最优化方法习题答案
重庆大学最优化方法习题答案
s.t.x1 + 2x2 ≤ 5 x1, x2 ≥ 0
解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在 A 点取得最优值, 最优值 z=5
(2) min z = x1 − 6x2 2x1 + x2 ≤ 1
s.t.− x1 + x2 ≤ 7 x1, x2 ≥ 0
解:图中阴影部分表示可行域,由图可知原问题在点 A 处取得最优值,最优值 z=-6.
(3) max z = 3x1 + 2x2
− x1 + x2 ≤ 1 s.t.x1 − 2x2 ≥ −4
x1, x2 ≥ 0
解:如图 所示,可行域为图 中阴影部 分,易得 原线性规 划问题 为无界 解。
所以 x(2) , x(4) , x(6) 是原问题的基可行解, x(6) 是最优解,最优值是 z = −3 。
(2) max z = x1 + x2 − 2x3 + x 4 − x5
x1 + x2 + x3 + x4 = 1 s.t.− x1 + 2x2 + x5 = 4
xi ≥ 0,i = 1,2,3,4,5
解:易知
x1
的系数列向
量
p1
= 1− 1
,
x2
的系数列向
量
p2
=
1
2
,
x3
的系
数列向量
1
1
0
p3
=
0
,
x4
的系数列向量
p4
=
0
,
x5
的系数列向量
最优化方法及其应用课后答案
1 2( ( ⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。
(2) 约束最优点,并求出其最优值。
(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5 ) 时, f (x ) 所在的圆的半径最小。
4 4⎧g (x ) = x −x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2 ⎨2 求解得到: ⎨ 45即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 −x 2 + 5 = 015 , 5 ) :最优值为: f(x * ) = 65 ⎪x =⎪⎩ 2 44 48(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。
最优化设计 课后习题答案
最优化方法-习题解答张彦斌计算机学院2014年10月20日Contents1第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、412第二章线搜索算法-P27习题2、4、643第三章最速下降法和牛顿法P41习题1,2,374第四章共轭梯度法P51习题1,3,6(1)105第五章拟牛顿法P73-2126第六章信赖域方法P86-8147第七章非线性最小二乘问题P98-1,2,6188第八章最优性条件P112-1,2,5,6239第九章罚函数法P132,1-(1)、2-(1)、3-(3),62610第十一章二次规划习题11P178-1(1),5291第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、4 1.验证下列各集合是凸集:(1)S={(x1,x2)|2x1+x2≥1,x1−2x2≥1};需要验证:根据凸集的定义,对任意的x(x1,x2),y(y1,y2)∈S及任意的实数λ∈[0,1],都有λx+(1−λ)y∈S.即,(λx1+(1−λ)y1,λx2+(1−λ)y2)∈S证:由x(x1,x2),y(y1,y2)∈S得到,{2x1+x2≥1,x1−2x2≥12y1+y2≥1,y1−2y2≥1(1)1把(1)中的两个式子对应的左右两部分分别乘以λ和1−λ,然后再相加,即得λ(2x1+x2)+(1−λ)(2y1+y2)≥1,λ(x1−2x2)+(1−λ)(y1−2y2)≥1(2)合并同类项,2(λx1+(1−λ)y1)+(λx2+(1−λ)y2)≥1,(λx1+(1−λ)y1)−2(λx2+(1−λ)y2)≥1(3)证毕.2.判断下列函数为凸(凹)函数或严格凸(凹)函数:(3)f(x)=x21−2x1x2+x22+2x1+3x2首先二阶导数连续可微,根据定理1.5,f在凸集上是(I)凸函数的充分必要条件是∇2f(x)对一切x为半正定;(II)严格凸函数的充分条件是∇2f(x)对一切x为正定。
《最优化方法》复习题(含答案)
附录5 《最优化方法》复习题1、设n n A R ⨯∈是对称矩阵,,n b R c R ∈∈,求1()2TT f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵.解 2(),()f x Ax b f x A ∇=+∇=.2、设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ϕ''. 解 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+.3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令()()()()()T TT Tdd f x f x H I d f x f x f x ∇∇=--∇∇∇, 其中I 为单位矩阵,证明方向()p H f x =-∇也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ∇<,从而()()()T T f x p f x H f x ∇=-∇∇()()()()()()()()T TTT T dd f x f x f x I f x d f x f x f x ∇∇=-∇--∇∇∇∇()()()0T T f x f x f x d =-∇∇+∇<,所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ⊆是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ∀≥∀∈的一切凸组合都属于S .