材料力学方法及知识点

合集下载

材料力学知识点总结教学内容

材料力学知识点总结教学内容

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。

因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。

应力的单位是帕斯卡(Pa),即XXX/平方米。

第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。

应变分为线性应变和非线性应变两种。

线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。

非线性应变则不满足这个比例关系。

2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。

3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。

XXX模量的大小反映了材料的柔软程度和刚度。

杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。

综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。

构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。

截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。

胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。

应力是指在截面m-m上某一点K处的力量。

它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。

其中,σ称为正应力,τ称为切应力。

将应力的比值称为微小面积上的平均应力,用表示。

在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。

杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。

某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。

材料力学结构设计知识点总结

材料力学结构设计知识点总结

材料力学结构设计知识点总结在材料力学结构设计领域,掌握一系列的知识点是非常重要的。

这些知识点可以帮助工程师们更好地理解材料的力学性质,并设计出更加稳定和高效的结构。

本文将对一些关键的材料力学结构设计知识点进行总结。

1. 材料的力学性质1.1 弹性模量:弹性模量是衡量材料抵抗外力变形的能力的物理量。

它描述了材料在受到外力作用后的应力和应变关系。

常见的弹性模量包括杨氏模量、剪切模量和泊松比等。

1.2 抗拉强度:抗拉强度是材料能够承受的最大拉伸力。

它是衡量材料抵抗拉伸变形能力的重要指标。

1.3 延伸率:延伸率是材料在受到拉伸力作用下能延展的程度。

它表示材料能够在拉伸过程中产生的应变。

1.4 硬度:硬度是材料抵抗局部压力的能力。

常用的硬度测试方法包括洛氏硬度和布氏硬度等。

2. 材料的疲劳性能2.1 疲劳强度:疲劳强度是指材料在长期受到交变载荷作用下能够承受的最大应力。

它是衡量材料抵抗疲劳破坏的能力的重要指标。

2.2 疲劳寿命:疲劳寿命是指材料在一定载荷作用下能够承受的循环次数。

了解材料的疲劳寿命可以帮助工程师预测结构的使用寿命。

2.3 疲劳裂纹扩展:疲劳裂纹扩展是指在疲劳载荷作用下,由于应力集中或者材料缺陷导致的裂纹逐渐扩展。

对疲劳裂纹扩展进行研究可以提高结构的疲劳寿命。

3. 结构设计方法3.1 单材料结构设计:单材料结构设计是指使用一种材料进行结构设计。

在设计过程中,需要综合考虑材料的力学性能、制造工艺和成本等因素。

3.2 复合材料结构设计:复合材料结构设计是指使用多种材料进行结构设计。

复合材料具有高强度、高刚度和轻质等优良性能,在设计过程中需要考虑不同材料的相互作用和界面效应。

3.3 结构优化设计:结构优化设计是指通过调整结构参数,使得结构在给定约束条件下具有最佳的性能。

常用的优化方法包括参数优化和拓扑优化等。

4. 结构力学分析4.1 静力学分析:静力学分析是研究结构在静力平衡下的力学行为。

通过计算结构的受力情况和应力分布,可以评估结构的强度和稳定性。

材料力学总结-材料力学知识点总结

材料力学总结-材料力学知识点总结

材料力学总结|材料力学知识点总结材料力学阶段总结一.材料力学的一些基本概念1.材料力学的任务:解决安全可靠与经济适用的矛盾。

研究对象:杆强度:抵抗破坏的能力刚度:抵抗变形的能力稳定性:细长压杆不失稳。

2.材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。

均匀性:构内各处的力学性能相同。

各向同性:物体内各方向力学性能相同。

3.材力与理力的关系,内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体。

内力:附加内力。

应指明作用位置、作用截面、作用方向、和符号规定。

应力:正应力、剪应力、一点处的应力。

应了解作用截面、作用位置(点)、作用方向、和符号规定。

正应力应变:反映杆的变形程度变形基本形式:拉伸或压缩、剪切、扭转、弯曲。

4.物理关系、本构关系虎克定律;剪切虎克定律:适用条:应力~应变是线性关系:材料比例极限以内。

5.材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

拉压弹性模量E,剪切弹性模量G,泊松比v,塑性材料与脆性材料的比较:变形强度抗冲击应力集中塑性材料流动、断裂变形明显拉压的基本相同较好地承受冲击、振动不敏感脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。

