值为.8.化简:113a a-=______.9.若一个数的平方等于5,则这个数等于.10.0=的解是_____________.11.晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.13.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为__________;14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;.5B天;.6C天;.7D天),则扇形统计图B部分所对应的圆心角的度数是.15.已知在梯形ABCD中,AD∥BC,∠ABC = 90°,对角线AC、BD相交于点O,且AC⊥BD,如果AD︰BC = 2︰3,那么DB︰AC =______.16.如图,在ABC中,90C∠=︒,30A∠=︒,BD是ABC∠的平分线,如果AC x=,那么CD =(用x表示).17.如图,在ABC∆中,30B∠=︒,2AC=,3cos5C=.则AB边的长为.18.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是____.三.解答题(共7小题,满分78分)19.(本题满分10分)计算:1327﹣(12)﹣2+|3.20.(本题满分10分)解不等式组:1076713x xxx>+⎧⎪+⎨-<⎪⎩21.(本题满分10分)在平面直角坐标系xoy 中(如图),已知一次函数的图像平行于直线12y x =,且经过点A (2,3),与x 轴交于点B . (1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC =BC 时,求点C 的坐标.22.(本题满分10分)两栋居民楼之间的距离30CD m =,楼AC 和BD 均为10层,每层楼高为3m .上午某时刻,太阳光线GB 与水平面的夹角为30︒,此刻楼BD 的影子会遮挡到楼AC 的第几层?(参考数1.7≈ 1.4)≈23.已知:如图,AB 、AC 是⊙O 的两条弦,且AB =AC ,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E ,联结CD 并延长交⊙O 于点F. (1)求证:BD =CD :(2)如果AB 2=AO·AD ,求证:四边形ABDC 是菱形.24.如图6,在平面直角坐标系xOy 中,抛物线()2230y ax ax a a =--<与x 轴交于A B、两点(点A 在点B 的左侧),经过点A 的直线:l y kx b =+与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且4CD AC =.(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k b 、用含a 的式子表示) (2)点E 是直线l 上方的抛物线上的动点,若ACE ∆的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A D P Q 、、、为顶点的四边形为矩形时,请直接写出点P 的坐标.25.已知:如图,在菱形ABCD 中,2AC =,60B ∠=︒.点E 为边BC 上的一个动点(与点B 、C 不重合),60EAF ∠=︒,AF 与边CD 相交于点F ,联结EF 交对角线AC 于点G .设CE x =,EG y =.(1)求证:AEF 是等边三角形;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)点O 是线段AC 的中点,联结EO ,当EG EO 时,求x 的值.绝密★启用前上海市2021年初中毕业统一学业考试数学预测试题二考生注意: 1.本试卷共25题。
专题25 动态几何之线动形成的函数关系问题(压轴题)-决胜2021中考数学压轴题全揭秘精品(解析版)
一、选择题1.(2016浙江省温州市)如图,在△ABC 中,∠ACB =90°,AC =4,BC =2.P 是AB 边上一动点,PD ⊥AC 于点D ,点E 在P 的右侧,且PE =1,连结CE .P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动.在整个运动过程中,图中阴影部分面积S 1+S 2的大小变化情况是( )A .一直减小B .一直不变C .先减小后增大D .先增大后减小【答案】C .【分析】设PD =x ,AB 边上的高为h ,想办法求出AD 、h ,构建二次函数,利用二次函数的性质解决问题即可.【解析】在RT△ABC 中,∵∠ACB =90°,AC =4,BC =2,∴AB =22AC BC +=2242+=25,设PD =x ,AB 边上的高为h ,h =AC BC AB ⋅=45,∵PD ∥BC ,∴PD AD BC AC =,∴AD =2x ,AP =5x ,∴S 1+S 2=12•2x •x +145(2515)2x --⋅=22524x x -+-=225(1)3x -+-,∴当0<x <1时,S 1+S 2的值随x 的增大而减小,当1≤x ≤2时,S 1+S 2的值随x 的增大而增大.故选C .考点:动点问题的函数图象.2.(2016湖北省荆门市)如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x (cm ),在下列图象中,能表示△ADP 的面积y (cm 2)关于x (cm )的函数关系的图象是( )A.B.C.D.【答案】A.【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【解析】当P点由A运动到B点时,即0≤x≤2时,y=12×2x=x,当P点由B运动到C点时,即2<x<4时,y=12×2×2=2,符合题意的函数关系的图象是A;故选A.考点:动点问题的函数图象.3.(2016湖北省鄂州市)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A.B.C.D.【答案】A.【分析】分两种情况:①当0≤t<4时,作O M⊥AB于M,由正方形的性质得出∠B=90°,AD=AB=BC=4cm,A M=B M=O M=12AB=2cm,由三角形的面积得出S=12AP•O M=t(cm2);②当t≥4时,S=△OA M的面积+梯形O M BP的面积=t(cm2);得出面积S(cm2)与时间t(s)的关系的图象是过原点的线段,即可得出结论.考点:动点问题的函数图象.4.(2016甘肃省白银市)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【答案】A.【解析】过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=12•x•x=212x;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=2122x x-+,故选A.考点:动点问题的函数图象;分类讨论.5.(2016青海省)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A 出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【答案】B.【分析】根据点P在AD、DE、EF、FG、GB上时,△ABP的面积S与时间t的关系确定函数图象.考点:动点问题的函数图象;分段函数;分类讨论;压轴题.6.(2016青海省西宁市)如图,在△ABC中,∠B=90°,tan∠C=34,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm2【答案】C.【分析】先根据已知求边长BC,再根据点P和Q的速度表示BP和BQ的长,设△PBQ的面积为S,利用直角三角形的面积公式列关于S与t的函数关系式,并求最值即可.【解析】∵tan∠C=34,AB=6cm,∴6ABBC BC=34,∴BC=8,由题意得:A P=t,BP=6﹣t,BQ=2t,设△PBQ的面积为S,则S=12×BP×BQ=12×2t×(6﹣t),S=26t t-+=2(3)9t--+,P:0≤t≤6,Q:0≤t≤4,∴当t=3时,S有最大值为9,即当t=3时,△PBQ的最大面积为9cm2;故选C.考点:解直角三角形;二次函数的最值;最值问题;动点型.7.(2016青海省西宁市)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C. D.【答案】A.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解析】作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∵∠AOB=∠ADC,∠OAB=∠DAC,AB=AC,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A 到x的距离1,∴y=x+1(x>0).故选A.考点:动点问题的函数图象.8.(2015盐城)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.【答案】B.考点:1.动点问题的函数图象;2.分段函数;3.分类讨论;4.压轴题.9.(2015荆州)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA 运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B. C. D.【答案】C.考点:1.动点问题的函数图象;2.分段函数.10.(2015邵阳)如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C 点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y 与t的函数关系的图象是()A. B. C. D.【答案】B.考点:1.动点问题的函数图象;2.数形结合.11.(2014年甘肃兰州4分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()A. B. C. D.【答案】D.【考点】1.动点问题的函数图象;2.正方形的性质;3.二次函数的性质和图象;4.分类思想的应用.【分析】根据三角形的面积即可求出S与t的函数关系式,根据函数关系式选择图象:①当0≤t≤4时,S=12×t×t=12t2,即S=12t2,该函数图象是开口向上的抛物线的一部分.故B、C错误;②当4<t ≤8时,S =16﹣12×(t ﹣4)×(t ﹣4),即S =﹣12t 2+4t +8,该函数图象是开口向下的抛物线的一部分.故A 错误.故选D . 12.(2014年内蒙古赤峰3分)如图,一根长为5米的竹竿AB 斜立于墙AC 的右侧,底端B 与墙角C 的距离为3米,当竹竿顶端A 下滑x 米时,底端B 便随着向右滑行y 米,反映y 与x 变化关系的大致图象是( )A .B .C .D .【答案】A . 【考点】1.动线问题的函数问题;2.勾股定理;3. 排他法的应用.【分析】应用排他法解题:∵AB =5,BC =3,∴由勾股定理,得AC =4∴如答图,11A C 4x,CB 3y =-=+ .∵2221111A B A C CB =+,∴()()22254x 3y =-++ .∴y 与x 的变化关系不是一次函数的关系,选项B ,C 错误.故选A .二、填空题三、解答题13.(2016黑龙江省龙东地区)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 在第一象限,点C 在第四象限,点B 在x 轴的正半轴上.∠OAB =90°且OA =AB ,OB ,OC 的长分别是一元二次方程211300x x -+=的两个根(OB >OC ).(1)求点A 和点B 的坐标.(2)点P 是线段OB 上的一个动点(点P 不与点O ,B 重合),过点P 的直线l 与y 轴平行,直线l 交边OA或边AB 于点Q ,交边OC 或边BC 于点R .设点P 的横坐标为t ,线段QR 的长度为m .已知t =4时,直线l 恰好过点C .当0<t <3时,求m 关于t 的函数关系式.(3)当m=3.5时,请直接写出点P 的坐标.【答案】(1)A (3,3), B (6,0);(2)m=74t (0<t <3);(3)P (2,0)或(235,0).(3)利用待定系数法求出直线AB 的解析式为y =﹣x +6,直线BC 的解析式为392y x =-,然后分类讨论:当0<t <3时,利用74t =3.5可求出t 得到P 点坐标; 当3≤t <4时,则Q (t ,﹣t +6),R (t ,34-t ),于是得到﹣t +6﹣(34-t )=3.5,解得t =10,不满足t 的范围舍去;当4≤t <6时,则Q (t ,﹣t +6),R (t ,392t -),所以﹣t +6﹣(392t -)=3.5,然后解方程求出t 得到P 点坐标.