显微镜与望远镜的组装及放大率的测定.doc
0自组望远镜或显微镜并测量其视觉放大率
![0自组望远镜或显微镜并测量其视觉放大率](https://img.taocdn.com/s3/m/b447f9045727a5e9856a6142.png)
自组望远镜或显微镜并测量其视觉放大率望远镜和显微镜都是助视光学仪器,是观察或测量时常用的仪器,它们有时也是其他一些光学仪器(如分光计等)的重要组件。
因此,了解它们的构造原理并掌握它们的使用方法不仅有利于加深理解透镜成像的规律,而且能为正确使用其他光学仪器打下基础。
实验目的(1)了解望远镜和显微镜的构造及其放大原理,并掌握其使用方法;(2)了解视放大率等的概念并掌握其测量方法;(3)进一步熟悉透镜成像规律。
实验原理望远镜主要用于观察远处的目标,显微镜主要用于观察近处的微小物体,它们的作用都是增大被观察物对人眼的张角,起着视角放大的作用。
两者的光学系统比较相似,都是由物镜和目镜组成,物体先通过物镜成一中间像,再通过目镜来观察。
两者对物体的放大能力都是通过视放大率来表示(在本实验中我们只关心放大率的大小,不考虑其符号)。
望远镜(telescope)基本的望远系统是由物镜和目镜组成的无焦系统,物镜的像方焦点与目镜的物方焦点重合。
无穷远物体发出的光经物镜后在物镜焦平面上成一倒立缩小的实像,再利用目镜(短焦距)将此实像成像于无穷远处,使视角增大,利于人眼观察。
为了利于对远处物体的观测,望远镜物镜的焦距一般较长。
图1 望远镜的基本光学系统图图1所示的望远镜,物镜与目镜均为会聚透镜,这种望远镜称为开普勒望远镜,其优点是可在物镜与目镜之间的中间像平面上安装分划板(其上有叉丝和刻尺)以供瞄准或测量。
实验装置中用到的望远镜(如分光计上的望远镜、光杠杆系统中的望远镜等)均为开普勒望远镜,在中间像平面上装有分划板。
实际上,为方便人眼观察,物体经望远镜后一般不是成像于无穷远,而是成虚像于人眼明视距离处;而且为实现对远近不同物体的观察,物镜与目镜的间距即镜筒长度可调,物镜的像方焦点与目镜的物方焦点可能会不重合。
使用望远镜时,观察者应先调目镜(这称为视度调节)看清分划板,使分划板成像于人眼明视距离处,再调节望远镜镜筒长度(这称为调焦),即改变物镜、目镜间距,使被观察物清晰可见并与分划板叉丝无视差(中间像落在分划板平面上)。
实验四十-组装显微镜与望远镜
![实验四十-组装显微镜与望远镜](https://img.taocdn.com/s3/m/fd4553ff76c66137ef0619a3.png)
望远镜与显微镜的组装望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜主要用来帮助人们观察近处的微小物体,而望远镜则主要是帮助人们观察远处的目标,它们常被组合在其他光学仪器中。
为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由一个物镜和一个目镜组成。
望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用。
一、自组望远镜◆ 实验目的(1)了解望远镜的基本原理和结构(2)组装望远镜(3)测量望远镜的放大率◆ 实验原理最简单的望远镜是由一片长焦距的凸透镜作为物镜,用一短焦距的凸透镜作为目镜组合而成。
远处的物经过物镜在其后焦面附近成一缩小的倒立实像,物镜的像方焦平面与目镜的物方焦平面重合。
而目镜起一放大镜的作用,把这个倒立的实像再放大成一个正立的像,图一为开普勒望远镜的光路示意图:图一 开普勒望远镜的光路示意图用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”。
用望远镜和显微镜观察物体时,一般视角均甚小,因此视角之比可用其正切之比代替,于是光学仪器的放大率M 可近似地写成00l l tg tg M e ==αα式中l 0是被测物的大小PQ ,l 是在物体所处平面上被测物的虚像的大小P ”Q ”在实验中,为了把放大的虚像l 与l 0直接比较,常用目测法来进行测量。
对于望远镜,其方法是:选一个标尺作为被测物,并将它安放在距物镜大于1.5米处,用一只眼睛直接观察标尺,另一只眼睛通过望远镜观看标尺的像。
调节望远镜的目镜,使标尺和标尺的像重合且没有视差,读出标尺和标尺像重合区段内相对应的长度,即可得到望远镜的放大率。
◆ 实验仪器1、标尺 (000-055cm )2、物镜Lo(mm f 225'0=)3、5、二维调节架(SZ-07)4、目镜Le (mm f e 45'=)6、三维平移底座(SZ-07)7、二维平移底座(SZ-02)图二 组装望远镜装置图 图三 放大标尺像与实际标尺的比对图四 组装望远镜实物图◆ 实验内容1、组装开普勒望远镜:按图二放好各元器件,调节同轴等高,固定目镜,移动物镜,向约3m 远处的标尺调焦,使一只眼睛在目镜中间看到清晰的标尺像。
组装望远镜和显微镜
![组装望远镜和显微镜](https://img.taocdn.com/s3/m/13bcf406a6c30c2259019ea3.png)
组装望远镜和显微镜人眼很难分辨极远处或近而细微的物体细节,在一般照明情况下,正常人的眼睛在明视距离(25cm)能分辨相距约0.05mm的两个光点。
当两光点间距离小于0.05mm时,人眼就无法分辨,我们把这个极限称为人眼的分辨本领。
这时两光点对人眼球中心的张角约为1´,观察物体要想能分辨细节,最简单的办法是使视角扩大。
显微镜和望远镜就是扩大人眼球视角的目视光学仪器。
【实验目的】组装望远镜和显微镜,并测定视角放大率。
【实验要求】(1)用两块凸透镜在光具座上组装望远镜。
(2)用两块凸透镜组装显微镜,并测其放大率。
(3)画出光路图和写出计算公式。
【实验提示】(1)望远镜是用来观察远距离目标的目视光学仪器。
通常由两个共轴光学系统组成,我们把他们简化为两个会聚透镜,其中向着物方向的称为物镜,接近人眼的称为目镜。
物镜的作用是将无穷远物体发出的光会聚后在它的像方焦面上生成一倒立实像,然后经目镜把实像放大,因此实像同时位于目镜的物方焦面处。
用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使中间实像落在目镜物方焦面上,这就是望远镜的“调焦”。
一般测量望远镜除物镜和目镜可在镜筒中做相对移动外,在目镜物方焦面上还附有叉丝或标尺分划格。
因此在使用望远镜时,首先应调节目镜筒直到能清晰地看到叉丝为止,然后调目镜和叉丝整体与物镜之间的距离,即对被观察物调焦。
对于望远镜来说,除了满足以上物像位置的要求外,它的视角放大率必须大于 1.对于目视光学仪器的视角放大率定义为:通过仪器观察时,物体的像对人眼的张角的正切与在适当条件下直接用眼睛观察时物体的像对眼睛的张角的正切之比。
(2)显微镜是用来观察近距离微小目标的目视光学仪器,它也是由物镜和目镜两个共轴光学系统组成的。
物体首先经过物镜在物方焦面上生成一个倒立的放大实像,再经过目镜放大成正立像于无穷远处。
通常,各国生产的通用显微镜都采用标准筒长(L=16cm)。
由于筒长固定,因此实际上显微镜的调焦是调节被测物与物镜的距离。
望远镜的搭建和放大率测量实验小结
![望远镜的搭建和放大率测量实验小结](https://img.taocdn.com/s3/m/db8c344e8f9951e79b89680203d8ce2f01666566.png)
望远镜的搭建和放大率测量实验小结
我们需要准备一些材料,包括三脚架、目镜、物镜、焦距调节器等。
然后,我们将目镜和物镜安装在三脚架上,并使用焦距调节器调整它们的距离,使得物体能够清晰地成像在目镜中。
最后,我们可以通过旋转物镜来调整放大率。
在实验过程中,我们发现了一个有趣的现象:当放大率增大时,物体的大小也会随之增大。
这是因为放大率是物体在目镜中的像与实际物体大小之比。
因此,当我们增大放大率时,相当于将物体放大了同样的倍数,从而使其看起来更大。
除了观察天体运动外,望远镜还可以用于观察远处的建筑、风景等。
通过调整焦距和放大率,我们可以获得更加清晰和详细的图像。
此外,望远镜还可以帮助我们更好地了解宇宙和自然界的奥秘。
望远镜是一种非常有用的工具,它可以帮助我们观察到平时无法看到的事物。
通过本次实验,我们不仅掌握了望远镜的搭建和使用方法,还深入了解了它的原理和应用。
希望今后能够继续探索更多的科学知识!。
实验四十_组装显微镜与望远镜.
![实验四十_组装显微镜与望远镜.](https://img.taocdn.com/s3/m/e25dd11269eae009581beca2.png)
望远镜与显微镜的组装望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜主要用来帮助人们观察近处的微小物体,而望远镜则主要是帮助人们观察远处的目标,它们常被组合在其他光学仪器中。
为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由一个物镜和一个目镜组成。
望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用。
一、自组望远镜◆ 实验目的(1)了解望远镜的基本原理和结构(2)组装望远镜(3)测量望远镜的放大率◆ 实验原理最简单的望远镜是由一片长焦距的凸透镜作为物镜,用一短焦距的凸透镜作为目镜组合而成。
远处的物经过物镜在其后焦面附近成一缩小的倒立实像,物镜的像方焦平面与目镜的物方焦平面重合。
而目镜起一放大镜的作用,把这个倒立的实像再放大成一个正立的像,图一为开普勒望远镜的光路示意图:图一 开普勒望远镜的光路示意图用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”。
用望远镜和显微镜观察物体时,一般视角均甚小,因此视角之比可用其正切之比代替,于是光学仪器的放大率M 可近似地写成00l l tg tg M e ==αα式中l 0是被测物的大小PQ ,l 是在物体所处平面上被测物的虚像的大小P ”Q ”在实验中,为了把放大的虚像l 与l 0直接比较,常用目测法来进行测量。
对于望远镜,其方法是:选一个标尺作为被测物,并将它安放在距物镜大于1.5米处,用一只眼睛直接观察标尺,另一只眼睛通过望远镜观看标尺的像。
调节望远镜的目镜,使标尺和标尺的像重合且没有视差,读出标尺和标尺像重合区段内相对应的长度,即可得到望远镜的放大率。
◆ 实验仪器1、标尺 (000-055cm )2、物镜Lo(mm f 225'0=)3、5、二维调节架(SZ-07)4、目镜Le (mm f e 45'=)6、三维平移底座(SZ-07)7、二维平移底座(SZ-02)图二 组装望远镜装置图 图三 放大标尺像与实际标尺的比对图四 组装望远镜实物图◆ 实验内容1、组装开普勒望远镜:按图二放好各元器件,调节同轴等高,固定目镜,移动物镜,向约3m 远处的标尺调焦,使一只眼睛在目镜中间看到清晰的标尺像。
实验五 显微镜望远镜放大倍数的测定
![实验五 显微镜望远镜放大倍数的测定](https://img.taocdn.com/s3/m/339b440403d8ce2f0066231d.png)
实验五显微镜与望远镜放大本领的测定望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜通过放大物所成的像,来帮助人们观察近处的微小物体,而望远镜则是通过放大远处物的视角,帮助人们观察远处的目标,它们常被组合在其他光学仪器中使用.为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由物镜和目镜组成.望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用.光学望远镜从诞生至今将近400年,出现了折射望远镜、反射望远镜、折反射式望远镜和空间望远镜,不断推动着天文学和物理学的发展.长久以来,人们仰望天空,看见日月星辰东升西落,有过天圆地方、地心说、日心说等宇宙模型.但过去人们只能用肉眼对星空进行观察,观测范围非常局限,所得的数据资料也就非常有限.凭借着物理学的不断发展,多种望远镜被制造出来,越来越精密,推动着天文学和物理学不断向前发展,人类的视野也变得更深更广.·实验目的1.熟悉显微镜和望远镜的构造及其放大原理;2.进一步熟悉透镜成像规律及光学系统的共轴调节方法;3.学会一种测定显微镜和望远镜放大本领的方法;4.掌握显微镜、望远镜的正确使用方法.·实验仪器显微镜,望远镜,标尺,标准石英尺,测微目镜,照明灯.图5-1 显微镜的结构显微镜是一种复杂的光学仪器.它是医学实验常用工具之一,其作用是将观察的标本放大,以便观察和分析.一般光学显微镜包括机械装置和光学系统两大部分,如图5-1所示.一、机械装置1. 镜座:位于最底部的构造,为整个显微镜的基座,用以支持着整个镜体,起稳固作用.2. 镜柱:为垂直于镜座上的短柱,用以支持镜臂.3. 镜臂:为支持镜筒和镜台的呈弓形结构的部分,是取用显微镜时握拿的部分.镜筒直立式光镜在镜臂与其下方的镜柱之间有一倾斜关节,可使镜筒向后倾斜一定角度以方便观察,但使用时倾斜角度不应超过45°,否则显微镜由于重心偏移容易翻倒.4. 调节器:也称调焦螺旋,为调节焦距的装置,位于镜臂的上端(镜筒直立式光镜)或下端(镜筒倾斜式光镜),分粗调节器(大螺旋)和细调节器(小螺旋)两种.粗调节器可使镜筒或镜台作大幅度的升降,适于低倍镜观察时调焦.细调节器可使镜筒或镜台缓慢或较小幅度地升降,在低倍镜下用粗调节器找到物体后,在高倍镜和油镜下进行焦距的精细调节,藉以对物体不同层次、深度的结构做细致地观察.5. 镜筒:位于镜臂的前方,它是一个齿状脊板与调节器相接的圆筒状结构,上端装载目镜,下端连接物镜转换器.根据镜筒的数目,光镜可分为单筒式和双筒式.单筒光镜又分为直立式和倾斜式两种,镜筒直立式光镜的目镜与物镜的光轴在同一直线上,而镜筒倾斜式光镜的目镜与物镜的中心线互成45°角,在镜筒中装有使光线转折45°的棱镜;双筒式光镜的镜筒均为倾斜式的.6. 物镜转换器:又称旋转盘,位于镜筒下端的一个可旋转的凹形圆盘上,一般装有2~4个放大倍数不同的接物镜.旋转它就可以转换接物镜.旋转盘边缘有一定卡,当旋至物镜和镜筒成直线时,就发出“咔”的响声,这时方可观察玻片标本.7. 载物台:位于镜臂下面的平台,用以承放玻片标本.载物台中央有一圆形的通光孔,光线可以通过它由下向上反射.(二)光学系统1. 反光镜:是装在镜台下面、镜柱前方的一面可转动的圆镜,它有平凹两面.平面镜聚光力弱,适合光线较强时使用.