山东科技大学2015-2016高等数学期中考试试卷

合集下载

山东科技大学大一公共课高等数学试卷及答案

山东科技大学大一公共课高等数学试卷及答案

山东科技大学期末复习题及参考解答一.填空题1.设点)4,1,1(-A 在曲面),(:y x f z S =上.若3)1,1(=-'x f ,且),(y x f 在其定义域内任意一点),(y x 处满足方程),(),(),(y x f y x f y y x f x y x ='+',则曲面S 在A 点处的切平面方程为 03 =--z y x . 解:由题设有4)1,1(131=-'⋅-⋅y f ,即1)1,1(-=-'y f ,所以 0)4()1()1(3:=--+--z y x ΠT ,即03=--z y x .2.设2e ),,(yz z y x f x =,其中),(y x z z =是由方程0=+++xyz z y x 确定的隐函数,则 1 )1,1,0(=-'x f .解:1d de d )1,1,(d )1,1,0(0==-=-'==x xx x x x x f f . 3.曲线⎩⎨⎧==+-6022x z y x 在点)3,3,6(处的切线与Oz 轴正向的夹角为 6 π.解:曲线方程可写为⎪⎩⎪⎨⎧-===662y z y y x ,6)(,1)(,0)(2-='='='y y y z y y y x ,于是=τ}23,21,0{2}3,1,0{=,23cos =γ,故π6γ=. 4.设n 是曲面632222=++z y x 在点)1,1,1(P 处的外法向量,则函数zy x u 2286+=在点P 处沿方向n 的方向导数 711 =∂∂n u .解:令632),,(222-++=z y x z y x F ,则z F y F x F z y x 2,6,2='='=',于是n }1 ,3 ,2{=,其方向余弦为141cos ,143cos ,142cos ===γβα.又PPux∂==∂ 14886216122=+=∂∂PPy x yz y u, 1486222-=+-=∂∂PPzy x zu ,故711)14(141143148142146=-⋅+⋅+⋅=∂∂Pnu. 5.设22{(,)1}D x y x y =+≤,则235π(2sin 1)d 4Dx x y σ-++=⎰⎰.解: 2323(2sin 1)d d 2sin d d 1d DDDDDx x y x x y σσσσσ-++=-++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2π123 00π5πcos d d 00ππ.44θθρρ=+++=+=⎰⎰. 6.交换二次积分的次序:d ),(d d ),(d d ),(d 222222 4 211 11 14 02⎰⎰⎰⎰⎰⎰---+----=+y-y y x x x x y x f y y y x f x y y x f x .7.将直角坐标系下的三次积分化为球坐标系下的三次积分:=⎰⎰⎰-----+----2222221 1 11 11 11d ),,(d d x x y x y x z z y x f y x ⎰⎰⎰2 02cos 022 0d sin )cos ,sin sin ,sin cos (d d πϕπϕϕϕθϕθϕθr r r r r f .8.设有曲线段⎩⎨⎧==ta y ta x L sin cos :(π≤≤t 0),则2 π s a =⎰.解:2 d ππL s a s a a a ==⋅=⎰⎰.9.设C 是圆周)1()1(222>=+-R R y x 的正向,则22 d d π 4C x y y x x y-=+⎰.解:因为当)0,0(),(≠y x 时,xQ y x x y y P ∂∂=+-=∂∂22222)4(4,故可在C 的内部作椭圆周2224:a y x l =+,且l 与C 同向,则⎰=+-C y x x y y x 224d d 222222 4d d 12(11)d ππ2l x y ax y y x a a a a a σ+≤-=+=⋅⋅⋅=⎰⎰⎰. 10.设Ω是光滑闭合曲面∑所围成的空间域,其体积为V ,则沿∑外侧的积分3 d d )(d d )(d d )(V z y z x x z x y y x x z =-+-+-⎰⎰∑.解:V V z y z x x z x y y x x z 3d )111(d d )(d d )(d d )(=++=-+-+-⎰⎰⎰⎰⎰Ω∑.11.若幂级数∑∞=-0)1(n n n x a 在1-=x 处收敛,在3=x 处发散,则其收 )3 ,1[ -=D .解:因为211=--≥R ,213=-≤R ,故2=R ,从而)3 ,1[-=D . 12.设xx x f --=41)(,则 3! )1()(n n n f =.解:因为!)1()(n fa n n =,故n n a n f !)1()(= )(N ∈n . 而∑∑∞=∞=++-=-=---=--=1011)1(31)1(3131113141)(n n nn n n x x x x x x x f , 所以n n n f 3!)1()(= )(N ∈n . 13. ch 2e e )!2(102x x n xx n n =+=-∞=∑.解:易知+∞=R .设=)(x S ∑∞=02)!2(1n n x n ,) ,(∞+-∞∈x ,1)0(=S .=')(x S ∑∞=--112)!12(1n n x n ,) ,(∞+-∞∈x ,0)0(='S . ='')(x S )()!22(1122x S x n n n =-∑∞=-,从而x x C C x S -+=e e )(21.由1)0(=S 及0)0(='S 得⎩⎨⎧=-=+012121C C C C ,解得2121==C C ,故x x S xx ch 2e e )(=+=-. 14.设)(x S 是⎩⎨⎧<≤<≤--=10 ,101 ,)(x x x x f 的以2为周期的Fourier 级数的和函数,则1 )7(, 21 )4(==-S S .解:(1)1011(4)(0),(7)(1)(1)1222S S S S S --++-====-===.15.微分方程0d )(d )1(32=++++y y y x x y 的通解为43 43C y y xy x =+++.解:0d d )d d (d 32=++++y y y y y x x y x , 0)4d()3d()d(d 43=+++y y xy x ,0)43d(43=+++y y xy x ,所以通解为C y y xy x =+++4343.16.用待定系数法求x x y y 2cos 34=+''的特解*y 时,应设]2sin )(2cos )[( x D Cx x B Ax x y +++=*.二.单项选择题1.设函数),(y x f z =在点M 的某邻域内有定义,下列结论正确的是( B )(A)若z 在点M 处沿任意方向l 的方向导数lz ∂∂存在,则z 在点M 处两个偏导数存在.(B)若z 在点M 处可微,则z 在点M 处的梯度存在.(C)若z 在点M 处沿任意方向l 的方向导数lz ∂∂存在,则z 在点M 处连续.(D)若z 在点M 处连续且沿任意方向l 的方向导数lz ∂∂存在,则z 在点M 处可微.2.设曲面224y x z --=上点P 处的切平面平行于平面0122=+++z y x ,则P 点的坐标为( D )(A))2,1,1(-. (B))2,1,1(-. (C))2,1,1(--. (D))2,1,1(.解:因为点P ),,(z y x 处切平面的法向量}1,2,2{y x =n 平行于已知平面的法向量}1,2,2{1=n ,故有112222==y x ,于是得1==y x ,而211422=--=z ,因此P 点的坐标为)2,1,1(. 5.设),(y x f 在域}0,2),{(2>-≤≤=R x Rx y x y x D 上连续,则二重积分=⎰⎰Dy x y x f d d ),(( C )(A)⎰⎰-22 00 d ),(d x Rx Ry y x f x . (B)⎰⎰-22 0 0 d ),(d y R Rx y x f y .(C)⎰⎰--yy R R Rx y x f y 0 22d ),(d . (D)π2in 2π 04d (cos ,sin )d Rs f θθρθρθρρ⎰⎰.8.设有球面:S 1222=++z y x ,1S 是S 的上半部分的上侧,2S 是S 的下半部分的下侧,若=1I ⎰⎰1d d S y x z ,=2I ⎰⎰2d d S y x z ,则( B )(A)21I I <. (B)21I I =. (C)21I I >. (D)021=+I I . 解:=1I ⎰⎰1d d S y x z ⎰⎰≤+--=12222d d 1y x y x y x ,=2I ⎰⎰2d d S y x z ⎰⎰≤+----=12222d )d 1(y x y x y x ⎰⎰≤+--=12222d d 1y x y x y x 1I =.9.以下四式正确的是( B )(A)∑∞=-=+1)1()1ln(n n nn x x (11≤<-x ). (B)20π(1)1(2)!nn n n ∞=-=-∑. (C)x x n x n n n sin )!12()1(02=+-∑∞= (+∞<<∞-x ). (D)211π(1)0(21)!n n n n ∞+=-=+∑. 解:)1ln()1(1x n x n nn+-=-∑∞=, 20π(1)cos π1(2)!nnn n ∞=-==-∑, x xn x n n n sin )!12()1(02=+-∑∞=)0(≠x , 211π(1)sin πππ(21)!n nn n ∞+=-=-=-+∑. 