【解析】(1)∵方程211300x x -+=的解为1x =5,2x =6,∴OB =6,OC =5,∴B 点坐标为(6,0),作A M⊥x 轴于M ,如图,∵∠OAB =90°且OA =AB ,∴△AOB 为等腰直角三角形,∴O M=B M=A M=12OB =3,∴A 点坐标为(3,3);(2)作CN ⊥x 轴于N ,如图,∵t =4时,直线l 恰好过点C ,∴ON =4,在Rt△OCN 中,CN =22OC ON -=2254-=3,∴C 点坐标为(4,﹣3),设直线OC 的解析式为y =kx ,把C (4,﹣3)代入得4k =﹣3,解得k =34-,∴直线OC 的解析式为34y x =-,设直线OA 的解析式为y =ax ,把A (3,3)代入得3a =3,解得a =1,∴直线OA 的解析式为y =x ,∵P (t ,0)(0<t <3),∴Q (t ,t ),R (t ,34-t ),∴QR =t ﹣(34-t )=74t ,即m=74t (0<t <3); (3)设直线AB 的解析式为y =px +q ,把A (3,3),B (6,0)代入得:3360p q p q +=⎧⎨+=⎩,解得:16p q =-⎧⎨=⎩,∴直线AB 的解析式为y =﹣x +6,同理可得直线BC 的解析式为392y x =-; 当0<t <3时,m=74t ,若m=3.5,则74t =3.5,解得t =2,此时P 点坐标为(2,0); 当3≤t <4时,Q (t ,﹣t +6),R (t ,34-t ),∴m=﹣t +6﹣(34-t )=14-t +6,若m=3.5,则14-t +6=3.5,解得t =10(不合题意舍去);当4≤t <6时,Q (t ,﹣t +6),R (t ,392t -),∴m=﹣t +6﹣(392t -)=52-t +15,若m=3.5,则52-t +15=3.5,解得t =235,此时P 点坐标为(235,0),综上所述,满足条件的P 点坐标为(2,0)或(235,0).考点:四边形综合题;动点型;分类讨论;压轴题.14.(2016山东省青岛市)已知:如图,在矩形ABCD 中,Ab =6cm ,BC =8cm ,对角线AC ,BD 交于点0.点P 从点A 出发,沿方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【答案】(1)t为258或5;(2)2131232S t t=-++;(3)t=92;(4)t=2.88.【分析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作P M⊥AO,根据相似三角形的性质得到AP=t=258,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,Q M⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质表示出EH,根据相似三角形的性质表示出Q M,FQ,根据图形的面积即可得到结论;(3)根据题意列方程得到t的值,于是得到结论;(4)由角平分线的性质得到DM的长,根据勾股定理得到ON的长,由三角形的面积公式表示出OP,根据勾股定理列方程即可得到结论.【解析】(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作P M⊥AO,∴A M=12AO=52,∵∠P MA=∠ADC=90°,∠PAM=∠CAD,∴△AP M∽△ADC,∴AP AMAC AD=,∴AP=t=258,②当AP=AO=t=5,∴当t为258或5时,△AOP是等腰三角形;(2)作EH⊥AC于H,Q M⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,∵∠PA O=∠ECO,AO=OC,∠AOP=∠COE,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴EH CEAB AC=,∴EH=35t,∵DN=AD CDAC⋅=245,∵Q M∥DN,∴△CQ M∽△CDN,∴QM CQDN CD=,即62465QM t-=,∴Q M=2445t-,∴DG=2424455t--=45t,∵FQ∥AC,∴△DFQ∽△DOC,∴FQ DGOC DN=,∴FQ=56t,∴S五边形OECQF=S△OEC+S四边形OCQF =13152445(5)25265tt t-⨯⨯++⋅=2131232t t-++,∴S与t的函数关系式为2131232S t t=-++;(3)存在,∵S△ACD=12×6×8=24,∴S五边形OECQF:S△ACD=(2131232t t-++):24=9:16,解得t=92,t=0,(不合题意,舍去),∴t=92时,S五边形S五边形OECQF:S△ACD=9:16;(4)如图3,过D作DM⊥AC于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=DN=245,∴ON=O M=22OD DN-=75,∵OP•DM=3PD,∴OP=558t-,∴P M=18558t-,∵222PD PM DM=+,∴22218524(8)()()585t t-=-+,解得:t≈15(不合题意,舍去),t≈2.88,∴当t=2.88时,OD平分∠COP.考点:四边形综合题;动点型;分类讨论;存在型;压轴题.15.(2016内蒙古赤峰市)(12分)如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)【答案】(1)证明见解析;(2)t3(3)2269tyt=+.【分析】(1)根据正方形的性质和相似三角形的判定和性质证明即可;(2)根据全等三角形的判定和性质,利用勾股定理解答即可;(3)根据相似三角形的性质得出函数解析式即可.考点:相似形综合题;动点型.16.(2016浙江省湖州市)如图,已知二次函数2y x bx c =-++(b ,c 为常数)的图象经过点A (3,1),点C (0,4),顶点为点M ,过点A 作AB ∥x 轴,交y 轴于点D ,交该二次函数图象于点B ,连结BC .(1)求该二次函数的解析式及点M 的坐标;(2)若将该二次函数图象向下平移m (m >0)个单位,使平移后得到的二次函数图象的顶点落在△ABC 的内部(不包括△ABC 的边界),求m 的取值范围;(3)点P 是直线AC 上的动点,若点P ,点C ,点M 所构成的三角形与△BCD 相似,请直接写出所有点P 的坐标(直接写出结果,不必写解答过程).【答案】(1)224y x x =-++,M (1,5);(2)2<m <4;(3)P 1(13,113),P 2(13-,133),P 3(3,1),P 4(﹣3,7).【分析】(1)将点A 、点C 的坐标代入函数解析式,即可求出b 、c 的值,通过配方法得到点M 的坐标;(2)点M 是沿着对称轴直线x =1向下平移的,可先求出直线AC 的解析式,将x =1代入求出点M 在向下平移时与AC 、AB 相交时y 的值,即可得到m 的取值范围;(3)由题意分析可得∠M CP =90°,则若△P CM 与△BCD 相似,则要进行分类讨论,分成△P CM∽△BDC 或△P CM∽△CDB 两种,然后利用边的对应比值求出点坐标.【解析】(1)把点A (3,1),点C (0,4)代入二次函数2y x bx c =-++,得:23314b c c ⎧-++=⎨=⎩ 解得:24b c =⎧⎨=⎩,∴二次函数解析式为224y x x =-++,配方得2(1)5y x =--+,∴点M 的坐标为(1,5); (2)设直线AC 解析式为y =kx +b ,把点A (3,1),C (0,4)代入得:314k b b +=⎧⎨=⎩ 解得:14k b =-⎧⎨=⎩,∴直线AC 的解析式为y =﹣x +4,如图所示,对称轴直线x =1与△ABC 两边分别交于点E 、点F .把x =1代入直线AC 解析式y =﹣x +4解得y =3,则点E 坐标为(1,3),点F 坐标为(1,1),∴1<5﹣m <3,解得2<m <4;(3)连接M C ,作M G ⊥y 轴并延长交AC 于点N ,则点G 坐标为(0,5).∵M G =1,GC =5﹣4=1,∴M C 22MG CG +2211+2y =5代入y =﹣x +4解得x =﹣1,则点N 坐标为(﹣1,5),∵NG =GC ,G M=GC ,∴∠NCG =∠G CM=45°,∴∠N CM=90°,由此可知,若点P 在AC 上,则∠M CP =90°,则点D 与点C 必为相似三角形对应点.①若有△P CM∽△BDC ,则有MC CD CP BD =,∵BD =1,CD =3,∴CP =MC BD CD ⋅=213=23,∵CD =DA =3,∴∠DCA =45°,若点P 在y 轴右侧,作PH⊥y 轴,∵∠PCH =45°,CP =23,∴PH=22313,把x =13代入y =﹣x +4,解得y =113,∴P 1(13,113); 同理可得,若点P 在y 轴左侧,则把x =13-代入y =﹣x +4,解得y =133,∴P 2(13-,133); ②若有△P CM∽△CDB ,则有MC BD CP CD =,∴CP =231=32PH=322=3; 若点P 在y 轴右侧,把x =3代入y =﹣x +4,解得y =1;若点P 在y 轴左侧,把x =﹣3代入y =﹣x +4,解得y =7∴P 3(3,1);P 4(﹣3,7),∴所有符合题意得点P 坐标有4个,分别为P 1(13,113),P 2(13-,133),P 3(3,1),P 4(﹣3,7).考点:二次函数综合题;二次函数图象及其性质;分类讨论;动点型;平移的性质;二次函数图象与几何变换;压轴题.17.(2016湖北省襄阳市)如图,已知点A 的坐标为(﹣2,0),直线334y x =-+与x 轴、y 轴分别交于点B 和点C ,连接AC ,顶点为D 的抛物线2y ax bx c =++过A 、B 、C 三点.(1)请直接写出B 、C 两点的坐标,抛物线的解析式及顶点D 的坐标;(2)设抛物线的对称轴DE 交线段BC 于点E ,P 是第一象限内抛物线上一点,过点P 作x 轴的垂线,交线段BC 于点F ,若四边形DEFP 为平行四边形,求点P 的坐标;(3)设点M 是线段BC 上的一动点,过点M 作M N ∥AB ,交AC 于点N ,点Q 从点B 出发,以每秒1个单位长度的速度沿线段BA 向点A 运动,运动时间为t (秒),当t (秒)为何值时,存在△Q M N 为等腰直角三角形?【答案】(1)B (4,0),C (0,3),233384y x x =-++,D (1,278);(2)P (3,158);(3)t =83或143或72. 【分析】(1)分别令y =0和x =0代入334y x =-+即可求出B 和C 的坐标,然后设抛物线的交点式为y =a (x +2)(x ﹣4),最后把C 的坐标代入抛物线解析式即可求出a 的值和顶点D 的坐标; (2)若四边形DEFP 为平行四边形时,则DP ∥BC ,设直线DP 的解析式为y =m x +n ,则m=34-,求出直线DP 的解析式后,联立抛物线解析式和直线DP 的解析式即可求出P 的坐标;【解析】(1)令x =0代入334y x =-+ ∴y =3,∴C (0,3),令y =0代入334y x =-+,∴x =4,∴B (4,0),设抛物线的解析式为:y =a (x +2)(x ﹣4),把C (0,3)代入y =a (x +2)(x ﹣4),∴a =38-,∴抛物线的解析式为:y =38-(x +2)(x ﹣4),即233384y x x =-++,∴顶点D 的坐标为(1,278); (2)当DP ∥BC 时,此时四边形DEFP 是平行四边形,设直线DP 的解析式为y =m x +n ,∵直线BC 的解析式为:334y x =-+,∴m=34-,∴34y x n =-+,把D (1,278)代入34y x n =-+,∴n =338,∴直线DP 的解析式为33348y x =-+,∴联立:23338433348y x x y x ⎧=-++⎪⎪⎨⎪=-+⎪⎩,解得:x =3或x =1(舍去),∴把x =3代入33348y x =-+,y =158,∴P 的坐标为(3,158);②如图2,当∠Q NM=90°时,∵QB =t ,∴点Q 的坐标为(4﹣t ,0)∴令x =4﹣t 代入332y x =+,∴y =9﹣32t ,∴N (4﹣t ,9﹣32t ),∵M N ∥x 轴,∴点M 的纵坐标为9﹣32t ,∴令y =9﹣32t 代入334y x =-+,∴x =2t ﹣8,∴M(2t ﹣8,9﹣32t ),∴M N =(2t ﹣8)﹣(4﹣t )=3t ﹣12,∵NQ ∥OC ,∴△AQN ∽△AOC ,∴NQ AQ OC OA =,∴NQ =9﹣32t ,当NQ =M N 时,∴9﹣32t =3t ﹣12,t =143,∴此时QB =143,符合题意; ③如图3,当∠NQ M=90°,过点Q 作QE ⊥M N 于点E ,过点M 作M F ⊥x 轴于点F ,设QE =a ,令y =a 代入334y x =-+,∴x =4﹣43a ,∴M(4﹣43a ,a ),令y =a 代入332y x =+,∴x =23a ﹣2,∴N (23a ﹣2,0),∴M N =(4﹣43a )﹣(23a ﹣2)=6﹣2a ,当M N =2QE 时,∴6﹣2a =2a ,∴a =32,∴M F =QE =32,∵M F ∥OC ,∴△B M F ∽△BCO ,∴MF BF OC OB =,∴BF =2,∴QB =QF +BF =32+2=72,∴t =72,此情况符合题意. 综上所述,当△Q M N 为等腰直角三角形时,此时t =83或143或72.