凹面镜聚光力强,适于光线较弱时使用.转动反光镜,可将光源反射到聚光镜上,再经镜台中央圆孔照明标本.2. 聚光镜:在镜台下方,是一组透镜,用以聚集光线增强视野的亮度.镜台上方有一调节旋钮,转动它可升降聚光镜.往上升时增强反射光,下降时减弱反射光.3. 可变光栏:是在聚光镜底部的一个圆环状结构.它装有多片半月形的薄金属片,叠合在中央成圆孔形.在圆环外缘有一突起的小柄,拨动它可使金属片分开或合拢,用以控制光线的强弱,使物像变得更清晰.4. 目镜:装在镜筒上端,其上一般刻有放大倍数(如5×,10×).目镜内常装有一指示针,用以指示要观察的某一部分.5. 物镜:装在物镜转换器上,一般分低倍镜、高倍镜和油镜三种.低倍镜镜体较短,放大倍数小;高倍镜镜体较长,放大倍数较大;油镜镜体最长,放大倍数最大(在镜体上刻有数字,低倍镜一般有4×、10×,高倍镜一般有40×、45×,油镜一般是90×、100×,×表示放大倍数).测微目镜由目镜、分划板、读数鼓轮与连接装置等组成.目镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高测量准确程度.测微目镜的基本结构剖视图如图5-2所示.目镜镜头通过调焦螺纹固定在目镜外壳中部.外壳内有一块刻有十字丝的透明叉丝板,外壳右侧装有测距螺旋(即千分尺)系统,转动测距手轮,其螺杆将带动叉丝板移动.叉丝板的移动量可通过手轮上的千分尺测出.透明十字叉丝板后面是一个固定的玻璃标尺,标尺上刻有毫米尺,每格1mm,量程为8mm . 旋转读数鼓轮,刻有十字叉丝的可动分划板就可以左右移动.读数鼓轮每旋转一周,叉丝移动1mm ,鼓轮上有100个分格,故每一格对应的读数为0.01mm ,再估读一位.其读数方法和螺旋测微器差不多.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.测微目镜通常用来测金属丝、干涉条纹等的宽度.测量时,使双线与待测物质边缘平行,叉丝交点与待测物的边缘重合,开始计数.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.图2 测微目镜的基本结构剖视图 ·实验原理最简单的望远镜与显微镜都是由目镜和物镜两个透镜共轴所组成.物镜的像方焦点到目镜的物方焦点之间的距离(即光学间隔)为Δ.望远镜用来观察远处的物体,显微镜则是用来观察近处的微小物体,他们的放大作用都可以用放大本领M 来描述,可表示为:OE M ααt a n t a n = (5-1) 式中E α为像所张的视角;O α为物体直接对眼睛所张的视角.一、望远镜的构造及其放大原理望远镜由物镜和目镜组成,物镜用反射镜的称反射式望远镜,物镜用透镜的称折射式望远镜.目镜是会聚透镜的称为开普勒望远镜,目镜是发散透镜的称为伽利略望远镜.对于望远镜,两透镜的光学间隔Δ≈0,即物镜的像方焦点与目镜的物方焦点近乎重合.图5-3所示为开普勒望远镜的光路示意图.图中L 0为物镜(焦距较长),Le 为目镜(焦距较短),远处物体PQ 经物镜L O 后在物镜的像方焦点F'上成一倒立实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离.像P'Q'一般是缩小的.近乎位于目镜的物方焦面上,经目镜L E 放大后成虚像P"Q"于观察者眼睛的明视距离与无穷远之间.用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”.图5-3 开普勒望远镜的光路示意图由理论计算可得望远镜的放大本领为: ''t a n t a n E O OE O E O E f f f Q P f Q P M =''''=≈=αααα (5-2) 式中f o ′为物镜的焦距,f E ′为目镜的焦距,上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大本领则越大.开普勒望远镜(f o ′>0,(f E ′>0),放大本领M 为负值,系统成倒立的像;而对伽利略望远镜(f o ′>0,(f E ′<0),放大本领M 为正值,系统成正立的像.因实际观察时,物体并不真正处于无穷远,像亦不成在无穷远,但式(5-2)仍近似适用.二、显微镜的构造及其放大原理显微镜和望远镜的光学系统十分相似,都是由物镜和目镜组成.显微镜的结构一般认为是由两个会聚透镜共轴组成,如图5-4所示,实物PQ 经物镜L 0成倒立实像P'Q'于目镜Le 的物方焦点Fe 的内侧,再经目镜Le 成放大的虚像P"Q"于人眼的明视距离处或无穷远处.理论计算可得显微镜的放大本领为: ''E O O E O f s f M M M ⋅∆-== (5-3)式中O M 为物镜的放大本领,M E 是目镜的放大本领,f o ′,f E ′ 为物镜和目镜的像方焦距,Δ是显微镜的光学间隔,S O =-25cm 为正常人眼的明视距离.由上式可知,显微镜的镜筒越长,物镜和目镜的焦距越短,放大本领就越大,通常物镜和目镜的放大本领,是标在镜头上的.图5-4 显微镜光路图用望远镜或显微镜观察物体时,一般视角均甚小,因此视角之比可用其正切之比代替,于是光学仪器的放大本领M 可近似地写成 OE O l l M ==ααtan tan 式中l 0是被测物的大小PQ ,l 是在物体所处平面上被测物的虚像的大小P"Q". ·实验内容与步骤一、显微镜放大倍数的测定1.将标准石英尺放在显微镜载物台上夹住.2.选择适当倍率的目镜,调节聚光镜、反光镜及光阑,使目镜中观察到强弱适当而均匀的视场.3.熟悉显微镜的机械结构,学会调节使用,先用低倍物镜对石英尺进行调焦,先粗调、后微调,直至目镜视场中观察到最清晰的像,如果观察物的像不在视场中间,则可调节载物台移动手轮,将其移至视场中心进行观察.4.将目镜卸下,换上测微目镜,首先对测微目镜的目镜进行调焦,看清分划板,在调节显微镜的物镜调焦手轮,至标尺的像最清晰且无视差.5.转动测微目镜使分划板上“双线”与标准石英尺的刻度(石英尺刻度部分全长lmm ,共分100小格,每格宽O .01mm)平行,然后将叉丝移至和显微镜视场中标准石英尺某一刻度重合,记下测微目镜的读数1x .转动测微目镜鼓轮,使叉丝在标准石英尺上移动5格,这时叉丝与标准石英尺上另一刻度线重合,记下测微目镜的读数2x .依此每隔5格记录一组数据,共记录10组数据.6.用逐差法处理数据,求出标尺5格对应像的大小,求其平均值,计算出物镜的放大本领.二、望远镜放大本领的测定1.将望远镜夹好,在垂直望远镜光轴方向距离目镜25cm 处放置一毫米分度的米尺A ,调节望远镜调焦手轮,把望远镜调焦到无穷远处,即望远镜能看清楚远处的物体.2.在A 尺上套上两白纸条,其间距可调,如图5-5所示.一只眼睛通过望远镜观察米尺的像B ,另一只眼睛直接看米尺A ,经过多次观察,调节眼睛使得米尺A 与望远镜中的米尺像B 重合.以B 尺为标尺,选定A 尺的上两纸带的间距为10格,记录其相当于B 尺上的格数0l ,重复3-5次,算出望远镜的放大倍数,取其平均值,并计算平均绝对偏差.3.取两纸带的间隔分别为8格和13格,重复上述步骤进行测量.图5-5 望远镜放大倍数测定原理·实验数据测量1.用测微目镜测经显微镜放大的石英标尺像刻度间隔数据表测量间隔:每隔5小格标尺像刻度读一次数序号i1 2 3 4 5 6 7 8 9 10 x i (mm)2.望远镜视角放大率测量数据表标记实际长度l 0 (mm)80 100 130 重复测量序号1 2 3 1 2 3 1 2 3 上缘对应镜内刻度Y u (mm)下缘对应镜内刻度Y l (mm)镜内对应长度 l =Y l -Y u (mm)望远镜放大率M = l 0/ l5 4 8 3 7 26 548372 6l 0l 标尺A 标尺B·实验注意事项1.注意不要用手摸透镜、反射镜等光学元件的光学表面,,以免在光学面上留下痕迹,使成像模糊或无法成像.2.在实验过程中,注意光学仪器要轻拿轻放,勿使仪器受到震动和磨损.3.用测微目镜测量时要注意回程误差.4.测望远镜放大本领时,两只眼睛要同时观察,同时看清A、B两尺的像,并将A、B两尺的像重合在一起时,方可读数.·历史渊源与应用前景望远镜和显微镜的发明是17世纪光学的伟大成就.显微镜的发明,使人类第一次发现了微生物和细胞生存的世界.第一架显微镜由荷铸眼镜匠詹森父子发明,后由伽利略改良而成.最初的显微镜只能放大50-200倍,到1932年德国的诺尔和鲁斯卡发明了世界第一台电子显微镜,它是利用德布罗依物质波原理制造而成的,它能放大1万倍,到20世纪90年代发展到放大率可达200万倍,由此人们发现了原子世界.1983年人们又发明了基于量子力学原理造而成的扫描隧道显微镜,开创了纳米科技的观测手段.后来人们又发明了原子力显微镜,它是根据扫描隧道显微镜的原理设计的高速拍摄三维图像的显微镜.可观察大分子在体内的活动变化.1608年荷兰的眼睛匠利佩希偶然地制造出了第一架望远镜,它的目镜为一凹透镜,被称为荷兰望远镜.发明望远镜的消息迅速在欧洲传开,1609年伽利略得悉这一消息后,立即动手制作,并把自制的望远镜第一个指向天空,首先发现了月亮上的山脉和火山口.伽利略设计了由两个凸透镜构成的开普勒望远镜,第一架开普勒望远镜由天文学家沙伊纳制成.1668年,牛顿(Newton,I.1642~1727)用2.5 厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,制成了反射望远镜.1672年牛顿有制造了第二架反射望远镜,全长1.2m,口径为2m,并把它献给了英国皇家学会.往后的几百年间,人们提出了反射镜的多种设计方案.1918年末,口径为254厘米的胡克望远镜(Hooker telescope)投入使用,它第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃(Hubble,E.P.1889~1953)的宇宙膨胀理论就是用胡克望远镜观测的结果.相对于折射镜,反射镜没有色差,容易制作;但它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等.随后又出现了能兼顾折射和反射两种望远镜优点的折反射式望远镜,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱.它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良.适于巡天摄影和观测星云、彗星、流星等天体.自1970年代以来,在望远镜的制造方面有了许多新技术,涉及光学、力学、计算机、自动控制和精密机械等领域,使望远镜的制造突破了镜面口径的局限.然而,由于地球大气对电磁波的吸收作用,地面观测具有严重的局限性.物理学在不断地发展,直到人造卫星上天,航天技术逐渐成熟,空间天文学才兴起.1990年4月24日,由美国国家航空与航天局(NASA)和欧洲空间局(ESRO)联合研制的哈勃空间望远镜(HST)的发射成功,是天文学走向空间时代的一个里程碑.空间观测与地面观测相比,有极大的优势:没有了大气层的干扰,恒星不再闪烁.分辨率比起地面的大型望远镜提高了几十倍.灵敏度的提高,使可观测的天体迅速增加.空间没有重力,仪器就不会因自重而变形.频率覆盖范围也大大地变宽,全波段天文观测成为可能,对于光学望远镜,可以接收到宽得多的波段.就哈勃空间望远镜(现已退役)而言,主望远镜是口径为2.4米的反射望远镜,还携带了广角行星照相机,暗弱天体照相机,暗弱天体光谱仪,高分辨率光谱仪,高速光度计,成象光谱仪,近红外照相机,多目标摄谱仪,高级普查摄像仪,高新巡天照相机等精密仪器,观测范围早已突破了可见光波段,向红外和紫外两端延伸.其功能之强大,在天文学的许多领域中作出了巨大的贡献,如:银河系中心、双星系统、近邻星系、宇宙早期星系、黑洞研究等等.在望远镜的庞大家族里,除了以上介绍的光学望远镜以外,还有射电望远镜(radio telescope)、红外望远镜(infrared telescope)、紫外望远镜(ultraviolet telescope)、X 射线望远镜(X-ray telescope)和γ射线望远镜(gamma ray telescope).随着新型显微镜、望远镜的发展和应用,使人类的视野变得更深更广.·与中学物理的衔接中学物理课标对望远镜、显微镜及相关内容的要求是:1.知道显微镜、望远镜的原理.2.用两个不同焦距的凸透镜制作望远镜.3.了解开普勒望远镜和伽利略望远镜的结构.4.通过望远镜原理的及调节要求的学习,可进一步掌握凸透镜呈像的特点及规律·自主学习1.显微镜和望远镜有何异同?2.显微镜和望远镜的调焦方式有何不同?为什么?3.测量标准石英尺时所获得的放大本领为什么不等于物镜的标称放大本领?4、用同一个望远镜观察不同距离的目标时,其视觉放大本领是否不同?5、在光具座上自组装的望远镜(或显微镜),如何调节焦距以获得清晰的像?6.已知什么量?哪个是待测量?如何控制变量?按要求处理实验数据,完成实验报告.·实验探究与设计尝试在光具座上设计并组装望远镜或显微镜,写出实验方案,并完成实验.。
(完整版)实验五显微镜望远镜放大倍数的测定
![(完整版)实验五显微镜望远镜放大倍数的测定](https://img.taocdn.com/s3/m/331e0771910ef12d2bf9e729.png)