证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令11k i i i x x λ+==∑,其中,0,1,2,,1i i x S i k λ∈≥=+,且111k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈,结论成立),记111kii i k y x λλ=+=-∑,有111(1)k k k x y x λλ+++=-+,又1110,1,2,,,111kiii k k i k λλλλ=++≥==--∑,则由归纳假设知,y S ∈,而1k x S +∈,且S 是凸集,故x S ∈.5、设n R S ⊆为非空开凸集,R S f →:在S 上可微,证明:f 为S 上的凸函数的充要条件是2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.证明 必要性.设f 是S 上的凸函数,则12,x x S ∀∈及(0,1)λ∈,有2121((1))()(1)()f x x f x f x λλλλ+-≤+-,于是121121(())()()()f x x x f x f x f x λλ+--≤-,因S 为开集,f 在S 上可微,故令0λ+→,得12121()()()()T f x x x f x f x ∇-≤-,即2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.充分性.若有2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈, 则[0,1]λ∀∈,取12(1)x x x S λλ=+-∈,从而11()()()()T f x f x f x x x ≥+∇-,22()()()()T f x f x f x x x ≥+∇-,将上述两式分别乘以λ和1λ-后,相加得1212()(1)()()()((1))T f x f x f x f x x x x λλλλ+-≥+∇+--12()((1))f x f x x λλ==+-,所以f 为凸函数.6、证明:凸规划min ()x Sf x ∈的任意局部最优解必是全局最优解.证明 用反证法.设x S ∈为凸规划问题min ()x Sf x ∈的局部最优解,即存在x 的某个δ邻域()N x δ,使()(),()f x f x x N x S δ≤∀∈.若x 不是全局最优解,则存在x S ∈,使()()f x f x <.由于()f x 为S 上的凸函数,因此(0,1)λ∀∈,有((1))()(1)()()f x x f x f x f x λλλλ+-≤+-<.当λ充分接近1时,可使(1)()x x N x S δλλ+-∈,于是()((1))f x f x x λλ≤+-,矛盾.从而x 是全局最优解.7、设n R S ⊆为非空凸集,R S f →:是具有一阶连续偏导数的凸函数,证明:x 是问题min ()x Sf x ∈的最优解的充要条件是:()()0,T f x x x x S ∇-≥∀∈.证明 必要性.若x 为问题min ()x Sf x ∈的最优解.反设存在x S ∈,使得()()0T f x x x ∇-<,则d x x =-是函数()f x 在点x 处的下降方向,这与x 为问题min ()x Sf x ∈的最优解矛盾.故()()0,T f x x x x S ∇-≥∀∈.充分性.若()()0,T f x x x x S ∇-≥∀∈.反设存在x S ∈,使得()()f x f x <.(())()((1))()f x x x f x f x x f x λλλλλ+--+--=()(1)()()()()0((0,1)f x f x f x f x f x λλλλ+--≤=-<∀,因S 为凸集,f 在S 上可微,故令0λ+→,得()()()()0T f x x x f x f x ∇-≤-<,这与已知条件矛盾,故x 是问题min ()x Sf x ∈的最优解.8、设函数()f x 具有二阶连续偏导数,k x 是()f x 的极小点的第k 次近似,利用()f x 在点k x 处的二阶Taylor 展开式推导Newton 法的迭代公式为 211[()]()k k k k x x f x f x -+=-∇∇.证明 由于()f x 具有二阶连续偏导数,故21()()()()()()()()2T T k k k k k k f x x f x f x x x x x f x x x ϕ≈=+∇-+-∇-.且2()k f x ∇是对称矩阵,因此()x ϕ是二次函数.为求()x ϕ的极小点,可令()0x ϕ∇=,即2()()()0k k k f x f x x x ∇+∇-=,若2()k f x ∇正定,则上式解出的()x ϕ的平稳点就是()x ϕ的极小点,以它作为()f x 的极小点的第1k +次近似,记为1k x +,即211[()]()k k k k x x f x f x -+=-∇∇,这就得到了Newton 法的迭代公式.9、叙述常用优化算法的迭代公式.(1)0.618法的迭代公式:(1)(),().k k k k k k k k a b a a b a λτμτ=+--⎧⎨=+-⎩(2)Fibonacci 法的迭代公式:111(),(1,2,,1)()n k kk k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+⎧=+-⎪⎪=-⎨⎪=+-⎪⎩.