考点:二次函数综合题;动点型;存在型;分类讨论;压轴题.18.(2016甘肃省天水市)如图,二次函数2y ax bx c =++的图象交x 轴于A 、B 两点,交y 轴于点C ,且B (1,0),C (0,3),将△BOC 绕点O 按逆时针方向旋转90°,C 点恰好与A 重合.(1)求该二次函数的解析式;(2)若点P 为线段AB 上的任一动点,过点P 作PE ∥AC ,交BC 于点E ,连结CP ,求△PCE 面积S 的最大值;(3)设抛物线的顶点为M ,Q 为它的图象上的任一动点,若△O M Q 为以O M 为底的等腰三角形,求Q 点的坐标.【答案】(1)223y x x =--+;(2)S △PCE 的最大值为32;(3)Q (91378-+,813732),或(91378-,5913732-).【分析】(1)先求出点A 坐标,再用待定系数法求出抛物线解析式; (2)先求出S △PCE =S △PBC ﹣S △PBE ,即可求出最大面积;(3)先求出抛物线顶点坐标,由等腰三角形的两腰相等建立方程求出点Q 坐标. 【解析】(1)∵B (1,0),C (0,3),∴OB =1,OC =3.∵△BOC 绕点O 按逆时针方向旋转90°,C 点恰好与A 重合,∴OA =OC =3,∴A (﹣3,0),∵点A ,B ,C 在抛物线上,∴93009a b c a b c c -+=⎧⎪++=⎨⎪=⎩,∴123a b c =-⎧⎪=-⎨⎪=⎩,∴二次函数的解析式为223y x x =--+;(2)设点P (x ,0),则PB =1﹣x ,∴S △PBE =23(1)8x -,∴S △PCE =S △PBC ﹣S △PBE =12PB ×OC ﹣23(1)8x -=213(1)3(1)28x x -⨯--=233(1)82x --+,当x =1时,S △PCE 的最大值为32. (3)∵二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标(﹣1,4),∵△O M Q 为等腰三角形,O M 为底,∴M Q =OQ ,∴222(1)(234)x x x ++--+-=222(23)x x x +--+,∴281870x x +-=,∴x =9137-±,∴y =8137+或y =59137-,∴Q (9137-+,8137+),或(9137--,5913732-).考点:二次函数综合题;动点型;旋转的性质;最值问题;二次函数的最值;综合题.19.(2016福建省漳州市)(满分12分)如图,抛物线2y x bx c =++与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)若点M 是抛物线在x 轴下方上的动点,过点M 作M N //y 轴交直线BC 于点N ,求线段M N 的最大值; (3)在(2)的条件下,当M N 取最大值时,在抛物线的对称轴l 上是否存在点P ,使△PBN 是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.【答案】(1)243y x x =-+;(2)94;(3)(2,12)、(2142)、(2,142-)、(2317-)或(2,317+. 【分析】(1)由点B 、C 的坐标利用待定系数法即可求出抛物线的解析式;(2)设出点M 的坐标以及直线BC 的解析式,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,结合点M 的坐标即可得出点N 的坐标,由此即可得出线段M N 的长度关于m 的函数关系式,再结合点M 在x 轴下方可找出m 的取值范围,利用二次函数的性质即可解决最值问题;(3)假设存在,设出点P 的坐标为(2,n ),结合(2)的结论可求出点N 的坐标,结合点N 、B 的坐标利用两点间的距离公式求出线段PN 、PB 、BN 的长度,根据等腰三角形的性质分类讨论即可求出n 值,从而得出点P 的坐标.【解析】(1)将点B (3,0)、C (0,3)代入抛物线c bx x y ++=2中,得0933b c c =++⎧⎨=⎩:,解得:43b c =-⎧⎨=⎩,∴抛物线的解析式为243y x x =-+;(2)设点M 的坐标为(m ,243m m -+),设直线BC 的解析式为y =kx +3,把点点B (3,0)代入y =kx +3中,得:0=3k +3,解得:k =﹣1,∴直线BC 的解析式为y =﹣x +3.∵M N ∥y 轴,∴点N 的坐标为(m ,﹣m+3).∵抛物线的解析式为243y x x =-+=2(2)1x --,∴抛物线的对称轴为x =2,∴点(1,0)在抛物线的图象上,∴1<m <3.∵线段M N =﹣m+3﹣(243m m -+)=23m m -+=239()24m --+,∴当m=32时,线段M N 取最大值,最大值为94; (3)假设存在.设点P 的坐标为(2,n ).当m=32时,点N 的坐标为(32,32),∴PB =22(23)(0)n -+-=21n +,PN =2233(2)()22n -+-,BN =2233(3)(0)22-+-=322. △PBN 为等腰三角形分三种情况:综上可知:在抛物线的对称轴l 上存在点P ,使△PBN 是等腰三角形,点的坐标为(2,12)、(2,142)、(2,14-)、(2,317-)或(2,317+). 考点:二次函数综合题;分类讨论;动点型;最值问题;二次函数的最值;存在型;压轴题.20.(2016黑龙江省哈尔滨市)如图,在平面直角坐标系中,O 为坐标原点,抛物线22y ax ax c =++经过A (﹣4,0),B (0,4)两点,与x 轴交于另一点C ,直线y =x +5与x 轴交于点D ,与y 轴交于点E .(1)求抛物线的解析式;(2)点P 是第二象限抛物线上的一个动点,连接EP ,过点E 作EP 的垂线l ,在l 上截取线段EF ,使EF =EP ,且点F 在第一象限,过点F 作F M ⊥x 轴于点M ,设点P 的横坐标为t ,线段F M 的长度为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点E 作EH ⊥ED 交M F 的延长线于点H ,连接DH ,点G 为DH 的中点,当直线PG 经过AC 的中点Q 时,求点F 的坐标.【答案】(1)2142y x x =--+;(2)d ==5+t ;(3)F (46-,56-). 【分析】(1)利用待定系数法求二次函数的解析式;(2)如图1,作辅助线构建两个直角三角形,利用斜边PE =EF 和两角相等证两直角三角形全等,得PA′=EB ′,则d =F M=OE ﹣EB ′代入列式可得结论,但要注意PA′=﹣t ;(3)如图2,根据直线EH 的解析式表示出点F 的坐标和H 的坐标,发现点P 和点H 的纵坐标相等,则PH 与x 轴平行,根据平行线截线段成比例定理可得G 也是PQ 的中点,由此表示出点G 的坐标并列式,求出t 的值并取舍,计算出点F 的坐标.【解析】(1)把A (﹣4,0),B (0,4)代入22y ax ax c =++得:16804a a c c -+=⎧⎨=⎩,解得:124a c ⎧=-⎪⎨⎪=⎩,所以抛物线解析式为2142y x x =--+; (2)如图1,分别过P 、F 向y 轴作垂线,垂足分别为A ′、B ′,过P 作PN ⊥x 轴,垂足为N ,由直线DE 的解析式为:y =x +5,则E (0,5),∴OE =5,∵∠PEO +∠OEF =90°,∠PEO +∠E PA′=90°,∴∠E PA′=∠OEF ,∵PE =EF ,∠EA ′P =∠EB ′F =90°,∴△PEA ′≌△EFB ′,∴PA′=EB ′=﹣t ,则d =F M=OB ′=OE ﹣EB ′=5﹣(﹣t )=5+t ;(3)如图2,由直线DE 的解析式为:y =x +5,∵EH ⊥ED ,∴直线EH 的解析式为:y =﹣x +5,∴FB ′=A ′E =5﹣(2142t t --+)=2112t t ++,∴F (2112t t ++,5+t ),∴点H 的横坐标为:2112t t ++,y =21152t t ---+=2142t t --+,∴H (2112t t ++,2142t t --+),∵G 是DH 的中点,∴G (215122t t -+++,21422t t --+),∴G (211242t t +-,211242t t --+),∴PH ∥x 轴,∵DG =GH ,∴PG =GQ ,∴21112242t t t -+=+-,t =6±,∵P 在第二象限,∴t <0,∴t =6-,∴F (46-,56-).考点:二次函数综合题;动点型;压轴题.21.(2015广东深圳)如图,在平面直角坐标系中,直线l :y =-2x +b (b ≥0)的位置随b 的不同取值而变化.(1)已知⊙M 的圆心坐标为(4,2),半径为2.当b = 时,直线l :y =-2x +b (b ≥0)经过圆心M : 当b = 时,直线l :y =-2x +b (b ≥0)与O M 相切:(2)若把⊙M 换成矩形ABCD ,其三个顶点坐标分别为:A (2,0)、B (6,0)、C (6,2). 设直线l 扫过矩形ABCD 的面积为S ,当b 由小到大变化时,请求出S 与b 的函数关系式,【答案】解:(1)10;1025±.(2)由A (2,0)、B (6,0)、C (6,2),根据矩形的性质,得D (2,2). 如图,当直线l 经过A (2,0)时,b =4;当直线l 经过D (2,2)时,b =6;当直线l 经过B (6,0)时,b =12;当直线l 经过C (6,2)时,b =14. 当0≤b ≤4时,直线l 扫过矩形ABCD 的面积S 为0.当4<b ≤6时,直线l 扫过矩形ABCD 的面积S 为△EFA 的面积(如图1),在 y =-2x +b 中,令x =2,得y =-4+b ,则E (2,-4+b ), 令y =0,即-2x +b =0,解得x =1b 2,则F (1b 2,0). ∴AF =1b 22-,AE =-4+b .∴S =()21111AF AE b 24b b 2b+42224⎛⎫⋅⋅=⋅-⋅= ⎪⎝⎭-+-.当6<b ≤12时,直线l 扫过矩形ABCD 的面积S 为直角梯形DHGA 的面积(如图2),在 y =-2x +b 中,令y =0,得x =1b 2,则G (1b 2,0),令y =2,即-2x +b =2,解得x =1b 12-,则H (1b 12-,2).∴DH =1b 32-,AG =1b 22-.AD =2∴S =()()11DH+AG AD b 52b 522⋅⋅=⋅-⋅=-.∴P (21b,b 55).由P M=2,勾股定理得,2221b +b 455⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭-4 -2,化简得24b 20b+80=0-.解得b=1025±(2)求出直线l 经过点A 、B 、C 、D 四点时b 的值,从而分0≤b ≤4,4<b ≤6,6<b ≤12,12<b ≤14,b >14五种情况分别讨论即可.22.(2015湖北黄石)已知抛物线C 1的函数解析式为2y ax bx 3a(b 0)=+-<,若抛物线C 1经过点(0,3)-,方程2ax bx 3a 0+-=的两根为1x ,2x ,且12x x 4-=.(1)求抛物线C 1的顶点坐标. (2)已知实数x 0>,请证明:1x x +≥2,并说明x 为何值时才会有1x 2x+=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C 2,设1A(m,y ), 2B(n,y )是C 2上的两个不同点,且满足: 00AOB 9∠=,m 0>,n 0<.请你用含有m 的表达式表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式.(参考公式:在平面直角坐标系中,若11P(x ,y ),22Q(x ,y ),则P ,Q 222121(x x )(y y )-+-(3)由平移的性质,得C2的解析式为:y=x2.∴A(m,m2),B(n,n2).由BOD △ ∽OAC △得 BD ODOC AC =,即22n n m m -=.∴mn 1=-. ∴1111S mn(m n)=m+2122m 2⎛⎫=--≥⋅= ⎪⎝⎭. ∴SΔAOB 的最小值为1,此时m =1,A(1,1). ∴直线OA 的一次函数解析式为y=x .23.(2015山东省济南市)已知:如图①,在Rt△ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题:(1)当t为何值时,PQ∥BC;(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.【答案】(1)当t=107时,PQ∥BC.(2)y=-35t2+3t.(3)不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分.(4)5059cm.(3)如果将三角形ABC的周长和面积平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP 的长,那么可以求出此时t的值,我们可将t的值代入(2)的面积与t的关系式中,求出此时面积是多少,然后看看面积是否是三角形ABC面积的一半,从而判断出是否存在这一时刻.