实验五显微镜与望远镜放大本领的测定望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜通过放大物所成的像,来帮助人们观察近处的微小物体,而望远镜则是通过放大远处物的视角,帮助人们观察远处的目标,它们常被组合在其他光学仪器中使用.为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由物镜和目镜组成.望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用.光学望远镜从诞生至今将近400年,出现了折射望远镜、反射望远镜、折反射式望远镜和空间望远镜,不断推动着天文学和物理学的发展.长久以来,人们仰望天空,看见日月星辰东升西落,有过天圆地方、地心说、日心说等宇宙模型.但过去人们只能用肉眼对星空进行观察,观测范围非常局限,所得的数据资料也就非常有限.凭借着物理学的不断发展,多种望远镜被制造出来,越来越精密,推动着天文学和物理学不断向前发展,人类的视野也变得更深更广.1.熟悉显微镜和望远镜的构造及其放大原理;2.进一步熟悉透镜成像规律及光学系统的共轴调节方法;3.学会一种测定显微镜和望远镜放大本领的方法;4.掌握显微镜、望远镜的正确使用方法.显微镜,望远镜,标尺,标准石英尺,测微目镜,照明灯.图5-1 显微镜的结构显微镜是一种复杂的光学仪器.它是医学实验常用工具之一,其作用是将观察的标本放大,以便观察和分析.一般光学显微镜包括机械装置和光学系统两大部分,如图5-1所示.一、机械装置1. 镜座:位于最底部的构造,为整个显微镜的基座,用以支持着整个镜体,起稳固作用.2. 镜柱:为垂直于镜座上的短柱,用以支持镜臂.3. 镜臂:为支持镜筒和镜台的呈弓形结构的部分,是取用显微镜时握拿的部分.镜筒直立式光镜在镜臂与其下方的镜柱之间有一倾斜关节,可使镜筒向后倾斜一定角度以方便观察,但使用时倾斜角度不应超过45°,否则显微镜由于重心偏移容易翻倒.4. 调节器:也称调焦螺旋,为调节焦距的装置,位于镜臂的上端(镜筒直立式光镜)或下端(镜筒倾斜式光镜),分粗调节器(大螺旋)和细调节器(小螺旋)两种.粗调节器可使镜筒或镜台作大幅度的升降,适于低倍镜观察时调焦.细调节器可使镜筒或镜台缓慢或较小幅度地升降,在低倍镜下用粗调节器找到物体后,在高倍镜和油镜下进行焦距的精细调节,藉以对物体不同层次、深度的结构做细致地观察.5. 镜筒:位于镜臂的前方,它是一个齿状脊板与调节器相接的圆筒状结构,上端装载目镜,下端连接物镜转换器.根据镜筒的数目,光镜可分为单筒式和双筒式.单筒光镜又分为直立式和倾斜式两种,镜筒直立式光镜的目镜与物镜的光轴在同一直线上,而镜筒倾斜式光镜的目镜与物镜的中心线互成45°角,在镜筒中装有使光线转折45°的棱镜;双筒式光镜的镜筒均为倾斜式的.6. 物镜转换器:又称旋转盘,位于镜筒下端的一个可旋转的凹形圆盘上,一般装有2~4个放大倍数不同的接物镜.旋转它就可以转换接物镜.旋转盘边缘有一定卡,当旋至物镜和镜筒成直线时,就发出“咔”的响声,这时方可观察玻片标本.7. 载物台:位于镜臂下面的平台,用以承放玻片标本.载物台中央有一圆形的通光孔,光线可以通过它由下向上反射.(二)光学系统1. 反光镜:是装在镜台下面、镜柱前方的一面可转动的圆镜,它有平凹两面.平面镜聚光力弱,适合光线较强时使用.凹面镜聚光力强,适于光线较弱时使用.转动反光镜,可将光源反射到聚光镜上,再经镜台中央圆孔照明标本.2. 聚光镜:在镜台下方,是一组透镜,用以聚集光线增强视野的亮度.镜台上方有一调节旋钮,转动它可升降聚光镜.往上升时增强反射光,下降时减弱反射光.3. 可变光栏:是在聚光镜底部的一个圆环状结构.它装有多片半月形的薄金属片,叠合在中央成圆孔形.在圆环外缘有一突起的小柄,拨动它可使金属片分开或合拢,用以控制光线的强弱,使物像变得更清晰.4. 目镜:装在镜筒上端,其上一般刻有放大倍数(如5×,10×).目镜内常装有一指示针,用以指示要观察的某一部分.5. 物镜:装在物镜转换器上,一般分低倍镜、高倍镜和油镜三种.低倍镜镜体较短,放大倍数小;高倍镜镜体较长,放大倍数较大;油镜镜体最长,放大倍数最大(在镜体上刻有数字,低倍镜一般有4×、10×,高倍镜一般有40×、45×,油镜一般是90×、100×,×表示放大倍数).测微目镜由目镜、分划板、读数鼓轮与连接装置等组成.目镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高测量准确程度.测微目镜的基本结构剖视图如图5-2所示.目镜镜头通过调焦螺纹固定在目镜外壳中部.外壳内有一块刻有十字丝的透明叉丝板,外壳右侧装有测距螺旋(即千分尺)系统,转动测距手轮,其螺杆将带动叉丝板移动.叉丝板的移动量可通过手轮上的千分尺测出.透明十字叉丝板后面是一个固定的玻璃标尺,标尺上刻有毫米尺,每格1mm,量程为8mm . 旋转读数鼓轮,刻有十字叉丝的可动分划板就可以左右移动.读数鼓轮每旋转一周,叉丝移动1mm ,鼓轮上有100个分格,故每一格对应的读数为0.01mm ,再估读一位.其读数方法和螺旋测微器差不多.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.测微目镜通常用来测金属丝、干涉条纹等的宽度.测量时,使双线与待测物质边缘平行,叉丝交点与待测物的边缘重合,开始计数.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.图2 测微目镜的基本结构剖视图 ·实验原理最简单的望远镜与显微镜都是由目镜和物镜两个透镜共轴所组成.物镜的像方焦点到目镜的物方焦点之间的距离(即光学间隔)为Δ.望远镜用来观察远处的物体,显微镜则是用来观察近处的微小物体,他们的放大作用都可以用放大本领M 来描述,可表示为:OE M ααtan tan = (5-1) 式中E α为像所张的视角;O α为物体直接对眼睛所张的视角.一、望远镜的构造及其放大原理望远镜由物镜和目镜组成,物镜用反射镜的称反射式望远镜,物镜用透镜的称折射式望远镜.目镜是会聚透镜的称为开普勒望远镜,目镜是发散透镜的称为伽利略望远镜.对于望远镜,两透镜的光学间隔Δ≈0,即物镜的像方焦点与目镜的物方焦点近乎重合.图5-3所示为开普勒望远镜的光路示意图.图中L 0为物镜(焦距较长),Le 为目镜(焦距较短),远处物体PQ 经物镜L O 后在物镜的像方焦点F'上成一倒立实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离.像P'Q'一般是缩小的.近乎位于目镜的物方焦面上,经目镜L E 放大后成虚像P"Q"于观察者眼睛的明视距离与无穷远之间.用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”.图5-3 开普勒望远镜的光路示意图由理论计算可得望远镜的放大本领为: ''tan tan E O OE O E O E f f f Q P f Q P M =''''=≈=αααα (5-2) 式中f o ′为物镜的焦距,f E ′为目镜的焦距,上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大本领则越大.开普勒望远镜(f o ′>0,(f E ′>0),放大本领M 为负值,系统成倒立的像;而对伽利略望远镜(f o ′>0,(f E ′<0),放大本领M 为正值,系统成正立的像.因实际观察时,物体并不真正处于无穷远,像亦不成在无穷远,但式(5-2)仍近似适用.二、显微镜的构造及其放大原理显微镜和望远镜的光学系统十分相似,都是由物镜和目镜组成.显微镜的结构一般认为是由两个会聚透镜共轴组成,如图5-4所示,实物PQ 经物镜L 0成倒立实像P'Q'于目镜Le 的物方焦点Fe 的内侧,再经目镜Le 成放大的虚像P"Q"于人眼的明视距离处或无穷远处.理论计算可得显微镜的放大本领为: ''E O O E O f s f M M M ⋅∆-== (5-3)式中O M 为物镜的放大本领,M E 是目镜的放大本领,f o ′,f E ′ 为物镜和目镜的像方焦距,Δ是显微镜的光学间隔,S O =-25cm 为正常人眼的明视距离.由上式可知,显微镜的镜筒越长,物镜和目镜的焦距越短,放大本领就越大,通常物镜和目镜的放大本领,是标在镜头上的.图5-4 显微镜光路图用望远镜或显微镜观察物体时,一般视角均甚小,因此视角之比可用其正切之比代替,于是光学仪器的放大本领M 可近似地写成 OE O l l M ==ααtan tan 式中l 0是被测物的大小PQ ,l 是在物体所处平面上被测物的虚像的大小P"Q". ·实验内容与步骤一、显微镜放大倍数的测定1.将标准石英尺放在显微镜载物台上夹住.2.选择适当倍率的目镜,调节聚光镜、反光镜及光阑,使目镜中观察到强弱适当而均匀的视场.3.熟悉显微镜的机械结构,学会调节使用,先用低倍物镜对石英尺进行调焦,先粗调、后微调,直至目镜视场中观察到最清晰的像,如果观察物的像不在视场中间,则可调节载物台移动手轮,将其移至视场中心进行观察.4.将目镜卸下,换上测微目镜,首先对测微目镜的目镜进行调焦,看清分划板,在调节显微镜的物镜调焦手轮,至标尺的像最清晰且无视差.5.转动测微目镜使分划板上“双线”与标准石英尺的刻度(石英尺刻度部分全长lmm ,共分100小格,每格宽O .01mm)平行,然后将叉丝移至和显微镜视场中标准石英尺某一刻度重合,记下测微目镜的读数1x .转动测微目镜鼓轮,使叉丝在标准石英尺上移动5格,这时叉丝与标准石英尺上另一刻度线重合,记下测微目镜的读数2x .依此每隔5格记录一组数据,共记录10组数据.6.用逐差法处理数据,求出标尺5格对应像的大小,求其平均值,计算出物镜的放大本领.二、望远镜放大本领的测定1.将望远镜夹好,在垂直望远镜光轴方向距离目镜25cm 处放置一毫米分度的米尺A ,调节望远镜调焦手轮,把望远镜调焦到无穷远处,即望远镜能看清楚远处的物体.2.在A 尺上套上两白纸条,其间距可调,如图5-5所示.一只眼睛通过望远镜观察米尺的像B ,另一只眼睛直接看米尺A ,经过多次观察,调节眼睛使得米尺A 与望远镜中的米尺像B 重合.以B 尺为标尺,选定A 尺的上两纸带的间距为10格,记录其相当于B 尺上的格数0l ,重复3-5次,算出望远镜的放大倍数,取其平均值,并计算平均绝对偏差.3.取两纸带的间隔分别为8格和13格,重复上述步骤进行测量.1.用测微目镜测经显微镜放大的石英标尺像刻度间隔数据表测量间隔:每隔5小格标尺像刻度读一次数2.望远镜视角放大率测量数据表1.注意不要用手摸透镜、反射镜等光学元件的光学表面,,以免在光学面上留下痕迹,使成像模糊或无法成像.2.在实验过程中,注意光学仪器要轻拿轻放,勿使仪器受到震动和磨损.3.用测微目镜测量时要注意回程误差.4.测望远镜放大本领时,两只眼睛要同时观察,同时看清A、B两尺的像,并将A、B两尺的像重合在一起时,方可读数.望远镜和显微镜的发明是17世纪光学的伟大成就.显微镜的发明,使人类第一次发现了微生物和细胞生存的世界.第一架显微镜由荷铸眼镜匠詹森父子发明,后由伽利略改良而成.最初的显微镜只能放大50-200倍,到1932年德国的诺尔和鲁斯卡发明了世界第一台电子显微镜,它是利用德布罗依物质波原理制造而成的,它能放大1万倍,到20世纪90年代发展到放大率可达200万倍,由此人们发现了原子世界.1983年人们又发明了基于量子力学原理造而成的扫描隧道显微镜,开创了纳米科技的观测手段.后来人们又发明了原子力显微镜,它是根据扫描隧道显微镜的原理设计的高速拍摄三维图像的显微镜.可观察大分子在体内的活动变化.1608年荷兰的眼睛匠利佩希偶然地制造出了第一架望远镜,它的目镜为一凹透镜,被称为荷兰望远镜.发明望远镜的消息迅速在欧洲传开,1609年伽利略得悉这一消息后,立即动手制作,并把自制的望远镜第一个指向天空,首先发现了月亮上的山脉和火山口.伽利略设计了由两个凸透镜构成的开普勒望远镜,第一架开普勒望远镜由天文学家沙伊纳制成.1668年,牛顿(Newton,I.1642~1727)用2.5 厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,制成了反射望远镜.1672年牛顿有制造了第二架反射望远镜,全长1.2m,口径为2m,并把它献给了英国皇家学会.往后的几百年间,人们提出了反射镜的多种设计方案.1918年末,口径为254厘米的胡克望远镜(Hooker telescope)投入使用,它第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃(Hubble,E.P.1889~1953)的宇宙膨胀理论就是用胡克望远镜观测的结果.相对于折射镜,反射镜没有色差,容易制作;但它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等.随后又出现了能兼顾折射和反射两种望远镜优点的折反射式望远镜,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱.它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良.适于巡天摄影和观测星云、彗星、流星等天体.自1970年代以来,在望远镜的制造方面有了许多新技术,涉及光学、力学、计算机、自动控制和精密机械等领域,使望远镜的制造突破了镜面口径的局限.然而,由于地球大气对电磁波的吸收作用,地面观测具有严重的局限性.物理学在不断地发展,直到人造卫星上天,航天技术逐渐成熟,空间天文学才兴起.1990年4月24日,由美国国家航空与航天局(NASA)和欧洲空间局(ESRO)联合研制的哈勃空间望远镜(HST)的发射成功,是天文学走向空间时代的一个里程碑.空间观测与地面观测相比,有极大的优势:没有了大气层的干扰,恒星不再闪烁.分辨率比起地面的大型望远镜提高了几十倍.灵敏度的提高,使可观测的天体迅速增加.空间没有重力,仪器就不会因自重而变形.频率覆盖范围也大大地变宽,全波段天文观测成为可能,对于光学望远镜,可以接收到宽得多的波段.就哈勃空间望远镜(现已退役)而言,主望远镜是口径为2.4米的反射望远镜,还携带了广角行星照相机,暗弱天体照相机,暗弱天体光谱仪,高分辨率光谱仪,高速光度计,成象光谱仪,近红外照相机,多目标摄谱仪,高级普查摄像仪,高新巡天照相机等精密仪器,观测范围早已突破了可见光波段,向红外和紫外两端延伸.其功能之强大,在天文学的许多领域中作出了巨大的贡献,如:银河系中心、双星系统、近邻星系、宇宙早期星系、黑洞研究等等.在望远镜的庞大家族里,除了以上介绍的光学望远镜以外,还有射电望远镜(radio telescope)、红外望远镜(infrared telescope)、紫外望远镜(ultraviolet telescope)、X 射线望远镜(X-ray telescope)和γ射线望远镜(gamma ray telescope).随着新型显微镜、望远镜的发展和应用,使人类的视野变得更深更广.中学物理课标对望远镜、显微镜及相关内容的要求是:1.知道显微镜、望远镜的原理.2.用两个不同焦距的凸透镜制作望远镜.3.了解开普勒望远镜和伽利略望远镜的结构.4.通过望远镜原理的及调节要求的学习,可进一步掌握凸透镜呈像的特点及规律1.显微镜和望远镜有何异同?2.显微镜和望远镜的调焦方式有何不同?为什么?3.测量标准石英尺时所获得的放大本领为什么不等于物镜的标称放大本领?4、用同一个望远镜观察不同距离的目标时,其视觉放大本领是否不同?5、在光具座上自组装的望远镜(或显微镜),如何调节焦距以获得清晰的像?6.已知什么量?哪个是待测量?如何控制变量?按要求处理实验数据,完成实验报告.尝试在光具座上设计并组装望远镜或显微镜,写出实验方案,并完成实验.。
实验三 望远镜和显微镜的组装及部分参数测量
