七年级数学下册 角平分线的性质教案
证明角平分线的性质教案
证明角平分线的性质教案证明角平分线的性质教案1一、教学目标1.了解推理、证明的格式,掌握平行线判定公理和第一个判定定理.2.会用判定公理及第一个判定定理进行简单的推理论证.3.通过模型演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.二、学法引导1.教师教法:启发式引导发现法.2.学生学法:独立思考,主动发现.三、重点·难点及解决办法(一)重点在观察实验的基础上进行公理的概括与定理的推导.(二)难点判定定理的形成过程中逻辑推理及书写格式.(三)解决办法1.通过观察实验,巧妙设问,解决重点.2.通过引导正确思维,严格展示推理书写格式,明确方法来解决难点、疑点.四、课时安排l课时五、教具学具准备三角板、投影胶片、投影仪、计算机.六、师生互动活动设计1.通过两组题,复习旧知,引入新知.2.通过实验观察,引导思维,概括出公理及定理的推导,并以练习进行巩固.3.通过教师提问,学生回答完成归纳小结.七、教学步骤(-)明确目标教学建议1、教材分析(1)知识结构:由平行线的画法,引出公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理.(2)重点、难点分析:本节的重点是:公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是判断两直线平行的依据,也为下一节,学习-平行线的性质打下了基础.本节内容的难点是:理解由判定公理推出判定定理的证明过程.学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理.2、教学建议在平行线判定公理的教学中,应充分体现一条主线索:“充分实验—仔细观察—形成猜想—实践检验—明确条件和结论.”教师可演示教材中所示的教具,还可以让每个学生都用三角板和直尺画出平行线.在此过程中,注意角的变化情况.事实充分,学生可以理解,如果同位角相等,那么两直线一定会平行.公理后,有些同学可能会意识到“内错角相等,两直线也会平行”.教师可组织学生按所给图形进行讨论.如何利用已知和几何的公理、定理来证明这个显然成立的事实.也可多叫几个同学进行重复.逐步使学生欣赏到数学证明的严谨性.另一个定理的发现与证明过程也与此类似.教学设计示例1一、教学目标1.了解推理、证明的格式,掌握平行线判定公理和第一个判定定理.2.会用判定公理及第一个判定定理进行简单的推理论证.3.通过模型演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.二、学法引导1.教师教法:启发式引导发现法.2.学生学法:独立思考,主动发现.三、重点·难点及解决办法(一)重点在观察实验的基础上进行公理的概括与定理的推导.(二)难点判定定理的形成过程中逻辑推理及书写格式.(三)解决办法1.通过观察实验,巧妙设问,解决重点.2.通过引导正确思维,严格展示推理书写格式,明确方法来解决难点、疑点.四、课时安排l课时五、教具学具准备三角板、投影胶片、投影仪、计算机.六、师生互动活动设计1.通过两组题,复习旧知,引入新知.2.通过实验观察,引导思维,概括出公理及定理的推导,并以练习进行巩固.3.通过教师提问,学生回答完成归纳小结.七、教学步骤(-)明确目标掌握平行线判定公理和第一个判定定理及运用其进行简单的推理论证.(二)整体感知以情境设计,引出课题,以模型演示,引导学生观察,、分析、总结,讲授新知,以变式训练巩固新知,在整节课中,较充分地体现了逻辑推理.(三)教学过程创设情境,引出课题师:上节课我们学习了平行线、平行公理及推论,请同学们判断下列语句是否正确,并说明理由(出示投影).1.两条直线不相交,就叫平行线.2.与一条直线平行的直线只有一条.3.如果直线、都和平行,那么、就平行.学生活动:学生口答上述三个问题.【教法说明】通过三个判断题,使学生回顾上节所学知识,第1题在于强化平行线定义的前提条件“在同一平面内”,第2题不仅回顾平行公理,同时使学生认识学习几何,语言一定要准确、规范,同一问题在不同条件下,就有不同的结论,第3题复习巩固平行公理推论的同时提示学生,它也是判定两条直线平行的方法.师:测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗?根据什么?学生:能判定垂直,根据垂直的定义.师:在同一平面内不相交的两条直线是平行线,你有办法测定两条直线是平行线吗?学生活动:学生思考,如何测定两条直线是否平行?教师在学生思考未得结论的情况下,指出不能直接利用手行线的定义来测定两条直线是否平行,必须找其他可以测定的方法,有什么方法呢?学生活动:学生思考,在前面复习-平行公理推论的情况下,有的学生会提出,再作一条直线,让,再看是否平行于就可以了.师:这种想法很好,那么,如何作,使它与平行?若作出后,又如何判断是否与平行?学生活动:学生思考老师的提问,意识到刚才的回答,似是而非,不能解决问题.师:显然,我们的问题没有得到解决,为此我们来寻找另外一些判定方法,就是今天我们要学习的(板书课题).[板书]2.5(1).【教法说明】由垂线定义可以来判断两线是否垂直,学生自然想到要用平行线定义来判断,但我们无法测定直线是否不相交,也就不能利用定义来判断.这时,学生会考虑平行公理推论,此时教师只须简单地追问,就让学生弄清问题未能解决,由此引入新课内容.探究新知,讲授新课教师给出像课本第78页图2–20那样的两条直线被第三条直线所截的模型,转动,让学生观察,转动到不同位置时,的大小有无变化,再让从小变大,说出直线与的位置关系变化规律.【教法说明】让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论.