10.设正项级数∑∞=1n n u 收敛,且n n nu ∞→lim 存在,则( A ) (A)n n nu ∞→lim 0=. (B)n n nu ∞→lim 0>. (C)n n nu ∞→lim 0<. (D)不能确定. 解:因为n n nu ∞→lim nu n n 1lim ∞→=存在且∑∞=1n n u 收敛,故必有01lim =∞→n u nn ,否则∑∞=1n n u 发散. 11.将bxa x x f +=)((0≠ab )展为x 的幂级数时,所展幂级数的收敛半径=R ( D )(A)a . (B)b . (C)a b . (D)ba .解:bx a x x f +=)(x ab a x --=11∑∞=-=0)(n n x ab a x ,当1<=-x a b x a b 即b a x <时,级数绝对收敛,当1>-x a b 即b a x >时级数发散,故ba R =. 12.微分方程xy y =' (0<x )满足初始条件e1)2(=-y 的解=y ( C )(A)C x +-22e. (B)22e x . (C)22ex - (D)22Cex -.解:C x +-22e和22Ce x -不是特解,22e x 不满足初始条件,故选(C).(或直接求解.)三.解下列各题1.设),(y x z z =是由方程zz y x e =++确定的隐函数,求22x z ∂∂. 解:将方程两边对x 求导得x z x z z ∂∂=∂∂+e 1,解得1e 1-=∂∂z x z ;两边再对x 求导得22222e )(e x z x z x z z z ∂∂+∂∂=∂∂,解得 22x z ∂∂32)e 1(e e 1)(e z zz z x z -=-∂∂=. 2.设),(y x z z =是由方程0),(2222=--z x x y F 确定的隐函数,且),(v u F 可微,试计算yz x x z y ∂∂+∂∂.解:2122F x F x F x '+'-=', 12F y F y '=',22F z F z '-=',故y z x x z y ∂∂+∂∂zxyF z F y x F z F F x y ='-'-+'-'+'--=21221222][2. 3.求xy y x z ++=222在闭域1:22≤+y x D 上的最大值与最小值.解:令⎩⎨⎧=+='=+='0204x y z y x z yx ,得惟一驻点)0,0(,且0)0,0(=z .在边界122=+y x ,即⎩⎨⎧==ty tx sin cos (π20≤≤t )上,函数化为t t t t t z z cos sin sin cos 2)(22++== 232sin 212cos 21++=t t (π20≤≤t ). 令02cos 2sin )(=+-='t t t z 得81π=t ,832π=t .2232321212121)8(+=++=πz , 2232321212121)83(-=+-+-=πz .经比较得223max +z ,0min =z .4.将44分成三个正数z y x ,,之和,使得函数22232z y x u ++=达到最小值. 解:此问题为:求22232z y x u ++=在044=-++z y x 下的最小值. 作=),,,(λz y x L )44(32222-+++++z y x z y x λ,(0,0,,≠>λz y x ).令⎪⎪⎩⎪⎪⎨⎧=-++='=+='=+='=+='044 06 04 02z y x L z L y L x L z yx λλλλ,解得惟一驻点)8,12,24(.由于u 存在最小值(无最大值),故当8,12,24===z y x 时u 达到最小.5.在椭球面14222=++z y x 的第一卦限部分上求一点,使得椭球面在该点处的切平面在三个轴上的截距的平方和最小.解:设所求点为),,(z y x P .曲面在P 点的法向量}2,2,2{z y x =n ,切平面Π的方程为0)4(4222=++-++z y x Z z yY xX ,即14=++Z z yY xX .化为1411=++zZ y Y x X ,立即可得Π在三个坐标轴上的截距为z y x 4,1,1.于是问题归结为:求=u 2221611z y x ++(0,0,0>>>z y x )在条件14222=++z y x 下的最小值.作),,,(λz y x L λ+++=2221611zy x )14(222-++z y x (0,0,,≠>λz y x ).令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++='=+-='=+-='=+-='014 0232 022022222333z y x L z x z L y y L x x L z y x λλλλ⎪⎪⎩⎪⎪⎨⎧=++==⇒14 22 222z y x x z x y ,得惟一解⎪⎪⎩⎪⎪⎨⎧===22121z y x . 由问题的实际意义知,点)2,21,21(即为所求的点.6.设三角形的周长为p 2,问三角形的三边各为多少时,才能使它绕自己的一边旋转所得的旋转体体积最大?解:设ABC ∆三边长分别为z y x ,,,则p z y x 2=++且绕其边AC 旋转(见图). 若记AC 上的高为h ,则ABC ∆的面积))()((21z p y p x p p yh S ---==,从而22))()((4y z p y p x p p h ---=;故旋转体体积=V 21π3y h =4π()()()3p p x p y p z y ---,其中p z y x 2=++ (0,0,0>>>z y x ).为简化计算,我们求函数y z p y p x p u ln )ln()ln()ln(--+-+-=在条件p z y x 2=++下的驻点.为此作辅助函数=),,,(λz y x L y z p y p x p ln )ln()ln()ln(--+-+-)2(p z y x -+++λ.解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++='=+--='=+---='=+--=' 0201011 01p z y x L zp L y y p L xp L z yx λλλλ得惟一驻点)43,21,43(p p p .由问题的实际意义知,)43,21,43(p p p 是V 在p z y x 2=++下的最大值点,即当p BC AB 43==,p AC 21=,且绕AC 旋转时,所得体积最大,3max π12V p =.7.用重积分表示并计算出由曲面222y x z +-=与22y x z +=所围立体的表面积.解:记1S :222y x z +-=,2S :22y x z +=,21S S S +=.在21,S S xOy 平面上的投影域均为1:22≤+y x D .y x S d d 2d 1=,2d d S x y =.故⎰⎰+++=Dy x y x S d )d 4412(22⎰⎰+=Dy x d d2 2πd d θρ⎰⎰1322π12π(14)1)126ρ=++=+.8.一质点在平面力场j i F y xx y )11(1232+-+=的作用下,沿曲线122+-=y y x 由点)0,1(A 运动到点)1,4(-B ,求力场所作的功.解:⎰⎰+-+=⋅=),( 232),( d )11(d 1d B A L B A L y y x x x y W s F . 因为xQx y y P ∂∂==∂∂32,故积分与路径无关,于是⎰⎰⎰--+-+=+-+=1 0 4 1 3)1,4( )0,1( 232d )1611(d 1d )11(d 1y y x x y y x x x y W 16132173215-=-=.9.计算曲线积分⎰-++L y yxy f y x x y xy f y 222d ]1)([d )(1,其中L 是经过)0,0(O , )32,3(A 和)2,1(B 三点的圆周上从A 点到B 点的一段劣弧,f 为可微函数.解: 因为x Q yxy f xy xy f y y P ∂∂=-'+=∂∂2321)()(,故积分与路径无关,于是选择沿⎪⎩⎪⎨⎧==x y x x C B A 2:),((x 从3变到1)积分得 原式=⎰⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--++1 3 2222d 24]1)2(4[2)2(41x x x f x x x f x4d 13-==⎰x x .10.设S 是曲面1222=++z y x (0≥z )的下侧,求⎰⎰++Sy x z x z y z y x d d d d d d 333. 解:记1:22≤+y x σ,σ+=∑S ,∑所围域记为Ω.原式⎰⎰⎰⎰-=∑上内σ=⎰⎰⎰⎰⎰≤+Ω-++-122222d 0d )(3y x V z y x σπ2π12220 0 03d d sin d r r r θϕϕ=-⋅⎰⎰⎰6π5=-.11.计算y x z z f x z y z f z z y x I yy Sd d )e (d d )e (1d d 333⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡++=⎰⎰,其中S 是由曲面22y x z +=,221y x z --=和224y x z --=所围立体的表面外侧,f 具有连续导函数.