(3)Newton 一维搜索法的迭代公式: 1()()k k k k t t t t ϕϕ+'=-''. (4)最速下降法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()()()()()T k k k k k Tk k f x f x x x f x f x Q f x +∇∇=-∇∇∇ (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-∇∇. (6)共轭方向法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()T k kk k k Tk kf x d x x d d Qd +∇=-. 10、已知线性规划:123123123123123min ()2;..360,2210,20,,,0.f x x x x s t x x x x x x x x x x x x =-+⎧⎪++≤⎪⎪-+≤⎨⎪+-≤⎪⎪≥⎩(1)用单纯形法求解该线性规划问题的最优解和最优值; (2)写出线性规划的对偶问题; (3)求解对偶问题的最优解和最优值.解 (1)引进变量456,,x x x ,将给定的线性规划问题化为标准形式:123123412351236126min ()2;..360,2210,20,,,,0.f x x x x s t x x x x x x x x x x x x x x x =-+⎧⎪+++=⎪⎪-++=⎨⎪+-+=⎪⎪≥⎩所给问题的最优解为(0,20,0)T x =,最优值为20f =-. (2)所给问题的对偶问题为:123123123123123max ()601020;..32,21,21,,,0.g y y y y s t y y y y y y y y y y y y =---⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩(1) (3)将上述问题化成如下等价问题:123123123123123min ()601020;..32,21,21,,,0.h y y y y s t y y y y y y y y y y y y =++⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩引进变量456,,y y y ,将上述问题化为标准形式:123123412351236126min ()601020;..32,21,21,,,,0.h y y y y s t y y y y y y y y y y y y y y y =++⎧⎪---+=⎪⎪-+-+=-⎨⎪--++=⎪⎪≥⎩ (2)问题(2)的最优解为(0,0,1)T y =,最优值为20h =(最小值). 问题(1)的最优解为(0,0,1)T y =,最优值为20g =-(最大值).11、用0.618法求解 2min ()(3)t t ϕ=-,要求缩短后的区间长度不超过0.2,初始区间取[0,10]. 解 第一次迭代: 取11[,][0,10],0.2a b ε==. 确定最初试探点11,λμ分别为11110.382() 3.82a b a λ=+-=,11110.618() 6.18a b a μ=+-=.求目标函数值:21()(3.823)0.67ϕλ=-=,21()(6.183)10.11ϕμ=-=. 比较目标函数值:11()()ϕλϕμ<. 比较11 6.1800.2a με-=->=. 第二次迭代:212121210, 6.18, 3.82,()()0.67a a b μμλϕμϕλ========.2222220.382()0.382(6.180) 2.36,()(2.363)0.4a b a λϕλ=+-=-==-=.2222()(), 3.82a ϕλϕμμε<-=>.323232320, 3.82, 2.36,()()0.4a a b μμλϕμϕλ========.2333330.382()0.382(3.820) 1.46,()(1.463) 2.37a b a λϕλ=+-=-==-=.3333()(), 3.82 1.46b ϕλϕμλε>-=->. 第四次迭代:434343431.46, 3.82, 2.36,()()0.4a b b λλμϕλϕμ========.444440.618() 1.460.0.618(3.82 1.46) 2.918,()0.0067a b a μϕμ=+-=+-==. 4444()(), 3.82 2.36b ϕλϕμλε>-=->. 第五次迭代:545454542.36, 3.82, 2.918,()()0.0067a b b λλμϕλϕμ========.555550.618() 3.262,()0.0686a b a μϕμ=+-==. 5555()(), 3.262 2.36a ϕλϕμμε<-=->. 第六次迭代:656565652.36, 3.262, 2.918,()()0.0067a a b μμλϕμϕλ========.666660.382() 2.7045,()0.087a b a λϕλ=+-==.6666()(), 3.262 2.7045b ϕλϕμλε>-=->. 第七次迭代:767676762.7045, 3.262, 2.918,()()0.0067a b b λλμϕλϕμ========.777770.618() 3.049,()0.002a b a μϕμ=+-==. 7777()(),b ϕλϕμλε>->. 第八次迭代:878787872.918, 3.262, 3.049,()()0.002a b b λλμϕλϕμ========.888880.618() 3.131,()0.017a b a μϕμ=+-==. 