过小,使构安全性下降;过大,浪费材料。

许用应力:极限应力除以安全系数。

塑性材料脆性材料 7.材料力学的研究方法1) 所用材料的力学性能:通过实验获得。

2) 对构的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。

3) 截面法:将内力转化成“外力”。

运用力学原理分析计算。

8.材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。

1) 拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。

工程力学材料力学-知识点-及典型例题

工程力学材料力学-知识点-及典型例题

作出图中AB杆的受力图。

A处固定铰支座B处可动铰支座作出图中AB、AC杆及整体的受力图。

B、C光滑面约束A处铰链约束DE柔性约束作图示物系中各物体及整体的受力图。

AB杆:二力杆E处固定端C处铰链约束(1)运动效应:力使物体的机械运动状态发生变化的效应。

(2)变形效应:力使物体的形状发生和尺寸改变的效应。

3、力的三要素:力的大小、方向、作用点。

4、力的表示方法:(1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!)(2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。

5、约束的概念:对物体的运动起限制作用的装置。

6、约束力(约束反力):约束作用于被约束物体上的力。

约束力的方向总是与约束所能限制的运动方向相反。

约束力的作用点,在约束与被约束物体的接处7、主动力:使物体产生运动或运动趋势的力。

作用于被约束物体上的除约束力以外的其它力。

8、柔性约束:如绳索、链条、胶带等。

(1)约束的特点:只能限制物体原柔索伸长方向的运动。

(2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。

()9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。

(1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。

被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。

(2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。

()10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。

约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。

()11、固定铰支座(1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

(2)约束反力的特点:固定铰支座的约束反力同中间铰的一样,也是方向未定的一个力;用一对正交的力来表示,指向假定。

()12、可动铰支座(1)约束的构造特点把固定铰支座的底部安放若干滚子,并与支撑连接则构成活动铰链支座约束,又称锟轴支座。

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。

它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域具有重要的意义。

以下是对材料力学主要知识点的总结。

一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。

在拉伸或压缩时,杆件的内力称为轴力。

通过截面法可以求出轴力的大小,轴力的正负规定为拉力为正,压力为负。

胡克定律描述了应力与应变之间的线性关系,在弹性范围内,应力与应变成正比,即σ =Eε,其中σ为正应力,ε为线应变,E 为材料的弹性模量。

材料在拉伸和压缩过程中会经历不同的阶段。

低碳钢的拉伸实验是研究材料力学性能的重要手段,其拉伸曲线可分为弹性阶段、屈服阶段、强化阶段和颈缩阶段。

通过拉伸实验可以得到材料的屈服极限、强度极限等重要力学性能指标。

二、剪切与挤压剪切是指在一对大小相等、方向相反、作用线相距很近的横向外力作用下,杆件的横截面发生相对错动的变形形式。

剪切面上的内力称为剪力,其大小可以通过截面法求得。

在工程中,通常还需要考虑连接件的挤压问题。

挤压面上的应力称为挤压应力,其大小与挤压面的面积和外力有关。

三、扭转扭转是指杆件受到一对大小相等、方向相反、作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线发生相对转动的变形形式。

圆轴扭转时,横截面上的内力为扭矩。

扭矩的正负规定为右手螺旋法则,拇指指向截面外为正,指向截面内为负。

根据材料力学的理论,圆轴扭转时横截面上的切应力呈线性分布,最大切应力发生在圆周处。

四、弯曲弯曲是指杆件在垂直于轴线的外力或外力偶作用下,轴线由直线变为曲线的变形形式。

梁在弯曲时,横截面上会产生弯矩和剪力。

弯矩的正负规定为使梁下侧受拉为正,上侧受拉为负;剪力的正负规定为使截面顺时针转动为正,逆时针转动为负。

弯曲正应力和弯曲切应力是弯曲问题中的重要应力。

弯曲正应力沿截面高度呈线性分布,最大正应力发生在截面的上下边缘处。

弯曲切应力在矩形截面梁中,其分布规律较为复杂,但在一些常见的情况下,可以通过公式进行计算。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是工程学科中的重要基础学科,它研究材料在外力作用下的力学性能和变形规律。