![实验三 望远镜和显微镜的组装及部分参数测量](https://img.taocdn.com/s3/m/ceed7ec8d15abe23482f4d78.png)
实验三望远镜和显微镜的组装及部分参数的测定一、实验目的1.熟悉显微镜和望远镜的构造及基本原理;2.掌握显微镜、望远镜的调节,正确使用的方法;3.掌握测定显微镜和望远镜放大率的方法;二、实验原理最简单的望远镜是由一片长焦距的凸透镜作为物镜,用一短焦距的凸透镜作为目镜组合而成。
远处的物经过物镜在其后焦面附近成一缩小的倒立实像,物镜的像方焦平面与目镜的物方焦平面重合。
而目镜起一放大镜的作用,把这个倒立的实像再放大成一个正立的像。
显微镜通过放大物所成的像,来帮助人们观察近处的微小物体,近处的实物经物镜成倒立实像在目镜的物方焦点的内侧,再经目镜成放大的虚像于人眼的明视距离处或无穷远处.望远镜:1、实验仪器(1)带有毛玻璃的白炽灯光源S(2)毫米尺F L=7mm(3)物镜Lo: f=225mmo(4)测微目镜Le:(去掉其物镜头的读数显微镜)(5)读数显微镜架 : SZ-38(6)二维调整架: SZ-07(7)滑座: TH70(8)白屏: SZ-13测微目镜:由目镜、分划板、读数鼓轮与连接装置等组成.目镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高测量准确程度。
测微目镜的基本结构剖视图如图1所示。
目镜镜头通过调焦螺纹固定在目镜外壳中部。
外壳内有一块刻有十字丝的透明叉丝板,外壳右侧装有测距螺旋(即千分尺)系统,转动测距手轮,其螺杆将带动叉丝板移动.叉丝板的移动量可通过手轮上的千分尺测出.透明十字叉丝板后面是一个固定的玻璃标尺,标尺上刻有毫米尺,每格1mm,量程为6mm(上:1~6mm;下:左3~0mm,右0~3mm)。
旋转读数鼓轮,刻有十字叉丝的可动分划板就可以左右动.读数鼓轮每旋转一周,叉丝移动1mm,鼓轮上有100个分格,故每一格对应的读数为0.01mm,再估读一位.其读数方法和螺旋测微器差不多.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋。
测微目镜通常用来测金属丝、干涉条纹等的宽度.测量时,使双线与待测物质边缘平行,叉丝交点与待测物的边缘重合,开始计数.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.图1测微目镜的基本结构图2. 仪器实物图及原理图图2 仪器实物图及原理图3、实验步骤(1) 把全部器件按图2的顺序摆放在导轨上,靠拢后目测调至共轴。
望远镜和显微镜放大率的测定
![望远镜和显微镜放大率的测定](https://img.taocdn.com/s3/m/bf6f0a3252ea551810a687a8.png)
望远镜和显微镜放大率的测定望远镜和显微镜是最常用的助视光学仪器,常组合于其它实验装置中使用,如光杠杆、测距显微镜、分光仪等。
了解它们的构造原理并掌握它们的调节使用方法,不仅有助于加深理解透镜的成像规律,也为正确使用其它光学仪器打下基础。
Ⅰ 望远镜放大率的测定【实验目的】1、了解望远镜的构造原理并掌握其正确使用方法。
2、测定望远镜的放大率。
【实验原理】1.光学仪器的角放大率望远镜被用于观测远处的物体,显微镜被用于观测微小的物体,它们的作用都是将被观测物体对眼睛光心的张角(视角)加以放大。
显然,同一物体对眼睛所张的视角正常人的眼睛能分辨在明视距离cm 25处1′,称为最小分辨角。
当远处物体(或微小物体)对眼睛所张视角小于此最小分辨角时,眼睛将无法Φψ≈Φψ=tg tg m (1)在明正切值予以替代。
图(1) 凸透镜放大的示意图以凸透镜为例,如图(1)''B Au (2)(3)由上式可见,式(3)就表示放大镜的放大率。
由于单透镜存在像差,它的放大率一般在3倍(放大率仍由式(3)计算,式中f 代表透镜组的焦距,其放大率可达2.望远镜放大率的测定望远镜可以用来观测远处的物体。
最简单的望远镜由两个凸透镜组成,其中焦距较长的透镜为物镜。
由于被观测物体离物镜的距离远大于物镜的焦距(f u 2>),通过物镜的作用后,将在物镜的后焦面附近形成一个倒立的实像。
此实像虽然较原像小,但是与原物体相比,却大大地接近了眼睛,因而增大了视角。
然后通过目镜将它放大。
由目镜所成的像可在明视距离到无限远之间的任何位置上。
望远镜的放大率定义为最后的虚像对目镜所张视角与物体在实际位置所张视角之镜所张视角是一样的。
如图(2)∞>u )时,物镜的焦平面和目镜的焦平面重合,同时也处于目镜的前焦面上,因而通过目镜观察时,成像于无限远。
此时望远镜的放大率可由图(2)得出e o o e f f f y f y tg tg m /)//()/(//22==Φψ≈Φψ= (4)由此可见,望远镜的放大率m 等于物镜和目镜焦距之比。
实验五 显微镜望远镜放大倍数的测定
![实验五 显微镜望远镜放大倍数的测定](https://img.taocdn.com/s3/m/339b440403d8ce2f0066231d.png)
实验五显微镜与望远镜放大本领的测定望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜通过放大物所成的像,来帮助人们观察近处的微小物体,而望远镜则是通过放大远处物的视角,帮助人们观察远处的目标,它们常被组合在其他光学仪器中使用.为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由物镜和目镜组成.望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用.光学望远镜从诞生至今将近400年,出现了折射望远镜、反射望远镜、折反射式望远镜和空间望远镜,不断推动着天文学和物理学的发展.长久以来,人们仰望天空,看见日月星辰东升西落,有过天圆地方、地心说、日心说等宇宙模型.但过去人们只能用肉眼对星空进行观察,观测范围非常局限,所得的数据资料也就非常有限.凭借着物理学的不断发展,多种望远镜被制造出来,越来越精密,推动着天文学和物理学不断向前发展,人类的视野也变得更深更广.·实验目的1.熟悉显微镜和望远镜的构造及其放大原理;2.进一步熟悉透镜成像规律及光学系统的共轴调节方法;3.学会一种测定显微镜和望远镜放大本领的方法;4.掌握显微镜、望远镜的正确使用方法.·实验仪器显微镜,望远镜,标尺,标准石英尺,测微目镜,照明灯.图5-1 显微镜的结构显微镜是一种复杂的光学仪器.它是医学实验常用工具之一,其作用是将观察的标本放大,以便观察和分析.一般光学显微镜包括机械装置和光学系统两大部分,如图5-1所示.一、机械装置1. 镜座:位于最底部的构造,为整个显微镜的基座,用以支持着整个镜体,起稳固作用.2. 镜柱:为垂直于镜座上的短柱,用以支持镜臂.3. 镜臂:为支持镜筒和镜台的呈弓形结构的部分,是取用显微镜时握拿的部分.镜筒直立式光镜在镜臂与其下方的镜柱之间有一倾斜关节,可使镜筒向后倾斜一定角度以方便观察,但使用时倾斜角度不应超过45°,否则显微镜由于重心偏移容易翻倒.4. 调节器:也称调焦螺旋,为调节焦距的装置,位于镜臂的上端(镜筒直立式光镜)或下端(镜筒倾斜式光镜),分粗调节器(大螺旋)和细调节器(小螺旋)两种.粗调节器可使镜筒或镜台作大幅度的升降,适于低倍镜观察时调焦.细调节器可使镜筒或镜台缓慢或较小幅度地升降,在低倍镜下用粗调节器找到物体后,在高倍镜和油镜下进行焦距的精细调节,藉以对物体不同层次、深度的结构做细致地观察.5. 镜筒:位于镜臂的前方,它是一个齿状脊板与调节器相接的圆筒状结构,上端装载目镜,下端连接物镜转换器.根据镜筒的数目,光镜可分为单筒式和双筒式.单筒光镜又分为直立式和倾斜式两种,镜筒直立式光镜的目镜与物镜的光轴在同一直线上,而镜筒倾斜式光镜的目镜与物镜的中心线互成45°角,在镜筒中装有使光线转折45°的棱镜;双筒式光镜的镜筒均为倾斜式的.6. 物镜转换器:又称旋转盘,位于镜筒下端的一个可旋转的凹形圆盘上,一般装有2~4个放大倍数不同的接物镜.旋转它就可以转换接物镜.旋转盘边缘有一定卡,当旋至物镜和镜筒成直线时,就发出“咔”的响声,这时方可观察玻片标本.7. 载物台:位于镜臂下面的平台,用以承放玻片标本.载物台中央有一圆形的通光孔,光线可以通过它由下向上反射.(二)光学系统1. 反光镜:是装在镜台下面、镜柱前方的一面可转动的圆镜,它有平凹两面.平面镜聚光力弱,适合光线较强时使用.凹面镜聚光力强,适于光线较弱时使用.转动反光镜,可将光源反射到聚光镜上,再经镜台中央圆孔照明标本.2. 聚光镜:在镜台下方,是一组透镜,用以聚集光线增强视野的亮度.镜台上方有一调节旋钮,转动它可升降聚光镜.往上升时增强反射光,下降时减弱反射光.3. 可变光栏:是在聚光镜底部的一个圆环状结构.它装有多片半月形的薄金属片,叠合在中央成圆孔形.在圆环外缘有一突起的小柄,拨动它可使金属片分开或合拢,用以控制光线的强弱,使物像变得更清晰.4. 目镜:装在镜筒上端,其上一般刻有放大倍数(如5×,10×).目镜内常装有一指示针,用以指示要观察的某一部分.5. 物镜:装在物镜转换器上,一般分低倍镜、高倍镜和油镜三种.低倍镜镜体较短,放大倍数小;高倍镜镜体较长,放大倍数较大;油镜镜体最长,放大倍数最大(在镜体上刻有数字,低倍镜一般有4×、10×,高倍镜一般有40×、45×,油镜一般是90×、100×,×表示放大倍数).测微目镜由目镜、分划板、读数鼓轮与连接装置等组成.目镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高测量准确程度.测微目镜的基本结构剖视图如图5-2所示.目镜镜头通过调焦螺纹固定在目镜外壳中部.外壳内有一块刻有十字丝的透明叉丝板,外壳右侧装有测距螺旋(即千分尺)系统,转动测距手轮,其螺杆将带动叉丝板移动.叉丝板的移动量可通过手轮上的千分尺测出.透明十字叉丝板后面是一个固定的玻璃标尺,标尺上刻有毫米尺,每格1mm,量程为8mm . 旋转读数鼓轮,刻有十字叉丝的可动分划板就可以左右移动.读数鼓轮每旋转一周,叉丝移动1mm ,鼓轮上有100个分格,故每一格对应的读数为0.01mm ,再估读一位.其读数方法和螺旋测微器差不多.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.测微目镜通常用来测金属丝、干涉条纹等的宽度.测量时,使双线与待测物质边缘平行,叉丝交点与待测物的边缘重合,开始计数.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.图2 测微目镜的基本结构剖视图 ·实验原理最简单的望远镜与显微镜都是由目镜和物镜两个透镜共轴所组成.物镜的像方焦点到目镜的物方焦点之间的距离(即光学间隔)为Δ.望远镜用来观察远处的物体,显微镜则是用来观察近处的微小物体,他们的放大作用都可以用放大本领M 来描述,可表示为:OE M ααt a n t a n = (5-1) 式中E α为像所张的视角;O α为物体直接对眼睛所张的视角.一、望远镜的构造及其放大原理望远镜由物镜和目镜组成,物镜用反射镜的称反射式望远镜,物镜用透镜的称折射式望远镜.目镜是会聚透镜的称为开普勒望远镜,目镜是发散透镜的称为伽利略望远镜.对于望远镜,两透镜的光学间隔Δ≈0,即物镜的像方焦点与目镜的物方焦点近乎重合.图5-3所示为开普勒望远镜的光路示意图.图中L 0为物镜(焦距较长),Le 为目镜(焦距较短),远处物体PQ 经物镜L O 后在物镜的像方焦点F'上成一倒立实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离.像P'Q'一般是缩小的.近乎位于目镜的物方焦面上,经目镜L E 放大后成虚像P"Q"于观察者眼睛的明视距离与无穷远之间.用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”.图5-3 开普勒望远镜的光路示意图由理论计算可得望远镜的放大本领为: ''t a n t a n E O OE O E O E f f f Q P f Q P M =''''=≈=αααα (5-2) 式中f o ′为物镜的焦距,f E ′为目镜的焦距,上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大本领则越大.开普勒望远镜(f o ′>0,(f E ′>0),放大本领M 为负值,系统成倒立的像;而对伽利略望远镜(f o ′>0,(f E ′<0),放大本领M 为正值,系统成正立的像.因实际观察时,物体并不真正处于无穷远,像亦不成在无穷远,但式(5-2)仍近似适用.二、显微镜的构造及其放大原理显微镜和望远镜的光学系统十分相似,都是由物镜和目镜组成.显微镜的结构一般认为是由两个会聚透镜共轴组成,如图5-4所示,实物PQ 经物镜L 0成倒立实像P'Q'于目镜Le 的物方焦点Fe 的内侧,再经目镜Le 成放大的虚像P"Q"于人眼的明视距离处或无穷远处.理论计算可得显微镜的放大本领为: ''E O O E O f s f M M M ⋅∆-== (5-3)式中O M 为物镜的放大本领,M E 是目镜的放大本领,f o ′,f E ′ 为物镜和目镜的像方焦距,Δ是显微镜的光学间隔,S O =-25cm 为正常人眼的明视距离.由上式可知,显微镜的镜筒越长,物镜和目镜的焦距越短,放大本领就越大,通常物镜和目镜的放大本领,是标在镜头上的.图5-4 显微镜光路图用望远镜或显微镜观察物体时,一般视角均甚小,因此视角之比可用其正切之比代替,于是光学仪器的放大本领M 可近似地写成 OE O l l M ==ααtan tan 式中l 0是被测物的大小PQ ,l 是在物体所处平面上被测物的虚像的大小P"Q". ·实验内容与步骤一、显微镜放大倍数的测定1.将标准石英尺放在显微镜载物台上夹住.2.选择适当倍率的目镜,调节聚光镜、反光镜及光阑,使目镜中观察到强弱适当而均匀的视场.3.熟悉显微镜的机械结构,学会调节使用,先用低倍物镜对石英尺进行调焦,先粗调、后微调,直至目镜视场中观察到最清晰的像,如果观察物的像不在视场中间,则可调节载物台移动手轮,将其移至视场中心进行观察.4.将目镜卸下,换上测微目镜,首先对测微目镜的目镜进行调焦,看清分划板,在调节显微镜的物镜调焦手轮,至标尺的像最清晰且无视差.5.转动测微目镜使分划板上“双线”与标准石英尺的刻度(石英尺刻度部分全长lmm ,共分100小格,每格宽O .01mm)平行,然后将叉丝移至和显微镜视场中标准石英尺某一刻度重合,记下测微目镜的读数1x .