解:记S 所围立体为Ω,由Gauss 公式得⎰⎰⎰Ω++=V z y x I d )(3222π 2π42240 0 13d d sin d r r r θϕϕ=⋅⎰⎰⎰93(2π5=. 12.计算⎰⎰∑++=y x z x z yz z y xz I d d d d d d 2,其中∑是球面4222=++z y x 介于平面3=z 和2=z 之间的部分,并取法向量与Oz 轴正向成锐角的那一侧.解:记3:=z S ;S ,∑在xOy 平面的投影域:xy D 122≤+y x ;S +∑所围域记为Ω,则 =I ⎰⎰⎰⎰-+∑下下上S S ⎰⎰⎰⎰⎰+++=ΩxyD V z z z σd )3(d )2(22π 10 04d d d 3πz θρρ=+⎰⎰π3π4π=+=.15.判断级数∑∞=-12!)e (n nn n n λλ(0≥λ)的敛散性. 解:因为⎥⎦⎤⎢⎣⎡-++-=++∞→+∞→!)e ()1()!1()e (lim lim 21121n n n n a a n n n n n n n n λλλλ e)11(limλλ=+=∞→n n n, 故当1e<λ,即e <λ时,级数收敛,当e =λ时级数显然收敛; 当1e>λ,即e >λ时,级数发散.16.求幂级数∑∞=+02!21n n n x n n 的收敛域及和函数. 解:因为01!2)!1(21)1(lim lim 2121=⎥⎦⎤⎢⎣⎡++++=+∞→+∞→n n n n a a n n n n n n ,所以) ,(∞+-∞=D . =)(x S ∑∞=+02!21n n n x n n ∑∑∞=∞=+=020)()(2!2!1n n n n x n n x n=+=∑∞=122!e n n x t n n ∑∞=--+112)!1(e n n x t n n t ∑'∞=-+=12][)!1(e n n x n t t ∑'∞=--+=112][)!1(e n n x n tt t 22222e )421(e )(e ]e [e xtx txx x t t t t ++=++='+=,) ,(∞+-∞∈x . 17.将函数231)(2++=x x x f 展为)1(-x 的幂级数.解:231)(2++=x x x f x x x x +-+=++=2111)2)(1(1 )1(31)1(21-+--+=x x 311131211121-+--+=x x∑∑∞=∞=-----=003)1()1(312)1()1(21n nn n n n n n x x , n n n n n x )1)(3121()1(101---=+∞=+∑,)3 ,1(-∈x . 18.将π()2x x ϕ-=(π20<≤x )展为以2π为周期的Fourier 级数,并求级数∑∞=12cos n n nx 的和函数.解: (1)π()2x x ϕ-=在[0, 2π)上满足Dirichlet 条件,且2π0 01()d πa x x ϕ=⎰ 2π 0π1d 0π2x x -==⎰, 2π 0π1cos d π2n x a nx x -==⎰ 2π 2π0 011πcos d cos d 2π2πnx x x nx x -⎰⎰2π2π0 0sin 110sin d 02π[]x nx nx x n n =--=⎰ ( ,2,1=n ), 2π 0π1sin d π2n x b nx x -==⎰ 2π 2π0 011πsin d sin d 2π2πnx x x nx x -⎰⎰2π2π0 0cos 1110cos d 2π[]x nx nx x n n n-=-+=⎰ ( ,2,1=n ); 故∑∞=1sin ~)(n n nx x ϕπ,(0, 2π)20, 0x x -⎧⎪=⎨⎪=⎩. (2)设=)(x f ∑∞=12cos n n nx ,[0, 2π)x ∈,其中=)0(f 221π16n n∞==∑;因为=')(x f 1sin ππ222n nx x x n ∞=--=-=-∑,(0, 2π)x ∈,所以=)(x f ⎰'+xx x f f 0 d )()0(2222ππ2π36π64212x x x x +-=+-=,[0, 2π)x ∈. 19.设有微分方程)(2x y y ϕ=-',其中⎩⎨⎧><=1,01,2)(x x x ϕ.试求在) ,(∞+-∞内的连续函数)(x y y =,使之在)1 ,(-∞和) ,1(∞+内都满足所给方程,且满足条件0)0(=y .解: (1)当1<x 时,方程为22=-'y y ,通解为1e 21-=x C y ,由0)0(=y 得11=C ,所以1e 2-=x y . (2)当1>x 时,方程为02=-'y y ,通解为x C y 22e =.要使)(x y y =在1=x 处连续,必须)1e (lim e lim 21221-=-+→→x x x x C ,即1e e 222-=C ,于是得22e 1--=C ,所以x y 22e )e 1(--=.(3)补充定义=)1(y 1e 2-,则得在) ,(∞+-∞内的连续函数)(x y y =⎩⎨⎧>-≤--1x ,e )e (11,1e 222xx x 满足所给方程及初始条件.20.一质量为m 的汽艇以速度0v 行驶,在0=t 时刻关闭动力继续行驶.假定水对汽艇的阻力与行驶速度v 的n 次方成正比(n 为常数),求v 与关闭动力后行驶距离之间的函数关系.解:设经过t 时间后,行驶的距离为)(t x (0>t ),阻力n kv R -=(0>k ),由Newton 第二定律得 0)]([)(='+''n t x mk t x ,由题设有0)0(,0)0(v x x ='=.因为v t x =')(,所以xv v t x d d )(='',于是方程化为0d d 1=+-n v mk x v ,分离变量得x mk v v n d d 1-=-.(1)当2≠n 时,通解为C x mk n v n+=--22,由0)0()0(v x v ='=得n vC n -=-220,所以x n mk v v nn )2(202--=--,即)()2(220n n v v k n m x ----=; (2)当2=n 时,通解为x mk C v -=e,由0)0()0(v x v ='=得0v C =,故x mk v v -=e0,即vvkm x 0ln =.21.设)(x f 具有二阶连续导数,且积分y x f x y x f x f L x d )(d ])()(2[e '+-'-⎰λ (λ为常数)与路径无关,试求)(x f .解:因为积分与路径无关,故有xQyP ∂∂=∂∂,即)()()(2e x f x f x f x ''=-'-λ,整理得x x f x f x f λe )()(2)(=+'+''.0122=++r r ⇒121-==r r ,所以)(e 21x C C Y x +=-.当1-≠λ时,设x A y λe =*,代入原方程定出2)1(1λ+=A ,即2)1(e λλ+=*xy ,此时通解为=y )(e 21x C C x+-2)1(e λλ++x; 当1-=λ时,设xAx y λe 2=*,代入原方程定出21=A ,即2e 2xx y -*=,此时通解为=y )2(e 221x x C C x ++-.22.设高为)(t h 厘米(t 为时间,单位为小时)的雪堆,在融化过程中其侧面方程为)()(2)(22t h y x t h z +-=,其体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130厘米的雪堆全部融化需要多少小时? 解: 设雪堆的体积为V ,侧面积为S ,则 222 ()()23 0 01[()()]2ππd d d [()()]d ()24h t h t x y h t h t z V z x y h t h t z z h t +≤-==-=⎰⎰⎰⎰, ⎰⎰≤+'+'+=)(2122222d d 1t h y x yx y x z z S ⎰⎰≤+++=)(21222222d d )()(161t h y x y x t h y x2πd ()h t ρ=⎰213π()12h t =. 由题设知S tV 9.0d d -=,即23π()d ()4d h t h t t 213π()91012h t =-,于是 1013d (t)d -=t h , 故C t t h +-=1013)(,由130)0(=h 得130=C ,即 1301013)(+-=t t h .令0)(=t h 得100=t (小时),即高度为130厘米的雪堆全部融化需要100小时.23.求微分方程24d (2)d xy x x y y =- 的通解.解:方程可化为:31d 2d x x y x y y --=-,这是Bernoulli 方程.令1(1)2,z x x --==则方程化为线性方程 3d 42,d z z y y y-=- 44d d 34e2e d (2ln ),y yyy z C y y y C y ---⎡⎤⎰⎰=+-=-⎢⎥⎣⎦⎰ 故通解为24(2ln ).x y C y =-24.求幂级数30(3)!n n x n ∞=∑的和函数. 解:易知收敛半径为+∞,设30(),(, ),(3)!nn x s x x n ∞==∈-∞+∞∑显然(0) 1.s =313211(),(0)0;(),(0)0;(31)!(32)!n n n n x x s x s s x s n n ∞∞--==''''''====--∑∑ 33310()();(33)!