8888()(),a ϕλϕμμε<->.989899982.918, 3.131, 3.049,()()0.002a a b μμλϕμϕλ========.999990.382() 2.999,()0.000001a b a λϕλ=+-==. 9999()(), 3.049 2.918a ϕλϕμμε<-=-<. 故993.0242x λμ+==.12、用最速下降法求解 22112212min ()2243f x x x x x x x =++--,取(0)(1,1)T x =,迭代两次.解 1212()(224,243)T f x x x x x ∇=+-+-, 将()f x 写成1()2TT f x x Qx b x =+的形式,则224,243Q b -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭. 第一次迭代:(0)(0)(1)(0)(0)(0)(0)()()()()()T T f x f x xxf x f x Q f x ∇∇=-∇∇∇ 0(0,3)1013220131/4(0,3)243⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭. 第二次迭代:(1)(1)(2)(1)(1)(1)(1)()()()()()T T f x f x xx f x f x Q f x ∇∇=-∇∇∇ 3/2(3/2,0)13/27/40223/21/401/4(3/2,0)240-⎛⎫- ⎪-⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎪⎝⎭⎝⎭. 13、用FR 共轭梯度法求解222123123123min ()()()()f x x x x x x x x x x =-++-++++-,取(0)11(,1,)22T x =,迭代两次.若给定0.01,ε=判定是否还需进行迭代计算. 解 222123121323()3()2()f x x x x x x x x x x =++-++,再写成1()2T f x x Gx =,622262226G --⎛⎫⎪=-- ⎪ ⎪--⎝⎭,()f x Gx ∇=.第一次迭代:(0)()(0,4,0)T f x ∇=,令(0)0()(0,4,0)T d f x =-∇=-,从(0)x 出发,沿0d 进行一维搜索,即求(0)200min ()21648f x d λλλλ≥+=-+的最优解,得(1)(0)0001/6,(1/2,1/3,1/2)T x x d λλ==+=.第一次迭代:(1)()(4/3,0,4/3)T f x ∇=.2(1)02(0)()29()f x f x α∇==∇, (1)100()(4/3,8/9,4/3)T d f x d α=-∇+=---.从(1)x 出发,沿1d 进行一维搜索,即求(1)10142362214181418min ()(,,)262233923392261423f x d λλλλλλλλ≥⎛⎫- ⎪--⎛⎫ ⎪⎪⎪+=------ ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪- ⎪⎝⎭的最优解,得(2)(1)1111/24/333,1/38/9(0,0,0)881/24/3T x x d λλ-⎛⎫⎛⎫ ⎪ ⎪==+=+-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.此时(2)(2)()(0,0,0),()00.01T f x f x ε∇=∇=<=.得问题的最优解为(0,0,0)T x =,无需再进行迭代计算.14、用坐标轮换法求解 2212112min ()242f x x x x x x =+--,取(0)(1,1)T x =,迭代一步.解 从点(0)(1,1)T x =出发,沿1(1,0)T e =进行一维搜索, 即求(0)210min ()43f x e λλλλ≥+=--的最优解,得(1)(0)0012,(3,1)T x x e λλ==+=.再从点(1)x 出发,沿2(0,1)T e =进行一维搜索, 即求(1)220min ()227f x e λλλλ≥+=--的最优解,得(2)(1)1121/2,(3,3/2)T x x e λλ==+=.15、用Powell 法求解2212112min ()3f x x x x x x =+--,取(0)(0,0)T x =,初始搜索方向组01(0,1),(1,0)T T d d ==,给定允许误差0.1ε=(迭代两次). 解 第一次迭代:令(0)(0)(0,0)T y x ==,从点(0)y 出发沿0d 进行一维搜索,易得(1)(0)0000,(0,0)T y y d λλ==+=;接着从点(1)y 出发沿1d 进行一维搜索,得(2)(1)11133,(,0)22T y y d λλ==+=由此有加速方向 (2)(0)23(,0)2T d y y =-=.因为23/2d ε=>,所以要确定调整方向.由于 (0)(1)(2)9()0,()0,()4f y f y f y ===-,按(8.4.17)式有(1)(2)()(1)()()max{()()|0,1}j j f y f y f y f y j +-=-=,因此1m =,并且()(1)(1)(2)9()()()()4m m f y f y f y f y +-=-=. 又因(2)(0)(2)0f y y -=,故(8.4.18)式不成立.于是,不调整搜索方向组,并令(1)(2)3(,0)2T x y ==.第二次迭代:取(0)(1)3(,0)2T y x ==,从点(0)y 出发沿0d 作一维搜索,得(1)(0)000333,(,)424T y y d λλ==+=.接着从点(1)y 出发沿方向1d 作一维搜索,得(2)(1)1113153,(,)884Ty y d λλ==+=. 由此有加速方向(2)(0)233(,)84T d y y =-=.因为2d ε=>,所以要确定调整方向.因(0)(1)(2)945189(),(),()41664f y f y f y =-=-=-, 故按(8.4.17)式易知0m =,并且()(1)(0)(1)9()()()()16m m f y f y f y f y +-=-=. 由于(2)(0)45(2)16f y y -=-, 因此(8.4.18)式成立。