在工程实践中,对材料力学知识的掌握对于设计和制造具有重要意义的工程结构和材料具有重要的指导作用。

本文将对材料力学的一些重要知识点进行总结,以便于工程技术人员更好地掌握这一学科的核心内容。

1.应力和应变。

在材料力学中,应力和应变是两个最基本的概念。

应力是单位面积上的力,它描述了材料受力情况的强度。

而应变则是材料在受力作用下的形变程度,是长度、面积或体积的变化与原始长度、面积或体积的比值。

应力和应变是描述材料受力行为的重要物理量,对于材料的选取和设计具有重要的指导意义。

2.弹性力学。

弹性力学是研究材料在外力作用下的弹性变形规律的学科。

在弹性力学中,材料在受到外力作用后会发生弹性变形,而当外力消失时,材料会恢复到原始状态。

弹性力学研究材料的弹性模量、泊松比等重要参数,这些参数对于材料的选取和设计具有重要的指导作用。

3.塑性力学。

与弹性力学相对应的是塑性力学,它研究材料在受到外力作用后发生的塑性变形规律。

塑性变形是指材料在受到外力作用后发生的不可逆变形,这种变形会导致材料的形状和尺寸发生永久性的改变。

塑性力学研究材料的屈服强度、抗拉强度等重要参数,这些参数对于材料的加工和成形具有重要的指导作用。

4.断裂力学。

断裂力学是研究材料在受到外力作用下发生断裂的规律的学科。

材料的断裂是由于外力作用超过了其承受能力而导致的,断裂力学研究材料的断裂韧性、断裂强度等重要参数,这些参数对于材料的安全设计和使用具有重要的指导作用。

5.疲劳力学。

疲劳力学是研究材料在受到交变载荷作用下发生疲劳破坏的规律的学科。

在实际工程中,材料往往要经受交变载荷的作用,如果这种载荷作用时间足够长,就会导致材料的疲劳破坏。

疲劳力学研究材料的疲劳寿命、疲劳极限等重要参数,这些参数对于材料的使用寿命和安全具有重要的指导作用。

总之,材料力学是工程学科中的重要基础学科,它研究材料在外力作用下的力学性能和变形规律。

材料力学知识点

材料力学知识点

第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。

平面弯曲时,挠曲线为外力作用平面内的平面曲线。

2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。

1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。

2》转角——横截面绕其中性轴旋转的角位移,以表示。

挠度和转角的正负号由所选坐标系的正方向来确定。

沿y轴正方向的挠度为正。

转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。

4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。

对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。

因此除了用边界条件外,还要用连续性条件确定所有的积分常数。

边界条件:支座对梁的位移(挠度和转角)的约束条件。

连续条件:挠曲线的光滑连续条件。

悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。

2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料2》曲率与挠度成线性关系,这就要求梁变形为小变形4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。

材料力学性能知识要点

材料力学性能知识要点

1、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。

2、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率断面收缩率 、 冲击功 。

3、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。

4、常用测定硬度的方法有 布氏硬度 、 洛氏硬度 和 维氏硬度 测试法。

1、聚合物的弹性模量对 结构 非常敏感,它的粘弹性表现为滞后环、应力松弛和 蠕变 ,这种现象与温度、时间密切有关。

2、影响屈服强度的内在因素有: 结构健 、 组织 、 结构 、 原子本性 ;外在因素有: 温度 、 应变速率 、 应力状态 。

3、缺口对材料的力学性能的影响归结为四个方面: (1)产生应力集中 、(2)引起三相应力状态,使材料脆化 、 (3)由应力集中带来应变集中 、(4)使缺口附近的应变速率增高 。

4、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。

5、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率 断面收缩率 、 冲击功 。

6、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。

请说明下面公式各符号的名称以及其物理意义7、c IC c a Y K /=σσc :断裂应力,表示金属受拉伸离开平衡位置后,位移越大需克服的引力越大,σc 表示引力的最大值;K 1C :平面应变的断裂韧性,它反映了材料组织裂纹扩展的能力;Y :几何形状因子a c : 裂纹长度 8、对公式m K c dNda )(∆=进行解释,并说明各符号的名称及其物理意义(5分) 答:表示疲劳裂纹扩展速率与裂纹尖端的应力强度因子幅度之间的关系。

dNda :裂纹扩展速率(随周次); c 与m :与材料有关的常数;K ∆:裂纹尖端的应力强度因子幅度9、εss-蠕变速率,反映材料在一定的应力作用下,发生蠕变的快慢;n为应力指数,n并非完全是材料常数,随着温度的升高,n略有降低;A为常数;σ为蠕变应力。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域有着至关重要的作用。

