ICEM万能网格方法介绍

合集下载

经典:ICEM---网格划分原理

经典:ICEM---网格划分原理
原理示例_2D(正三角形)
建块
×
关联
设置 节点数
× L-grid
12
原理示例_球壳
映射
M1 构造块 M2 关联点、线
映射
13
原理示例_圆柱
O-grid 建块方法
建块
点、线的关联
映射
原始建块方法
14
原理示例_球
L-grid方法
M1 M2
原始方法
15
网格察看
网格察看方法: Premesh-> cut plane/scan plane
37
ICEM网格的导出
网格输出到Ls-dyna中,要在Properties中对各种网格的属性进行设置。这点作者不常 用。这里仅给出最后输出网格的方法。
非结构(mesh)网格:(ls-dyna) 如果四面体网格,生成网格后选择File——〉Export Mesh,选
择求解器,solver选择Ls-dyna , 不需要的网格通过选择none进行 屏蔽,比如,不需要壳网格shell elements 选择 none,点击apply 或ok。 如果是六面体网格,生成pre-mesh后,右键点击model tree——〉 Blocking——〉pre-mesh,选择 Convert to unstruct mesh;
-Edge Params/Mesh-(Part Mesh Setup+Surface Mesh Setup),并 Pre_Mesh (预网格) (model tree-Blocking-pre_mesh) 7.检查网格质量(Blocking-Pre_mesh Quality Histograms……),适当改变关联,优 化网格质量(移动点Blocking- Move Vertex …… 、劈分线Blocking- Edit Edge ……)。(Determinant>0.2;angle>18 °;Warpage<45°) • 8.(统一块的方向索引,)按要求输出网格(在求解器中进一步的网格操作)。

ICEM网格划分原理

ICEM网格划分原理

ICEM网格划分原理ICEM(Icem CFD)是一种用于流体力学计算的网格生成软件,广泛应用于航空航天、汽车、能源、船舶等领域。

ICEM网格划分原理主要包括松劲网格划分、结构化网格划分和非结构化网格划分三个部分。

下面将详细介绍这些原理。

1.松劲网格划分:松劲网格划分顾名思义是指网格的单元格可以灵活地重新排列和处理。

通常用于处理比较复杂的几何形状。

计算机先将几何形状映射到一个参数空间中,然后网格划分软件根据给定的规则生成初始网格。

网格可以通过细化和简化单元格来调整,以适应不同的模拟需求。

优点是可以对复杂几何形状进行灵活处理,但由于网格的复杂性,计算效率较低。

2.结构化网格划分:结构化网格划分是指网格按照一定的规律排列,形成规则的矩形或立方体结构。

这种网格划分方法适用于较简单的几何形状,如长方体或柱体。

结构化网格划分的原理是先将几何形状划分为一定数量的网格单元,然后再根据需求进行细分或剖分,以满足数值计算的精度要求。

结构化网格划分的优点是计算效率高,但对于复杂几何形状的处理能力有限。

3.非结构化网格划分:非结构化网格划分是指网格以不规则的三角形、四面体或多边形等形式排列,适用于包含复杂流动特性的几何形状。

非结构化网格划分的原理是先根据几何形状创建一个初始网格,然后利用边界层法、代数生成法、移动网格法等技术对网格单元进行优化和调整,以满足数值计算的要求。

非结构化网格划分的优点是适用范围广,可以处理复杂的几何形状和边界条件,但计算效率相对较低。

除了以上三种基本的网格划分方法,ICEM还提供了一系列的划分技术和工具,如自适应网格划分、边界层自动生成、网格加密等。

自适应网格划分是指在计算过程中根据流动场的变化,动态地调整网格分辨率和密度,以获得更准确的计算结果。

边界层自动生成是指根据流动特性和模拟条件自动生成边界层,以精确模拟边界层流动。

网格加密则是通过增加网格单元数量来提高计算精度,适用于需要高精度模拟的流动问题。

ICEM---网格划分原理

ICEM---网格划分原理

2021/8/6
28
2021/8/6
29
分析块 ->模仿
1

网格
2
2D增 块补
2021/8/6
30
分析块
2021/8/6
31
结构网格的索引与合并->减少总块数,加速求解
关键:统一索引
y/ j
索引
空间
2021/8/6
索引 空间
x /i
32
结构网格的索引与合并
ICEM中 块的合并
2021/8/6
三个块
实体
L_grid
2021/8/6
18
成块与实体:拓扑分析
实体 基本块
衍生块
2021/8/6
19
几何分解_组合块
2021/8/6
20
几何分解_组合块
2021/8/6
此处复制的每块 的节点都是独立的, 要进行节点的合并
21
构思块举例->找到最优块
2D