最优化计算方法课后习题答案----高等教育出社。施光燕
习题二包括题目: P36页 5(1)(4)5(4)习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+- 其中,111011126.3096,247.3380T T TH δγγγγγ===111.1621 1.39451.3945 1.6734Tδδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776dH f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535xx d⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T TH H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α=所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。
最优化习题答案及复习资料
6
,12
T
)
17 17
g
=(
6
,12
T
)
2 17 17
β g d = −
(d ) d 1
T
A
2
(1) T
(1)
A
(1)
=
1 298
− 90
d g β d (2) = −
+
2
1
(1)
=
−
289 210 289
α 线性搜索得步长:
= 1.7
2
x x α d (3) = (2) +
2 (2) = 11
x(1) = (1,1,1)T
.验证
d x x d (1) =(1,0,-1)是 f(x)在点 (1) 处的一个下降方向,并计算 min f( (1) +t (1) )
t>0
证明:
∇f (x) =
(2
x1,3x
2 2
+
2
x3−1,4
x
3+
2
x
2−1)T
∇f (x1) = (2,4,5)T
2
d
∇f
(
x
=
x2
−
(x2 − x1) f ′(x2) −
f f
′( x2) ′( x1)
或者
x
=
x1
−
(x2 − x1) f ′(x2) −
f f
′( x1) ′( x1)
证明:1)设ϕ(x) = a x2 + bx + c ( a ≠ 0 )
则 ϕ ′(x) = 2ax + b
ϕ ′(x1) = 2a x1 + b = f ′(x1)
最优化方法习题答案
月份 4 5 6
买进单价/(元/件) 17 16.5 17
售出单价/(元/件) 18 18 19
解:设 xi 表示每个月进货量, yi 表示相应月份售货量,其中 i 1,2,3 ,则有数学模型:
max z 18y1 18y2 19y3 17x1 16.5x2 17x3
x1 600 200
x1 y1 x2 600 200
x1
x2
x3
x4
x5 x6
x7
10+2M
15+M
12+M
0
0 -M 0
z
x4
5
3
1
1
00
09
x5
-5
6
15
0
10
0 15
x7
2
1
1
0
0 -1
15
以 x1 为换入变量, x 4 为换出变量
x1
x2
x3
x4
x5 x6
x7
0
z
x1 1
9 M 5
0.6
x5 0
9
x7 0
-0.2
10 3M 5
0.2
2 2M 5
(3) min z 2x1 3x2 x3 x1 4x2 2x3 8
s.t.3x1 2x2 6 x1, x2 , x3 0
解:引入剩余变量 x 4 , x5 和人工变量 x6 , x7 ,利用两阶段法得到辅助线性规划 max w x6 x7 max z' 2x1 3x2 x3
x1
x2
x3
x4
x5
x6
x7
z'
5
0
1
最优化方法习题答案
习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。
(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。
1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。
(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。
①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。
最优化计算方法课后习题答案----高等教育出版社。施光燕
习题二包括题目:P36页5(1)(4)5(4)习题三包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1)1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x xδ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+-其中,111011126.3096,247.3380T T TH δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776d H f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599xx δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T T H H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。