图1学生活动:转动到不同位置时,也随着变化,当从小变大时,直线从原来在右边与直线相交,变到在左边与相交.师:在这个过程中,存在一个与不相交即与平行的位置,那么多大时,直线呢?也就是说,我们若判定两条直线平行,需要找角的关系.师:下面先请同学们回忆平行线的画法,过直线外一点画的平行线 .学生活动:学生在练习本上完成,教师在黑板上演示(见图1).师:由刚才的演示,请同学们考虑,画平行线的过程,实际上是保证了什么?图2学生:保证了两个同位角相等.师:由此你能得到什么猜想?学生:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行.师:我们的猜想正确吗?会不会有某一特定的时刻,即使同位角不等,而两条直线也平行呢?教师用计算机演示运动变化过程.在观察实验之前,让学生看清角和角(如图2),而后开始实验,让学生充分观察并讨论能得出什么结论.学生活动:学生观察、讨论、分析.总结了,当时,不平行,而无论取何值,只要,、就平行.图3教师引导学生自己表达出结论,并告诉学生这个结论称为公理.[板书]两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.即:∵ (已知见图3),∴ (同位角相等,两直线平行).【教法说明】通过实际画图和用计算机演示运动—变化过程,让学生确信公理的正确.尝试反馈,巩固练习(出示投影).图41.如图4,,,吗?2. ,当时,就能使 .【教法说明】这两个题目旨在巩固所学的判定公理,对于第2题是已知结论,找出使它成立的题设,这是证明问题时应掌握的一种思考方法,要求学生逐步学会执因导果和执果索因的思考方法,教师在教学时要注意逐渐培养学生的这种数学思想.(出示投影)直线、被直线所截.图51.见图5,如果,那么与有什么关系?2. 与有什么关系?3. 与是什么位置关系的一对角?学生活动:学生观察,思考分析,给出答案:时,,与相等,与是内错角.师:与满足什么条件,可以得到 ?为什么?学生活动:,因为,通过等量代换可以得到 .师:时,你进而可以得到什么结论?学生活动: .师:由此你能总结出什么正确结论?学生活动:内错角相等,两直线平行.师:也就是说,我们得到了判定两直线平行的另一个方法:[板书]两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.【教法说明】通过教师的启发、引导式提问法,引导学生自己去发现角之间的关系,进而归纳总结出结论,主要采用探讨问题的方式,能够培养学生积极思考、善于动脑分析的良好学习习惯.师:上面的推理过程,可以写成∵ (已知),(对顶角相等),∴ .[∵ (已证)],∴ (同位角相等,两直线平行).【教法说明】这里的推理过程可以放手让学生试着说,这样才能使中国学习联盟胆尝试,培养他们勇于进取的精神.教师指出:方括号内的“∵”,就是上面刚刚得到的“∴”,在这种情况下,方括号内这一步可以省略.尝试反馈,巩固练习(出示投影)1.如图1,直线、被直线所截.(1)量得,,就可以判定,它的根据是什么?(2)量得,,就可以判定,它的根据是什么?2.如图2,是的延长线,量得 .(1)从,可以判定哪两条直线平行?它的根据是什么?(2)从,可以判定哪两条直线平行?它的根据是什么?图1 图2学生活动:学生口答.【教法说明】这组题旨在巩固公理和判定方法的掌握,使学生熟悉并会用于解决简单的说理问题.变式训练,培养能力(出示投影)1.如图3所示,由,可判断哪两条直线平行?由,可判断哪两条直线平行?2.如图4,已知,,吗?为什么?图3 图4学生活动:学生思考后回答问题.教师给以指正并启发、引导得出答案.【教法说明】这组题不仅让学生认识变式图形,加强识图能力,同时培养学生的发散思维,也就是培养学生从多角度、全方位考虑问题,从而得到一题多解.提高了学生的解题能力.(四)总结扩展2.结合判一定理的证明过程,熟悉表达推理证明的要求,初步了解推理证明的格式.八、布置作业课本第97页习题2.2A组第4、5、6(1)(2)题.证明角平分线的性质教案2一、教学目标【知识与技能】了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。
数学教案角的平分线
数学教案角的平分线一、教学目标1、知识与技能目标学生能够理解角平分线的定义和性质。
掌握角平分线的尺规作图方法。
能够运用角平分线的性质解决简单的几何问题。
2、过程与方法目标通过观察、操作、猜想、验证等数学活动,培养学生的动手能力、合情推理能力和逻辑思维能力。
让学生经历探究角平分线性质的过程,体会从特殊到一般的数学思想方法。
3、情感态度与价值观目标通过对角平分线的学习,激发学生对数学的兴趣,增强学生的自信心。
培养学生勇于探索、敢于创新的精神,以及合作交流的意识。
二、教学重难点1、教学重点角平分线的定义和性质。
角平分线的尺规作图方法。
2、教学难点角平分线性质的证明和应用。
三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、导入新课展示一个角,然后提出问题:如何将这个角平均分成两部分?引导学生思考,引出角平分线的概念。
2、讲授新课(1)角平分线的定义结合图形,给出角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
强调角平分线是一条射线。
(2)角平分线的性质让学生通过折纸的方法,探索角平分线的性质。
引导学生发现:角平分线上的点到角两边的距离相等。
提出问题:如何证明这个性质呢?引导学生写出已知、求证,并进行证明。
证明:如图,OC 是∠AOB 的平分线,点 P 是 OC 上任意一点,PD⊥OA,PE⊥OB,垂足分别为 D、E。
已知:∠AOC =∠BOC,PD⊥OA,PE⊥OB。
求证:PD = PE。