O-grid

C-grid(二分之一O-grid) L-grid(四分之一O-grrid)
11
块-关联-设置节点数-网格
原理示例_2D(正三角形)
2021/8/6
建块
×
关联
设置 节点数
× L-grid
12
原理示例_球壳
映射
M1 构造块 M2 关联点、线
2021/8/6
映射
13
原理示例_圆柱
O-grid 建块方法
建块
点、线的关联
映射
原始建块方法
2021/8/6
14
原理示例_球
L-grid方法

ICEM网格划法的学习总结

ICEM网格划法的学习总结

1、ICEM学习ICEM的模型树按照几何、块、网格,局部坐标和part几部分来显示。

在几何中点线面与块中的点线面叫法不同。

如下图所示:Body 在非结构化网格生成过程中,用于定义封闭的面构成的体,定义不同区域的网格。

Part是对几何与块的详细定义。

Part中既可以包含几何,又可以包含块。

可以点、线面、块、网格,但是一条线只存在于一个part中。

网格单元类型:1.网格生成方法:1、AutoBlock2、Patch Dependent3、Patch Independent4.Shrinkwrap壳、面生成网格的过程:2.Tolerance与颜色问题:导入ICEM中的模型首先要进行模型修复。

导入到ICEM中的几何模型要可能会出现三种颜色curve,红颜色的正常,黄色的为不连续的,蓝色的为重复的。

黄色的是单个面的边界(二维),红色的是两个面的交界线,蓝色的是三个/三个以上面相交的交线。

(出现蓝线是没有问题的,表明这个线是两个面以上的共线,只要不出现黄线就可以,黄线表示这儿有裂缝。

)黄线表示出现了洞,可能是面丢失了,造成蓝线的原因是有面体重叠了,你得删除多余的面体。

黄色的线表有孔或缝隙。

绿色的线直接删除。

白色的边和顶点:这些边位于不同的材料体间,它们和被关联的顶点将被映射到这些材料体中最贴近的CAD 表面,而且这些边上的顶点只能在表面内移动。

蓝色的边和顶点:这些边位于体内部。

它们的顶点也是蓝色的,可以在选择之前沿边拖拽。

绿色的边和顶点:这些边和关联的顶点是映射到曲线的,这些顶点只能在它所映射的曲线上移动。

红色的顶点:这些顶点是映射到指定的点的。

导入的模型必须是封闭的面,线是红色的。

自动生成翼型的网格。

3.equivalence将同一空间位置的重复节点消除(通常,消除ID好较大的节点,保留ID好较小的节点),只保留一个节点,一般与“Verify”配合使用,这种方法可通过任何FEM定义(单元的相关定义、MPC等式、载荷、边界条件等)、几何定义和组等实现。

ICEM_CFD_关于-网格编辑方法

ICEM_CFD_关于-网格编辑方法
– 粗糙的网格体在厚度上只有一个网格单元
– 对于突出物, Split Spanning Edges 保证体积 内部的节点
2020/5/25
ICEMCFD/AI*Environment 5.0
19
网格修复
2020/5/25
Move Nodes: 移动节点 热键: m
– 选择节点并移动鼠标
• 映射到指定的位置的节点无法移动
ICEMCFD/AI*Environment 5.0
网格编辑
网格编辑
• 强大易于使用的网格编辑工具
– 操控网格 – 检查网格 – 改进网格质量
• 拥有自动和手动工具 • 编辑导入或创建的网格
2020/5/25
ICEMCFD/AI*Environment 5.0
2
2020/5/25
检查网格
热键: Ctrl-d
?angle网格?aspectratio纵横比?skew歪斜?surfacedeviation曲面偏差?distortion扭曲?maxwarp最大歪曲?minedge最小边icemcfdaienvironment502012389控制质量直方图?在直方图左击选择相应直方条变成粉红色如果show被选中这些单元在显示窗口高亮显示??如果solid被选中这些单元显示为实体轮廓即使有其它单元以框架形式显示?可以选中多个直方条高亮显示一定质量范围的网格单元icemcfdaienvironment5020123810控制质量直方图?y轴拥有很大的刻度范围因为对其小的柱状体感兴趣使用replot按钮重新设置直方图的范围
• 映射到曲线/曲面的节点只能在曲线/曲面上移动
• 内部的体积点可以在屏幕确定的平面上移动
– Move nodes Type-move multiple 类型