(4)我们可通过构建相似三角形来求解.过点P作P M⊥AC于M,PN⊥BC于N,那么PN CM就是个矩形,解题思路:通过三角形BPN和三角形ABC相似,得出关于BP,PN,AB,AC的比例关系,即可用t表示(2)过点P作PH⊥AC于H.∵△A PH∽△ABC,∴PH APBC AB=,∴535PH t-=,∴PH=3-35t,∴y=12×AQ×PH=12×2t×(3-35t)=-35t2+3t.(3)若PQ把△ABC周长平分,则AP+AQ=BP+BC+CQ,∴(5-t)+2t=t+3+(4-2t),解得t=1.若PQ把△ABC面积平分,则S△APQ=12S△ABC,即-35t2+3t =3.∵t=1代入上面方程不成立,∴不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分.(4)过点P作P M⊥AC于M,PN⊥BC于N,若四边形PQP′C是菱形,那么PQ=PC.∵P M⊥AC于M,∴Q M=CM.∵PN ⊥BC 于N ,易知△PBN ∽△ABC ,∴PN BP AC AB =,∴45PN t =,∴PN =45t ,∴Q M=CM=45t ,∴考点:1.相似形综合题;2.动点型;3.存在型.24.(2014年湖南怀化10分)如图1,在平面直角坐标系中,AB =OB =8,∠ABO =90°,∠yOC =45°,射线OC 以每秒2个单位长度的速度向右平行移动,当射线OC 经过点B 时停止运动,设平行移动x 秒后,射线OC 扫过Rt△ABO 的面积为y .(1)求y 与x 之间的函数关系式;(2)当x =3秒时,射线OC 平行移动到O ′C ′,与OA 相交于G ,如图2,求经过G ,O ,B 三点的抛物线的解析式;(3)现有一动点P 在(2)中的抛物线上,试问点P 在运动过程中,是否存在三角形POB 的面积S =8的情况?若存在,求出点P 的坐标,若不存在,请说明理由.【答案】解:(1)∵AB =OB ,∠ABO =90°,∴△ABO 是等腰直角三角形.∴∠AOB =45°.∵∠yOC =45°,∴∠AOC =(90°﹣45°)+45°=90°. ∴AO ⊥CO .∵C ′O ′是CO 平移得到,∴AO ⊥C ′O ′. ∴△OO ′G 是等腰直角三角形.∵射线OC 的速度是每秒2个单位长度,∴OO ′=2x .∴y =()2212x 2x 2⋅=.(2)当x =3秒时,OO ′=2×3=6,∵12×6=3,∴点G 的坐标为(3,3). 设抛物线解析式为y =ax 2+bx ,则9a 3b 364a 8b 0+=⎧⎨+=⎩,解得1a 58b 5⎧=-⎪⎪⎨⎪=⎪⎩. ∴抛物线的解析式为218y x x 55=-+.(3)存在. 设点P 到x 轴的距离为h ,则S △POB =12×8h =8,解得h =2, 当点P 在x 轴上方时,218x x 55-+=2,整理得,x 2﹣8x +10=0,解得x 1=4x 2此时,点P 的坐标为(42)或(2).当点P 在x 轴下方时,218x x 55-+=﹣2,整理得,x 2﹣8x ﹣10=0,解得x 1=4,x 2此时,点P 的坐标为(42)或(,﹣2).综上所述,点P 的坐标为(42)或(2)或(42)或(,﹣2)时,△POB 的面积S =8.【考点】1.二次函数综合题;2.线动平移和单动点问题;3.由实际问题列函数关系式;4. 等腰直角三角形的判定和性质;5.待定系数法的应用;6.曲线上点的坐标与方程的关系;7.分类思想和方程思想的应用.【分析】(1)判断出△ABO 是等腰直角三角形,根据等腰直角三角形的性质可得∠AOB =45°,然后求出AO ⊥CO ,再根据平移的性质可得AO ⊥C ′O ′,从而判断出△OO ′G 是等腰直角三角形,然后根据等腰直角三角形的性质列式整理即可得解.(2)求出OO ′,再根据等腰直角三角形的性质求出点G 的坐标,然后设抛物线解析式为y =ax 2+bx ,再把点B 、G 的坐标代入,利用待定系数法求二次函数解析式解答.(3)设点P 到x 轴的距离为h ,利用三角形的面积公式求出h ,再分点P 在x 轴上方和下方两种情况,利用抛物线解析式求解即可.25.(2014年江西南昌12分)如图1,边长为4的正方形ABCD 中,点E 在AB 边上(不与点A 、B 重合),点F 在BC 边上(不与点B 、C 重合).第一次操作:将线段EF 绕点F 顺时针旋转,当点E 落在正方形上时,记为点G ;第二次操作:将线段FG 绕点G 顺时针旋转,当点F 落在正方形上时,记为点H ;依此操作下去…(1)图2中的△EFD 是经过两次操作后得到的,其形状为 ▲ ,求此时线段EF 的长; (2)若经过三次操作可得到四边形EFGH .①请判断四边形EFGH 的形状为 ▲ ,此时AE 与BF 的数量关系是 ▲ ;②以①中的结论为前提,设AE 的长为x ,四边形EFGH 的面积为y ,求y 与x 的函数关系式及面积y 的取值范围.(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.【答案】解:(1)等边三角形.∵四边形ABCD 是正方形,∴AD =CD =BC =AB ,∠A =∠B =∠C =90°.∵ED =FD ,∴△ADE ≌△CDF (HL ). ∴AE =CF ,BE =BF .∴△BEF 是等腰直角三角形.设BE 的长为x ,则EF =2x ,AE =4x -,∵在Rt△AED 中,222AE AD DE +=,DE =EF ,∴()()2224 x 42x -+=,解得12x 443,x 443=-+=-- (不合题意,舍去).∴EF =()2x 24438642=-+=-.(2)①四边形EFGH 为正方形;AE =BF .②∵AE =x ,∴BE =4x -.∵在Rt△BED 中,222EF BF BE =+,AE =BF ,∴()222222y EF 4x x 168x x x 2x 8x 16==-+=-++=-+.。
中考数学复习 专题25 动态几何之线动形成的函数关系问题(压轴题)-决胜中考数学压轴题全揭秘资料(11)
专题25 动态几何之线动形成的函数关系问题(压轴题)-决胜中考数学压轴题全揭秘资料(11)一、选择题1. 如下图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是【】2. 如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t秒(0≤t≤4),则能大致反映S与t的函数关系的图象是【】3. 如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90º后,所得直线的解析式为【】A.y=x-2 B.y=-x+2C.y=-x-2 D.y=-2x-14. 时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12:00开始到12:30止,y与t之间的函数图象是【】二、填空题【版江泰州元工作室所有,必究】权归苏锦数学邹强转载1. 如图,抛物线29y x bx2=++与y轴相交于点A,与过点A平行于x轴的直线相交于点B (点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为▲ .2. 把抛物线28y x bx =++的图像向右平移3个单位,再向下平移2个单位,所得图像的解析式为223y x x =-+,则b 的值为 ▲ 。
【答案】4。
【考点】抛物线的顶点,坐标平移的性质。
【分析】抛物线28=++y x bx 的图像向右平移3个单位,再向下平移2个单位,所得图像的解析式为223=-+y x x ,可以反过来理解为:抛物线223=-+y x x 的图像向左平移3个单位,再向上平移2个单位,三、解答题【版江泰州元工作室所有,必究】权归苏锦数学邹强转载1. 如图所示,已知抛物线y=﹣2x2﹣4x的图象E,将其向右平移两个单位后得到图象F.(1)求图象F所表示的抛物线的解析式:(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.由题意,得b42k b0=-⎧⎨+=⎩,解得k2b4=⎧⎨=-⎩。
中考数学专题:动态几何与函数问题
中考数学专题:动态几何与函数问题中考数学专题:动态几何与函数问题以下是查字典数学网为您推荐的中考数学专题:动态几何与函数问题,希望本篇文章对您学习有所帮助。
中考数学专题:动态几何与函数问题【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。
其中通过图中已给几何图形构建函数是重点考察对象。
不过从近年中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中减少复杂性增大灵活性的主体思想。
但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。
【例1】如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线 .将直线平移,平移后的直线与轴交于点D,与轴交于点E.(2)当时,阴影部分的面积=直角梯形的面积的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)【例2】已知:在矩形中,, .分别以所在直线为轴和轴,建立如图所示的平面直角坐标系. 是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点 .(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE和△FOB 这两个直角三角形的底边和高恰好就是E,F点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K。
中考数学经典总复习专题动线、动形问题完美全文
学 (2)点P 、 Q在运动的过程中,△PCQ面积S有最 大值吗?若有,请求出最大值;若没有,请说明理 由。
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2). 作 (1)求抛物线的表达式;
学 存在,请说明理由;
y
解析:
C
AO
DB
x
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2).
作 互
( 3)点E 是 线 段 BC上的一个动点,过点E 作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积
8
1 2
3
x2+ 2
;
x+2;
∴抛物线的对称轴是x= ∴OD= .3
32.
∵C(0,2 2),
∴OC=2.
5
在Rt△OCD中,由勾股定理,得CD= .2
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP2=CP3=CD. 作CH⊥x轴于H,
∴HP1=HD=2,
∴∴DP1P(1=4.,32 4),P2(
中考数学---动线、动形问题
• 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是中考 中必考的内容。
• 本节课重点来探究动态几何中的动线、动形问题。
• 一、关于动线、动形问题的解题方法:
• 1.“以静制动”,把动态问题转化成静态问题;
• 2.图形的运动主要有翻折、平移、旋转,在运动过程中,分清哪 些量不变,哪些量发生了变化,以不变的量作为解题基础,以变 化中的规律和特点作为解题的关键。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=
决胜2018中考数学压轴题全揭秘精品:(压轴题)专题25动态几何之定值(恒等)问题(原卷版)
连接 ON,点 M 从点 E 开始沿线段 EH 向点 H 运动,至与点 N 重合时停止,△MOG 和△NOG 的面积分别表示为
S1 和 S2,在点 M 的运动过程中,S1S2(即 S1 与 S2 的积)的值是否发生变化?若变化,请直接写出变化范围;若不
变,请直接写出这个值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
19.(2015 河南)已知:如图 1,在面积为 3 的正方形 ABCD 中,E、F 分别是 BC 和 CD 边上的两点,AE⊥BF 于 点 G,且 BE=1. (1)求证:△ABE≌△BCF; (2)求出△ABE 和△BCF 重叠部分(即△BEG)的面积; (3)现将△ABE 绕点 A 逆时针方向旋转到△AB′E′(如图 2),使点 E 落在 CD 边上的点 E′处,问△ABE 在旋转前 后与△BCF 重叠部分的面积是否发生了变化?请说明理由.
(2)如图 2,已知直线 PA,PB 与 y 轴分别交于 E、F 两点.当点 P 运动时, OE OF 是否为定值?若是,试求 OC
出该定值;若不是,请说明理由.
9.(2016 贵州省黔南州)如图,在四边形 OABC 是边长为 4 的正方形,点 P 为 OA 边上任意一点(与点 O、A 不 重合),连接 CP,过点 P 作 PM⊥CP 交 AB 于点 D,且 PM=CP,过点 M 作 MN∥AO,交 BO 于点 N,连结 ND、 BM,设 OP=t. (1)求点 M 的坐标(用含 t 的代数式表示);
.