(3)!n n n n x x s x s x n n ∞∞-=='''===-∑∑ 故得 ()()0,(0)1,(0)0,(0)0.s x s x s s s '''-=⎧⎨'''===⎩ 或 ()()()e ,(0)1,(0)0. x s x s x s x s s '''⎧++=⎨'==⎩(1)()()0,(0)1,(0)0,(0)0s x s x s s s '''-=⎧⎨'''===⎩的求解过程如下:3212,3123110,1,()e e .2x x r r r s x C C x C x -⎛⎫-===-∴=++ ⎪⎝⎭又21232311()e e ,22x x s x C C x C x -⎡⎤⎛⎫⎛⎫'=+-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦21232311()e esin ,22x x s x C C C x -⎡⎤⎛⎫⎫''=+--+-⎢⎥ ⎪⎪⎝⎭⎝⎭⎣⎦于是由初始条件得121231231, 10,210,2C C C C C C ⎧+=⎪⎪⎪-+=⎨⎪⎪--=⎪⎩解得1231, 32,30.C C C ⎧=⎪⎪=⎨⎪=⎪⎩所以和函数212()e e c ,(,).33x x s x x x -=+∈-∞+∞(2)()()()e ,(0)1,(0)0 x s x s x s x s s '''⎧++=⎨'==⎩的求解过程如下:221,212110,()e sin .2x r r r S x C x C x -⎛⎫++==-±∴=+ ⎪⎝⎭因为i 1λω+=不是特征根,故设e x s A =,代入原方程,得1,3A =即1e ,3x s =于是2121()()()e e .3x x s x S x s x C x C x -⎛⎫=+=++ ⎪⎝⎭由(0)1s =得123C =,即2212()e +e .33x x s x C x -⎛⎫=+ ⎪⎝⎭222111()e +e 332x x s x C x -⎡⎤⎫⎫'=-+⎢⎥⎪⎪⎝⎭⎝⎭⎣⎦,由(0)0s '=得20C =,所以和函数212()e e c ,(,).os 33x x s x x x -=+∈-∞+∞四.证明题2.若0lim =∞→n n na ,且∑∞=+-+11])1[(n n n na a n 收敛,试证∑∞=1n n a 收敛. 证:记=n s 1n k k a =∑,=n σ∑=+-+nk k k ka a k 11])1[(, ,2,1=n ,则}{n σ收敛.=n σ )2(21a a -)23(32a a -+)34(43a a -+ +])1[(1+-++n n na a n 13212222+-++++=n n na a a a a 12+-=n n na s ,12121++=∴n n n na s σ.因为}{n σ收敛,所以要证}{n s 收敛,只需证}{1+n na 收敛.事实上,由0lim =∞→n n na 知0)1(lim 1=++∞→n n a n ,于是 =+∞→1lim n n na 0])1(1[lim 1=+++∞→n n a n n n . 因此}{n s 收敛,即∑∞=1n n a 收敛.(且∑∞=1n n a 21=∑∞=+-+11])1[(n n nna an .)3.若幂级数∑∞=0n nn x a 的收敛半径10=R ,则幂级数∑∞=0!n nn x n a 的收敛半径+∞=R . 证:因为10=R ,故对于)1 ,0(0∈x ,级数∑∞=00n n n x a 绝对收敛,从而}{0nn x a 有界,设M x a n n ≤0.于是),(∞+-∞∈∀x ,有nn n n nn n n x x n M x x n x a x n a 000!!!≤≤.而由比值法知,) ,(∞+-∞∈∀x ,∑∞=00!n nn x x n M 收敛,从而∑∞=0!n n n x n a 绝对收敛,故其收敛半径+∞=R .4.设)1(21,211nn n a a a a +==+(N ∈n ),试证:(1) nn a ∞→lim 存在; (2) ∑∞=+-11)(1n n naa收敛.证: (1))1(21,211n n n a a a a +==+1212≥+=nn a a (N ∈n ),即}{n a 有下界;又02121<-=-+nnn n a a a a ,即}{n a 单调递减,故n n a ∞→lim 存在. (2)因为}{n a 单调递减,所以11-+n n a a 0>,即∑∞=+-11)(1n n n a a是正项级数,又因为1≥n a ,所以11-+n n a a =111+++-≤-n n n n n a a a a a (N ∈∀n );而n n a ∞→lim 存在,故∑∞=+-11)(n n n a a 收敛,于是由比较判别法知,∑∞=+-11)(1n n n a a收敛.5.证明: (1)∑∞=+-1)(1ln 1n n n n收敛; (2)1ln 131211lim =++++∞→n n n . 证: (1)因为=+-≤n n n 1ln 10)11ln(1n n +-2211112o n n n n ⎡⎤⎛⎫=--+ ⎪⎢⎥⎝⎭⎣⎦2211,2o n n ⎛⎫=+ ⎪⎝⎭ 而∑∞=121n n收敛,所以∑∞=+-1)(1ln 1n n n n 收敛.(2) ∑∞=+-1)(1ln 1n n n n ∑=∞→++-=nk n k k k1)(ln )1ln(1lim ]ln )1ln(1312ln 3ln 212ln 1[lim n n n n ++-+-++-+-=∞→ )]1ln(131211[lim +-++++=∞→n nn , 因为∑∞=+-1)(1ln 1n n n n收敛,即)]1ln(131211[lim +-++++∞→n n n 存在,故 0ln )1ln(131211lim =+-++++∞→nn n n , 即0ln )1ln(ln 131211lim =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++++∞→n n n n n ; 易知1ln )1ln(lim =+∞→n n n , 所以 =++++∞→nn n ln 131211lim 1ln )1ln(lim =+∞→n n n . 7. 12111,(2,3,4,).:n n n a a a a a n +-===+=设证明111,,2n n n x a x ∞-=<∑对于收敛().s x 并求其和函数解:111,2n n n x a x ∞-=<∑(1)先证:对于收敛.{}0,,n n a a >由题设知单调增从而112n n n n a a a a +-=+≤,即 2322123222222 (2,3,4,).n n n n n n a a a a a n -----≤≤≤≤≤== 易知2122n n n x∞--=∑的收敛半径为11,,22x ∀<于是2122n n n x ∞--=∑绝对收敛,即1222n n n x∞--=∑收敛;又11122,n n n n n n a xa xx----=≤故2122n n n x ∞--=∑绝对收敛,从而111,2n n n x a x ∞-=<∑对于收敛.(2)再求和函数111() ().2n n n s x a x x ∞-==<∑11111122()11[]n n n n n n n n n n s x a xa xa a x ∞∞∞---+-=====+=+-∑∑∑112112231111n n k m n n k m n n k m a x a xa xa x ∞∞∞∞---+-=====+-=+=+-∑∑∑∑11311111[()1]()k m k m k m a x x a x s x x xs x x x ∞∞--===+-=+---∑∑211(),0.x s x x xx-=-≠解之得21(),(0),1s x x x x=≠--又1(0)1,s a ==所以1,2x ∀<有1211() .1n n n s x a x x x∞-===--∑ 9.设正数列{}n a 单调递减,若级数1(1)nn n a ∞=-∑发散,则111nn n a ∞=⎛⎫ ⎪+⎝⎭∑收敛.证:因为0,n a >且{}n a ,故有极限,设lim ,n n a a →∞=则0.a ≥又因为1(1)n n n a ∞=-∑发散,故由Leibniz 判别法知0a ≠,即lim 0.n n a a →∞=>11lim lim 1,111n n n n a a →∞→∞⎛==<∴ +++⎝111nn n a ∞=⎛⎫ ⎪+⎝⎭∑收敛. 10. 设0,n u ≠且lim 1,n n n u →∞=试证11111(1)n n n n u u ∞-+=⎛⎫-+ ⎪⎝⎭∑条件收敛.证:记1111(1),n n n n a u u -+⎛⎫=-+ ⎪⎝⎭由lim 1,n nn u →∞=知 111lim lim lim 2,11n n n n n n n n a n n n n n u u u u n n →∞→∞→∞++⎛⎫⎛⎫+=+=+= ⎪ ⎪+⎝⎭⎝⎭而11n n ∞=∑发散,故1n n a ∞=∑发散,即原级数不会绝对收敛. 因为11111(1)nk n kk k s u u -+=⎛⎫=-+ ⎪⎝⎭∑ 1122334111111111(1)n nn u u u u u u u u -+⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11111(1),n n u u -+=+-且由1lim lim 1,1n n n n un u n→∞→∞==知1lim 0n nu →∞=,从而111lim(1)0,n n n u -→∞+-=故11lim ,n n s u →∞=即原级数收敛. 因此原级数条件收敛.。