ICEM网格划分原理

ICEM网格划分原理
特点:需大量人工操作,可输出结构和非结构网格,网格 质量高,主要应用于简单模型。
2021/10/10
5
认识界面
修 非构 非
改 结造 结
几 构块 构
何网







几何显示控制 块显示控制 part显示控制
2021/10/10
非结 结构 构网 网格 格输 输出 出
几何体视角控制
块的索引控制
6
ANSYS ICEM CFD
2021/10/10
Autodyn中
网格的合并
47
结构网格的索引与合并
2021/10/10
索引空间
48
结构网格的索引与合并
2021/10/10
49
详细操作步骤
• 1.准备几何模型(.X_T,.dwg等),建立工作文件夹(路径及文件名全英文)。 • 2.启动软件,定位工作路径(File-Change Working Directory)。 • 3.导入几何文件(File-Import Geometry)。
数值仿真
时 间 离 散 化 :时 变 偏 微 分 方 程 ->定 常 偏 微 分 方 程
属性参量 本构关系,状态方程,失效模式 动量守恒,质量守恒,能量守恒
......
有限差分法
空 间 离 散 化有 有 限 限 体 元 积 法 法:定常偏微分方程代数方程组
......
环境
物质 能量 信息
Quad Dominant
非结构体网格操作步骤
• 设定线面网格参数值;
• 定义体区域(Geomerty-Creat Body-Material Point,选体
上两点,使其中心在体中);

ICEM网格划分原理

ICEM网格划分原理

• 5.关联点和线。 (Blocking-Associate……)
• 6.设置网格参量〔设置网格尺寸或设置Edge的节点数Blocking- Pre_Mesh Params -Edge Params/Mesh-(Part Mesh Setup+Surface Mesh Setup〕,并 Pre_Mesh 〔预网格〕 (model tree-Blocking-pre_mesh)
面 :劈 分 /合 并 ;
| 增加辅助面
具体操作流程
核心 流程
构思块+创建块 (经验+创造)
惟一捷径:长期不间断练习(恒心)
2构造块
4关联 点线面
6合并块 整理块
8网格后处理
1 导入 几何实体
3创建辅助点/线
5设置节点 生成网格
7输出网格
安心 + 急躁 + 恒心
块-关联-设置节点数-网格
原理例如_2D〔正三角形〕
构造方法自下而上:块的堆积块 : 劈 分 / 合 并 ; 删 除 ; 拉 伸 | 实 体 : 简 化
综合运用
旋 转 ;对 称 ;平 移
增加插值元素
O grid ;C grid ; L grid
点 :劈 分 /合 并 ;移 动 ;关 联 | 增 加 辅 助 点
线 :劈 分 ;关 联
| 增加辅助线
数值仿真
时 间 离 散 化 :时 变 偏 微 分 方 程 ->定 常 偏 微 分 方 程
属性参量 本构关系,状态方程,失效模式 动量守恒,质量守恒,能量守恒
......
有限差分法
空 间 离 散 化有 有 限 限 体 元 积 法 法:定常偏微分方程代数方程组
......

ICEM网格划分教程

ICEM网格划分教程

課程內容大綱:壹、ICEM CFD產品介紹。

貳、DDN介面介紹。

一、Pipe-Junction Geometry。

二、Sphere-Cube Geometry。

參、Tetra(非結構化四面體)網格操作步驟。

一、Pipe-Junction Geometry。

二、Sphere-Cube Geometry。

肆、Prism(邊界薄層)網格操作步驟。

一、Pipe-Junction Geometry。

二、Sphere-Cube Geometry。

伍、Hexa(結構化六面體)網格操作步驟。

一、Pipe-Junction Geometry。

二、Sphere-Cube Geometry。

陸、練習壹、ICEM CFD產品介紹。

一、前言:網格的產生一直是計算流體力學(CFD)分析工程師一大困難,往往在先期的開發中,投入相當大的人力及時間在網格的建置,而一不良的網格往往影響後續計算的時間與收斂性的可否。