最优化方法课后习题答案
最优化方法课后习题答案最优化方法课后习题答案最优化方法是一门重要的数学学科,它旨在寻找给定问题的最佳解决方案。
在这门课程中,学生将学习各种最优化算法和技术,以解决不同类型的优化问题。
课后习题是巩固所学知识的重要方式,下面将为大家提供一些最优化方法课后习题的答案。
1. 线性规划问题的单纯形法是如何工作的?单纯形法是一种用于解决线性规划问题的常用方法。
其基本思想是通过不断迭代改进当前解决方案,直到找到最优解。
具体步骤如下:1) 初始解:选择一个可行解作为初始解,通常是通过求解一个相应的松弛问题得到。
2) 进入变量:选择一个进入变量,即使目标函数值增加最快的变量。
3) 离开变量:选择一个离开变量,即使约束条件仍然保持满足的变量。
4) 改进解:通过改变进入变量和离开变量的值,得到一个更好的解。
5) 终止条件:当无法找到更好的解时,算法终止。
2. 什么是凸优化问题?如何判断一个问题是否是凸优化问题?凸优化问题是指目标函数和约束条件都是凸函数的优化问题。
凸函数具有以下性质:1) 对于任意两个点x和y以及0≤λ≤1,有f(λx+(1-λ)y)≤λf(x)+(1-λ)f(y)。
2) 对于任意两个点x和y以及0≤λ≤1,有g(λx+(1-λ)y)≤λg(x)+(1-λ)g(y),其中g(x)表示约束函数。
要判断一个问题是否是凸优化问题,可以通过以下步骤:1) 检查目标函数和约束条件是否都是凸函数。
2) 检查约束条件是否满足凸集的定义,即对于任意两个点x和y以及0≤λ≤1,有λx+(1-λ)y满足所有约束条件。
如果以上两个条件都满足,则问题是凸优化问题。
3. 最小二乘法是如何解决无约束优化问题的?最小二乘法是一种常用的解决无约束优化问题的方法。
其基本思想是通过最小化目标函数和实际观测值之间的差距来找到最优解。
最小二乘法的步骤如下:1) 建立目标函数:根据实际观测值和模型假设,建立一个与待优化参数相关的目标函数。
2) 求解最优解:通过对目标函数求导,并令导数等于零,求解出最优解。
最优化方法习题1答案
《最优化方法》(研究生)期末考试练习题答案二.简答题1.;0, ,843 ,2 2-,3 34 s.t. ,95- min 2121212121≤=--≥+≥++y y y y y y y y y y 2.,065 6143≥+x x (以1x 为源行生成的割平面方程) 注意:在1x 为整数的情况下,因为3x ,04≥x ,该方程自然满足,这是割平面的退化情形,2141 41 43≥+x x (以2x 为源行生成的割平面方程)3.6648.31854.1*2)854.1()(2131.01146.1*2)146.1()(854.13*618.00)(618.0146.13*382.00)(382.03,031311111111111=+-==+-==+=-+==+=-+===μϕλϕμλa b a a b a b a 0.927.21.8540]1.8540[854.1,0)()(,*2211=+===≤x b a 近似的最优解:。
,初始的保留区间为即:。
所以,不经计算也可以看出事实上μϕλϕ4.令1.01.0)(4.04.0)(11)(7.27.2)(222222221)2(*111)1(*111)0(*121)1(*11-=-=-=-=-=-=-=-=-------x x x x x x x e x e x x f ex ex x f x e x x f e x e x x f拟合问题等价于求解下列最小二乘问题:∑=412))((mini ix f三.计算题1.分别用最速下降方法和修正的牛顿法求解无约束问题 22214)(min x x x f +=。
取初始点()()Tx 2,21=,.1.0=ε()().1641642,2821121⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫⎝⎛=∇=⎪⎪⎭⎫⎝⎛=∇d f x x x f T方向为:从而最速下降法的搜索,在初始点,解:()()()()直至满足精度。
继续迭代方向为:从而最速下降法的搜索,,在从而求解得到:其中满足最优步长,.48/6565/19248/65-65/19265/6,65/96)65/6,65/96((-4,-16)*130/172,2 130,/17.)162(4)42()162,42()()(min )(122221)1(1)1(1*)1(*⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=∇-=-=+==-+-=--=++=+d f x x f d x f d x f d x f TTT Tλλλλλλλλλλ()()2-2- 1648/1002/1 8/1002/1,8002 2,21111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=∇-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==--f G d G G x T索方向为:从而修正的牛顿法的搜,在初始点()()()()即为所求的极小点。
最优化方法 第二版 孙文瑜 部分课后答案
0 的边界点;
2. 考虑下述约束最优化问题
min x1
s.t.