以下是对材料力学主要知识点的总结。

一、基本概念1、外力:作用在物体上的力,包括载荷和约束力。

2、内力:物体内部各部分之间相互作用的力。

3、应力:单位面积上的内力。

4、应变:物体在受力时发生的相对变形。

二、轴向拉伸与压缩1、轴力:杆件沿轴线方向的内力。

轴力的计算通过截面法,即假想地将杆件沿某一截面切开,取其中一部分为研究对象,根据平衡条件求出截面处的内力。

2、拉压杆的应力正应力计算公式为:σ = N / A,其中 N 为轴力,A 为横截面面积。

应力在横截面上均匀分布。

3、拉压杆的变形纵向变形:Δl = Nl / EA,其中 E 为弹性模量,l 为杆件长度。

横向变形:Δd =μΔl,μ 为泊松比。

三、剪切与挤压1、剪切:在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。

2、剪切力:平行于横截面的内力。

3、切应力:τ = Q / A,Q 为剪切力,A 为剪切面面积。

4、挤压:连接件在接触面上相互压紧的现象。

5、挤压应力:σbs = Pbs / Abs,Pbs 为挤压力,Abs 为挤压面面积。

四、扭转1、扭矩:杆件受扭时,横截面上的内力偶矩。

扭矩的计算同样使用截面法。

2、圆轴扭转时的应力横截面上的切应力沿半径线性分布,最大切应力在圆周处,计算公式为:τmax = T / Wp,T 为扭矩,Wp 为抗扭截面系数。

3、圆轴扭转时的变形扭转角:φ = TL / GIp,G 为剪切模量,Ip 为极惯性矩。

五、弯曲内力1、平面弯曲:梁在垂直于轴线的平面内发生弯曲变形,且外力和外力偶都作用在该平面内。

2、剪力和弯矩剪力:梁横截面上切向分布内力的合力。

弯矩:梁横截面上法向分布内力的合力偶矩。

材料力学知识点

材料力学知识点
FN 同号。即拉应力为正,压应力为负。 六、胡克定律 内容:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在 应力低于比例极限的情况下, 固体中的应力ζ 与应变ε 成正比, 即ζ =Ε ε , 式中 E 为常数, 称为弹性模量或杨氏模量,单位为 GN/m2。 七、材料拉伸时的力学性能: 两个塑性指标: 1、 断后伸长率δ >5%为塑性材料,δ <5%为脆性材料 2、 断面收缩率ψ 低碳钢的δ ≈20—30%ψ ≈60%为塑性材料
材料力学 一、基本概念: 理论力学——研究刚体,研究力与运动的关系。 材料力学——研究变形体,研究力与变形的关系。 1、构件:工程结构或机械的每一组成部分。 (例如:行车结构中的横梁、吊索等) 2、变形:在外力作用下,固体内各点相对位置的改变。(宏观上看就是物体尺寸和形状的改 变) 弹性变形——随外力解除而消失 塑性变形(残余变形)—外力解除后不能消失 3、内力:构件内由于发生变形而产生的相互作用力。 (内力随外力的增大而增大) 4、应力:截面某一点单位面积上的内力称为应力。同截面垂直的称为正应力或法向应力, 同截面相切的称为剪应力或切应力。 5、刚度:在载荷作用下,构件抵抗变形的能力。 6、强度:在载荷作用下,构件抵抗破坏的能力。 7、稳定性:在载荷作用下,构件保持原有平衡状态的能力。 强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的一 门科学。 材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提 供必要的理论基础和计算方法。研究构件的强度、刚度和稳定性,还需要了解材料的力学性 能。因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。 二、变形固体的基本假设 1、连续性假设:认为整个物体体积内毫无空隙地充满物质 2、均匀性假设:认为物体内的任何部分,其力学性能相同 3、各向同性假设:认为在物体内各个不同方向的力学性能相同 (沿不同方向力学性能不同的材料称为各向异性材料。如木材、胶合板、纤维增强材料等) 3、各向同性假设:认为在物体内各个不同方向的力学性能相同 (沿不同方向力学性能不同的材料称为各向异性材料。如木材、胶合板、纤维增强材料等) 4、小变形与线弹性范围:认为构件的变形极其微小,比构件本身尺寸要小得多。 三、外力及其分类 外力:来自构件外部的力(载荷、约束反力) 按外力作用的方式分类: 1、 体积力:连续分布于物体内部各点的力。如重力和惯性力 2、 表面力:1)分布力:连续分布于物体表面上的力。如油缸内壁的压力,水坝受到的水 压力等均为分布力 2)集中力:若外力作用面积远小于物体表面的尺寸,可作为作用于 一点的集中力。如火车轮对钢轨的压力等 按外力与时间的关系分类 1、 静载:载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静载。 2、 动载:载荷随时间而变化。如交变载荷和冲击载荷 四、变形与应变 1、变形:物体内任意两点的相对位置发生变化。 取一微正六面体 两种基本变形: 1) 线变形——线段长度的变化 2) 角变形——线段间夹角的变化

(完整版)材料力学知识点总结

(完整版)材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

(完整版)材料力学必备知识点

(完整版)材料力学必备知识点

材料力学必备知识点1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。

2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。

3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。

4、 低碳钢:含碳量在0.3%以下的碳素钢。

5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。

>5%的材料称为塑性材料: <5%的材料称为脆性材料8、 失效:断裂和出现塑性变形统称为失效9、 应变能:弹性固体在外力作用下,因变形而储存的能量10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。

12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力13、三种形式的梁:简支梁、外伸梁、悬臂梁14、组合变形:由两种或两种以上基本变形组合的变形15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。