針對此一困境,本公司特別由美國(ICEMCFD)引進一套具強大功能的網格產生器,透過簡單的指令操作與極佳的輸出性,讓網格的產生在分秒必爭的工業競爭下,能夠迅速完成。

二、網格類型:ICEMCFD所支援的網格格式包含:六面體(Hexa)及四面體(Tetra)等兩種通用之網格,此外針對物體表面分佈層問題,特別加入了Prism正交性網格。

透過內部品質(Quality)的平滑性(Smooth)運算,能夠迅速產生良好之連續性格點。

三、支援軟體:ICEMCFD之套裝軟體為計算流體力學之網格前處理產生器,可提供搭配結合之計算程式,包含現下工業界常用專業分析軟體,如Ansys、CFD、CFX、Fluent、IDEAS、LS-DYNA、Nastran、PHOENICS、及STAR-CD等將近九十種之CFD軟體之網格。

此外,對產品先期開發上,ICEMCFD可直接接受CAD/CAM繪圖軟體Pre-E 所產生幾何外型之圖檔,另外,亦可接受如stl及igs等常用格式之圖檔,使設計與分析能有一貫性之介面接受度,減少開發上不同檔案的轉換。

ICEM网格划分参数总结(仅可参考,不具备一般性)

ICEM网格划分参数总结(仅可参考,不具备一般性)

ICEM网格划分参数总结(仅可参考,不具备一般性)一、ICEM CFD网格划分1、模型特征长度1353mm,模型最窄边0.22mm,球体计算域半径28000mm2、各部分参数如下:勾选Prism的Parts就是飞机的机身、圆角、细小的面。

Far的球体,其尺寸等于全局网格尺寸。

Fluid 是body指示网格生成位置。

依照图中所示参数所生成的网格部分信息:Total elements : 3560021、Total nodes : 12304013、依照上述参数生成网格,在窄边处网格还存在质量较差的部分,数量不是特别巨大,这一部分网格主要集中在机翼、尾翼的后边缘处。

如下图。

二、Fluent求解1、General:Pressure-Based,Absolute Velocity Formulation,Time steady2、Models:开启能量方程、k-e-RNG湍流模型3、Materials:选择理想气体4、边界条件:将球体计算域far设置为压力远场,马赫数0.75,根据需要调整了风速方向(目前仅尝试了alpha=-5~15、beta=-25,21组实验),温度设定223K。

operating condition中operating pressure设定为26412Pa5、参考值:compute from 球体计算域。

参考面积设置为机翼迎风面积0.20762m^2(参考面积这一部分不知道对不对)6、Solution methods:coupled7、Solution controls:库朗数设置为68、初始化:Hybrid Initialization目前对飞机模型进行了修改,根据上述参数重新划分网格,再次调整风速方向进行了2次计算,还能够收敛。

ICEM网格划分原理ppt课件

ICEM网格划分原理ppt课件

三个块
实体
L_grid
29
成块与实体:拓扑分析
基本块
实体
衍生块
30
几何分解_组合块
31
几何分解_组合块
此处复制的每块 的节点都是独立的, 要进行节点的32合并
构思块举例->找到最优块
2D


O-grid

C-grid(二分之一O-grid) L-grid(四分之一O-grrid)
减少 网格 数量
按Material
AUTODYN不支持ICEM的二维网格,可对ICEM输出的网格 文件info.geo编程修改成.zon的格式再导入。
.geo与.zon文件数据段的差别:同样的数据,不同的顺序
53
ICEM二次开发
Solidworks AutoCAD
ProE UG ……
几何实体
ICEM
网格
Autodyn Ls_dyna
5
认识界面
修 非构 非
改 结造 结
几 构块 构
何网







几何显示控制 块显示控制 part显示控制
非结 结构 构网 网格 格输 输出 出
几何体视角控制
块的索引控制
6
ANSYS ICEM CFD
非结构网格(Mesh)
划分步骤
设置参数 选择方法 自动划分 大多需网格修补
7
认识非结构网格
网格单元 2D:三角形
42
43
分析块 ->模仿
1