三、解答题 资 *源%库 ziy 1
5.(2016 广东省深圳市)如图,已知⊙O 的半径为 2,AB 为直径,CD 为弦.AB 与 CD 交于点 M,将 CD 沿 CD
翻折后,点 A 与圆心 O 重合,延长 OA 至 P,使 AP=OA,连接 PC. (1)求 CD 的长; (2)求证:PC 是⊙O 的切线;
专题25动态几何之线动形成的函数关系问题 -《决胜中考压轴题全揭秘知识篇》(解析版)
《中考压轴题全揭秘知识篇》(解析版)专题25:动态几何之线动形成的函数关系问题一、选择题1. (2014年甘肃兰州4分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是A. B. C. D.【答案】D.【考点】1.动点问题的函数图象;2.正方形的性质;3.二次函数的性质和图象;4.分类思想的应用.【分析】根据三角形的面积即可求出S与t的函数关系式,根据函数关系式选择图象:①当0≤t≤4时,S=12×t×t=12t2,即S=12t2,该函数图象是开口向上的抛物线的一部分.故B、C错误;②当4<t≤8时,S=16﹣12×(t﹣4)×(t﹣4),即S=﹣12t2+4t+8,该函数图象是开口向下的抛物线的一部分.故A错误.故选D.2. (2014年内蒙古赤峰3分)如图,一根长为5米的竹竿AB斜立于墙AC的右侧,底端B与墙角C的距离为3米,当竹竿顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是A. B. C. D.【答案】A.【考点】1.动线问题的函数问题;2.勾股定理;3. 排他法的应用.【分析】应用排他法解题:∵AB=5,BC=3,∴由勾股定理,得AC=4∴如答图,11A C4x,CB3y=-=+.∵2221111A B A C CB=+,∴()()22254x3y=-++.∴y与x的变化关系不是一次函数的关系,选项B,C错误.又∵当x=0时,y=0,∴选项D错误.故选A.3. (2013年湖北荆门3分)如下图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是4、(2015盐城)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A .B .C .D .【答案】B.【解析】试题分析:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选B.考点:1.动点问题的函数图象;2.分段函数;3.分类讨论;4.压轴题.5、(2015荆州)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA 运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A .B .C .D .【答案】C.【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y =12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:1.动点问题的函数图象;2.分段函数.6、(2015邵阳)如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()A .B .C .D .【答案】B.考点:1.动点问题的函数图象;2.数形结合.二、填空题1. (2013年辽宁大连3分)如图,抛物线29y x bx2=++与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为▲.三、解答题1. (2014年湖南怀化10分)如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC 以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC 扫过Rt△ABO的面积为y.(1)求y与x之间的函数关系式;(2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B三点的抛物线的解析式;(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.【答案】解:(1)∵AB=OB,∠ABO=90°,∴△ABO是等腰直角三角形.∴∠AOB=45°.∵∠yOC=45°,∴∠AOC=(90°﹣45°)+45°=90°. ∴AO ⊥CO. ∵C′O′是CO 平移得到,∴AO ⊥C′O′. ∴△OO′G 是等腰直角三角形. ∵射线OC 的速度是每秒2个单位长度,∴OO′=2x.∴y=()2212x 2x 2⋅=.(2)当x=3秒时,OO′=2×3=6,∵12×6=3,∴点G 的坐标为(3,3). 设抛物线解析式为y=ax 2+bx ,则9a 3b 364a 8b 0+=⎧⎨+=⎩,解得1a 58b 5⎧=-⎪⎪⎨⎪=⎪⎩.∴抛物线的解析式为218y x x 55=-+. (3)存在. 设点P 到x 轴的距离为h ,则S △POB =12×8h=8,解得h=2, 当点P 在x 轴上方时,218x x 55-+=2,整理得,x 2﹣8x+10=0, 解得x 1=4﹣6,x 2=4+6.此时,点P 的坐标为(4﹣6,2)或(4+6,2).当点P 在x 轴下方时,218x x 55-+=﹣2,整理得,x 2﹣8x ﹣10=0,解得x 1=4﹣26,x 2=4+26.此时,点P 的坐标为(4﹣26,﹣2)或(4+26,﹣2).综上所述,点P 的坐标为(4﹣6,2)或(4+6,2)或(4﹣26,﹣2)或(4+26,﹣2)时,△POB 的面积S=8.【考点】1.二次函数综合题;2.线动平移和单动点问题;3.由实际问题列函数关系式;4. 等腰直角三角形的判定和性质;5.待定系数法的应用;6.曲线上点的坐标与方程的关系;7.分类思想和方程思想的应用. 【分析】(1)判断出△ABO 是等腰直角三角形,根据等腰直角三角形的性质可得∠AOB=45°,然后求出AO ⊥CO ,再根据平移的性质可得AO ⊥C′O′,从而判断出△OO′G 是等腰直角三角形,然后根据等腰直角三角形的性质列式整理即可得解.(2)求出OO′,再根据等腰直角三角形的性质求出点G 的坐标,然后设抛物线解析式为y=ax 2+bx ,再把点B 、G 的坐标代入,利用待定系数法求二次函数解析式解答.(3)设点P 到x 轴的距离为h ,利用三角形的面积公式求出h ,再分点P 在x 轴上方和下方两种情况,利用抛物线解析式求解即可.2. (2014年江西南昌12分)如图1,边长为4的正方形ABCD 中,点E 在AB 边上(不与点A 、B 重合),点F 在BC 边上(不与点B 、C 重合).第一次操作:将线段EF 绕点F 顺时针旋转,当点E 落在正方形上时,记为点G ; 第二次操作:将线段FG 绕点G 顺时针旋转,当点F 落在正方形上时,记为点H ; 依此操作下去…(1)图2中的△EFD 是经过两次操作后得到的,其形状为 ▲ ,求此时线段EF 的长; (2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH 的形状为 ▲ ,此时AE 与BF 的数量关系是 ▲ ;②以①中的结论为前提,设AE 的长为x ,四边形EFGH 的面积为y ,求y 与x 的函数关系式及面积y 的取值范围.(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由. 【答案】解:(1)等边三角形.∵四边形ABCD 是正方形,∴AD=CD=BC=AB ,∠A=∠B=∠C=90°.∵ED=FD ,∴△ADE ≌△CDF(HL). ∴AE=CF ,BE=BF. ∴△BEF 是等腰直角三角形.设BE 的长为x ,则EF=2x ,AE=4x -, ∵在Rt △AED 中,222AE AD DE +=,DE=EF , ∴()()2224 x 42x -+=,解得12x 443,x 443=-+=-- (不合题意,舍去).∴EF=()2x 24438642=-+=-.(2)①四边形EFGH 为正方形;AE=BF.②∵AE=x ,∴BE=4x -.∵在Rt △BED 中,222EF BF BE =+,AE=BF , ∴()222222y EF 4x x 168x x x 2x 8x 16==-+=-++=-+. ∵点E 不与点A 、B 重合,点F 不与点B 、C 重合, ∴0<x <4.∵222y 2x 8x 162(x 4x 4)82(x 2)8=-+=-++=-+, ∴当x=2时有最小值8,当x=0或4时,有最大值16. ∴y 的取值范围是8<y <16.(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为424-.【考点】1.线动旋转问题;2.正方形的判定和性质;3.等边三角形的判定和性质;4.全等三角形的判定和性质;5.勾股定理;6.二次函数的应用.【分析】(1)根据正方形的性质,证明旋转后得到的两个直角三角形全等,得出AE 和FC 相等,再用勾股定理列出方程即可.(2)①根据旋转的性质可判定四边形EFGH 是正方形,得出AE=BF ;②根据正方形的面积公式,找出AE 长与正方形面积之间的等量关系式.(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为424-.如答图2所示,粗线部分是由线段EF 经过7次操作所形成的正八边形.设边长EF=FG=x ,则BF=CG=2x , BC=BF+FG+CG=22x x x 4++=,解得:x=424-.3. (2014年江西省9分)如图1,边长为4的正方形ABCD 中,点E 在AB 边上(不与点A 、B 重合),点F 在BC 边上(不与点B 、C 重合).第一次操作:将线段EF 绕点F 顺时针旋转,当点E 落在正方形上时,记为点G ; 第二次操作:将线段FG 绕点G 顺时针旋转,当点F 落在正方形上时,记为点H ; 依此操作下去…(1)图2中的△EFD 是经过两次操作后得到的,其形状为 ▲ ,求此时线段EF 的长; (2)若经过三次操作可得到四边形EFGH.②以①中的结论为前提,设AE 的长为x ,四边形EFGH 的面积为y ,求y 与x 的函数关系式及面积y 的取值范围.【答案】解:(1)等边三角形.∵四边形ABCD 是正方形,∴AD=CD=BC=AB ,∠A=∠B=∠C=90°.∵ED=FD ,∴△ADE ≌△CDF(HL). ∴AE=CF ,BE=BF. ∴△BEF 是等腰直角三角形.设BE 的长为x ,则2x ,AE=4x -, ∵在Rt △AED 中,222AE AD DE +=,DE=EF , ∴())2224 x 42x -+=,解得12x 443,x 443=-+=--(不合题意,舍去).∴EF=()2x 24438642=-+=-. (2)①四边形EFGH 为正方形;AE=BF.②∵AE=x ,∴BE=4x -.∵在Rt △BED 中,222EF BF BE =+,AE=BF , ∴()222222y EF 4x x 168x x x 2x 8x 16==-+=-++=-+. ∵点E 不与点A 、B 重合,点F 不与点B 、C 重合, ∴0<x <4.∵222y 2x 8x 162(x 4x 4)82(x 2)8=-+=-++=-+, ∴当x=2时有最小值8,当x=0或4时,有最大值16. ∴y 的取值范围是8<y <16.【考点】1.线动旋转问题;2.正方形的判定和性质;3.等边三角形的判定和性质;4.全等三角形的判定和性质;5.勾股定理;6.二次函数的应用.【分析】(1)根据正方形的性质,证明旋转后得到的两个直角三角形全等,得出AE 和FC 相等,再用勾股定理列出方程即可.(2)①根据旋转的性质可判定四边形EFGH 是正方形,得出AE=BF ;②根据正方形的面积公式,找出AE 长与正方形面积之间的等量关系式.4. (2014年辽宁锦州14分)如图,平行四边形ABCD 在平面直角坐标系中,点A 的坐标为(﹣2,0),点B 的坐标为(0,4),抛物线y=﹣x 2+mx+n 经过点A 和C . (1)求抛物线的解析式.(2)该抛物线的对称轴将平行四边形ABCO 分成两部分,对称轴左侧部分的图形面积记为S 1,右侧部分图形的面积记为S 2,求S 1与S 2的比. (3)在y 轴上取一点D ,坐标是(0,72),将直线OC 沿x 轴平移到O′C′,点D 关于直线O′C′的对称点记为D′,当点D′正好在抛物线上时,求出此时点D′坐标并直接写出直线O′C′的函数解析式.【答案】解:(1)如图1,∵四边形ABCO 是平行四边形,∴BC=OA ,BC ∥OA .∵A 的坐标为(﹣2,0),点B 的坐标为(0,4),∴点C 的坐标为(2,4). ∵抛物线y=﹣x2+mx+n 经过点A 和C .∴42m n 042m n 4--+=⎧⎨-++=⎩,解得:m 1n 6=⎧⎨=⎩.∴抛物线的解析式为2y x x 6=-++.(2)如答图1,∵抛物线的解析式为22125y x x 6x 24⎛⎫=-++=--+ ⎪⎝⎭,∴抛物线的对称轴x=12, 设OC 所在直线的解析式为y=ax ,∵点C 的坐标为(2,4),∴2a=4,即a=2. ∴OC 所在直线的解析式为y=2x . 当x=12时,y=1,则点F 为(12,1).∴S 2=12EC•EF=()119241224⎛⎫⋅-⋅-= ⎪⎝⎭,S 1=S 四边形ABCO ﹣S 2=9232444⋅-=.∴S 1:S 2=234:94 =23:9,即S 1与S 2的比为23:9. (3)如图2,过点D 作DM ⊥CO ,交x 轴于点M ,∵点C 的坐标为(2,4),∴tan ∠BOC=2142=. ∵∠OMD=90°﹣∠MOC=∠BOC ,∴tan ∠OMD=OD 1OM 2=.∵点D 的坐标是(0,72),∴712OM 2=,即OM=7. ∴点M 的坐标为(7,0). 设直线DM 的解析式为y=kx+b ,则有7k b 07b 2+=⎧⎪⎨=⎪⎩,解得:1k 27b 2⎧=-⎪⎪⎨⎪=⎪⎩∵点D 与点D′关于直线O′C′对称,∴DD′⊥O′C′,且DD′的中点在直线O′C′上. ∵OC ∥O′C′,∴DD′⊥OC .∴点D′是直线DM 与抛物线的交点.联立217y x 22y x x 6⎧=-+⎪⎨⎪=-++⎩,解得:21125x x 12,y 49y 4⎧=⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩,∴点D′的坐标为(﹣1,4)或(52,94). 当点D′的坐标为(﹣1,4)时,直线O′C′的解析式为19y 2x 4=+;当点D′的坐标为(52,94)时,直线O′C′的解析式为3y 2x 8=+. 【考点】1.二次函数综合题;2.线动平移问题;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.二次函数的性质;6.平行四边形的性质;7.锐角三角函数的定义;8.分类思想的应用. 