x21 + (x2 − 2)2 x21 1,
3,
画出问题的可行域和目标函数的等位线,并由此确定问题的所有局部最优解和全局最优解.
解: 可行域和等位线如下
1
x2
(1,2 2)
( 3,2)
(0,2)
3 1
(1,2 2)
1 3 x1
全等局位最线优:解f (x:1)x1==k;−√局3部, x最2 =优2解. :x1
T = {x|f (x) α}
为函数 f (x) 关于实数 α 的水平集. 证明对任意实数 α,集合 T 是凸集. 证: 对于 ∀x1, x2 ∈ T ,根据 T 的定义则有 f (x1) α, f (x2) α. 由于 D 是凸集,则对于 ∀λ ∈ [0, 1],必 有
λx1 + (1 − λ)x2 ∈ D 又由于 f (x) 是 D 上的凸函数,则有
f (λx∗ + (1 − λ)y) λf (x∗) + (1 − λ)f (y) λf (x∗) + (1 − λ)f (x∗) = f (x∗)
5
这表明在 x∗ 的任意小的邻域内都存在函数值小于 f (x∗) 的可行点,这与 x∗ 是局部最优解相矛盾,则 x∗ 是一个全局最优解. 再证 x∗ 是唯一的:由于目标函数是严格凸的,设 x∗ ̸= y∗ 都是全局最优解,则 f (x∗) = f (y∗). 由严格凸 函数的定义,而 ∀λ ∈ (0, 1),有
λx1 + (1 − λ)y1 + λx2 + (1 − λ)y2 = λ(x1 + x2) + (1 − λ)(y1 + y2) λ+1−λ=1
最优化方法练习题答案
练习题一1、建立优化模型应考虑哪些要素“答:决策变量、目标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停顿准则。
答:针对一般优化模型,讨论解的可行域,假设存在一()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===L L D 点,对于均有则称为优化模型最优解,最优解存在;*X D ∈X D ∀∈*()()f X f X ≤*X 迭代算法的收敛性是指迭代所得到的序列,满足,(1)(2)(),,,K X X X L L (1)()()()K K f X f X +≤则迭代法收敛;收敛的停顿准则有,,(1)()k k x x ε+-<(1)()()k k k x x xε+-<,,等等。
()()(1)()k k f x f x ε+-<()()()(1)()()k k k f x f x f x ε+-<()()k f x ε∇<练习题二1、*公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购〔可能用于生产附加值更高的产品〕。
如果你是该公司的决策者,对这3种资源的收购报价是多少?〔该问题称为例2.1的对偶问题〕。
解:确定决策变量对3种资源报价作为本问题的决策变量。
123,,y y y 确定目标函数问题的目标很清楚——“收购价最小〞。
确定约束条件资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:123min 170100150w y y y =++*2、研究线性规划的对偶理论和方法〔包括对偶规划模型形式、对偶理论和对偶单纯形法〕。
答:略。
3、用单纯形法求解以下线性规划问题:〔1〕⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ;〔2〕⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min 53243232132 i x x x x x x x x x x t s x x z i 解:〔1〕引入松弛变量*4,*5,*6c j →1-11C B基b*1*2*3*4*5*60*421[1]-21000*532110100*64-101001c j -z j1-11因检验数σ2<0,故确定*2为换入非基变量,以*2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量*4作为换出的基变量。
最优化计算方法课后习题集答案解析
解:取 , 时,DFP法的第一步与最速下降法相同
, ,
,
以下作第二次迭代
,
其中,
,
所以
令 , 利用 ,求得
所以 ,
以下作第三次迭代
,
,
所以
令 , 利用 ,求得
所以 , 因为 ,于是停止
即为最优解。
习题四
包括题目: P95页 3;4;8;9(1);12选做;13选做
3题解如下
3.考虑问题 ,其中
X1,x2,x3≥0 (3)
求出点(1,1,0)处的一个下降可行方向.