转动测微目镜鼓轮,使叉丝在标准石英尺上移动5格,这时叉丝与标准石英尺上另一刻度线重合,记下测微目镜的读数2x .依此每隔5格记录一组数据,共记录10组数据.6.用逐差法处理数据,求出标尺5格对应像的大小,求其平均值,计算出物镜的放大本领.二、望远镜放大本领的测定1.将望远镜夹好,在垂直望远镜光轴方向距离目镜25cm 处放置一毫米分度的米尺A ,调节望远镜调焦手轮,把望远镜调焦到无穷远处,即望远镜能看清楚远处的物体.2.在A 尺上套上两白纸条,其间距可调,如图5-5所示.一只眼睛通过望远镜观察米尺的像B ,另一只眼睛直接看米尺A ,经过多次观察,调节眼睛使得米尺A 与望远镜中的米尺像B 重合.以B 尺为标尺,选定A 尺的上两纸带的间距为10格,记录其相当于B 尺上的格数0l ,重复3-5次,算出望远镜的放大倍数,取其平均值,并计算平均绝对偏差.3.取两纸带的间隔分别为8格和13格,重复上述步骤进行测量.图5-5 望远镜放大倍数测定原理·实验数据测量1.用测微目镜测经显微镜放大的石英标尺像刻度间隔数据表测量间隔:每隔5小格标尺像刻度读一次数序号i1 2 3 4 5 6 7 8 9 10 x i (mm)2.望远镜视角放大率测量数据表标记实际长度l 0 (mm)80 100 130 重复测量序号1 2 3 1 2 3 1 2 3 上缘对应镜内刻度Y u (mm)下缘对应镜内刻度Y l (mm)镜内对应长度 l =Y l -Y u (mm)望远镜放大率M = l 0/ l5 4 8 3 7 26 548372 6l 0l 标尺A 标尺B·实验注意事项1.注意不要用手摸透镜、反射镜等光学元件的光学表面,,以免在光学面上留下痕迹,使成像模糊或无法成像.2.在实验过程中,注意光学仪器要轻拿轻放,勿使仪器受到震动和磨损.3.用测微目镜测量时要注意回程误差.4.测望远镜放大本领时,两只眼睛要同时观察,同时看清A、B两尺的像,并将A、B两尺的像重合在一起时,方可读数.·历史渊源与应用前景望远镜和显微镜的发明是17世纪光学的伟大成就.显微镜的发明,使人类第一次发现了微生物和细胞生存的世界.第一架显微镜由荷铸眼镜匠詹森父子发明,后由伽利略改良而成.最初的显微镜只能放大50-200倍,到1932年德国的诺尔和鲁斯卡发明了世界第一台电子显微镜,它是利用德布罗依物质波原理制造而成的,它能放大1万倍,到20世纪90年代发展到放大率可达200万倍,由此人们发现了原子世界.1983年人们又发明了基于量子力学原理造而成的扫描隧道显微镜,开创了纳米科技的观测手段.后来人们又发明了原子力显微镜,它是根据扫描隧道显微镜的原理设计的高速拍摄三维图像的显微镜.可观察大分子在体内的活动变化.1608年荷兰的眼睛匠利佩希偶然地制造出了第一架望远镜,它的目镜为一凹透镜,被称为荷兰望远镜.发明望远镜的消息迅速在欧洲传开,1609年伽利略得悉这一消息后,立即动手制作,并把自制的望远镜第一个指向天空,首先发现了月亮上的山脉和火山口.伽利略设计了由两个凸透镜构成的开普勒望远镜,第一架开普勒望远镜由天文学家沙伊纳制成.1668年,牛顿(Newton,I.1642~1727)用2.5 厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,制成了反射望远镜.1672年牛顿有制造了第二架反射望远镜,全长1.2m,口径为2m,并把它献给了英国皇家学会.往后的几百年间,人们提出了反射镜的多种设计方案.1918年末,口径为254厘米的胡克望远镜(Hooker telescope)投入使用,它第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃(Hubble,E.P.1889~1953)的宇宙膨胀理论就是用胡克望远镜观测的结果.相对于折射镜,反射镜没有色差,容易制作;但它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等.随后又出现了能兼顾折射和反射两种望远镜优点的折反射式望远镜,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱.它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良.适于巡天摄影和观测星云、彗星、流星等天体.自1970年代以来,在望远镜的制造方面有了许多新技术,涉及光学、力学、计算机、自动控制和精密机械等领域,使望远镜的制造突破了镜面口径的局限.然而,由于地球大气对电磁波的吸收作用,地面观测具有严重的局限性.物理学在不断地发展,直到人造卫星上天,航天技术逐渐成熟,空间天文学才兴起.1990年4月24日,由美国国家航空与航天局(NASA)和欧洲空间局(ESRO)联合研制的哈勃空间望远镜(HST)的发射成功,是天文学走向空间时代的一个里程碑.空间观测与地面观测相比,有极大的优势:没有了大气层的干扰,恒星不再闪烁.分辨率比起地面的大型望远镜提高了几十倍.灵敏度的提高,使可观测的天体迅速增加.空间没有重力,仪器就不会因自重而变形.频率覆盖范围也大大地变宽,全波段天文观测成为可能,对于光学望远镜,可以接收到宽得多的波段.就哈勃空间望远镜(现已退役)而言,主望远镜是口径为2.4米的反射望远镜,还携带了广角行星照相机,暗弱天体照相机,暗弱天体光谱仪,高分辨率光谱仪,高速光度计,成象光谱仪,近红外照相机,多目标摄谱仪,高级普查摄像仪,高新巡天照相机等精密仪器,观测范围早已突破了可见光波段,向红外和紫外两端延伸.其功能之强大,在天文学的许多领域中作出了巨大的贡献,如:银河系中心、双星系统、近邻星系、宇宙早期星系、黑洞研究等等.在望远镜的庞大家族里,除了以上介绍的光学望远镜以外,还有射电望远镜(radio telescope)、红外望远镜(infrared telescope)、紫外望远镜(ultraviolet telescope)、X 射线望远镜(X-ray telescope)和γ射线望远镜(gamma ray telescope).随着新型显微镜、望远镜的发展和应用,使人类的视野变得更深更广.·与中学物理的衔接中学物理课标对望远镜、显微镜及相关内容的要求是:1.知道显微镜、望远镜的原理.2.用两个不同焦距的凸透镜制作望远镜.3.了解开普勒望远镜和伽利略望远镜的结构.4.通过望远镜原理的及调节要求的学习,可进一步掌握凸透镜呈像的特点及规律·自主学习1.显微镜和望远镜有何异同?2.显微镜和望远镜的调焦方式有何不同?为什么?3.测量标准石英尺时所获得的放大本领为什么不等于物镜的标称放大本领?4、用同一个望远镜观察不同距离的目标时,其视觉放大本领是否不同?5、在光具座上自组装的望远镜(或显微镜),如何调节焦距以获得清晰的像?6.已知什么量?哪个是待测量?如何控制变量?按要求处理实验数据,完成实验报告.·实验探究与设计尝试在光具座上设计并组装望远镜或显微镜,写出实验方案,并完成实验.。
显微镜与望远镜放大本领的测定(精)
![显微镜与望远镜放大本领的测定(精)](https://img.taocdn.com/s3/m/b0347d01580216fc700afdf4.png)
合)。则人眼观察的微小物体 被大大地放大成 了。
可以通过改变分划板与物镜之间的距离,可以获得显微镜
的不同放大率。
显微镜光路图
2.望远镜
望远镜的光路如图所示。无穷远处的物屏上 的一点(图中 未画出)发出的光(平行光)经物镜成实像于的焦平面处(处于 目镜的焦点内),分划板也处于的焦平面处,则 与分划板重合。 如物不处于无穷远处,则 与 位于 之外。人眼通过目镜看的 过程与显微镜的观察过程相同。由此可见,人眼通过望远镜观察 物体,相当于将远处的物体拉到了近处观察,实质上起到了视角 放大的作用。
二、实验室可提供的主要器材
凸透镜、凹透镜、物屏、像屏、分辨率测试板 直尺、光具座、支架等
图1 实验装置照片
镜头是凸透 镜
镜头是: 或是:
镜头是凸透 镜
近视眼镜是凹透 镜
三、实验原理
1.显微镜
பைடு நூலகம்
显微镜是观察微小物体的光学仪器,其光路如图所示。物
镜 的焦距非常短(
),目镜 的焦距大于物镜的
焦距,但也不超过几个厘米。分划板 与物镜 之间的距离
显微镜与望远镜放大本领的测定
望远镜及显微镜是最常用的助视光学 仪器。在物理实验中经常使用的有读数显 微镜、测量望远镜及自准望远镜等。本实 验通过实验室给出的各种分立的光学元件, 按要求组成望远镜及显微镜,并用组成的 聚焦于无穷远的望远镜进行透镜焦距的测
定。
一、实验目的
1.进一步掌握透镜的成像规律 2.了解望远镜及显微镜的工作原理 3.学习用自组的望远镜测量透镜焦距
为 。物屏 放在物镜焦点 外一点,调节 与 之间的距离,
使其通过物镜 成一放大、倒立的实像 于分划板处。然后
通过目镜 观察像 ,先调节目镜 与分划板 之间的距离,
实验十一 显微镜与望远镜的组装
![实验十一 显微镜与望远镜的组装](https://img.taocdn.com/s3/m/eb60e6f17c1cfad6195fa795.png)
实验十一显微镜与望远镜的组装望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜主要用来帮助人们观察近处的微小物体,而望远镜则主要是帮助人们观察远处的目标,它们常被组合在其他光学仪器中。
为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由一个物镜和一个目镜组成。
望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用。
[实验目的]1. 学会用物像放大法测透镜的焦距。
2. 熟悉望远镜和显微镜的构造及其放大原理。
3. 掌握光学系统的共轴调节方法。
4.学会望远镜、显微镜放大率的测量。
[实验原理]1.物像放大法测透镜的焦距测量透镜焦距的方法虽然有许多种,但是在某些情况下,由于透镜的光心位置无法精确测定,甚至物屏、像屏的位置也艰定准确.所以会给测量带来一定困难。
用物像放大法测透镜或透镜组的焦距就能完全克服这一困难。
图1如图1所示,将微尺分化板作为物置于导轨上,被测透镜也置于导轨上,其间距要大于被测透镜焦距,在测微目镜中看到清晰的微尺放大像,并与测微目镜分划板无视差。
测出其横向放大率为β1,并分别记下透镜和测微目镜的位置x1、y1,把测微目镜向后移动一段距离,并缓慢前移透镜,直至在测微目镜中又看到清晰的与测微目镜分划板划线无视差的微尺放大像。
测出新的像宽,求出放大率β2,记下透镜和测微目镜的位置x2、y2.横向放大率为:像距改变量:被测透镜焦距:(1)2.望远镜的构造及其放大原理。
望远镜通常是由两个共轴光学系统组成,我们把它简化为两个凸透镜,其中长焦距的凸透镜作为物镜,短焦距的凸透镜作为目镜。
物镜的作用是将远处物体发出的光经会聚后在目镜物方焦平面上生成一倒立的实像,而目镜起一放大镜作用,把其物方焦平面上的倒立实像再放大成一虚像,供人眼观察。
图2所示为开普勒望远镜的光路示意图,图中L0为物镜,Le为目镜。
用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”。
实验五 显微镜望远镜放大倍数的测定
![实验五 显微镜望远镜放大倍数的测定](https://img.taocdn.com/s3/m/82344f41f242336c1eb95e4b.png)
实验五显微镜与望远镜放大本领的测定望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜通过放大物所成的像,来帮助人们观察近处的微小物体,而望远镜则是通过放大远处物的视角,帮助人们观察远处的目标,它们常被组合在其他光学仪器中使用.为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由物镜和目镜组成.望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用.光学望远镜从诞生至今将近400年,出现了折射望远镜、反射望远镜、折反射式望远镜和空间望远镜,不断推动着天文学和物理学的发展.长久以来,人们仰望天空,看见日月星辰东升西落,有过天圆地方、地心说、日心说等宇宙模型.但过去人们只能用肉眼对星空进行观察,观测范围非常局限,所得的数据资料也就非常有限.凭借着物理学的不断发展,多种望远镜被制造出来,越来越精密,推动着天文学和物理学不断向前发展,人类的视野也变得更深更广.·实验目的1.熟悉显微镜和望远镜的构造及其放大原理;2.进一步熟悉透镜成像规律及光学系统的共轴调节方法;3.学会一种测定显微镜和望远镜放大本领的方法;4.掌握显微镜、望远镜的正确使用方法.·实验仪器显微镜,望远镜,标尺,标准石英尺,测微目镜,照明灯.图5-1 显微镜的结构显微镜是一种复杂的光学仪器.它是医学实验常用工具之一,其作用是将观察的标本放大,以便观察和分析.一般光学显微镜包括机械装置和光学系统两大部分,如图5-1所示.一、机械装置1. 镜座:位于最底部的构造,为整个显微镜的基座,用以支持着整个镜体,起稳固作用.2. 镜柱:为垂直于镜座上的短柱,用以支持镜臂.3. 镜臂:为支持镜筒和镜台的呈弓形结构的部分,是取用显微镜时握拿的部分.镜筒直立式光镜在镜臂与其下方的镜柱之间有一倾斜关节,可使镜筒向后倾斜一定角度以方便观察,但使用时倾斜角度不应超过45°,否则显微镜由于重心偏移容易翻倒.4. 调节器:也称调焦螺旋,为调节焦距的装置,位于镜臂的上端(镜筒直立式光镜)或下端(镜筒倾斜式光镜),分粗调节器(大螺旋)和细调节器(小螺旋)两种.粗调节器可使镜筒或镜台作大幅度的升降,适于低倍镜观察时调焦.细调节器可使镜筒或镜台缓慢或较小幅度地升降,在低倍镜下用粗调节器找到物体后,在高倍镜和油镜下进行焦距的精细调节,藉以对物体不同层次、深度的结构做细致地观察.5. 镜筒:位于镜臂的前方,它是一个齿状脊板与调节器相接的圆筒状结构,上端装载目镜,下端连接物镜转换器.根据镜筒的数目,光镜可分为单筒式和双筒式.单筒光镜又分为直立式和倾斜式两种,镜筒直立式光镜的目镜与物镜的光轴在同一直线上,而镜筒倾斜式光镜的目镜与物镜的中心线互成45°角,在镜筒中装有使光线转折45°的棱镜;双筒式光镜的镜筒均为倾斜式的.6. 物镜转换器:又称旋转盘,位于镜筒下端的一个可旋转的凹形圆盘上,一般装有2~4个放大倍数不同的接物镜.旋转它就可以转换接物镜.旋转盘边缘有一定卡,当旋至物镜和镜筒成直线时,就发出“咔”的响声,这时方可观察玻片标本.7. 