16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结
材料力学是研究材料加载和变形的分支工程力学,是一门综合性
学科,从物理性质的角度深入探讨材料的结构、力学性能以及加载及
应力应变分布情况。

它涉及材料物理性质、材料力学实验、材料本构、形变理论及结构力学等多个领域。

1. 材料物理性质:包括晶粒结构、失真、应变变形、密度、弹
性模量、断裂应变、杨氏模量、弹性应变等。

2. 材料力学实验:材料的机械性能的测试,主要有拉伸实验Q及压
缩实验,分别测量其弹性模量、断裂强度、抗拉伸性及延展性等特征
参数。

3. 材料本构:包括等温应力应变曲线、温度应力应变曲线、时变应
力应变曲线、随机应力应变曲线等。

4. 形变理论:是研究材料力学性能和加载条件下材料形变前景的学科,基于牛顿-拉普拉斯运筹及微分几何原理,可以统一地分析静力
和动力问题。

5. 结构力学:主要涉及结构的稳定性及结构在外力作用下承载能力
分析,主要研究对象是材料在剪切加载下应变和变形的变化情况。

总之,材料力学是一门让材料在加载和变形过程中发挥最佳性能
的科学,它涉及材料本构、形变理论及结构力学等多个方面,为材料
应用提供了有力的依据。

材料力学的研究已广泛应用于各个领域,对
科学技术发展有着重要的意义。

材料力学知识点总结

材料力学知识点总结

p
F A
F cos cos A
将应力 pα 分解为两个分量:
沿截面法线方向的正应力 p cos cos2
2.符号的规定 (1)α 角
沿截面切线方向的切应力
p
sin
2
sin2
(2)正应力: 拉伸为正 压缩为负
(3)切应力 对研究对象任一点取矩
三、强度条件 杆内的最大工作应力不超过材料的许用应力
A ,断口处的最小横截面积为 A1 .
l1 l 100%
伸长率
l
A A1 100%
断面收缩率
A
≧5%的材料,称作塑性材料
<5%的材料,称作脆性材料
§2-5 拉压杆的变形计算
*补充*
一、 纵向变形
1. 纵向变形 Δl l1 l
Δl 2. 纵向应变 l
姚小宝
二、横向变形
1. 横向变形 b b1 b
§1-3 力、应力、应变和位移的基本概念
一、 外力
体积力
1. 按作用方式分
表面力
集中力
分布力 静载荷 2. 按随时间变化分
交变载荷 动载荷
冲击载荷 二、 内力
1. 定义: 指由外力作用所引起的、物体内相邻部分之间相互作用力(附加内力)。 2. 内力的求法 —— 截面法 步骤:
① 截开: 在所求内力的截面处,假想地用截面将杆件一分为二. ②代替: 任取一部分,其弃去部分对留下部分的作用,用作用在截 面上相应的内力(力或力偶)代替. ③平衡: 对留下的部分建立平衡方程,根据其上的已知外力来计算杆在截开面 上的未知内力(此时截开面上的内力对所留部分而言是外力).
§1-2 变形固体的基本假设 一、连续性假设: 物质密实地充满物体所在空间,毫无空隙。 二、均匀性假设: 物体内,各处的力学性质完全相同。 三、各向同性假设: 组成物体的材料沿各方向的力学性质完全相同。 四、小变形假设: 材料力学所研究的构件在载荷作用下的变形与原始尺寸