网格
2
2D增 块补
44
分析块
45
结构网格的索引与合并->减少总块数,加速求解

Icem划分燃烧器网格步骤简要总结

Icem划分燃烧器网格步骤简要总结

Icem划分燃烧器网格步骤简要总结
一、icem划分结构网格的步骤确实有点繁琐,是一般非结构网格划分的时间的四五倍,
因为燃烧计算普遍都是结构网格,所以学习了下划分结构网格,我个人看法是,一般的气动计算,非结构网格也可以计算的很精确,不一定非要结构网格,下面总结下icem 划分结构网格的一般步骤。

二、把solidworks建好的模型以igs或stp格式导入icem:
三、创建block:
四、划分block并建立block线和几何体线之间的对应关系。

五、给edge定义相应的count数:
六、完成网格划分:
七、输出网格导入fluent:。

ICEM结构和非结构网格划分技巧总结

ICEM结构和非结构网格划分技巧总结

ICEM网格划分技巧总结1.进行后处理前,划分完网格后必须进行边界层设置。

(因为模拟周围存在不同的压力速度等因素)2.边界层的作用:加密叶片周围的网格;捕获叶片周围的压力温度等因素的变化。

3.进行网格拓扑后,线条颜色含义:黄色表示二维一个面上一条线/边或空洞周边(缺失面);绿色:不依赖于集合体独立于几何体,对几何体无影响可作为辅助线。

蓝色:三个或三个以上面的交线;红色:两个面的交线(较理想)4.内流场区域的创建:新建Part然后将所需的所有内流面都Add to Part中,最后看那个口未封闭,通过局部面命令,将面补全;若只是单纯为了划分网格,可仅使用Creat Body 命令进行创建。

5.外流场区域的创建:首先进行模型的拓扑(Repair Geometry)——Surface右键——菜单中选择transparent——查看有无黄色的线——若有一定要进行补全!小结:Create body:两点之间的中点含义为以此点为中心,向外放射所涉及的所有固体/实体物进行包含,此实物体所占的区域,可看作为内流场区域。

6.边界层设置步骤:打开——在Prism中打勾——在Compute Mesh中将打对勾7.在ICEM中输出为非结构网格:File——Mesh——Load from Blocking——replace (Fluent不支持结构网格;ICEM做出的是非结构网格)8.在ICEM输出为结构网格:File——Blocking——Save Multiblock Mesh(前提是以分块的形式生成的网格)9.网格类型有:O、Y、三角形进行Y型切分;P26-P28;删除O型块:用Merge Vertices(2个顶点进行合并)即可删除;10.非结构网格的生成:先Repair Geometry进行检查——不能出现黄色的线——GlobalMesh Parameters——Compute Mesh11.创建无厚度壁面:需要进行面关联P32;创建无壁厚面网格:要将无壁厚面的Part——必在Part Mesh Setup中将Split Wall勾选;12.创建Body原理:以此点为中心向外发散搜寻一个封闭的区域;将物体分出流体区域后划分网格,导入到Fluent会识别。

ICEM网格划法的学习总结

ICEM网格划法的学习总结

1、ICEM学习ICEM的模型树按照几何、块、网格,局部坐标和part几部分来显示。

在几何中点线面与块中的点线面叫法不同。

如下图所示:Body 在非结构化网格生成过程中,用于定义封闭的面构成的体,定义不同区域的网格。

Part是对几何与块的详细定义。

Part中既可以包含几何,又可以包含块。

可以点、线面、块、网格,但是一条线只存在于一个part中。

网格单元类型:1.网格生成方法:1、AutoBlock2、Patch Dependent3、Patch Independent4.Shrinkwrap壳、面生成网格的过程:2.Tolerance与颜色问题:导入ICEM中的模型首先要进行模型修复。