山东科技大学2019-2020高等数学A(下)期末考试题

山东科技大学2019-2020高等数学A(下)期末考试题

山东科技大学2019—2020学年第二学期《高等数学A(2)》考试试卷(A 卷)温馨提示:请同学们在A4规格的白纸上作答,横拍上传.一、填空题(每小题5分,共30分) 1、与积分方程2(,)xy f x y dx =⎰等价的微分方程初值问题是___________.2、给定点0(1,1,1),(3,4,7),(2,7,6)M A B --,则过0M 且与AB 平行的直线方程为___________.3、曲线Γ:⎰=tuudu ex 0cos ,t y sin 2=t cos +,t e z 3=在0=t 对应点处的法平面方程为___________.4、已知曲面:0)z a ∑=>,则曲面∑的面积元素dA =__________.5、设22{(,)|24,0,0}D x y x x y x y =≤+≤≥≥,将二重积分222()Dx y dxdy +⎰⎰化为极坐标系下的两次定积分___________.6、设)(x f 是以π2为周期的周期函数,在),[ππ-上的表达式为⎩⎨⎧<≤<≤-=,0,0,0,)(ππx x x x f 则)(x f 的傅里叶级数的和函数)(x S 在],[ππ-上的表达式为___________.二、计算题(15分)已知函数(,)arctan xu f x y y==,(1)求偏导数2,u u x x y ∂∂∂∂∂; (2)求全微分du ,并计算(1,1)du三、解答题(15分)求微分方程30dyyx x dx++=的通解. 四、计算题(15分)计算曲线积分(sin )(cos )xx L I ey y dx e y x dy =-++⎰,其中L为从点(0,0)O 到(6,0)B 的上半圆周0,9)3(22≥=+-y y x .五、应用题(15分)某物体占有空间区域{}22(,,)1x y z x y z Ω=+≤≤,求该物体关于z 轴的转动惯量(密度为常数μ).六、证明题(10分)已知幂级数∑∞=0n nn x a 的收敛半径00≠R ,证明)0(0>∑∞=b b x a n n nn 的收敛半径0R bR =.。

2015-2016学年度期中考试数学考卷-掌门1对1

2015-2016学年度期中考试数学考卷-掌门1对1

第1页 共4页 ◎ 第2页 共4页2015-2016学年度期中考试数学考卷-掌门1对1全国Ⅱ卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题,共60分)一、选择题(本大题共12题,每小题5分)1.设集合}0)4)(1(|{},5,4,3,2,1{<--==x x x B A ,则B A =( ) A.}4,3,2,1{ B.}3,2{ C.}3,2,1{ D.}4,3,2{2.已知a R ∈,则“2a >”是“22a a >”的( )A .充分不必要条件 B.必要不充分条件C .充要条件D .既非充分也非必要条件3.已知函数⎩⎨⎧≤>=0,20,log )(3x x x xf x,则( ).A4.已知平面向量b a 与的夹角为)A .1B .2 D .3 5.下列函数中,既是奇函数又是增函数的为( ) A .1y x =+ B .3y x =-C .||y x x = 6.设等差数列{}n a 的前项和为n S ,已知10100S =,则29a a +=( ).A.100 B .40 C .12 7.将函数()()ϕ+=xx f 2sin 的图象向左平移所得到的函数图象关于y轴对称,则ϕ的一个可能取值为( )A .0 C 8.函数()ln xf x xe =+(e 为自然对数的底数)的零点所在的区间是( ) A.()1,e D .(),e +∞ 9图所示,则ω,φ的值分别是( ) A .2.2.4.410.函数x x x y sin cos +=的图象大致为( )11.在等差数列{}n a 中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( )A .9B .10C .11D .1212.已知函数)(x f 满足则当0>x 时,)(x f ( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,也有极小值D .既无极大值,也无极小值第3页 共4页 ◎ 第4页 共4页第II 卷(非选择题,共90分)二、填空题(共4个小题,每题5分)1314.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知,,则角B= .15.设,x y R ∈,向量(,1)a x = ,(1,)b y =,(2,4)c =- 且a b ⊥ ,b ∥c ,______________.16.已知函数()f x 满足,且12,x x 均大于e ,其中e 为自然对数的底数,12()()1f x f x +=, 则12()f ex x 的最小值为 .三、解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分) 在△ABC 中,角A ,B ,C 的对边分别为,b=5,△ABC 的面积为.(1)求a ,c 的值; (2)求的值. 18.(本小题满分12分)已知}{n a 是等差数列,满足143,,12a a == ,数列}{n b 满足20,441==b b ,且}{n n a b -为等比数列. (1)求数列}{}{n n b a 和的通项公式; (2)求数列}{n b 的前n 项和.19.(本题满分12,x ∈R . (Ⅰ)求函数()f x 的最小正周期与单调增区间; (Ⅱ)求函数()f x 在 20.(本题满分12分)已知函数2()2ln ()f x ax x x a R =+-∈ . (Ⅰ)若4a =,求函数()f x 的极值;(Ⅱ)若'()f x 在区间(0,1)内有唯一的零点0x ,求a 的取值范围.21.(本小题满分12分)已知函数()ln ()f x x a x a R =-∈ (Ⅰ)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (Ⅱ)讨论函数()f x 单调区间22.(本小题满分12分)已知函数()e x f x x a -=+⋅. (Ⅰ)当2e a =时,求()f x 在区间[1,3]上的最小值;(Ⅱ)求证:存在实数0[3,3]x ∈-,有0()f x a >.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

山东科技大学20152016学年第一学期期末考试安排表

山东科技大学20152016学年第一学期期末考试安排表

数监考课程名称监考课程名称监考课程名称监考课程名称监考课程名称监考会计花双莲管理学() 周志刚高等数学()张月玲大学英语()张月玲会计刘超管理学() 于泉高等数学()王爱华大学英语()王爱华国贸马风涛高等数学()焦习燕大学英语()陶敏国贸王垒高等数学()大学英语()工商管理周志刚高等数学()宋平大学英语()陈玉和工商管理李洪伟高等数学()曲艺大学英语()曲艺电子商务王松高等数学()修朴华大学英语()耿琰电子商务杨磊高等数学()袁菁婧大学英语()袁菁婧金融周衍平管理学原理康旺霖高等数学()甄珍大学英语()沈圳金融姜爱萍管理学原理张学睦高等数学()杨光大学英语()赵述强物流管理曾丽君管理学原理赵峰高等数学()李真大学英语()刘国忠物流管理李美燕管理学原理宋平高等数学()刘辉大学英语()徐科吉财政学陈金库微观经济学任一鑫高等数学()张同迁大学英语()邢雪晶财政学王彩霞微观经济学孙江永高等数学()大学英语()地质王其芳普通化学()黄仁和毛泽东思想与社会主义理论体系概论张月玲高等数学()李艳测量学刘峰大学英语()王平丽地质夏璐普通化学()朱林晖马风涛高等数学()孙玉芹测量学朱金山大学英语()冯建国水文苗佳丽普通化学()李春露王海涛高等数学()王芳大学英语()邓清海水文曹玉亭普通化学()高等数学()大学英语()地球物理李月毛泽东思想与社会主义理论体系概论李忠高等数学()张涛大学英语()张涛资源勘查孔凡梅普通化学()崔立强王东东高等数学()王东东大学英语()房丽资源勘查王金凯普通化学()高等数学()大学英语()资源勘查杨仁超普通化学()刘雪梅张升堂高等数学()张升堂大学英语()赵善青勘查技术丁仁伟普通地质学赵秀丽李岩高等数学()冯建国大学英语()李允资源(煤矿地质)樊爱萍高等数学()李晶晶大学英语()冯梅测绘陈允芳毛泽东思想与社会主义理论体系概论时洪举高等数学()卓相来大学英语()冯苗苗测绘景冬高等数学()大学英语()测绘张燕王峰高等数学()宋其芳大学英语()李延波遥感孙林计算机语言解斐斐毛泽东思想与社会主义理论体系概论刘凤英高等数学()许静遥感原理与方法战丽丽大学英语()郑蕴华遥感许君一计算机语言高等数学()遥感原理与方法大学英语()海洋测绘刘峰张灵先高等数学()王瑞富大学英语()牟乃夏自然地理曾文自然地理学明艳芳杨爱东高等数学()徐春达地图学刘文宝大学英语()张红日人文地理蔡玉林自然地理学李英孙健高等数学()刘凤英大学英语()李英测绘单田茂义高等数学()徐泮林大学英语()赵会兴地信刘冰自然地理学张红日刘新高等数学()李红梅地图学刘文宝大学英语()郭放地信季民自然地理学高等数学()地图学大学英语()说明:、各学院务必将此安排表通知到相关学生班级。