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形轴向拉压扭转弯曲外力外力合力作用线沿杆轴线力偶作用在垂直于轴的平面内外力作用线垂直杆轴,或外力偶作用在杆轴平面内力轴力:N规定:拉为“+”压为“-”扭转:T规定:矩矢离开截面为“+”反之为“-”剪力:Q规定:左上右下为“+”弯矩:M规定:左顺右逆为“+”微分关系:;应力几何方面变形现象:平面假设:应变规律:常数变形现象:平面假设:应变规律:弯曲正应力弯曲剪应力变形现象:平面假设:应变规律:应力公式应力分布应用条件等直杆外力合力作用线沿杆轴线圆轴应力在比例极限内平面弯曲应力在比例极限内应力-应变关系(单向应力状态)(纯剪应力状态)强度条件塑材:脆材:弯曲正应力1.2.弯曲剪应力轴向拉压扭转弯曲刚度条件注意:单位统一变形;EA—抗拉压刚度GIp—抗扭刚度EI—抗弯刚度应用条件应力在比例极限圆截面杆,应力在比例极限小变形,应力在比例极限矩A=bh形实心圆A=空心圆其它公式(1)(2)剪切(1)强度条件:A—剪切面积(2)挤压条件:Aj—挤压面积矩形:圆形:环形:均发生在中性轴上二、还有:(1)外力偶矩:N—千瓦;n—转/分(2)薄壁圆管扭转剪应力:(3)矩形截面杆扭转剪应力:三、截面几何性质(1)平行移轴公式:(2)组合截面:1.形心:;2.静矩:;3. 惯性矩:;四、应力分析:(1)二向应力状态(解析法、图解法)a.解析法: b.应力圆::拉为“+”,压为“-”:使单元体顺时针转动为“+”:从x轴逆时针转到截面的法线为“+”c:适用条件:平衡状态(2)三向应力圆:;;(3)广义虎克定律:*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态1.纯剪切应力状态:,,2.一种常见的二向应力状态:五、强度理论破坏形式脆性断裂塑性断裂强度理论第一强度理论(最大拉应力理论)莫尔强度理论第三强度理论(最大剪应力理论)第四强度理论(形状改变比能理论)破坏主单元体内的最大单元体内的最大剪应力单元体内的改变比能要因素拉应力破坏条件强度条件适用条件脆性材料脆性材料塑性材料塑性材料*相当应力:,,六、材料的力学性质脆性材料δ<5%塑性材料δ≥5%低碳钢四阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部收缩阶段强度指标塑性指标拉压扭低碳钢滑移线与轴线45,剪断只有s,无b断口垂直轴线剪断铸铁拉断断口垂直轴线剪断拉断断口与轴夹角45o七.组合变形类型斜弯曲拉(压)弯弯扭弯扭拉(压)简图公式强度条件圆截面中性轴八、压杆稳定欧拉公式:,,应用范围:线弹性范围,cr<p,>p柔度:;;,柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑Pcr↓σcr↓临界应力>p——大柔度杆:o<<p——中柔度杆:cr=a-b<0——小柔度杆:cr=s稳定校核:安全系数法:,折减系数法:提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度;断裂特征:断裂前无显著塑性变形;断口特征:断口成光滑区和粗糙区。

材料力学各章知识点

材料力学各章知识点

P14
杭州电子科技大学机械设计与车辆工程研究所
材料力学
期末串讲
弯 曲 变 形
多余约束 超静定梁
超静定次数
P15
杭州电子科技大学机械设计与车辆工程研究所
材料力学
应力状态 的概念 一点的应力状态 主应力 1
期末串讲
应 力 应 变 分 析 、 强 度 理 论
2 3
单向应力状态
二向应力状态 三向应力状态
扭转的 概念
外力作用特点
变形特点 扭 转
M e 9549
外力偶矩
截面法确定 扭矩图表示 纯剪切
P7
P n

T T 2 r02 t 2 A 0 t
杭州电子科技大学机械设计与车辆工程研究所
材料力学
切应力剪切 胡克定律 切应变 剪切胡克定律
期末串讲
R L
G
剪切应变能
扭 转
(rad/m)
P8
杭州电子科技大学机械设计与车辆工程研究所
材料力学
期末串讲
受力特征:外力的作用线垂直于杆轴线
弯曲变形
变形特征:变形前为直线的轴线,变形后为曲线 可动铰支座
支座基本形式
弯 曲 内 力 受弯杆件 的简化 静定梁基本形式
固定铰支座 固定端 集中力
载荷的简化
集中力偶 分布载荷 简支梁 外伸梁 悬臂梁
应力状态的分类
二向应力 状态分析
解析法 图解法
max x y 1 min 2 2
tan 2 0 2 xy

2 4 x y xy 2
x y
P16
杭州电子科技大学机械设计与车辆工程研究所
材料力学

材料力学复习总结知识点

材料力学复习总结知识点

r1, r2, r3, r4
三、压杆稳定
1. 欧拉公式:
Fcr (2lE)I2
(适用范围:细长杆)
2. 压杆的柔度:
细长杆
P
cr
2E 2
中长杆
0 P
cr ab
长度因数(反应约况 束) 情
l
i
i l
截面形状、大小 杆长
σ σcr=σs
临界应力总图
σs
A
粗短杆
σcr=a−bλ
σP
B 中长
一、基本变形(2)
基本变形 拉(压)
扭转
弯曲
外力
应力
FN A
拉 (+)
圆轴
T IP
τ
(平面假设)
d4 I P 32
Wt
d3 16
My IZ
FQ S Z * IZb
平面假设
矩形:
IZ
b
h3 ,
12
WZ
bh2 6
圆形:
IZ
d4,
64
WZ 3d2 3
στ
一、基本变形(3)
基本变形 拉(压)
不同,因而两梁的剪力图和弯矩图不一定相同。
第2章 拉伸、压缩与剪切
6. 两根几何尺寸、支撑条件完全相同的静定梁,只要所受 的载荷相同,则两梁所对应的截面的挠度和转角相同,而 与梁的材料是否相同无关。 7. 若单元体的σx=σy=τxy=50Mpa,则该单元体必定处于二向 应力状态。
第2章 拉伸、压缩与剪切
《材料力学》课程总结
材料力学基本框架
基概本述概念
拉压 剪切 扭转
四种基本变形
弯曲-内力 弯曲-应力 弯曲-变形
应力状态 综组合合知变识形 压杆稳定