载物台:位于镜臂下面的平台,用以承放玻片标本.载物台中央有一圆形的通光孔,光线可以通过它由下向上反射.(二)光学系统1. 反光镜:是装在镜台下面、镜柱前方的一面可转动的圆镜,它有平凹两面.平面镜聚光力弱,适合光线较强时使用.凹面镜聚光力强,适于光线较弱时使用.转动反光镜,可将光源反射到聚光镜上,再经镜台中央圆孔照明标本.2. 聚光镜:在镜台下方,是一组透镜,用以聚集光线增强视野的亮度.镜台上方有一调节旋钮,转动它可升降聚光镜.往上升时增强反射光,下降时减弱反射光.3. 可变光栏:是在聚光镜底部的一个圆环状结构.它装有多片半月形的薄金属片,叠合在中央成圆孔形.在圆环外缘有一突起的小柄,拨动它可使金属片分开或合拢,用以控制光线的强弱,使物像变得更清晰.4. 目镜:装在镜筒上端,其上一般刻有放大倍数(如5×,10×).目镜内常装有一指示针,用以指示要观察的某一部分.5. 物镜:装在物镜转换器上,一般分低倍镜、高倍镜和油镜三种.低倍镜镜体较短,放大倍数小;高倍镜镜体较长,放大倍数较大;油镜镜体最长,放大倍数最大(在镜体上刻有数字,低倍镜一般有4×、10×,高倍镜一般有40×、45×,油镜一般是90×、100×,×表示放大倍数).测微目镜由目镜、分划板、读数鼓轮与连接装置等组成.目镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高测量准确程度.测微目镜的基本结构剖视图如图5-2所示.目镜镜头通过调焦螺纹固定在目镜外壳中部.外壳内有一块刻有十字丝的透明叉丝板,外壳右侧装有测距螺旋(即千分尺)系统,转动测距手轮,其螺杆将带动叉丝板移动.叉丝板的移动量可通过手轮上的千分尺测出.透明十字叉丝板后面是一个固定的玻璃标尺,标尺上刻有毫米尺,每格1mm,量程为8mm . 旋转读数鼓轮,刻有十字叉丝的可动分划板就可以左右移动.读数鼓轮每旋转一周,叉丝移动1mm ,鼓轮上有100个分格,故每一格对应的读数为0.01mm ,再估读一位.其读数方法和螺旋测微器差不多.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.测微目镜通常用来测金属丝、干涉条纹等的宽度.测量时,使双线与待测物质边缘平行,叉丝交点与待测物的边缘重合,开始计数.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.图2 测微目镜的基本结构剖视图 ·实验原理最简单的望远镜与显微镜都是由目镜和物镜两个透镜共轴所组成.物镜的像方焦点到目镜的物方焦点之间的距离(即光学间隔)为Δ.望远镜用来观察远处的物体,显微镜则是用来观察近处的微小物体,他们的放大作用都可以用放大本领M 来描述,可表示为:OE M ααt a n t a n = (5-1) 式中E α为像所张的视角;O α为物体直接对眼睛所张的视角.一、望远镜的构造及其放大原理望远镜由物镜和目镜组成,物镜用反射镜的称反射式望远镜,物镜用透镜的称折射式望远镜.目镜是会聚透镜的称为开普勒望远镜,目镜是发散透镜的称为伽利略望远镜.对于望远镜,两透镜的光学间隔Δ≈0,即物镜的像方焦点与目镜的物方焦点近乎重合.图5-3所示为开普勒望远镜的光路示意图.图中L 0为物镜(焦距较长),Le 为目镜(焦距较短),远处物体PQ 经物镜L O 后在物镜的像方焦点F'上成一倒立实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离.像P'Q'一般是缩小的.近乎位于目镜的物方焦面上,经目镜L E 放大后成虚像P"Q"于观察者眼睛的明视距离与无穷远之间.用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”.图5-3 开普勒望远镜的光路示意图由理论计算可得望远镜的放大本领为: ''t a n t a n E O OE O E O E f f f Q P f Q P M =''''=≈=αααα (5-2) 式中f o ′为物镜的焦距,f E ′为目镜的焦距,上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大本领则越大.开普勒望远镜(f o ′>0,(f E ′>0),放大本领M 为负值,系统成倒立的像;而对伽利略望远镜(f o ′>0,(f E ′<0),放大本领M 为正值,系统成正立的像.因实际观察时,物体并不真正处于无穷远,像亦不成在无穷远,但式(5-2)仍近似适用.二、显微镜的构造及其放大原理显微镜和望远镜的光学系统十分相似,都是由物镜和目镜组成.显微镜的结构一般认为是由两个会聚透镜共轴组成,如图5-4所示,实物PQ 经物镜L 0成倒立实像P'Q'于目镜Le 的物方焦点Fe 的内侧,再经目镜Le 成放大的虚像P"Q"于人眼的明视距离处或无穷远处.理论计算可得显微镜的放大本领为: ''E O O E O f s f M M M ⋅∆-== (5-3)式中O M 为物镜的放大本领,M E 是目镜的放大本领,f o ′,f E ′ 为物镜和目镜的像方焦距,Δ是显微镜的光学间隔,S O =-25cm 为正常人眼的明视距离.由上式可知,显微镜的镜筒越长,物镜和目镜的焦距越短,放大本领就越大,通常物镜和目镜的放大本领,是标在镜头上的.图5-4 显微镜光路图用望远镜或显微镜观察物体时,一般视角均甚小,因此视角之比可用其正切之比代替,于是光学仪器的放大本领M 可近似地写成 OE O l l M ==ααtan tan 式中l 0是被测物的大小PQ ,l 是在物体所处平面上被测物的虚像的大小P"Q". ·实验内容与步骤一、显微镜放大倍数的测定1.将标准石英尺放在显微镜载物台上夹住.2.选择适当倍率的目镜,调节聚光镜、反光镜及光阑,使目镜中观察到强弱适当而均匀的视场.3.熟悉显微镜的机械结构,学会调节使用,先用低倍物镜对石英尺进行调焦,先粗调、后微调,直至目镜视场中观察到最清晰的像,如果观察物的像不在视场中间,则可调节载物台移动手轮,将其移至视场中心进行观察.4.将目镜卸下,换上测微目镜,首先对测微目镜的目镜进行调焦,看清分划板,在调节显微镜的物镜调焦手轮,至标尺的像最清晰且无视差.5.转动测微目镜使分划板上“双线”与标准石英尺的刻度(石英尺刻度部分全长lmm ,共分100小格,每格宽O .01mm)平行,然后将叉丝移至和显微镜视场中标准石英尺某一刻度重合,记下测微目镜的读数1x .转动测微目镜鼓轮,使叉丝在标准石英尺上移动5格,这时叉丝与标准石英尺上另一刻度线重合,记下测微目镜的读数2x .依此每隔5格记录一组数据,共记录10组数据.6.用逐差法处理数据,求出标尺5格对应像的大小,求其平均值,计算出物镜的放大本领.二、望远镜放大本领的测定1.将望远镜夹好,在垂直望远镜光轴方向距离目镜25cm 处放置一毫米分度的米尺A ,调节望远镜调焦手轮,把望远镜调焦到无穷远处,即望远镜能看清楚远处的物体.2.在A 尺上套上两白纸条,其间距可调,如图5-5所示.一只眼睛通过望远镜观察米尺的像B ,另一只眼睛直接看米尺A ,经过多次观察,调节眼睛使得米尺A 与望远镜中的米尺像B 重合.以B 尺为标尺,选定A 尺的上两纸带的间距为10格,记录其相当于B 尺上的格数0l ,重复3-5次,算出望远镜的放大倍数,取其平均值,并计算平均绝对偏差.3.取两纸带的间隔分别为8格和13格,重复上述步骤进行测量.图5-5 望远镜放大倍数测定原理·实验数据测量1.用测微目镜测经显微镜放大的石英标尺像刻度间隔数据表测量间隔:每隔5小格标尺像刻度读一次数序号i1 2 3 4 5 6 7 8 9 10 x i (mm)2.望远镜视角放大率测量数据表标记实际长度l 0 (mm)80 100 130 重复测量序号1 2 3 1 2 3 1 2 3 上缘对应镜内刻度Y u (mm)下缘对应镜内刻度Y l (mm)镜内对应长度 l =Y l -Y u (mm)望远镜放大率M = l 0/ l5 4 8 3 7 26 548372 6l 0l 标尺A 标尺B·实验注意事项1.注意不要用手摸透镜、反射镜等光学元件的光学表面,,以免在光学面上留下痕迹,使成像模糊或无法成像.2.在实验过程中,注意光学仪器要轻拿轻放,勿使仪器受到震动和磨损.3.用测微目镜测量时要注意回程误差.4.测望远镜放大本领时,两只眼睛要同时观察,同时看清A、B两尺的像,并将A、B两尺的像重合在一起时,方可读数.·历史渊源与应用前景望远镜和显微镜的发明是17世纪光学的伟大成就.显微镜的发明,使人类第一次发现了微生物和细胞生存的世界.第一架显微镜由荷铸眼镜匠詹森父子发明,后由伽利略改良而成.最初的显微镜只能放大50-200倍,到1932年德国的诺尔和鲁斯卡发明了世界第一台电子显微镜,它是利用德布罗依物质波原理制造而成的,它能放大1万倍,到20世纪90年代发展到放大率可达200万倍,由此人们发现了原子世界.1983年人们又发明了基于量子力学原理造而成的扫描隧道显微镜,开创了纳米科技的观测手段.后来人们又发明了原子力显微镜,它是根据扫描隧道显微镜的原理设计的高速拍摄三维图像的显微镜.可观察大分子在体内的活动变化.1608年荷兰的眼睛匠利佩希偶然地制造出了第一架望远镜,它的目镜为一凹透镜,被称为荷兰望远镜.发明望远镜的消息迅速在欧洲传开,1609年伽利略得悉这一消息后,立即动手制作,并把自制的望远镜第一个指向天空,首先发现了月亮上的山脉和火山口.伽利略设计了由两个凸透镜构成的开普勒望远镜,第一架开普勒望远镜由天文学家沙伊纳制成.1668年,牛顿(Newton,I.1642~1727)用2.5 厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,制成了反射望远镜.1672年牛顿有制造了第二架反射望远镜,全长1.2m,口径为2m,并把它献给了英国皇家学会.往后的几百年间,人们提出了反射镜的多种设计方案.1918年末,口径为254厘米的胡克望远镜(Hooker telescope)投入使用,它第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃(Hubble,E.P.1889~1953)的宇宙膨胀理论就是用胡克望远镜观测的结果.相对于折射镜,反射镜没有色差,容易制作;但它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等.随后又出现了能兼顾折射和反射两种望远镜优点的折反射式望远镜,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱.它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良.适于巡天摄影和观测星云、彗星、流星等天体.自1970年代以来,在望远镜的制造方面有了许多新技术,涉及光学、力学、计算机、自动控制和精密机械等领域,使望远镜的制造突破了镜面口径的局限.然而,由于地球大气对电磁波的吸收作用,地面观测具有严重的局限性.物理学在不断地发展,直到人造卫星上天,航天技术逐渐成熟,空间天文学才兴起.1990年4月24日,由美国国家航空与航天局(NASA)和欧洲空间局(ESRO)联合研制的哈勃空间望远镜(HST)的发射成功,是天文学走向空间时代的一个里程碑.空间观测与地面观测相比,有极大的优势:没有了大气层的干扰,恒星不再闪烁.分辨率比起地面的大型望远镜提高了几十倍.灵敏度的提高,使可观测的天体迅速增加.空间没有重力,仪器就不会因自重而变形.频率覆盖范围也大大地变宽,全波段天文观测成为可能,对于光学望远镜,可以接收到宽得多的波段.就哈勃空间望远镜(现已退役)而言,主望远镜是口径为2.4米的反射望远镜,还携带了广角行星照相机,暗弱天体照相机,暗弱天体光谱仪,高分辨率光谱仪,高速光度计,成象光谱仪,近红外照相机,多目标摄谱仪,高级普查摄像仪,高新巡天照相机等精密仪器,观测范围早已突破了可见光波段,向红外和紫外两端延伸.其功能之强大,在天文学的许多领域中作出了巨大的贡献,如:银河系中心、双星系统、近邻星系、宇宙早期星系、黑洞研究等等.在望远镜的庞大家族里,除了以上介绍的光学望远镜以外,还有射电望远镜(radio telescope)、红外望远镜(infrared telescope)、紫外望远镜(ultraviolet telescope)、X 射线望远镜(X-ray telescope)和γ射线望远镜(gamma ray telescope).随着新型显微镜、望远镜的发展和应用,使人类的视野变得更深更广.·与中学物理的衔接中学物理课标对望远镜、显微镜及相关内容的要求是:1.知道显微镜、望远镜的原理.2.用两个不同焦距的凸透镜制作望远镜.3.了解开普勒望远镜和伽利略望远镜的结构.4.通过望远镜原理的及调节要求的学习,可进一步掌握凸透镜呈像的特点及规律·自主学习1.显微镜和望远镜有何异同?2.显微镜和望远镜的调焦方式有何不同?为什么?3.测量标准石英尺时所获得的放大本领为什么不等于物镜的标称放大本领?4、用同一个望远镜观察不同距离的目标时,其视觉放大本领是否不同?5、在光具座上自组装的望远镜(或显微镜),如何调节焦距以获得清晰的像?6.已知什么量?哪个是待测量?如何控制变量?按要求处理实验数据,完成实验报告.·实验探究与设计尝试在光具座上设计并组装望远镜或显微镜,写出实验方案,并完成实验.。
望远镜和显微镜放大率的测定
![望远镜和显微镜放大率的测定](https://img.taocdn.com/s3/m/989a25c6336c1eb91b375d6b.png)
望远镜和显微镜放大率的测定望远镜和显微镜是最常用的助视光学仪器,常组合于其它实验装置中使用,如光杠杆、测距显微镜、分光仪等。
了解它们的构造原理并掌握它们的调节使用方法,不仅有助于加深理解透镜的成像规律,也为正确使用其它光学仪器打下基础。
Ⅰ 望远镜放大率的测定【实验目的】1、了解望远镜的构造原理并掌握其正确使用方法。
2、测定望远镜的放大率。
【实验原理】1.光学仪器的角放大率望远镜被用于观测远处的物体,显微镜被用于观测微小的物体,它们的作用都是将被观测物体对眼睛光心的张角(视角)加以放大。
显然,同一物体对眼睛所张的视角与物体离眼睛的距离有关。
在一般照明条件下,正常人的眼睛能分辨在明视距离cm 25处相距为~的两点。
此时,这两点对眼睛所张的视角约为1′,称为最小分辨角。
当远处物体(或微小物体)对眼睛所张视角小于此最小分辨角时,眼睛将无法分辨。
因而需借助光学仪器(如放大镜、望远镜、显微镜等)来增大对眼睛所张的视角。