2015-2016学年山东省泰安市高三(上)期中数学试卷(理科)

2015-2016学年山东省泰安市高三(上)期中数学试卷(理科)

则集合 A∩∁UB=(

A.{3} B.{2,5}
C.{2,3,5}
D.{2,3,5,8}
2.下列函数中,在区间(0,+∞)上为增函数的是( A.y=log2(x+5)B. C.y=﹣
) D.y= ﹣x
3.以下四个命题中正确命题的个数是(

(1)∃x∈R,log2x=0;(2)∀x∈R,x2>0;(3)∃x∈R,tanx=0;(4)∀x∈R,3x>0.
则 a1an﹣a1an﹣1=a1(an﹣an﹣1)=a1d>0, 是必要条件; 若 a1d>0,则数列{a1an}是递增数列即数列{ 是充分条件, 故选:A. 【点评】本题考查了充分必要条件,考查数列的性质以及复合函数的单调性问题,是一道基 础题. }为递增数列,
6.设四边形 ABCD 为平行四边形,| 则 A.20 =( B.15 ) C.9 D.6

A.(0,
] B.(0,
] C.[
,π) D.[
,π)
【考点】余弦定理;正弦定理. 【专题】计算题;解三角形. 【分析】利用正弦定理化简已知的不等式,再利用余弦定理表示出 cosA,将得出的不等式 变形后代入表示出的 cosA 中,得出 cosA 的范围,由 A 为三角形的内角,根据余弦函数的 图象与性质即可求出 A 的取值范围. 【解答】解:利用正弦定理化简 sin2A≤sin2B+sin2C﹣sinBsinC 得:a2≤b2+c2﹣bc, 变形得:b2+c2﹣a2≥bc, ∴cosA= ≥ = ,
)的图象上所有的点(

个单位长度 个单位长度
9.已知 f(x)= x2+cosx,f′(x)为 f(x)的导函数,则 y=f′(x)的图象大致是(

15~16高数期中考

15~16高数期中考

(
oe
r
.
,
3
1 Bd x
y' =
x
( u r »)
>
t
2
/
T eo
)
< x 1 JL o · e 1
:1 I
c ,
a i f *o )
@ 354 b
.
,
壮 舌 汝 ·
·

··
Lw
¥
1A
::
00
71 po
1乇 亡 Q 呻 w /
飞弦直 芍
币小 结牡 代 ·
A
0)= 0
五 某地区防空洞的截面拟建成矩形加半圆 ( 见图) 截面的面积为 6 2 问底
则存在 C E (0, 1) 使 F (C) = 0
( 12 分)
> W W / e t * ,
Cor Ï J
· ·+ ° l+ x
六 +
·
千 均
·!

,
¢ I L Ë t
竹 他 I r
°"
r{
4
3 当X
O 时 (1 C0 Sx ) l n (1+ 3× Z ) 是比X a r c t a n x ( n 为正整数 ) 高阶的无穷小 而 X a r c t a n c x
是 比 e 1高阶的无 穷小 则 n - 2
2
4 设 f (x ) =
, 贝rj l im f ( x )=
;:
lim f (x )=
睾 X ) 求
6
h
3× + 2
" 0旧
求y
:::
·
= y : =j

最新大一下学期高等数学期中考试试卷及答案

最新大一下学期高等数学期中考试试卷及答案

大一第二学期高等数学期中考试试卷一、填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中。

1、已知球面的一条直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________2、函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为3、曲面22z x y =+与平面240x y z +-=平行的切平面方程为4、2222222(,)(0,0)(1cos())sin lim()ex y x y x y xy x y +→-+=+5、设二元函数y x xy z 32+=,则=∂∂∂yx z2_______________ 二、选择填空题(本题满分15分,共有5道小题,每道小题3分)。

以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效。

1、旋转曲面1222=--z y x 是( ) (A ).x O z 坐标面上的双曲线绕Ox 轴旋转而成; (B ).x O y 坐标面上的双曲线绕Oz 轴旋转而成; (C ).x O y 坐标面上的椭圆绕Oz 轴旋转而成; (D ).x O z 坐标面上的椭圆绕Ox 轴旋转而成.2、微分方程23cos 2x x x y y +=+''的一个特解应具有形式( ) 其中3212211,,,,,,d d d b a b a 都是待定常数.(A).212211sin )(cos )(x d x b x a x x b x a x ++++;(B).32212211sin )(cos )(d x d x d x b x a x x b x a x ++++++; (C).32212211)sin cos )((d x d x d x b x a b x a x +++++; (D).322111)sin )(cos (d x d x d x x b x a x +++++3、已知直线π22122:-=+=-zy x L 与平面4 2:=-+z y x ππ,则 ( ) (A).L 在π内; (B).L 与π不相交; (C).L 与π正交; (D).L 与π斜交. 4、下列说法正确的是( )(A) 两向量a 与b 平行的充要条件是存在唯一的实数λ,使得b a λ=;(B) 二元函数()y x f z ,=的两个二阶偏导数22x z ∂∂,22yz∂∂在区域D 内连续,则在该区域内两个二阶混合偏导必相等;(C) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微的充分条件;(D) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微 的必要条件.5、设),2,2(y x y x f z -+=且2C f ∈(即函数具有连续的二阶连续偏导数),则=∂∂∂yx z2( )(A)122211322f f f --; (B)12221132f f f ++; (C)12221152f f f ++; (D)12221122f f f --.三、计算题(本大题共29分) 1、(本题13分)计算下列微分方程的通解。

2015届青岛市高三期中考试数学理科试题(附带详解答案)

2015届青岛市高三期中考试数学理科试题(附带详解答案)

青岛市高三学年度第一学期期中测试高三(理)数学试题注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、演算步骤或推证过程.第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. 1.已知集合(){}{}2lg 4,3,0=xA x y xB y y x A B ==-==⋂>时,A.{}02x x <<B.{}2x x 1<<C.{}12x x ≤≤D.∅2.设非空集合P Q , 满足P Q P =,则 ( )A .P x Q x ∈∈∀有,B .P x Q x ∉∉∀有,C .Px Q x ∈∉∃00,使得D .Qx P x ∉∈∃00,使得3.已知数列{}n a 的前n 项和为n S ,且22-=n n a S , 则2a =( ) A. 4 B .2 C .1D . -24.设向量(1,sin )θ=a ,(3sin ,1)θ=b ,且//a b ,则cos 2θ等于A .31-B .32-C .32D .315.下列各小题中,p 是q 的充要条件的是( )①p :2m <-或6m >;q :23y x mx m =+++有两个不同的零点. ②():1()f x p f x -=-;:()q y f x =是奇函数. ③:cos cos p αβ=;:tan tan q αβ=.④:p AB A =;AC B C q U U ⊆:.A .①②B .②③C .③④D .①④6.为得到函数)32sin(π+=x y 的导函数...图象,只需把函数sin 2y x =的图象上所有点的( ) A .纵坐标伸长到原来的2倍,横坐标向左平移6πB .纵坐标缩短到原来的12倍,横坐标向左平移3πC .纵坐标伸长到原来的2倍,横坐标向左平移125πD .纵坐标缩短到原来的12倍,横坐标向左平移65π7. 设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数()0,0>>+=b a by ax z 的值是最大值为12,则23a b +的最小值为( ). A .625 B .38 C . 311 D . 48.函数()2tan 22f x x x ππ⎛⎫=--⎪⎝⎭在,上的图象大致为 ( )9.已知函数2()2f x x x =-,()()20g x ax a =+>,若1[1,2]x ∀∈-,2[1,2]x ∃∈-,使得()()21x g x f =,则实数a 的取值范围是A.1(0,]2B. 1[,3]2C.(0,3]D. [3,)+∞10.已知定义在R 上的函数()()()()311,11y f x f x f x x f x x =+=--≤=满足当<时,,则函数()()x x f x g 6log -=的零点个数为( )A.4B.5C.6D.7密 封 线第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知1(2)xa e x d x =+⎰(e 为自然对数的底数),函数l n ,0()2,0x x xf x x ->⎧=⎨≤⎩,则21()(log )6f a f +=__________.12.已知⎪⎭⎫ ⎝⎛∈=ππαα,2,53sin ,则cos sin 44ππαα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的值为________ .13.若关于x 的不等式a x x ≥+++42的解集为实数集R ,则实数a 的取值范围是 . 14.已知直线ex y =与函数x e x f =)(的图象相切,则切点坐标为 .15.定义方程()()f x f x '=的实数根o x 叫做函数()f x 的“新驻点”,如果函数()g x x =,()ln(1)h x x =+,()cos x x ϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤。