【分析】(1)由条件可求出点C 的坐标,然后用待定系数法就可求出抛物线的解析式.(2)由抛物线的解析式可求出其对称轴,就可求出S 2,从而求出S 1,就可求出S 1与S 2的比. (3)由题可知DD′⊥O′C′,且DD′的中点在直线O′C′上.由OC ∥O′C′可得DD′⊥OC .过点D 作DM ⊥CO ,交x 轴于点M ,只需先求出直线DM 的解析式,再求出直线DM 与抛物线的交点,就得到点D′的坐标,然后求出DD′中点坐标就可求出对应的直线O′A′的解析式:设直线O′C′的解析式为y=2x+c ,①当点D′的坐标为(﹣1,4)时,如答图3,线段DD′的中点为(012-,7422+),即(12-,154),则有(1152c 24⎛⎫⨯-+= ⎪⎝⎭,解得:c=194.此时直线O′C′的解析式为19y 2x 4=+. ②当点D′的坐标为(52,94)时,如答图4,同理可得:此时直线O′C′的解析式为3y 2x 8=+.5. (2014年四川攀枝花12分)如图,抛物线2y ax 8ax 12a =-+(a >0)与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,点D 的坐标为(﹣6,0),且∠ACD=90°. (1)请直接写出A 、B 两点的坐标; (2)求抛物线的解析式;(3)抛物线的对称轴上是否存在点P ,使得△PAC 的周长最小?若存在,求出点P 的坐标及周长的最小值;若不存在,说明理由;(4)平行于y 轴的直线m 从点D 出发沿x 轴向右平行移动,到点A 停止.设直线m 与折线DCA 的交点为G ,与x 轴的交点为H (t ,0).记△ACD 在直线m 左侧部分的面积为s ,求s 关于t 的函数关系式及自变量t的取值范围.【答案】解:(1)A (2,0),B (6,0).(2)抛物线的解析式为:2y ax 8ax 12a =-+(a >0),令x=0,得y=12a ,∴C (0,12a ),OC=12a .在Rt △COD 中,由勾股定理得:()222222CD OC OD 12a 6144a 36=+=+=+; 在Rt △COD 中,由勾股定理得:()222222AC OC OA 12a 2144a 4=+=+=+; 在Rt △COD 中,由勾股定理得:DC 2+AC 2=AD 2, 即:()()222144a 36144a 48+++=,解得:a=36或a=36-(舍去). ∴抛物线的解析式为:2343y x x 2363=-+. (3)存在.对称轴为直线:433x 4326-=-=⋅. 由(2)知C (0,23),则点C 关于对称轴x=4的对称点为C′(8,23),如答图1,连接AC′,与对称轴交于点P ,则点P 为所求.此时△PAC 周长最小,最小值为AC+AC′.设直线AC′的解析式为y=kx+b ,则有:2k b 08k b 23+=⎧⎪⎨+=⎪⎩,解得3k 23b ⎧=⎪⎪⎨⎪=-⎪⎩. ∴直线AC′的解析式为323y x =-. 当x=4时,23y =,∴P (4,23).过点C′作C′E ⊥x 轴于点E ,则C′E=23,AE=6, 在Rt △AC′E 中,由勾股定理得:()22AC 23643'=+=,在Rt △AOC 中,由勾股定理得:()22AC 2234=+=.∴AC+AC′=443+.∴存在满足条件的点P ,点P 坐标为(4,23),△PAC 周长的最小值为443+. (4)①当﹣6≤t≤0时,如答图2.∵直线m 平行于y 轴,∴△DGH ∽△DCO. ∴GH DHOC OD =6t 623+=. ∴)3GH 6t =+ ∴())DGH 113S S DH GH 6t 6t 22∆==⋅=++2323t 63=++②当0<t≤2时,如答图3.∵直线m 平行于y 轴,∴△AGH ∽△ACO. ∴GH AHOC OA =,即2t 223-=, ∴GH 3t 23=-+. ∴S=S △COD +S 梯形OCGH()11OD OC GH OC OH 22=⋅++⋅ ()21136233t 2323t t 23t 6322=⨯⨯+-++⋅=-++ ∴s 关于t 的函数关系式为S ()()223t 23t 636t 03t 23t 630t 2⎧++-≤≤⎪=⎨⎪-++≤⎪⎩<.【考点】1.二次函数综合题;2.轴对称的应用(最短线路问题);3.线动平移问题;4.勾股定理;5.待定系数法的应用;6.曲线上点的坐标与方程的关系;7.相似三角形的判定和性质;8.由实际问题列函数关系式;9.分类思想的应用.【分析】(1)抛物线的解析式为:2y ax 8ax 12a =-+(a >0),令y=0,即2ax 8ax 12a 0-+=,解得x 1=2,x 2=6,∴A (2,0),B (6,0).(2)由∠ACD=90°可知△ACD 为直角三角形,利用勾股定理,列出方程求出a 的值,进而求出抛物线的解析式.(3)△PAC 的周长=AC+PA+PC ,AC 为定值,则当PA+PC 取得最小值时,△PAC 的周长最小.设点C 关于对称轴的对称点为C′,连接AC′与对称轴交于点P ,由轴对称的性质可知点P 即为所求.(4)直线m 运动过程中,有两种情形,需要分类讨论并计算,避免漏解.6. (2013年湖南邵阳8分)如图所示,已知抛物线y=﹣2x 2﹣4x 的图象E ,将其向右平移两个单位后得到图象F .(1)求图象F 所表示的抛物线的解析式:(2)设抛物线F 和x 轴相交于点O 、点B (点B 位于点O 的右侧),顶点为点C ,点A 位于y 轴负半轴上,且到x 轴的距离等于点C 到x 轴的距离的2倍,求AB 所在直线的解析式.由题意,得b 42k b 0=-⎧⎨+=⎩,解得k 2b 4=⎧⎨=-⎩。
专题25 动态几何之线动形成的函数关系问题(预测题)-决胜2016中考数学压轴题全揭秘精品(原卷版)
数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
动态几何形成的函数关系和图象问题是动态几何中的基本问题,包括单动点形成的函数关系和图象问题,双(多)动点形成的函数关系和图象问题,线动形成的函数关系和图象问题,面动形成的函数关系和图象问题。
本专题原创编写线动点形成的函数关系问题模拟题。
线动问题就是在一些基本几何图形上,设计一个动线(包括平移和旋转),或由点动、面动形成线动,并对线在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究。
在中考压轴题中,线动形成的函数关系问题的重点和难点在于应用数形结合的思想准确地进行分类。
线l 垂直于BC ,且从经过点B 的位置向右平移,直至经过点C 的位置停止,设扫过的阴影部分的面积为S ,原创模拟预测题2. 把直线y x 3=-+沿x 轴方向平移m 个单位后,与直线y 2x 4=+的交点在第一象限,则m 的取值范围是【 】A .m >1B .m <5-C .5<m <1-D .5m 1-≤≤原创模拟预测题3. 为了考察冰川融化的状况,一支科考队在某冰川上设定一个以大本营O 为圆心,半径为4km 圆形考察区域,线段P 1、P 2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为标分别是(-4,9)、(-13,-3).(1)求线段P1P2所在的直线对应的函数关系式;(2)求冰川的边界线移动到考察区域所需要的最短时间.B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D。
专题26动态几何之面动形成的函数关系问题 -《决胜中考压轴题全揭秘知识篇》(学生版)
《中考压轴题全揭秘知识篇》(学生版)专题26:动态几何之面动形成的函数关系问题一、选择题1. (2014年广西玉林、防城港3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是A .B .C .D .2. (2014年辽宁抚顺3分)如图,将足够大的等腰直角三角板PCD的锐角顶点P放在另一个等腰直角三角板PAB的直角顶点处,三角板PCD绕点P在平面内转动,且∠CPD的两边始终与斜边AB相交,PC交AB 于点M,PD交AB于点N,设AB=2,AN=x,BM=y,则能反映y与x的函数关系的图象大致是A. B. C. D.A .B .C .8D .A .B .C .D .5. (2013年辽宁盘锦3分)如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF 的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为6. (2015年辽宁铁岭)如图,点G、E、A、B在一条直线上,Rt△EFG从如图所示是位置出发,沿直线AB向右匀速运动,当点G与B重合时停止运动.设△EFG与矩形AB CD重合部分的面积为S,运动时间为t,则S 与t的图象大致是A .B .C .D .7、(2015年山东省潍坊市)如图,在矩形ABCD中,AB=4cm,AD=23cm,E为CD边上的中点,点P从点A沿折线AE﹣EC运动到点C时停止,点Q从点A沿折线AB﹣BC运动到点C时停止,它们运动的速度都是1cm/s.如果点P,Q同时开始运动,设运动时间为t(s),△APQ的面积为y(cm2),则y与t的函数关系的图象可能是()A.B.C.D.二、填空题三、解答题【版江泰州元工作室所有,必究】权归苏锦数学邹强转载1. (2014年甘肃天水12分)如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=43,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.2. (2014年辽宁营口14分)已知:抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,﹣3).(1)求抛物线的表达式及顶点D的坐标;(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.3. (2014年四川资阳12分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.4.(2013年重庆市B12分)已知:在矩形ABCD中,E为边BC上的一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF。
专题23动态几何之单动点形成的函数关系问题 -《决胜中考压轴题全揭秘知识篇》(学生版)
《中考压轴题全揭秘知识篇》(学生版)专题23:动态几何之单动点形成的函数关系问题一、选择题1. (2014年福建莆田4分)如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是A. B. C. D.2. (2014年福建漳州4分)世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点A沿AO匀速直达土楼中心古井点O处,停留拍照后,从点O沿OB也匀速走到点B,紧接着沿BCA回到南门,下面可以近似地刻画小王与土楼中心O的距离s随时间t变化的图象是A. B. C. D.3. (2014年甘肃白银、定西、平凉、酒泉、临夏3分)如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是A. B. C. D.4. (2014年广西河池3分)点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O、P两点间的距离y与点走过的路程x的函数关系如图,那么点P所走的图形是A .B .C .D .5. (2014年湖北黄石3分)如图,AB是半圆O的直径,点P从点A出发,沿半圆弧AB顺时针方向匀速移动至点B,运动时间为t,△ABP的面积为S,则下列图象能大致刻画S与t之间的关系的是A. B. C. D.6. (2014年湖北黄冈3分)在ΔABC中,BC=10,BC边上的高h=5,点E在AB上,过点E作EF∥BC,交AC于F,D为BC上的一点,连DE、DF.设E到BC的距离为x,则ΔDEF的面积为S关于x的函数图象大致A. B. C. D.7. (2014年湖南岳阳3分)如图,已知点A是直线y=x与反比例函数kyx=(k>0,x>0)的交点,B是kyx=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为A. B. C. D.8. (2014年辽宁营口3分)如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是A. B.C. D. 9. (2014年山东菏泽3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是A.B.C.D.10. (2014年山东烟台3分)如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是A. B. C. D.11. (2014年北京市3分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如下图所示,则该封闭图形可能是xyOA.B.C.D.12.(2014年河南省3分)如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC →CB→BA 运动,最终回到A 点. 设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是A .B .C .D .13.(2014年浙江丽水、衢州3分)如图,AB=4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,1BE DB 2=,作EF ⊥DE 并截取EF=DE ,连结AF 并延长交射线BM 于点C. 设BE x =,BC y =,则y 关于x 的函数解析式是A. 12x y x 4=-- B. 2x y x 1=-- C. 3x y x 1=-- D. 8xy x 4=-- 14. (2013年北京市4分) 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A. B.C.D.15. (2013年天津市3分)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境: ①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x 分,离出发地的距离为y 千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x 分,桶内的水量为y 升;③矩形ABCD 中,AB=4,BC=3,动点P 从点A 出发,依次沿对角线AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x ,当点P 与点A 不重合时,y=S △ABP ;当点P 与点A 重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为A .0B .1C .2D .316. (2013年浙江金华、丽水3分)如图1,在Rt △ABC 中,∠ACB=900,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止。