材料力学知识点总结(重、难点部分)

材料力学知识点总结(重、难点部分)

第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。

(2)理解变形固体的基本假设、条件及其意义。

(3)明确内力的概念、初步掌握用截面法计算内力的方法。

(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。

(5)了解杆件变形的受力和变形特点。

二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。

在外力作用下,构件内部两部分间的附加相互作用力称为内力。

内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。

2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。

截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。

一点处的全应力可以分解为两个应力分量。

垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。

应力单位为Pa 。

1MPa=610Pa, 1GPa=910Pa 。

应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。

3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。

利用截面法求内力的四字口诀为:切、抛、代、平。

一切:在欲求内力的截面处,假想把构件切为两部分。

二抛:抛去一部分,留下一部分作为研究对象。

至于抛去哪一部分,视计算的简便与否而定。

三代:用内力代替抛去部分队保留部分的作用力。

一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。

四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。

4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
合力矩定理: M O (FR ) M o (Fi ) i 1
力偶对其作用面内任意点之矩都等于力偶矩。
3.平衡方程 基本形式
Fx 0
Fy 0
M O (F ) 0
二力矩式
Fx 0 M A (F ) 0 M B (F ) 0
AB不垂直x
三力矩式
M A (F ) 0 M B (F ) 0 M C (F ) 0
25
光滑铰链约束 向心轴承
光滑圆柱铰链
固定铰链支座
3
其他约束 滚动支座
球铰链
推力轴承
固定端约束
滑动摩擦 • • •
静摩擦力FS根据平衡方程求解,须校核 最大静摩擦力Fmax =fs FN 动滑动摩擦力 F =f FN
4
2.力的投影及力矩计算
合力投影定理: FRx =ΣFx
FRy = Σ Fyi
力偶在任何轴的投影都等于零。
静力学复习
方法及能力知识点
一、方法
① 选研究对象; ② 画受力图(主动力、根据约束类型画出约束力); ③ 列平衡方程; ④ 求解。
1
二、能力知识点
1.约束力 特点:它的方向始终与被阻碍的运动方向相反。
光滑接触面约束
方向:沿着接触面的公法线指向物体
FT
柔索约束
FT1 F'T1
FT2 F'T2
P 方向:沿着柔体指向背离物体 2
dLz
dt
M z (Fi (e) )
一O为固定点 ---z为固定轴
动量矩守恒
Jz maC
M
(e)
z F,
或 Jz
JC
d 2
dt 2
Mz(e) MC (F(e)
—刚体定轴转动微分方程
). —平面运动微分方程
转动惯量 J z miri2
J z m r2dm
J z mz2
------z回转半径
v=R 垂直转动半径指向与一致
切向加速度
点的加速度
at=R 垂直转动半径指向与一致
法向加速度
an= R 2 指向转轴(即圆心)
11
3.点的合成运动
一个动点相对两个参考系的运动
动点
相对运动
绝对运动 vr
va
vr ,ar
va ,aa
动系
牵连运动 ve ,ae
定系
ve
点的速度合成定理
va = vr + ve
ax
d2x dt 2
ay
az
d2y
ddt22z dt 2
自然法 s=s(t)
v
ds
dt
a
dv
t
v2
n
dt
at
dv dt
an
v2
8
直角坐标法和自然法的关系
速度的大小:
v
已知直角运动方程
v x2
v
2 y
v
2 z
v ds s dt
弧坐标运动方程
加速度的大小: a
ax2
a
2 y
az2
a at2 an2
曲率半

当运动轨迹很明确时,采用自然法比较方便; 当运动轨迹不是很明确时,可以采用直角坐标法。
9
2.刚体的基本运动 刚体的平行移动 定义:刚体在运动过程中,体内任意一直线始终与其原来
位置保持平行,则称刚体作平行移动,简称平动。 性质:刚体平动时,体内各点的运动轨迹形状均相同,且在
同一瞬时体内各点的速度和加速度均相同。
J z J zC md 2
平行移轴定理
21
3.动力学普遍定理 动能定理
dT W (e) 质点系动能定理的微分形式
T2 T1
W (e) 12
质点系动能定理的积分形式
动力学普遍定理解题步骤:
➢选取研究对象 ➢受力分析 ➢运动分析(在图上表示出来) ➢列动力学普遍定理求解
23
4.达朗伯尔原理 质点系上真实作用的主动力、约束力和它的惯性力形式上
C1
1
19
3.动力学普遍定理
动量定理
dp dt
(e) Fi .
dp
F (e)dt dIi(e)
动量守恒定律 p p0
p
p0
I (e) i
质心运动定理
MaC
(e) Fi