导入到ICEM中的几何模型要可能会出现三种颜色curve,红颜色的正常,黄色的为不连续的,蓝色的为重复的。

黄色的是单个面的边界(二维),红色的是两个面的交界线,蓝色的是三个/三个以上面相交的交线。

(出现蓝线是没有问题的,表明这个线是两个面以上的共线,只要不出现黄线就可以,黄线表示这儿有裂缝。

)黄线表示出现了洞,可能是面丢失了,造成蓝线的原因是有面体重叠了,你得删除多余的面体。

黄色的线表有孔或缝隙。

绿色的线直接删除。

白色的边和顶点:这些边位于不同的材料体间,它们和被关联的顶点将被映射到这些材料体中最贴近的CAD 表面,而且这些边上的顶点只能在表面内移动。

蓝色的边和顶点:这些边位于体内部。

它们的顶点也是蓝色的,可以在选择之前沿边拖拽。

绿色的边和顶点:这些边和关联的顶点是映射到曲线的,这些顶点只能在它所映射的曲线上移动。

红色的顶点:这些顶点是映射到指定的点的。

导入的模型必须是封闭的面,线是红色的。

自动生成翼型的网格。

3.equivalence将同一空间位置的重复节点消除(通常,消除ID好较大的节点,保留ID好较小的节点),只保留一个节点,一般与“Verify”配合使用,这种方法可通过任何FEM定义(单元的相关定义、MPC等式、载荷、边界条件等)、几何定义和组等实现。

ICEM万能网格方法介绍

ICEM万能网格方法介绍

ICEM万能⽹格⽅法介绍ICEM万能⽹格⽅法众所周知,ICEM CFD以其强⼤的⽹格划分能⼒闻名于世,同其他类似⽹格划分软件⼀样,ICEM提供了结构⽹格和⾮结构⽹格划分功能。

结构⽹格质量⼀般较⾼,有利于提⾼数值分析精度,但是对于过于复杂的⼏何体,其缺点也是显⽽易见的:需要耗费⼤量⼈⼒思考块的划分⽅式,且经常造成局部⽹格质量偏低的局⾯。

⽽⾮结构⽹格因其快速、智能化划分⽅式获得了⼈们的青睐,但其⽹格形式⼀般呈四⾯体或三⾓形,不易于流动⽅向垂直,进⽽经常造成数值扩散。

那么有没有更好的⽹格划分⽅式,能够将结构⽹格和⾮结构⽹格的优点结合在⼀起,既能⼜快⼜好的⽣成⽹格、⼜提⾼计算精度呢?答案是肯定的。

CFD资料专营店⽼板在研究所搞数值计算多年,对于⽹格划分更是⾮常熟悉,在这⾥总结了ICEM CFD 中两种核⼼技术----六⾯体核⼼⽹格和混合⽹格技术的使⽤⽅法,这两种办法可以说适⽤于所有复杂⼏何体,是万能的!希望能够为因⼏何结构过于复杂、苦于⽆法做出较⾼质量结构⽹格、却⼜不想使⽤⾮结构⽹格的同仁们提供新的思路,帮你们打通⽹格难关!⼀、六⾯体核⼼⽹格技术ICEM CFD中有⼀种新技术,即六⾯体核⼼⽹格技术,其原理是⾸先⽣成四⾯体⽹格,然后通过先进算法,将⼤部分区域内的四⾯体⽹格破碎、整合成六⾯体⽹格,只有在⼏何⾮常复杂或者边缘地带才会保留四⾯体⽹格。

这样⽣成的⽹格集合了四⾯体⽹格和六⾯体⽹格的优势,既节省时间;因为⼤部分区域是结构⽹格、完全可以与流动⽅向垂直,因⽽能够保证计算精度。

除此之外,六⾯体核⼼⽹格还能在四⾯体⽹格的基础上减少约60%-80%的⽹格数量,⾮常有利于充分利⽤计算机资源,加快计算时间。

效果如图所⽰:(图1)未使⽤六⾯体核⼼⽹格技术的⽹格截⾯(图2)使⽤六⾯体核⼼⽹格技术后的⽹格截⾯操作过程和过程讲解请见⽂件夹“六⾯体核⼼⽹格范例1”及“六⾯体核⼼⽹格范例2”。