23 动态几何之单动点形成的函数关系问题(预测题)-决胜中考数学压轴题全揭秘精品
本资源的初衷,是希望通过网络分享,能够为广阔读者提供更好的效劳,为您水平的提高提供坚强的动力和保证 .内容由一线名师原创,立意新,图片精,是非常强的一手资料 .数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来(中|考)的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的"变〞与"不变〞性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中|心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最|值问题、和差问题、定值问题和存在性问题等.解这类题目要"以静制动〞,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.动态几何形成的函数关系和图象问题是动态几何中的根本问题,包括单动点形成的函数关系和图象问题,双(多)动点形成的函数关系和图象问题,线动形成的函数关系和图象问题,面动形成的函数关系和图象问题.本专题原创编写单动点形成的函数关系问题模拟题.在(中|考)压轴题中,单动点形成的函数关系和图象问题命题形式主要有选择题和解答题.动点变化的载体可以是三角形、特殊四边形或圆等平面图形,也可以是直线、双曲线或抛物线等函数图象.单动点形成的函数关系问题的重点和难点在于应用数形结合的思想准确地进行分类.原创模拟预测题1.如图 ,在正方形ABCD中 ,AB =4cm ,动点M从A出发 ,以1cm/s的速度沿折线AB﹣BC运动 ,同时动点N从A出发 ,以2cm/s的速度沿折线AD﹣DC﹣CB运动 ,M ,N第|一次相遇时同时停止运动.设△AMN的面积为y ,运动时间为x ,那么以下图象中能大致反映y与x的函数关系的是 ( )A. B. C. D.【答案】C【解析】试题分析:首|先根据题意 ,运用分类讨论的数学思想求出y关于时间x的函数关系式 ,问题即可解决.点评:该命题主要考查了动点问题的函数图象及其应用问题;解题的关键是准确把握题意 ,运用分类讨论的数学思想正确写出函数关系式.原创模拟预测题2.如图 ,在平面直角坐标系xOy 中 ,抛物线21y x 2x 42=-++交y 轴于点C ,对称轴与x 轴交于点D , 设点P (x ,y )是该抛物线在x 轴上方的一个动点 (与点C 不重合 ) ,△PCD 的面积为S ,求S 关于x 的函数关系式 ,并写出自变量x 的取值范围 .【答案】令y 0= ,即21x 2x 402-++= ,解得x 223=± .设抛物线与x 轴交于点A 、B , (点A 在点B 的左边 ) ,那么A (223- ,0 )、B (223+ ,0 ) .②当点P 在CM 之间时 ,即0<x≤2 ,如答图2 , ∵P (x ,y ) ,且点P 在第|一象限 ,∴PE =y ,OE =x . ∴DE OD OE 2x =-=- .∴()()PDE COD PEOC 111S S S S 4y x 2x y 24y 2x 4222∆∆=+-=+⋅+-⋅-⋅⋅=+-梯形 . 将21y x 2x 42=-++代入上式得:21S x 4x 2=-+ .综上所述,S关于x的函数关系式为:()()221x4x223<x<02S1x4x0<x<2232⎧--⎪⎪=⎨⎪-++⎪⎩.【考点】动点问题,抛物线与x的交点问题,解一元二次方程,由实际问题列函数关系式,分类思想和转换思想的应用.原创模拟预测题3.在平面直角坐标系xOy中 ,一次函数y =2x +2的图象与x轴交于A ,与y轴交于点C ,点B的坐标为 (a ,0 ) , (其中a>0 ) ,直线l过动点M (0 ,m ) (0<m<2 ) ,且与x轴平行 ,并与直线AC、BC分别相交于点D、E ,P点在y轴上 (P点异于C点 )满足PE =CE ,直线PD与x轴交于点Q ,连接PA.(1 )写出A、C两点的坐标;(2 )当0<m<1时 ,假设△PAQ是以P为顶点的倍边三角形 (注:假设△HNK满足HN =2HK ,那么称△HNK 为以H为顶点的倍边三角形 ) ,求出m的值;(3 )当1<m<2时 ,是否存在实数m ,使CD•AQ =PQ•DE ?假设能 ,求出m的值 (用含a的代数式表示 );假设不能 ,请说明理由.【答案】解: (1 )在直线解析式y =2x +2中 ,令y =0 ,得x =﹣1;x =0 ,得y =2 ,∴A (﹣1 ,0 ) ,C (0 ,2 ) .(2 )当0<m<1时 ,依题意画出图形 ,如图1 ,∵PE =CE ,∴直线l是线段PC的垂直平分线 .∴MC =MP .又C (0 ,2 ) ,M (0 ,m ) ,∴P (0 ,2m﹣2 ) .设直线l与y =2x +2交于点D ,(3 )当1<m <2时 ,假设存在实数m ,使CD•AQ =PQ•DE , 依题意画出图形 ,如图2 ,由 (2 )可知 ,OQ =m ﹣1 ,OP =2m ﹣2 , 由勾股定理得:()PQ 5m 1=- .∵A (﹣1 ,0 ) ,Q (m ﹣1 ,0 ) ,B (a ,0 ) , ∴AQ =m ,AB =a +1 .∵OA =1 ,OC =2 ,由勾股定理得:C 5 ∵直线l ∥x 轴 ,∴△CDE ∽△CAB . ∴CD CADE AB=. 又∵CD•AQ =PQ•DE ,∴CD PQDE AQ= .∴CA PQ AB AQ = ,即()5m 15a 1m -=+ ,解得:a 1m a+= .∵1<m <2 ,∴当0<a≤1时 ,m≥2 ,m 不存在;当a >1时 ,a 1m a+= . ∴当1<m <2时 ,假设a >1 ,那么存在实数a 1m a+= ,使CD•AQ =PQ•DE;假设0<a≤1 ,那么m 不存在 . 【解析】原创模拟预测题4. 如图 ,梯形ABCD 中 ,AB ∥DC ,DE ⊥AB ,CB ⊥AB ,且AE = EB = 5 ,DE = 12 ,动点P 从点A 出发 ,沿折线AD -DC -CB 以每秒1个单位长的速度运动到点B 停止 .设运动时间为t 秒 ,y = S △EPB ,那么y 与t 的函数图象大致是【 】A .B .C .D .【答案】A .【考点】动点问题的函数图象 ,直角梯形的性质 ,勾股定理 ,锐角三角函数定义 ,分类思想的应用 . 【分析】分三段考虑 ,①点P 在AD 上运动 ,②点P 在DC 上运动 ,③点P 在BC 上运动 ,分别求出y 与t 的函数表达式 ,继而可得出函数图象:在Rt △ADE 中 ,22AD AE DE 13=+ , ① 点P 在AD 上运动时 ,综上可得选项A 的图象符合 .应选A .原创模拟预测题5. 如图 ,在矩形ABCD 中 ,AB =3 ,BC =4.动点P 从点A 出发沿AC 向终点C 运动 ,同时动点Q 从点B 出发沿BA 向点A 运动 ,到达A 点后立刻以原来的速度沿AB 返回.点P 、Q 运动速度均为每秒1个单位长度 ,当点P 到达点C 时停止运动 ,点Q 也同时停止.连接PQ ,设运动时间为t (t >0 )秒.(1 )求线段AC 的长度;(2 )当点Q 从点B 向点A 运动时 (未到达A 点 ) ,求△APQ 的面积S 关于t 的函数关系式 ,并写出t 的取值范围;(3 )伴随着P 、Q 两点的运动 ,线段PQ 的垂直平分线为l : ①当l 经过点A 时 ,射线QP 交AD 于点E ,求AE 的长; ②当l 经过点B 时 ,求t 的值. 【答案】 (1 )5 (2 )t t t t S 565254)3(212+-=⋅-= , )30(<<t (3 )3、t ,1445=t【解析】试题分析: (1 )在矩形ABCD 中 ,225AC AB BC +=(2 )过点P 作PH ⊥AB 于点H ,AP =t ,AQ =3-t ,由△AHP ∽△ABC ,得CB PH AC AP = ,∴PH =45t , t t t t S 565254)3(212+-=⋅-= ,)30(<<t .(3) ①如图② ,线段PQ 的垂直平分线为l 经过点A ,那么AP =AQ , 即3-t =t ,∴t =1.5 ,∴AP =AQ =1.5 ,延长QP 交AD 于点E ,过点Q 作QO ∥AD 交AC 于点O , 那么,BC QO AB AQ AC AO ==25=⋅=∴AC AB AQ AO , 2=⋅=BC ABAQ OQ ,∴PO =AO -AP =1.由△APE ∽△OPQ ,得3,=⋅=∴=OQ OPAPAE OP AP OQ AE .(ⅱ )如图④ ,当点Q 从A 向B 运动时l 经过点B ,图②考点:矩形、相似三角形点评:此题考查矩形 ,相似三角形 ,要求考生掌握矩形的性质 ,相似三角形的判定方法 ,会判定两个三角形相似原创模拟预测题6.如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q ,连接PQ ,M为PQ中点.(1 )求证:△ADP∽△ABQ;(2 )假设AD =10 ,AB =20 ,点P在边CD上运动,设CP =x ,BM2 =y ,求y与x的函数关系式,并求线段BM的最|小值;(3 )假设AD = a ,AB =252,DP =8 ,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD内部时,求a的取值范围 .【答案】(1 )∵∠QAP =∠BAD =90° ,∴∠QAB =∠PAD .又∵∠ABQ =∠ADP =90° ,∴△ADP∽△ABQ .(2 )∵CP =x ,CD =AB =20 ,∴DP =CD ﹣DP =20x - .∵△ADP ∽△ABQ ,∴AD DP AB QB = ,即1020x20QB-= . ∴QB =402x - .在Rt △BMN 中 ,由勾股定理得()22222215BM MN BN x 15x x 30x 22524⎛⎫=+=+-=-+ ⎪⎝⎭,∴y 与x 的函数关系式为:25y x 30x 2254=-+ (0<x <20 ) . ∵()2255y x 30x 225x 124544=-+=-+ , ∴当x =12即CP =8时 ,y 取得最|小值为45 ,BM 的最|小值为4535= . (3 )设PQ 与AB 交于点E .∵MN 为中位线 ,∴1199MN PC 2224==⨯= . ∵MN >BE ,∴29450>4a 100+ ,解得2a >100 .即a >10 . ∵a>0 ,∴a>10 .∴当点M 落在矩形ABCD 愉部时 ,a 的取值范围为:a>10 .【考点】单动点问题 ,相似三角形的判定和性质 ,三角形中位线定理 ,勾股定理 ,矩形的性质 ,由实际问题列函数关系式 ,二次函数的性质 ,解不等式 .原创模拟预测题7. 如图 ,在半径为2的扇形AOB 中 ,∠AOB =60° ,点C 是弧AB 上的一个动点 (不与点A 、B 重合 )OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .(1 )当BC =1时 ,求线段OD 的长;(2 )在△DOE 中是否存在长度保持不变的边 ?如果存在 ,请指出并求其长度 ,如果不存在 ,请说明理由;(3 )设BD =x ,△DOE 的面积为y ,求y 关于x 的函数关系式 ,并写出它的定义域 .【答案】 (1 )∵点O 是圆心 ,OD ⊥BC ,BC =1 ,∴BD =12BC =12. 又∵OB =2 ,∴2222115OD=OB BD 22⎛⎫-=- ⎪⎝⎭.(3 )∵BD =x ,∴2OD 4x =- .∵∠1 =∠2 ,∠3 =∠4 ,∠AOB =600 . ∴∠DOE =∠2 +∠3 =30° .如图2 ,过D 作DF ⊥OE ,垂足为点F .∴DF =1224x - 32123x -.由△BOD ∽△EDF ,得BD OD=EF DF,即 22x 4x EF 4x -- ,解得EF =12x .∴OE =2x+123x2-.∴2222 11x+123x4x433x+x4xy OE DF=0x1 22228<<----=⋅=⋅⋅().【考点】垂径定理,勾股定理,等边三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,含30度直角三角形的性质.原创模拟预测题8.如图,在△ABC中,∠A =90°,AB =2cm ,AC =4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P ,Q两点同时停止运动,以AP为一边向上作正方形APDE ,过点Q作Q F∥BC ,交AC于点F.设点P 的运动时间为ts ,正方形和梯形重合局部的面积为Scm2.(1 )当t =_________s时,点P与点Q重合;(2 )当t =_________s时,点D在QF上;(3 )当点P在Q ,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.【答案】(1 )1 (2 )(3 )【解析】试题分析:(1 )当点P与点Q重合时,AP =BQ =t ,且AP +BQ =AB =2 ,∴t +t =2 ,解得t =1s ,故填空答案:1.(3 )当P、Q重合时,由(1 )知,此时t =1;当D点在BC上时,如答图2所示,此时AP =BQ =t ,BP =t ,求得t =s ,进一步分析可知此时点E与点F重合;当点P到达B点时,此时t =2.因此当P点在Q ,B两点之间(不包括Q ,B两点)时,其运动过程可分析如下:①当1<t≤时,如答图3所示,此时重合局部为梯形PDGQ.此时AP =BQ =t ,∴AQ =2﹣t ,PQ =AP﹣AQ =2t﹣2;易知△ABC∽△AQF ,可得AF =2AQ ,EF =2EG.∴EF =AF﹣AE =2 (2﹣t )﹣t =4﹣3t ,EG =EF =2﹣t ,∴DG =DE﹣EG =t﹣(2﹣t ) =t﹣2.S =S梯形PDGQ =(PQ +DG )•PD =[ (2t﹣2 ) + (t﹣2 )]•t =t2﹣2t;综上所述,当点P在Q ,B两点之间(不包括Q ,B两点)时,S与t之间的函数关系式为:S =.考点:相似形综合题;勾股定理;正方形的性质;相似三角形的判定与性质.点评:此题是运动型综合题,涉及到动点与动线问题.第(1 ) (2 )问均涉及动点问题,列方程即可求出t的值;第(3 )问涉及动线问题,是此题难点所在,首|先要正确分析动线运动过程,然后再正确计算其对应的面积S.此题难度较大,需要同学们具备良好的空间想象能力和较强的逻辑推理能力.。
人教版八年级下期数学25.动态图形与一次函数的关系
b=-(
3 2
+b)+2
,解得b=
1 4
,得到B3(
7 4
,
1
4 ).