MrC
Fi (e)
20
3.动力学普遍定理
动量矩定理
dLO
dt
M
O
(Fi
(e)
)
M
(e) O
A、B、C三点不共线
5
4.选取研究对象一般方法 杆件系统: 从系统到部分 机构:根据力的传递路线分别取不同物体为研究对象求解
含有固定端约束: 拆开系统取不包括固定端的部分
D A K
C
E
M
OA
BⅠ

M
q
30
F
A
C
B 60 D
l
l
l
l
B
二力杆的判别 G
F
6
运动学复习
方法及能力知识点
一、方法
① 解析法:通过列运动方程求位移、速度和加速度 点的运动学、刚体的基本运动 ——能反映运动的整个过程
刚体绕定轴的转动
定义:刚体运动时,体内有一条直 线保持不动,而整个刚体绕 此直线旋转,则称刚体作定 轴转动。
不动直线称为转轴(轴线、轴)
10
刚体绕定轴的转动
运动方程
角速度
角加速度
=f(t)
d
dt
d d 2
dt dt 2
转动刚体内各点的速度和加速度
矢量表示
= k = k
运动方程
S=R
点的速度
I 0t Fdt
力的功
W
F
dr ,
M2
W12 F dr
M1
重力的功
W12=Mgh
弹性力的功
W12
k 2
(
1
2
22)
1 r1 l0 , 2 r2 l0
2
作用于转动刚体上的力的功,力偶的功 W12 M12d
平面运动刚体上力系的功
C2
2
1
W12 FR 'drC M Cd
② 几何法:找出某一时刻的运动关系 点的合成运动、刚体的平面运动 ——只能反映运动的某个瞬时
7
二、能力知识点
1.点的运动学 矢径法
运动方程 r = r (t)
速度
v
dr
dt
直角坐标法
x=x(t)
y=y (t)
z=z (t)
vx
dx z dt
加速度
a
dv dt
d 2r dt 2
动量 p mivi mvC
动量矩
平动
Lz M z (mvC )
定轴转动 Lz J z
平面运动
Lz M z (mvC ) JC
动能
T 12mivi2
T
1 2
MvC2
T
1 2
J z 2
T
1 2
J P 2
T
1 2
M
vC2
1 2
JC 2.
18
2.力的冲量和功的计算
力的冲量 dI Fdt
atBA = AB 垂直AB,指向与 一致
anBA ----绕基点转动法向加速度
anBA = AB2 指向基点A
16
动力学复习
方法及能力知识点
一、方法
①动力学微分方程-----动力学普遍定理; ②动静法-----达朗伯尔原理; ③ 分析力学-----虚位移原理。
17
二、能力知识点
1.动量、动量矩和动能的 计算
注意:投影应根据加速度合成定理进行
13
4.刚体的平面运动 刚体的平面运动可以看成随基点的平动和绕基点的转动的合成。
平动部分的运动规律与基点的选择有关 转动部分的运动规律与基点的选择无关 求平面图形内各点的速度
基点法
vB =vA +vBA
A
vBA = AB 垂直AB,指向与一致
vBA vB
B vA
点的加速度合成定理 aa = ae +ar+ac
ac=2e vr
特殊情况:
当e vr, ac=2evr,ac方向将vr顺着e的转向转90o
牵连运动为平动时ac=0
aa = ae + ar
12
解题步骤: 1、选择动点、动系和定系 2、三个运动的分析 3、应用速度合成定理画出速度四边形 4、利用几何关系求解 5、应用加速度合成定理画出加速度矢量图 6、应用加速度合成定理列投影式并求解
vA
投影法
(vB )AB= (vA )AB
平面图形内任一点的速度等于该点 瞬心法 随图形绕瞬时速度中心转动的速度。
vM = CM
14
确定速度瞬心位置的方法
(a)
(b)
瞬时平动: =0, 图形上各点速度相等
15
用基点法求平面图形内各点的加速度
加速度合成公式
aB
aA
aBt A
aBnA
aA----基点加速度 atBA----绕基点转动切向加速度
组质刚成点体平的作衡惯平力性动系力时。的这惯就F性I是力质m点FaI系R 的达M朗ac伯原理。
刚体作转动时的惯性力
FI
MaC
M (aCn
aCt )
M IO JO
刚体作平面运动时的惯性力
FI MaC
FIn
O
M IC JC
作用于质心
FIR
FI
M IO
aCt
相关文档
最新文档