⼆、混合⽹格技术对于⼀些⼯程或学术问题,⼏何具有如下特征:部分区域⾮常规则、简单,适合使⽤结构⽹格划分;另外的区域⼏何形状很复杂,使⽤⾮结构⽹格划分更容易。

ICEM网格划分原理

ICEM网格划分原理
-Edge Params/Mesh-(Part Mesh Setup+Surface Mesh Setup),并 Pre_Mesh (预网格) (model tree-Blocking-pre_mesh) 7.检查网格质量(Blocking-Pre_mesh Quality Histograms……),适当改变关联,优 化网格质量(移动点Blocking- Move Vertex …… 、劈分线Blocking- Edit Edge ……)。(Determinant>0.2;angle>18 °;Warpage<45°)
数学建模
解析解 数值解
属性性质
+ 作用机理
数学描述 (微分方程组)
离散化
+ 求解显示
实践是检验别真理的唯一标准
分析结果
+ 修正
整体非线性—>离散,局部应用线性模拟
主流空间离散化:划分网格
• 边线用组合直线段模拟 • 表面用组合平面区域模拟 • 实体用网格单元填充 • 几何离散化的实质:确定网格节点的空间分布 • 网格节点实质:一次(线性)插值点
ICEM网格的导出
网格输出到Ls-dyna中,要在Properties中对各种网格的属性进行设置。这点作者不常 用。这里仅给出最后输出网格的方法。
非结构(mesh)网格:(ls-dyna) 如果四面体网格,生成网格后选择File——〉Export Mesh,选
择求解器,solver选择Ls-dyna , 不需要的网格通过选择none进行 屏蔽,比如,不需要壳网格shell elements 选择 none,点击apply 或ok。 如果是六面体网格,生成pre-mesh后,右键点击model tree—— 〉Blocking——〉pre-mesh,选择 Convert to unstruct mesh ;然后点击output——〉selet solver ,output solver 选择Ls-dyna,

ICEM网格划分步骤

ICEM网格划分步骤

一、ICEM网格划分步骤
1、在solidworks、workbeach等建立模型(最好模型另存为.txt格式

2、在ICEM中导入计算模型
3、建立一个文件夹,并选单位。

最后点击apply,导入模型。

4、修复公差
默认参数,点击Apply。

5、生成BODY。

首先点击该按钮后,用鼠标左键点击模型,在不同的点上点击模型两次,然后点鼠标的中键。

最后单击Apply。

6、指定inlet、outlet、wall-inner、wall-outer 。

选面的时候一定要选完所对应的线。

7.file-GM-save GM as (保存到自己所见的文件夹里面)
8.mess mess尺寸大小,max element(根据模型大小设置)
9.生成mesh computer mesh。

10.用三菱柱网格细化边界特征,点击Prism 点击WALL 设置
Hight ratio 1.3 numlayer 5(表示增长率1.3 一共五层边界层) 视具体情况而定
11.编辑mesh --平滑mesh--UP TO MESH -0.4
12、检查mesh ,出现下面对话框后点击Yes,删掉多余的不相关的线。

12.file save project as
13.out --select solver--写出文件
最后生成如下文件。

icem结构化网格旋转的两种方法

icem结构化网格旋转的两种方法

道在proe中剪切后成单个流道,保存为通用格式.step导入icem之后修复模型然后生成整体block将两个周期面单独设置parts定义周期性,因为是旋转机械所以选择rotational periodic 旋转轴因为我造型的时候是顺着Z轴旋转,所以是0 0 1四个叶片多以每个是90°APPLY会混乱)定义周期点,选择create (一共定义4对),分别选择12点击create ,然后选择34点击create。

56然后create 78然后create(定义完之后,你任意拖动这八个中一个点到其他位置之后,你会发现对应的那个点也会相应的自动移动),下面就是划分网格了(这个你会就不说了哈)横竖各切两刀,为了删除中间的叶片,关联相应点关联好之后就成现在这个样子。

你会发现中间后来增加的几个点也相应的成了周期点,这里是自动的不需要定义了,你可以拖动后来产生的几个点,发现拖动一个另外一个自动会变化位置,删除叶片上的block,生成网格已经好了,特别注意1和2,3和4 ,5和6这几个edge上面的节点数一定要相等,可以先肉眼观察,如果看不出来,可以用,看nodes是不是一样就好了,这样旋转之后就不会有问题了。

先保存一下,以免以后出错导入网格在旋转复制mesh之前,按照上图所示删除周期面即pre,apply旋转网格,copy3个,因为已经有一个了。

Merger nodes选中,这样周期点就自动合并消失了,旋转轴造型的时候定义了Z轴,4个叶片故角度为90°。

Certer point 选择origin就可以了,select就全选。

现在导入cfx中观察,情况很好,周期面已经消除如果周期面没有在旋转复制之前删除,或者节点不对应就会出现周期面不消失的情况注:本例子来自仿真论坛的foreverchenpeng会员,别无它意,大家相互交流,谢谢foreverchenpeng会员的奉献!!2.此模型非常简单,所以建网的过程,我就说的稍微简略一些。