故答案为:A3(
7 4
,0
).
典例精讲
类型二:一次函数中的动点问题
如图,点A的坐标为(-2,0),点B在直线y=x上运 动,当线段AB最短时,点B的坐标为 ( )
解:过典A作例A精C⊥讲直线y=x于C,过C作CD⊥OA于D,
当B和C重合时,线段AB最短,
解题步骤归纳
根据一次函数设 出点的坐标
垂线段最短, 定出动点位置
根据变化 图形性质
根据一次 函数特点
求出点的 坐标
求出点的 坐标
典例精讲 类型一:一次函数与变化的图形
正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点 A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=-x+2上, 则点A3的坐标为 ________.
∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC, ∴AC=OC, 由勾股定理得:2AC2=OA2=4, ∴AC=OC= 由三角形的面积公式得:AC·OC=OA·CD, ∴ × =2CD, ∴CD=1, ∴OD=CD=1, ∴B(-1,-1).
典例精讲
解:设正方形OA1B1C1的边长为t,则B1(t,t),所以t=-t+2.
解得t=1,得到B1(1,1).
设正方形A1A2B2C2的边长为a,则B2(1+a,a),所以a=-(1+a)+2.
解得a=
1 2
,得到B2(
3 2
,
1 ).
2
设正方形A2A3B3C3的边长为b,则B2(
专题24动态几何之多动点形成的函数关系问题 -《决胜中考压轴题全揭秘知识篇》(学生版)
《中考压轴题全揭秘知识篇》(学生版)专题24:动态几何之多动点形成的函数关系问题一、选择题1. (2014年广西桂林3分)如图1,在等腰梯形ABCD中,∠B=60°,P、Q同时从B出发,以每秒1单位长度分别沿B-A-D-C和B-C-D方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平房单位),S与t的函数图象如图2所示,则下列结论错误的是A.当t=4秒时,S=43B.AD=4C .当4≤t≤8时,S=23t D.当t=9秒时,BP平分梯形ABCD的面积2.(2013年山东临沂3分)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为A.B.C.D,3. (2013年山东烟台3分)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是A.AE=6cm B.4sin EBC5∠=C.当0<t≤10时,22y t5=D.当t=12s时,△PBQ是等腰三角形4. (2013年四川南充3分)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P 沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,22y t5=;③直线NH的解析式为5y t272=-+;④若△ABE与△QBP 相似,则t=294秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
动态几何形成的函数关系和图象问题是动态几何中的基本问题,包括单动点形成的函数关系和图象问题,双(多)动点形成的函数关系和图象问题,线动形成的函数关系和图象问题,面动形成的函数关系和图象问题。
本专题原创编写线动点形成的函数关系问题模拟题。
线动问题就是在一些基本几何图形上,设计一个动线(包括平移和旋转),或由点动、面动形成线动,并对线在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究。
在中考压轴题中,线动形成的函数关系问题的重点和难点在于应用数形结合的思想准确地进行分类。
原创模拟预测题1. 如下图所示,已知等腰梯形ABCD ,AD ∥BC ,AD=2,BC=6,AB=DC=线l 垂直于BC ,且从经过点B 的位置向右平移,直至经过点C 的位置停止,设扫过的阴影部分的面积为S ,BP 为x ,则S 关于x 的函数关系式是▲ 。
【答案】。
【考点】动线问题的函数图象,等腰梯形的性质,等腰直角三角形的判定和性质,分类思想的应用。
【分析】如图1,分别过点A ,D 作BC 的垂线,垂足为E ,F ,()()()221x 0x 22S 2x 22x 41x 6x 104x 62⎧≤≤⎪⎪⎪=-≤⎨⎪⎪-+-≤⎪⎩<<∵等腰梯形ABCD ,AD ∥BC ,AD=2,BC=6,AB=DC=∴BE=EF=FC=2。
∴△ABE 是等腰直角三角形。
∴AE=2,∠B=450。
分三段考虑:原创模拟预测题2. 把直线沿x 轴方向平移m 个单位后,与直线的交点在第一象限,则m 的取值范围是【 】A .B .C .D .【答案】A 。
【考点】一次函数图象与平移变换,平面直角坐标系中各象限点的特征,解一元一次不等式组。
联立两直线解析式得:,解得:。
∴交点坐标为。
y x 3=-+y 2x 4=+m >1m <5-5<m <1-5m 1-≤≤y x 3m y 2x 4=-++⎧⎨=+⎩m 1x 32m 10y 3-⎧=⎪⎪⎨+⎪=⎪⎩m 12m 1033-+⎛⎫⎪⎝⎭,根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)。
∵交点在第二象限,∴。
故选A 。
原创模拟预测题3. 为了考察冰川融化的状况,一支科考队在某冰川上设定一个以大本营O 为圆心,半径为4km 圆形考察区域,线段P 1、P 2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n 年,冰川的边界线P 1P 2移动的距离为s (km ),并且s 与n (n 为正整数)的关系是.以O 为原点,建立如图所示的平面直角坐标系,其中P 1、P 2的坐标分别是(-4,9)、(-13,-3).(1)求线段P 1P 2所在的直线对应的函数关系式; (2)求冰川的边界线移动到考察区域所需要的最短时间. 【答案】(1);(2)6. 就求出了s 的值,再代入就可以求出时间. m 1>0m>13m>12m 10m>5>03-⎧⎪⎧⎪⇒⇒⎨⎨+-⎩⎪⎪⎩2575092032+-=n n s 44333y x =+2575092032+-=n n s试题解析:(1)设P 1P 2所在直线对应的函数关系式是,根据题意,得:,解得:,∴直线P 1P 2的解析式是:;答:冰川边界线移动到考察区域所需的最短时间为6年. 考点:二次函数的应用.原创模拟预测题4. 如图,抛物线与y 轴相交于点A ,与过点A 平行于x 轴的直线相交于点B (点B 在第一象限).抛物线的顶点C 在直线OB 上,对称轴与x 轴相交于点D 。
平移抛物线,使其经过点B 、D ,则平移后的抛物线的解析式为 ▲ 。
【答案】。
【考点】待定系数法,曲线上点的坐标与方程的关系,二次函数的性质。
y kx b =+49133k b k b -+=⎧⎨-+=-⎩43433k b ⎧=⎪⎪⎨⎪=⎪⎩44333y x =+29y x bx 2=++23y x x 2=-原创模拟预测题5. 如图,已知抛物线y=ax 2+bx (a≠0)经过A (3,0)、B (4,)两点。
(1)求抛物线的解析式;(2)将抛物线向下平移m 个单位长度后,得到的抛物线与直线OB 只有两个公共点D ,求m 的取值范围。
【答案】(1)∵抛物线y=ax 2+bx (a≠0)经过A (3,0)、B (4,)∴将A 与B 两点坐标代入得:,解得:。
∴抛物线的解析式是。
(2)设直线OB 的解析式为y=k 1x ,由点B (4,),得:=4k 1,解得:k 1=。
∴直线OB 的解析式为y=x 。
4-4-9a 3b 016a 4b 4+=⎧⎨+=-⎩a 1b 3=-⎧⎨=⎩2y x 3x =-+4-4-1--∵抛物线向下平移m 个单位长度后的解析式为:。
∵点D 在直线OB 上,∴可设D (x ,x )。
又∵点D 在直线上,∴,即。
∵抛物线与直线有两个公共点,∴,解得:m <4。
【考点】曲线平移问题,曲线上点的坐标与方程的关系,一元二次方程根的判别式,原创模拟预测题6.如图1,在平面直角坐标系中,直线AB 与轴交于点A ,与轴交于点B ,与直线OC :交于点C .(1)若直线AB 解析式为, ①求点C 的坐标; ②求△OAC 的面积.(2)如图2,作的平分线ON ,若AB⊥ON,垂足为E , OA =4,P 、Q 分别为线段OA 、OE 上的动点,连结AQ 与PQ ,试探索AQ +PQ 是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.x y y x =212y x =-+AOC ∠2y x 3x =-+2y x 3x m =-+--2y x 3x m =-+-2x 3x m x -+-=-2x 4x m 0-+=164m >0∆=-【答案】(1)①C (4,4);②12;(2)存在,3②把代入得,,所以A 点坐标为(6,0), 所以; (2)由题意,在OC 上截取OM =OP ,连结MQ0y =212y x =-+6x =164122OAC S =⨯⨯=∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,考点:一次函数的综合题点评:本题知识点多,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.原创模拟预测题7.如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.(1)当t=5时,请直接写出点D、点P的坐标;(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;(3)点P 在线段AB 或线段BC 上运动时,作PE ⊥x 轴,垂足为点E ,当△PEO 与△BCD 相似时,求出相应的t 值.【答案】(1)D (﹣4,3),P (﹣12,8);(2);(3)6.(2)当点P 在边AB 上时,BP =6﹣t ,由三角形的面积公式得出S=BP •AD ;②当点P 在边BC 上时,BP =t ﹣6,同理得出S =BP •AB ;即可得出结果; (3)设点D (,);分两种情况:①当点P 在边AB 上时,P (,),由和时;分别求出t 的值; ②当点P 在边BC 上时,P (,);由和时,分别求出t 的值即可.试题解析:(1)延长CD 交x 轴于M ,延长BA 交x 轴于N ,如图1所示:则CM ⊥x 轴,BN ⊥x 轴,AD ∥x 轴,BN ∥DM ,∵四边形ABCD 是矩形,∴∠BAD =90°,CD =AB =6,BC =AD =8,∴BD =10,当t =5时,OD =5,∴BO =15,∵AD ∥NO ,∴△ABD ∽△NBO ,∴,即,∴BN =9,NO =12,∴OM =12﹣8=4,DM =9﹣6=3,PN =9﹣1=8,∴D (﹣4,3),P (﹣12,8);424 (06)318 (614)t t S t t -+≤≤⎧=⎨-<≤⎩121245t -35t 485t --85t PE CDOE CB=PE CBOE CD=1145t -+365t +PE CD OE CB =PE CBOE CD=23AB AD BD BN NO BO ===6823BN NO ==②当点P 在边BC 上时,P (,),若时,,解得:t =6;若时,,解得:(不合题意,舍去); 综上所述:当t =6时,△PEO 与△BCD 相似.考点:1.四边形综合题;2.动点型;3.分类讨论;4.分段函数;5.压轴题.1145t -+365t +PE CD OE CB =366518145t t +=-PE CB OE CD =368516145t t +=-19013t =。