山东科技大学20152016学年第一学期期末考试安排表.doc

山东科技大学20152016学年第一学期期末考试安排表.doc

感谢你的观看山东科技大学2015-2016学年第一学期期末考试安排表制表单位:教务处年级:2015级考试时间:上午8:00--10:00 2015级第1 页班级人数考场固定监考1月11日(星期一)1月12日(星期二)1月13日(星期三)1月14日(星期四)1月15日(星期五)课程名称监考课程名称监考课程名称监考课程名称监考课程名称监考会计2015-1 49 14-103 花双莲管理学(A) 周志刚高等数学A(2-1)张月玲大学英语(3-1)张月玲会计2015-2 49 14-105 刘超管理学(A) 于泉高等数学A(2-1)王爱华大学英语(3-1)王爱华国贸2015-1 3914-121 马风涛高等数学A(2-1)焦习燕大学英语(3-1)陶敏国贸2015-2 38 王垒高等数学A(2-1)大学英语(3-1)工商管理2015-1 41 14-107 周志刚高等数学A(2-1)宋平大学英语(3-1)陈玉和工商管理2015-2 41 14-109 李洪伟高等数学A(2-1)曲艺大学英语(3-1)曲艺电子商务2015-1 36 14-111 王松高等数学A(2-1)修朴华大学英语(3-1)耿琰电子商务2015-2 36 14-113 杨磊高等数学A(2-1)袁菁婧大学英语(3-1)袁菁婧金融2015-1 44 14-203 周衍平管理学原理+4 康旺霖高等数学A(2-1)甄珍大学英语(3-1)沈圳金融2015-2 45 14-205 姜爱萍管理学原理张学睦高等数学A(2-1)杨光大学英语(3-1)赵述强物流管理2015-1 37 14-207 曾丽君管理学原理赵峰高等数学A(2-1)李真大学英语(3-1)刘国忠物流管理2015-2 38 14-209 李美燕管理学原理宋平高等数学A(2-1)刘辉大学英语(3-1)徐科吉财政学2015-1 3114-123 陈金库微观经济学+2 任一鑫高等数学A(2-1)张同迁大学英语(3-1)邢雪晶财政学2015-2 32 王彩霞微观经济学孙江永高等数学A(2-1)大学英语(3-1)地质2015-1 39 14-211 王其芳普通化学(B)+4 黄仁和毛泽东思想与社会主义理论体系概论张月玲高等数学A(2-1)李艳测量学+10 刘峰大学英语(3-1)王平丽地质2015-2 38 14-213 夏璐普通化学(B)朱林晖马风涛高等数学A(2-1)孙玉芹测量学朱金山大学英语(3-1)冯建国水文2015-1 3514-219 苗佳丽普通化学(B)李春露王海涛高等数学A(2-1)王芳大学英语(3-1)邓清海水文2015-2 34 曹玉亭普通化学(B)高等数学A(2-1)大学英语(3-1)地球物理2015 34 14-303 李月毛泽东思想与社会主义理论体系概论李忠高等数学A(2-1)张涛大学英语(3-1)张涛资源勘查2015-1 3414-221 孔凡梅普通化学(B)崔立强王东东高等数学A(2-1)王东东大学英语(3-1)房丽资源勘查2015-2 36 王金凯普通化学(B)高等数学A(2-1)大学英语(3-1)资源勘查2015-3 34 14-305 杨仁超普通化学(B)+5 刘雪梅张升堂高等数学A(2-1)张升堂大学英语(3-1)赵善青勘查技术2015 39 14-307 丁仁伟普通地质学+8 赵秀丽李岩高等数学A(2-1)冯建国大学英语(3-1)李允资源(煤矿地质)2015 34 14-309 樊爱萍高等数学B(1)李晶晶大学英语(3-1)冯梅测绘2015-1 4014-223 陈允芳毛泽东思想与社会主义理论体系概论时洪举高等数学A(2-1)卓相来大学英语(3-1)冯苗苗测绘2015-2 40 景冬高等数学A(2-1)大学英语(3-1)测绘2015-3 36 14-311 张燕王峰高等数学A(2-1)宋其芳大学英语(3-1)李延波遥感2015-1 3814-319 孙林计算机C语言解斐斐毛泽东思想与社会主义理论体系概论+1刘凤英高等数学A(2-1)许静遥感原理与方法+2战丽丽大学英语(3-1)郑蕴华遥感2015-2 36 许君一计算机C语言高等数学A(2-1)遥感原理与方法大学英语(3-1)海洋测绘2015 39 14-313 刘峰张灵先高等数学A(2-1)王瑞富大学英语(3-1)牟乃夏自然地理2015 38 14-403 曾文自然地理学明艳芳杨爱东高等数学A(2-1)徐春达地图学+1 刘文宝大学英语(3-1)张红日人文地理2015 39 14-405 蔡玉林自然地理学李英孙健高等数学A(2-1)刘凤英大学英语(3-1)李英测绘单2015 38 14-407 田茂义高等数学A(2-1)徐泮林大学英语(3-1)赵会兴地信2015-1 3514-321 刘冰自然地理学张红日C++ +23刘新高等数学A(2-1)李红梅地图学+3刘文宝大学英语(3-1)郭放地信2015-2 34 季民自然地理学C++高等数学A(2-1)地图学大学英语(3-1)说明:1、各学院务必将此安排表通知到相关学生班级。

山科大高等数学定积分题目

山科大高等数学定积分题目

山科大高等数学定积分题目1.1 一、定积分计算定积分计算主要依据牛顿—莱伯尼兹公式:设⎰+=C x F dx x f )()(,则()()()()bb aaf x dx F b F a F x =-=⎰。

其主要计算方法与不定积分的计算方法是类似的,也有三个主要方法,但需要指出的是对于第Ⅱ类直接交换法,注意积分限的变化:()111()()()()()(())x t bb aa t x f x dx f t t dt ϕϕϕϕϕϕ---=='=⎰⎰。

例4.1.111)edx x⎰解:原式=e11)ln d x ⎰=32125((ln )ln )|33ex x += 例4.2.3⎰ 解:原式tx t x =+-==112221121t tdt t -+⎰=32 121t t dt t -+⎰=322125()|33t t -= 例4.3.⎰202sin πxdx x解:原式=⎰-202cos 21πx xd =⎰+-20202cos 21|2cos 21ππxdx x x=20|2sin 414ππx +=4π1.2 二、特殊类函数的定积分计算1.含绝对值函数利用函数的可拆分性质,插入使绝对值为0的点,去掉绝对值,直接积分即可。