它们的放大能力可用角放大率表示,其定义为:Φψ≈Φψ=tg tg m (1)式中为明视距离处物体对眼睛所张的视角,为通过光学仪器观察时,在明视距离处的成像对眼睛所张的视角。
由于视角的角度值很小,故在具体计算是常用它的正切值予以替代。
图(1) 凸透镜放大的示意图以凸透镜为例,如图(1)所示:为凸透镜,被观测物长为,距眼睛为时,对眼睛的视角为。
当物体置于透镜焦平面以内的位置时,可得放大的虚像''B A ,像长为。
调整物距u ,使像到眼睛的距离为明视距离,对眼睛所张的视角为。
则此凸透镜的放大率为: (2)当透镜焦距较小(即)时,则 (3)由上式可见,减小凸透镜的焦距可以增大它的放大率。
凸透镜是最简单的放大镜。
式(3)就表示放大镜的放大率。
由于单透镜存在像差,它的放大率一般在3倍(3)以下。
为提高其放大率并保持较好的成像质量,常由几块透镜组成复合放大镜。
复合放大镜的放大率仍由式(3)计算,式中f 代表透镜组的焦距,其放大率可达20。
显微镜与望远镜的组装及放大率的测定
![显微镜与望远镜的组装及放大率的测定](https://img.taocdn.com/s3/m/4667688dcc17552706220825.png)
显微镜与望远镜的组装及放大率的测定.doc显微镜和望远镜的组装及放大率的测定成员:32人,13人,35人,彭发勇17人,3人首先,实验的目的:1.组装简单的望远镜和显微镜,熟悉它们的机理和放大原理;2、学会望远镜、显微镜的放大率测量。
二。
实验仪器和设备凸透镜(四个)、标尺、光学工作台、光源等。
三、实验原理(设计思路)显微镜和望远镜是常用的视觉辅助工具。
显微镜主要用来帮助人眼观察附近的小物体。
望远镜主要用来帮助人眼观察远处的物体。
它们在许多领域都发挥着非常重要的作用,如天文学、电子学、生物学和医学。
它们都增加了观察对象对人眼的角度,并在扩大视角方面发挥作用。
但是他们的基本光学系统由一个物镜和一个目镜组成。
1.显微镜的结构(1):显微镜由两组凸透镜组成,一组是焦距相对较短的凸透镜作为物镜,另一组是稍大一点的凸透镜作为目镜。
(2)显微镜的放大率:显微镜的放大率是放大率:m =-25 cm ×△(f1’ × F2 ‘),其中△是物镜像焦点f1 ‘和目镜物焦点F2之间的距离,即光学间隔。
图a△物镜F’1 F2目镜图a(3)放大率的测量:(1)组装实验装置,如图B所示(2)前后移动目镜,同时保持物镜相对靠近标尺,以便通过显微镜可以清楚地看到短标尺的图像。
(3)一只眼睛通过显微镜观察标尺的图像,一只眼睛直接看标尺上的光标,读出标尺图像上标尺上两个光标之间的距离l0,然后读出两个光标之间的实际距离L。
增益放大倍数M=l1/l0,重复几次,取平均值。
目镜尺物镜游标图b 2,望远镜(1)结构:根据目镜不同,望远镜分为开普勒望远镜和伽利略望远镜。
现在选择两个凸透镜来组装开普勒望远镜。
(2)望远镜的放大率:M=f1’/f2=-(f1’/f2 ‘)为大放大率望远镜选择的物镜的焦距F1’应该更大,目镜的焦距F2’应该更小。
(3)望远镜放大率的测量:(1)如图所示组装实验装置。
标尺物镜目镜光标(2)移动目镜,同时保持目镜和标尺之间的距离相对较大,以便通过望远镜可以清楚地看到标尺的图像。
组装显微镜和望远镜实验报告
![组装显微镜和望远镜实验报告](https://img.taocdn.com/s3/m/1dd45f04a22d7375a417866fb84ae45c3a35c279.png)
组装显微镜和望远镜实验报告实验目的:1. 熟悉显微镜的组装和使用方法;2. 了解望远镜的结构和使用方法;3. 提高操作实验仪器的能力。
实验原理:显微镜是一种用来放大微小物体的光学仪器,因其具有高倍率和高分辨率,所以被广泛应用于生物、医学、材料科学等领域。
显微镜由物镜、目镜、反射镜、目镜管、支架、平台、光源等部分组成,通过调节物镜和目镜的距离和位置,可以放大被观察物的微小细节。
望远镜是一种用来观测远处物体的光学仪器。
望远镜主要由物镜、目镜、光感器、手柄、三脚架等部分组成。
通过调节物镜和目镜的位置和焦距,可以放大被观察物的远距离细节。
实验器材:1. 显微镜组装件2. 望远镜组装件3. 台灯或手电筒4. 实验台或桌子实验步骤:1. 显微镜组装:将物镜和目镜固定在目镜管的两端,并将目镜管安装在支架上。
将反射镜安装在底部,调节反光镜角度使光线透射到物镜和目镜中心。
将样品放置在平台上,调节物镜和目镜的位置和距离,调节光源亮度和方向,观察样品细节。
2. 望远镜组装:将物镜和目镜固定在镜筒的两端,并将镜筒安装在三脚架上。
调节物镜和目镜的位置和焦距,调节光源亮度和方向,在远处坐台上放置目标,调节望远镜方向和高度,观察目标细节。
3. 记录实验数据:记录显微镜和望远镜调整过程中的物镜和目镜距离、亮度、位置、颜色等参数,记录观察到的样品细节和目标形状和距离等数据。
4. 结论分析:根据实验数据,分析和比较显微镜和望远镜的性能和应用领域,总结组装调整方法和注意事项。
实验注意事项:1. 在使用显微镜和望远镜时,保持实验台和仪器稳定不易晃动。
2. 调整物镜和目镜时,注意先调整物镜再调整目镜,避免调整过程中仪器受到损坏。
3. 调整反光镜角度时,注意保证光线透射到物镜和目镜中心。
4. 在观察过程中,保持实验室环境安静并避免碰触样品或目标。
5. 完成实验后,清洁仪器并按照标准方法存放,避免损坏或丢失。
组装显微镜及其放大倍率的测定
![组装显微镜及其放大倍率的测定](https://img.taocdn.com/s3/m/b28e50cc4028915f804dc2c6.png)
组装显微镜及其放大倍率的测定摘要:显微镜是用途极为广泛的助视光学仪器,在天文学、电子学、生物学和医学等领域中都起着十分重要的作用。
它主要用来帮助人们观察近处的微小物体,常被组合在其他光学仪器中。
为适应不同用途和性能的要求,显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由一个物镜和一个目镜组成。
本文是自己组装显微镜并对齐放大倍率进行测量。
关键词:物理实验光学组装显微镜放大倍率1 显微镜光路原理显微镜由两个凸透镜共轴组成,其中,物镜的焦距很短,目镜的焦距较长。
实物PQ经物镜L0成倒立实像P′Q′于目镜Le的物方焦点Fe的内侧,再经目镜Le成放大的虚像P″Q″于人眼的明视距离处。
2 自选实验仪器(1)小照明光源S(GY-20,低亮度)。
(2)干版架(SZ-12)。
(3)微尺M1(1/10mm)。
(4)透镜架(SZ-08)。
(5)物镜L0(f0=45mm)。
(6)二维架(SZ-07)。
(7)二维架(SZ-07)。
(8)目镜Le(fe=34mm)。
(9)45°玻璃架(SZ-45)。
(10)升降调节座(SZ-03)。
(11)透镜架(SZ-08)。
(12)毫米尺M2(l=30mm)。
(13)三维平移底座(SZ-01)。
(14)二维平移底座(SZ-02)。
(15)升降调节座(SZ-03)。
(16)通用底座(SZ-04)。
(17)白光源(GY-6A)和通用底座(SZ-04)【图2中未画出,用于照亮毫米尺】。
3 实验内容与步骤(1)参照图2布置各器件,调等高同轴。
(2)选出焦距为45mm,34mm的两个凸透镜作为物镜和目镜,装配显微镜。
(3)调节物镜和目镜间的距离为24cm。
(4)打开溴钨灯,在光源和物镜之间移动毛玻璃微尺M1,在目镜后观察,使得目镜中能观察到清晰的微尺放大的像。
(5)在Le之后置一与光轴成45°角的平玻璃板,距此玻璃板一定距离处置一毫米尺M2(毫米尺到45°角的距离为人眼的明视距离25cm),用白光源(图2中未画出)照亮毫米尺M2。
实验五 显微镜望远镜放大倍数的测定
![实验五 显微镜望远镜放大倍数的测定](https://img.taocdn.com/s3/m/339b440403d8ce2f0066231d.png)
实验五显微镜与望远镜放大本领的测定望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜通过放大物所成的像,来帮助人们观察近处的微小物体,而望远镜则是通过放大远处物的视角,帮助人们观察远处的目标,它们常被组合在其他光学仪器中使用.为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由物镜和目镜组成.望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用.光学望远镜从诞生至今将近400年,出现了折射望远镜、反射望远镜、折反射式望远镜和空间望远镜,不断推动着天文学和物理学的发展.长久以来,人们仰望天空,看见日月星辰东升西落,有过天圆地方、地心说、日心说等宇宙模型.但过去人们只能用肉眼对星空进行观察,观测范围非常局限,所得的数据资料也就非常有限.凭借着物理学的不断发展,多种望远镜被制造出来,越来越精密,推动着天文学和物理学不断向前发展,人类的视野也变得更深更广.·实验目的1.熟悉显微镜和望远镜的构造及其放大原理;2.进一步熟悉透镜成像规律及光学系统的共轴调节方法;3.学会一种测定显微镜和望远镜放大本领的方法;4.掌握显微镜、望远镜的正确使用方法.·实验仪器显微镜,望远镜,标尺,标准石英尺,测微目镜,照明灯.图5-1 显微镜的结构显微镜是一种复杂的光学仪器.它是医学实验常用工具之一,其作用是将观察的标本放大,以便观察和分析.一般光学显微镜包括机械装置和光学系统两大部分,如图5-1所示.一、机械装置1. 镜座:位于最底部的构造,为整个显微镜的基座,用以支持着整个镜体,起稳固作用.2. 镜柱:为垂直于镜座上的短柱,用以支持镜臂.3. 镜臂:为支持镜筒和镜台的呈弓形结构的部分,是取用显微镜时握拿的部分.镜筒直立式光镜在镜臂与其下方的镜柱之间有一倾斜关节,可使镜筒向后倾斜一定角度以方便观察,但使用时倾斜角度不应超过45°,否则显微镜由于重心偏移容易翻倒.4. 调节器:也称调焦螺旋,为调节焦距的装置,位于镜臂的上端(镜筒直立式光镜)或下端(镜筒倾斜式光镜),分粗调节器(大螺旋)和细调节器(小螺旋)两种.粗调节器可使镜筒或镜台作大幅度的升降,适于低倍镜观察时调焦.细调节器可使镜筒或镜台缓慢或较小幅度地升降,在低倍镜下用粗调节器找到物体后,在高倍镜和油镜下进行焦距的精细调节,藉以对物体不同层次、深度的结构做细致地观察.5. 镜筒:位于镜臂的前方,它是一个齿状脊板与调节器相接的圆筒状结构,上端装载目镜,下端连接物镜转换器.根据镜筒的数目,光镜可分为单筒式和双筒式.单筒光镜又分为直立式和倾斜式两种,镜筒直立式光镜的目镜与物镜的光轴在同一直线上,而镜筒倾斜式光镜的目镜与物镜的中心线互成45°角,在镜筒中装有使光线转折45°的棱镜;双筒式光镜的镜筒均为倾斜式的.6. 物镜转换器:又称旋转盘,位于镜筒下端的一个可旋转的凹形圆盘上,一般装有2~4个放大倍数不同的接物镜.旋转它就可以转换接物镜.旋转盘边缘有一定卡,当旋至物镜和镜筒成直线时,就发出“咔”的响声,这时方可观察玻片标本.7. 载物台:位于镜臂下面的平台,用以承放玻片标本.载物台中央有一圆形的通光孔,光线可以通过它由下向上反射.(二)光学系统1. 反光镜:是装在镜台下面、镜柱前方的一面可转动的圆镜,它有平凹两面.平面镜聚光力弱,适合光线较强时使用.凹面镜聚光力强,适于光线较弱时使用.转动反光镜,可将光源反射到聚光镜上,再经镜台中央圆孔照明标本.2. 聚光镜:在镜台下方,是一组透镜,用以聚集光线增强视野的亮度.镜台上方有一调节旋钮,转动它可升降聚光镜.往上升时增强反射光,下降时减弱反射光.3. 可变光栏:是在聚光镜底部的一个圆环状结构.它装有多片半月形的薄金属片,叠合在中央成圆孔形.在圆环外缘有一突起的小柄,拨动它可使金属片分开或合拢,用以控制光线的强弱,使物像变得更清晰.4. 目镜:装在镜筒上端,其上一般刻有放大倍数(如5×,10×).目镜内常装有一指示针,用以指示要观察的某一部分.5. 物镜:装在物镜转换器上,一般分低倍镜、高倍镜和油镜三种.低倍镜镜体较短,放大倍数小;高倍镜镜体较长,放大倍数较大;油镜镜体最长,放大倍数最大(在镜体上刻有数字,低倍镜一般有4×、10×,高倍镜一般有40×、45×,油镜一般是90×、100×,×表示放大倍数).测微目镜由目镜、分划板、读数鼓轮与连接装置等组成.目镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高测量准确程度.测微目镜的基本结构剖视图如图5-2所示.目镜镜头通过调焦螺纹固定在目镜外壳中部.外壳内有一块刻有十字丝的透明叉丝板,外壳右侧装有测距螺旋(即千分尺)系统,转动测距手轮,其螺杆将带动叉丝板移动.叉丝板的移动量可通过手轮上的千分尺测出.透明十字叉丝板后面是一个固定的玻璃标尺,标尺上刻有毫米尺,每格1mm,量程为8mm . 旋转读数鼓轮,刻有十字叉丝的可动分划板就可以左右移动.读数鼓轮每旋转一周,叉丝移动1mm ,鼓轮上有100个分格,故每一格对应的读数为0.01mm ,再估读一位.其读数方法和螺旋测微器差不多.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.测微目镜通常用来测金属丝、干涉条纹等的宽度.测量时,使双线与待测物质边缘平行,叉丝交点与待测物的边缘重合,开始计数.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.图2 测微目镜的基本结构剖视图 ·实验原理最简单的望远镜与显微镜都是由目镜和物镜两个透镜共轴所组成.物镜的像方焦点到目镜的物方焦点之间的距离(即光学间隔)为Δ.望远镜用来观察远处的物体,显微镜则是用来观察近处的微小物体,他们的放大作用都可以用放大本领M 来描述,可表示为:OE M ααt a n t a n = (5-1) 式中E α为像所张的视角;O α为物体直接对眼睛所张的视角.一、望远镜的构造及其放大原理望远镜由物镜和目镜组成,物镜用反射镜的称反射式望远镜,物镜用透镜的称折射式望远镜.目镜是会聚透镜的称为开普勒望远镜,目镜是发散透镜的称为伽利略望远镜.对于望远镜,两透镜的光学间隔Δ≈0,即物镜的像方焦点与目镜的物方焦点近乎重合.图5-3所示为开普勒望远镜的光路示意图.图中L 0为物镜(焦距较长),Le 为目镜(焦距较短),远处物体PQ 经物镜L O 后在物镜的像方焦点F'上成一倒立实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离.像P'Q'一般是缩小的.近乎位于目镜的物方焦面上,经目镜L E 放大后成虚像P"Q"于观察者眼睛的明视距离与无穷远之间.