解:首先检查在点(1,1,0)处哪些约束为有效约束。检查易知(1),X3≥0为有效约束。设所求可行方向d=(d1,d2,d3)T。根据可行方向d的定义,应存在a>0,使对∀t∈(0,a)能有
X+td=(1+td1,1+td2,0+td3)T
(1)
s.t.
(2)
s.t.
(1)解:非线性规划的K-T条件如下:
(1)
(2)
(3)
再加上约束条件 (4)
为求出满足(1)~(4)式的解,分情况考虑:
①若(4)式等号不成立,即 ,那么由(2)式得 ,将 代入(1)式解得 , ,所得值不满足 的条件,故舍去。
②若(4)式等号成立,由(1)式可以解得 , ,代入(4)式有:
JBi
1
2
3
4
5
6
7
8
9
di0
1
1
0
-5/6
-1/6
1
10/6
4
0
0
38/6
2
0
1
-9/6
最优化方法练习题答案
最优化⽅法练习题答案精⼼整理练习题⼀1、建⽴优化模型应考虑哪些要素? 答:决策变量、⽬标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停⽌准则。
min ()f x D ∈,对于则有(f ?1例2.1解:*2、研究线性规划的对偶理论和⽅法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。
答:略。
3、⽤单纯形法求解下列线性规划问题:(1)≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ;(2)=≥=++=+-=+-+-=)5,,2,1(052222..4min 53243232132Λi x x x x x x x x x x t s x x z i解:(1)引⼊松弛变量x 4,x 5,x 6因检验数σj >0,表明已求得最优解:*(0,8/3,1/3,0,0,11/3)X =,去除添加的松弛变量,原问题的最优解为:*(0,8/3,1/3)X =。
(2)根据题意选取x 1,x 4,x 5,为基变量:因检验数σ2<0最⼩,故确定x 2为换⼊⾮基变量,以x 2的系数列的正分量对应去除常数列,最⼩⽐值所在⾏对应的基变量x 4作为换出的基变量。
4根据题意约束条件1和2可以合并为1,引⼊松弛变量x 3,x 4,构造新问题。
因检验数σj>0,表明已求得最优解:*(3/5,6/5)X 。
Matlab调⽤代码:Matlab调⽤代码:f=[-10;-15;-12];A=[5,3,1;-5,6,15;-2,-1,-1];b=[9;15;-5];lb=[0;0;0];x=linprog(f,A,b,[],[],lb)输出结果:原题⽆可⾏解。
5、⽤内点法和Matlab软件求解下列线性规划问题:解:⽤内点法的过程⾃⼰书写,参考答案:最优解[4/3 7/3 0] X=;最优值5 Matlab调⽤代码:f=[2;1;1];Aeq=[1,2,2;2,1,0];beq=[6;5]; Array 6解:(x=33y=-39最优解[33];最优值39(2)调⽤matlab编译程序bbmethodf=[-7;-9];G=[-13;71];h=[6;35][x,y]=bbmethod(f,G,h,[],[],[0;0],[],[1;0],1)x=50y=-35最优解[50];最优值357、⽤隐枚举法和Matlab软件求解下列问题:0)(1,2.1,1,输出结果x=1fval=2(2)调⽤代码:f=[-3;-2;5;2;3]; %价值向量fA=[1,1,1,2,1;7,0,3,-4,3;-11,6,0,-3,3]; %不等式约束系数矩阵A,[]中的分号“;”%为⾏分隔符b=[4;8;-1]; %不等式约束右端常数向量b[x,fval]=bintprog(f,A,b,[],[]); %调⽤函数bintprog。