例4.4.⎰--21|1|dx x解:原式=121 1(1)(1)x dx x dx --+-⎰⎰=212|)2(2x x -+=)121(02--+=25例4.5.⎰--++22|)1||1(|dx x x解:原式=11221 1(|1||1|)(|1||1|)(|1||1|)x x dx x x dx x x dx ---++-+++-+++-⎰⎰⎰ =11221 1(11)(11)(11)x x dx x x dx x x dx ------++++-+++-⎰⎰⎰=11221 1222xdx dx xdx ----++⎰⎰⎰=212122|4|x x ++---=)14(4)41(-++--=102.分段函数积分例4.6.⎩⎨⎧≤+>=0,10,)(2x x x x x f ,求⎰-11)(dx x f解:原式=⎰⎰-+011)()(dx x f dx x f =⎰⎰-++01102)1(dx x dx x =103012|31|)2(x x x ++- =31)121(+--=65例4.7.⎩⎨⎧≤>+=1,1,12)(x x x x x f ,求⎰-+12)1(dx x f解:原式11221(1)()u x f x dx f u du =+--=+==⎰⎰1211()()f u du f u du -+⎰⎰1222111(21)0()udu u du u u -=++=++⎰⎰624=-= 3.奇函数积分如果 ()f x 为定义在[],a a -的奇函数,则()0aa f x dx -≡⎰,这是一个很重要考点。

2015—2016学年度第二学期期中六校联考高一数学答案

2015—2016学年度第二学期期中六校联考高一数学答案

题号12345678答案A C A CB B DC 2015-2016学年度第二学期期中六校联考高一数学答案一、选择题二、填空题9. 10. 11.12. 13. 14.15.(本小题满分12分)解:(1)由b sin A =a cos B 及正弦定理=,得sin B =cos B ,…………2分所以tan B =,…………4分所以B =.…………6分(2)由sin C =2sin A 及=,得c =2a . …………8分由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac . …………10分所以a =, c =2.…………12分16.(本小题满分12分)(Ⅰ)解:在中,由题意知,.…………2分又因为,所以,…………4分由正弦定理可得,.…………6分(Ⅱ)由得.…………8分由,得,…………9分所以.…………11分因此的面积.…………12分17. (本小题满分12分)(1)设b n=,所以b1==2, …………1分则b n+1-b n=-=·[(a n+1-2a n)+1]=[(2n+1-1)+1]=1. …………3分所以数列是首项为2,公差为1的等差数列. …………4分(2)由(1)知,=2+(n-1)×1,所以a n=(n+1)·2n+1. …………6分因为S n=(2·21+1)+(3·22+1)+…+(n·2n-1+1)+[(n+1)·2n+1]=2·21+3·22+…+n·2n-1+(n+1)·2n+n.设T n=2·21+3·22+…+n·2n-1+(n+1)·2n, ①2T n=2·22+3·23+…+n·2n+(n+1)·2n+1, ②②-①,得T n=-2·21-(22+23+…+2n)+(n+1)·2n+1=-4-+(n+1)·2n+1=n·2n+1…………11分所以S n=n·2n+1+n=n·(2n+1+1). …………12分18.(本小题满分14分)解: (1)不等式的解集为所以与之对应的二次方程的两个根为1,2由根与系数关系的…………4分(2)…………10分(3)令则…………14分(19)解:(1)()…………1分…………2分经检验时也成立…………3分=…………4分(2) ……………………6分其前项和= …………8分(3)解:方法一:= …………9分…………10分…………12分在其定义域上单调递增…………13分 …………14分方法二、= …………9分…………10分…………12分即>1又在其定义域上单调递增…………13分 …………14分。

高等数学第二学期期中考试试卷及答案

高等数学第二学期期中考试试卷及答案

卷号:(A ) ( 年 月 日) 机密学年第2学期2010级计算机专业《高等数学》期中考试试卷A 卷一、选择题(本大题共5小题,每小题2分,共10分) 1.下列方程所示曲面是双叶旋转双曲面的是( )(A) 1222=++z y x (B) z y x 422=+(C) 14222=+-z y x (D) 1164222-=-+z y x 2.二元函数 222214y x y x z +++=arcsin ln的定义域是( )(A) 4122≤+≤y x (B) 4122≤+<y x (C) 4122<+≤y x (D) 4122<+<y x3.已知),(y x f 在点),(00y x 处连续,且两个偏导数),(00y x f x ,),(00y x f y 存在是),(y x f 在 该点可微的( )(A) 充分条件,但不是必要条件; (B) 必要条件,但不是充分条件;(C) 充分必要条件 ; (D) 既不是充分条件,也不是必要条件. 4. 下列直线中平行xOy 坐标面的是________ .(A ).233211+=+=-z y x ; (B ).⎩⎨⎧=--=--04044z x y x ; (C ).10101zy x =-=+; (D ).3221=+=+=z t y t x ,,. 5.函数z y x u sin sin sin =满足),,(0002>>>=++z y x z y x π的条件极值是( )(A) 1 ; (B) 0 ; (C) 61 ; (D) 81 . 二、填空题(本大题共10个填空题,每空3分,共30分)1.已知52==||,||b a ϖϖ且,),(3π=∠b a ϖϖ则_______)()(=+⋅-b a b a ρϖϖϖ32.2.通过曲线⎩⎨⎧=-+=++0562222222y z x z y x ,且母线平行于y 轴的柱面方程是_________________. 3.若),ln(222z y x u ++=则._________________=du4. 已知球面的一直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________________..5. 函数2223u x y z z =++-在点()01,1,2M -的梯度为___________及沿梯度方向上函数的方向导数为_________.6.设二元函数y x xy z 32+=,则=∂∂∂yx z2_______________. 7.设⎪⎩⎪⎨⎧=+≠++=0 , 00 , ),(2222222y x y x y x y x y x f ,求),(y x f x =___________________________.8.xy y x y x +→)2,1(),(lim=___________.y xy y x )tan(lim )0,2(),(→=___________.三、解下列微分方程(本大题共3小题,每小题5分,共15分) 1.给定一阶微分方程dydx= 3x (1)求它的通解;(2)求过点(2,5)的特解;(3)求出与直线y = 2x – 1 相切的曲线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ( )
2 f ( ) 。 b 第 Nhomakorabea2 页/共
2 页
cos
4. 设
x ln 1 t 2 y arctan t
,求
d2y 。 dx 2
2
5. 设 y y ( x ) 由方程 e 6 xy x 1 0 所确定,求
y
y '' (0) 。
四、解答题(共 10 分)
设 f ( x ) ( x ) sin x ,其中 ( x ) 的一阶导数连续,且 (0) 0 , (0) 0 ,试判断 f ( x ) 在
山东科技大学 2015—2016 学年第 一 学期
《高等数学》期中考试试卷
班级 题号 得分
一、填空题(每小题 5 分,共 15 分) 1. 设 lim ( x x 1 ax b) 0, 则 a _________, b ________。
x 2
姓名 一 二 三 四 五 总得分
3.已知 f (3) 2 ,则 lim
( A) 无穷小 (C ) 有界但不为无穷小
2. ( x )
( B ) 无穷大 ( D) 无界但不为无穷大

1 x , ( x ) 1 3 x ,则当 x 1 时有( 1 x
(A) 是比 高阶的无穷小
(B) 是比 低阶的无穷小
(C) 与 同阶无穷小,但不等价 (D) ~ 3. sin x x
1 3 ) x R4 ( x) 其中 R4 ( x ) ( 6 cos 5 cos 5 (A) (B) x x 5! 5! sin 5 sin 5 ( C) ( D) x x (上述各式中 介于 0 与 x 之间) 5! 5!
'
x 0 处是否二阶可导。
五、证明题(每小题 10 分,共 20 分)
1.设函数 f ( x ) 在 ( , ) 内二阶可导,且 f ( x ) 1, lim
x 0
f ( x) 2, x
试证明: f ( x ) 2 x
1 2 x 2

2.设函数 f ( x ) 在 [ a, b] 上有二阶导数, f (a ) f (b) ,试证:在 ( a, b) 内至少存在一点 ,使得
第 1 页/共 2 页
三、计算题(每小题 8 分,共 40 分)
e tan x e x 1. 求极限 lim 。 x 0 sin x x cos x (1 2. 求极限 lim
x
2 1 x ) 。 x x2
x 2 的连续性,若有间断点判断其类型,如是可去间断点补充定义使其连续。 3. 讨论 y 2 x( x 1)
学号 评卷人 审核人
2. 设 f ( x ) sin
x cos 2 x , f (27) ( ) ___________。 2

f (3 h) f (3) = h 0 2h 二、单项选择题(每小题 5 分,共 15 分) 1 1 1. 当 x 0 时,变量 2 sin 是( ) x x
相关文档
最新文档