用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”.图5-3 开普勒望远镜的光路示意图由理论计算可得望远镜的放大本领为: ''t a n t a n E O OE O E O E f f f Q P f Q P M =''''=≈=αααα (5-2) 式中f o ′为物镜的焦距,f E ′为目镜的焦距,上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大本领则越大.开普勒望远镜(f o ′>0,(f E ′>0),放大本领M 为负值,系统成倒立的像;而对伽利略望远镜(f o ′>0,(f E ′<0),放大本领M 为正值,系统成正立的像.因实际观察时,物体并不真正处于无穷远,像亦不成在无穷远,但式(5-2)仍近似适用.二、显微镜的构造及其放大原理显微镜和望远镜的光学系统十分相似,都是由物镜和目镜组成.显微镜的结构一般认为是由两个会聚透镜共轴组成,如图5-4所示,实物PQ 经物镜L 0成倒立实像P'Q'于目镜Le 的物方焦点Fe 的内侧,再经目镜Le 成放大的虚像P"Q"于人眼的明视距离处或无穷远处.理论计算可得显微镜的放大本领为: ''E O O E O f s f M M M ⋅∆-== (5-3)式中O M 为物镜的放大本领,M E 是目镜的放大本领,f o ′,f E ′ 为物镜和目镜的像方焦距,Δ是显微镜的光学间隔,S O =-25cm 为正常人眼的明视距离.由上式可知,显微镜的镜筒越长,物镜和目镜的焦距越短,放大本领就越大,通常物镜和目镜的放大本领,是标在镜头上的.图5-4 显微镜光路图用望远镜或显微镜观察物体时,一般视角均甚小,因此视角之比可用其正切之比代替,于是光学仪器的放大本领M 可近似地写成 OE O l l M ==ααtan tan 式中l 0是被测物的大小PQ ,l 是在物体所处平面上被测物的虚像的大小P"Q". ·实验内容与步骤一、显微镜放大倍数的测定1.将标准石英尺放在显微镜载物台上夹住.2.选择适当倍率的目镜,调节聚光镜、反光镜及光阑,使目镜中观察到强弱适当而均匀的视场.3.熟悉显微镜的机械结构,学会调节使用,先用低倍物镜对石英尺进行调焦,先粗调、后微调,直至目镜视场中观察到最清晰的像,如果观察物的像不在视场中间,则可调节载物台移动手轮,将其移至视场中心进行观察.4.将目镜卸下,换上测微目镜,首先对测微目镜的目镜进行调焦,看清分划板,在调节显微镜的物镜调焦手轮,至标尺的像最清晰且无视差.5.转动测微目镜使分划板上“双线”与标准石英尺的刻度(石英尺刻度部分全长lmm ,共分100小格,每格宽O .01mm)平行,然后将叉丝移至和显微镜视场中标准石英尺某一刻度重合,记下测微目镜的读数1x .转动测微目镜鼓轮,使叉丝在标准石英尺上移动5格,这时叉丝与标准石英尺上另一刻度线重合,记下测微目镜的读数2x .依此每隔5格记录一组数据,共记录10组数据.6.用逐差法处理数据,求出标尺5格对应像的大小,求其平均值,计算出物镜的放大本领.二、望远镜放大本领的测定1.将望远镜夹好,在垂直望远镜光轴方向距离目镜25cm 处放置一毫米分度的米尺A ,调节望远镜调焦手轮,把望远镜调焦到无穷远处,即望远镜能看清楚远处的物体.2.在A 尺上套上两白纸条,其间距可调,如图5-5所示.一只眼睛通过望远镜观察米尺的像B ,另一只眼睛直接看米尺A ,经过多次观察,调节眼睛使得米尺A 与望远镜中的米尺像B 重合.以B 尺为标尺,选定A 尺的上两纸带的间距为10格,记录其相当于B 尺上的格数0l ,重复3-5次,算出望远镜的放大倍数,取其平均值,并计算平均绝对偏差.3.取两纸带的间隔分别为8格和13格,重复上述步骤进行测量.图5-5 望远镜放大倍数测定原理·实验数据测量1.用测微目镜测经显微镜放大的石英标尺像刻度间隔数据表测量间隔:每隔5小格标尺像刻度读一次数序号i1 2 3 4 5 6 7 8 9 10 x i (mm)2.望远镜视角放大率测量数据表标记实际长度l 0 (mm)80 100 130 重复测量序号1 2 3 1 2 3 1 2 3 上缘对应镜内刻度Y u (mm)下缘对应镜内刻度Y l (mm)镜内对应长度 l =Y l -Y u (mm)望远镜放大率M = l 0/ l5 4 8 3 7 26 548372 6l 0l 标尺A 标尺B·实验注意事项1.注意不要用手摸透镜、反射镜等光学元件的光学表面,,以免在光学面上留下痕迹,使成像模糊或无法成像.2.在实验过程中,注意光学仪器要轻拿轻放,勿使仪器受到震动和磨损.3.用测微目镜测量时要注意回程误差.4.测望远镜放大本领时,两只眼睛要同时观察,同时看清A、B两尺的像,并将A、B两尺的像重合在一起时,方可读数.·历史渊源与应用前景望远镜和显微镜的发明是17世纪光学的伟大成就.显微镜的发明,使人类第一次发现了微生物和细胞生存的世界.第一架显微镜由荷铸眼镜匠詹森父子发明,后由伽利略改良而成.最初的显微镜只能放大50-200倍,到1932年德国的诺尔和鲁斯卡发明了世界第一台电子显微镜,它是利用德布罗依物质波原理制造而成的,它能放大1万倍,到20世纪90年代发展到放大率可达200万倍,由此人们发现了原子世界.1983年人们又发明了基于量子力学原理造而成的扫描隧道显微镜,开创了纳米科技的观测手段.后来人们又发明了原子力显微镜,它是根据扫描隧道显微镜的原理设计的高速拍摄三维图像的显微镜.可观察大分子在体内的活动变化.1608年荷兰的眼睛匠利佩希偶然地制造出了第一架望远镜,它的目镜为一凹透镜,被称为荷兰望远镜.发明望远镜的消息迅速在欧洲传开,1609年伽利略得悉这一消息后,立即动手制作,并把自制的望远镜第一个指向天空,首先发现了月亮上的山脉和火山口.伽利略设计了由两个凸透镜构成的开普勒望远镜,第一架开普勒望远镜由天文学家沙伊纳制成.1668年,牛顿(Newton,I.1642~1727)用2.5 厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,制成了反射望远镜.1672年牛顿有制造了第二架反射望远镜,全长1.2m,口径为2m,并把它献给了英国皇家学会.往后的几百年间,人们提出了反射镜的多种设计方案.1918年末,口径为254厘米的胡克望远镜(Hooker telescope)投入使用,它第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃(Hubble,E.P.1889~1953)的宇宙膨胀理论就是用胡克望远镜观测的结果.相对于折射镜,反射镜没有色差,容易制作;但它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等.随后又出现了能兼顾折射和反射两种望远镜优点的折反射式望远镜,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱.它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良.适于巡天摄影和观测星云、彗星、流星等天体.自1970年代以来,在望远镜的制造方面有了许多新技术,涉及光学、力学、计算机、自动控制和精密机械等领域,使望远镜的制造突破了镜面口径的局限.然而,由于地球大气对电磁波的吸收作用,地面观测具有严重的局限性.物理学在不断地发展,直到人造卫星上天,航天技术逐渐成熟,空间天文学才兴起.1990年4月24日,由美国国家航空与航天局(NASA)和欧洲空间局(ESRO)联合研制的哈勃空间望远镜(HST)的发射成功,是天文学走向空间时代的一个里程碑.空间观测与地面观测相比,有极大的优势:没有了大气层的干扰,恒星不再闪烁.分辨率比起地面的大型望远镜提高了几十倍.灵敏度的提高,使可观测的天体迅速增加.空间没有重力,仪器就不会因自重而变形.频率覆盖范围也大大地变宽,全波段天文观测成为可能,对于光学望远镜,可以接收到宽得多的波段.就哈勃空间望远镜(现已退役)而言,主望远镜是口径为2.4米的反射望远镜,还携带了广角行星照相机,暗弱天体照相机,暗弱天体光谱仪,高分辨率光谱仪,高速光度计,成象光谱仪,近红外照相机,多目标摄谱仪,高级普查摄像仪,高新巡天照相机等精密仪器,观测范围早已突破了可见光波段,向红外和紫外两端延伸.其功能之强大,在天文学的许多领域中作出了巨大的贡献,如:银河系中心、双星系统、近邻星系、宇宙早期星系、黑洞研究等等.在望远镜的庞大家族里,除了以上介绍的光学望远镜以外,还有射电望远镜(radio telescope)、红外望远镜(infrared telescope)、紫外望远镜(ultraviolet telescope)、X 射线望远镜(X-ray telescope)和γ射线望远镜(gamma ray telescope).随着新型显微镜、望远镜的发展和应用,使人类的视野变得更深更广.·与中学物理的衔接中学物理课标对望远镜、显微镜及相关内容的要求是:1.知道显微镜、望远镜的原理.2.用两个不同焦距的凸透镜制作望远镜.3.了解开普勒望远镜和伽利略望远镜的结构.4.通过望远镜原理的及调节要求的学习,可进一步掌握凸透镜呈像的特点及规律·自主学习1.显微镜和望远镜有何异同?2.显微镜和望远镜的调焦方式有何不同?为什么?3.测量标准石英尺时所获得的放大本领为什么不等于物镜的标称放大本领?4、用同一个望远镜观察不同距离的目标时,其视觉放大本领是否不同?5、在光具座上自组装的望远镜(或显微镜),如何调节焦距以获得清晰的像?6.已知什么量?哪个是待测量?如何控制变量?按要求处理实验数据,完成实验报告.·实验探究与设计尝试在光具座上设计并组装望远镜或显微镜,写出实验方案,并完成实验.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
显微镜与望远镜的组装及放大率的测定
成员:章先发(32)张忠健(13)杨柳(35)彭发勇(17)罗明书(3)
一、实验目的:
1、组装简单的望远镜和显微镜,熟悉其机构及放大原理;
2、学会望远镜、显微镜放大率的测量。
二、实验仪器及用具
凸透镜(四个)、标尺、光具座、光源等
三、实验原理(设计思路)
显微镜和望远镜是常用的助视光学仪器,显微镜主要用来帮助人眼观察近处的微小物体,望远镜主要是帮助人眼观察远处的目标。
它们在天文学、电子学、生物学和医学等诸多领域都起着十分重要的作用。
它们都是增大被观察物体对人眼的张角,起着视角放大的作用。
但是它们的基本光学系统都由一个物镜和一个目镜组成。
1、显微镜
(1)结构:
显微镜由两组凸透镜组成,一组为焦距相对较短的凸透镜作为物镜,另一组为稍微大些凸透镜作为目镜。
(2)显微镜的放大本领:
显微镜的放大本领即放大率:M=-25cm×△/(f1'×f2'),其中△是物镜像方焦点F1'到目镜物方焦点F2之间的距离即光学间隔,
如图a
图a
(3)放大率的测量:
(1)按图b所示,组装好实验装置。
(2)保持物镜距标尺比较近的前提下前后移动目镜,使通过显微镜能清晰的看到短尺的像。
(3)一只眼睛通过显微镜观察标尺的像,一只眼睛直接看标尺上的游标,读出标尺上两游标之间在标尺像上的距离l0,然后再读出实际两游标之间的距离l。
得放大率M=l1/l0,重复几次,取平均值。
2、望远镜
(1)结构:
望远镜根据目镜的不同分为开普勒望远镜与伽利略望远镜。
现选择两块凸透镜组装开普勒式望远镜。
目镜
物镜
标尺
图b
游标
(2)望远镜的放大本领:
M=f1'/f2=-(f1'/f2')
欲得到一个放大本领大的望远镜所选择的物镜的焦距f1'应较大,目镜的焦距f2'应较小。
(3)望远镜放大率的测定:
(1)按图所示,组装实验装置。
(2)保持目镜与标尺之间的距离比较大的前提下移动目镜使通过望远镜能清晰的看到标尺的像。
(3)一只眼睛通过望远镜观察标尺的像,一只眼睛直接观察标尺,读出标尺上两游标在标尺像上之间的距离l0,然后再读出实际两游标之间的距离l。
得放大率M=l1/l0,重复几次,求其平均值。
四、实验步骤:
(1)根据显微镜放大率的测量方法测量显微镜的放大率。
(2)根据望远镜放大率的测量方法测量放大镜的放大率。
(3)记录测量数据。
五、实验数据记录及处理:
1、显微镜
(1)数据记录:
f1'=4.5cm f2'=7.0cm
物到物镜的距离p=6.0cm
物到像的距离p1=17.2cm
物镜到目镜的距离p2=17.3cm
(2)理论计算:
M=-25cm×△/(f1'×f2')=-25cm×s'/(f1'×f2')=-25cm ×11.2cm/(4.5cm×7cm)=-8.89
(3)实际测量结果:
M平均=-1/5(7.50+9.38+7.89+10.00+8.57)=-8.67
不确定度的计算:
U A(M)={[(7.50-8.67)2 +(9.38-8.67)2 +(7.89-8.67)2+
(10.00-8.67)2 +(8.57-8.67)2]/(4×5)}1/2=0.46
U c(m)=U A(m)=0.46
=-8.67±0.46
结果表达:M测量=M平均±U c
(M)
测量值与理论计算值的相对误差:
µ=(M-M平均)/ M=(8.89-8.67)/8.89=2.5﹪
2、望远镜
(1)数据记录:
f1'=30cm f2'=4.5cm
目镜到物的距离p1=179.0cm
目镜到物镜的距离p2=41.8cm
物镜到物的距离p3=137.2cm
物到像的距离p4=175.1cm
(2)理论计算:
M 理论=-f 1'/f 2'=-30cm/4.5cm=-6.67 (3)实际测量结果:
M 平均=-1/5(8.16+9.52+8.70+8.89+8.33)=-8.72
M 修正=s/(s+f 1')M =[137.2/(137.2+30)]×(-8.72)=-7.16 不确定的计算:
U c (M )=U A (M )={【(8.16-8.72)2+(9.52-8.72)2
+(8.70-8.72)2+(8.89-8.72)2+(8.33-8.72)2】/(5×4)}1/2=0.23 测量结果为:
M 测量=M 修正±U c (M )=-7.16±0.23 测量值与理论计算值的相对误差:
µ=(M -M 测量)/ M=(6.67-7.16)/6.67=7.3﹪
六、光路图
1、显微镜
3.9cm
2、望远镜
七、误差分析
1、用组装显微镜、望远镜测量时标尺刻度分度值不够精确及读数时存在误差;
2、所组装的仪器本身不是很完善。
实验分工:
设计报告:全体
实验抄作:全体
读数据:全体
数据记录:章先发
实验报告:章先发彭发勇
检查报告:杨柳张忠建罗明书。