ICEM网格划分原理

ICEM网格划分原理

需要修补网格
精选课件
12
ANSYS ICEM CFD
y/j
结构 能以非结构的形式输出
1. 几何实体 2. 反应特征的块
基本划分步骤
3点线关联
4设置节点 生成网格
5.网格后处理
精选课件
13
认识结构网格
精选课件
14
精选课件
15
精选课件
16
精选课件
17
原理:一一映射 y=f(x)
对2D的ICEM网格,再将2Dnoinput.exe文件放入文件夹中,运行产 生文件info.zon。
非结构(mesh)网格:(Autodyn)
如果四面体网格,生成网格后选择File——〉Export Mesh ,选择求解器,solver选择autodyn ,autodyn compatible file输出filename.k 不需要的网格通过选择none进行屏蔽,比 如,不需要壳网格shell elements 选择 none,点击apply或ok 。
G
实体 eom etry
减少输出的块 ( 主 要 操 作 对 象 )
|( 辅 助 操 作 对 象 )
自上而下:块的切+除 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
长期不间断练习恒心4关联点线面点线面2构造块2构造块6合并块整理块整理块8网格后处理格后处流程1导入几何实体5设置节点生成网格7输出网格3创建辅助点线安心耐心恒心原理示例2d正三角形块关联设置节点数网格建块建块lgrid关联设置节点数原理示例球壳构造块映射m1关联点线映射m2原理示例圆柱建块映射映射ogrid建块方法原始建块方法点线的关联原理示例球m1lgrid方法m2原始方法网格察看方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ICEM万能网格方法
众所周知,ICEM CFD以其强大的网格划分能力闻名于世,同其他类似网格划分软件一样,ICEM提供了结构网格和非结构网格划分功能。

结构网格质量一般较高,有利于提高数值分析精度,但是对于过于复杂的几何体,其缺点也是显而易见的:需要耗费大量人力思考块的划分方式,且经常造成局部网格质量偏低的局面。

而非结构网格因其快速、智能化划分方式获得了人们的青睐,但其网格形式一般呈四面体或三角形,不易于流动方向垂直,进而经常造成数值扩散。

那么有没有更好的网格划分方式,能够将结构网格和非结构网格的优点结合在一起,既能又快又好的生成网格、又提高计算精度呢?答案是肯定的。

CFD资料专营店老板在研究所搞数值计算多年,对于网格划分更是非常熟悉,在这里总结了ICEM CFD中两种核心技术----六面体核心网格和混合网格技术的使用方法,这两种办法可以说适用于所有复杂几何体,是万能的!希望能够为因几何结构过于复杂、苦于无法做出较高质量结构网格、却又不想使用非结构网格的同仁们提供新的思路,帮你们打通网格难关!
一、六面体核心网格技术
ICEM CFD中有一种新技术,即六面体核心网格技术,其原理是首先生成四面体网格,然后通过先进算法,将大部分区域内的四面体网格破碎、整合成六面体网格,只有在几何非常复杂或者边缘地带才会保留四面体网格。

这样生成的网格集合了四面体网格和六面体网格的优势,既节省时间;因为大部分区域是结构网格、完全可以与流
动方向垂直,因而能够保证计算精度。

除此之外,六面体核心网格还能在四面体网格的基础上减少约60%-80%的网格数量,非常有利于充分利用计算机资源,加快计算时间。

效果如图所示:
(图1)未使用六面体核心网格技术的网格截面
(图2)使用六面体核心网格技术后的网格截面
操作过程和过程讲解请见文件夹“六面体核心网格范例1”及“六面体核心网格范例2”。

二、混合网格技术
对于一些工程或学术问题,几何具有如下特征:部分区域非常规则、简单,适合使用结构网格划分;另外的区域几何形状很复杂,使用非结构网格划分更容易。

比如下面两个几何:
这两个几何的就非常适用于混合网格进行分区划分---原理就是建立辅助面(即interface交界面),将几何划分成不同的区域,然后分别在各个区域使用结构化或非结构化网格,最后将各个部分的网格节点对齐。

详细过程请见文件夹“混合网格范例”。

相关文档
最新文档