证明:∵OC 是∠AOB 的平分线∴∠AOC =∠BOC∵PD⊥OA,PE⊥OB∴∠PDO =∠PEO = 90°在△PDO 和△PEO 中∠PDO =∠PEO∠AOC =∠BOCOP = OP∴△PDO ≌△PEO(AAS)∴PD = PE(3)角平分线的尺规作图演示角平分线的尺规作图方法,并让学生跟着一起做。
强调作图的步骤和注意事项。
步骤:①以 O 为圆心,适当长为半径画弧,交 OA 于 M,交 OB 于 N。
《角平分线的性质》教案
12.3 《角的平分线的性质》教案台前县吴坝镇中学李桂香一、教学背景的分析1、教学内容本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。
内容包括角平分线的作法、角平分线的性质及初步应用。
作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。
因此,本节内容在数学知识体系中起到了承上启下的作用。
同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。
2、学生刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。
根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。
3、教学环境利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律。
4、教学重点、难点本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。
教学难点是:1、对角平分线性质定理中点到角两边的距离的正确理解;2、对于性质定理的运用。
教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。
二、教学目标的确定1、知识与技能:(1)掌握用尺规作已知角的平分线的方法(2)理解角的平分线的性质并能初步运用。
2、数学思考:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。
3、解决问题:(1)初步了解角的平分线的性质在生产、生活中的应用。
(横版)角平分线的性质和判定教案
教学过程一、复习预习角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。
二、知识讲解考点1尺规作图画角平分线(1)、以O为圆心,适当长为半径画弧,交OA于M,交OB于N。
(2)、分别以M、N为圆心,大于1/2MN的长为半径画弧,两弧在∠AOB的内部交于点C。
(3)、画射线OC。
射线OC即为所求.考点2 角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图,已知OE是∠AOB的平分线,F是OE上一点,若CF⊥OA于点C,DF⊥OB于点D,则CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题;考点3 角平分线性质定理的逆定理:角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上.定理的数学表示:如图5,已知点P在∠AOB的内部,且PC⊥OA于C,PD⊥OB于D,若PC=PD,则点P在∠AOB的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与逆定理的区别和联系 .考点4 关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB的平分线,那么:①AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.三、例题精析【例题1】【题干】在△ABC中,∠C是直角,AD平分∠BAC,交BC于点D。
如果AB=8,CD=2,那么△ABD的面积等于。
北师大版七年级数学下册《5.3 第3课时 角平分线的性质》教案
北师大版七年级数学下册《5.3 第3课时角平分线的性质》教案一. 教材分析《5.3 第3课时角平分线的性质》这一节内容,主要让学生掌握角平分线的性质。
教材通过引入角平分线的概念,引导学生探究角平分线的性质,从而加深学生对角平分线的理解。
教材内容安排合理,由浅入深,既注重了知识的传授,又注重了学生的实践操作。
二. 学情分析学生在学习这一节内容时,已经有了一定的几何知识基础,对角的概念和性质有了初步的了解。
但学生对角平分线的性质的理解还比较模糊,需要通过实例和操作来进一步理解和掌握。
三. 教学目标1.知识与技能目标:让学生掌握角平分线的性质,能运用角平分线的性质解决实际问题。
2.过程与方法目标:通过观察、操作、探究等方法,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:角平分线的性质。
2.难点:角平分线的性质的证明和应用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等教学方法,引导学生观察、操作、探究,从而掌握角平分线的性质。
六. 教学准备1.教具:多媒体教学设备、黑板、粉笔、角平分线模型等。
2.学具:学生每人一份角平分线模型,一份练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入角平分线的概念,例如:在平面上有两个点A和B,现在需要找到一点C,使得AC=BC,问如何找到这样的点C?引导学生思考和讨论。
2.呈现(10分钟)教师通过多媒体展示角平分线的性质,引导学生观察和思考。
性质1:角的平分线上的点到角的两边的距离相等;性质2:角的平分线与角的两边构成的三角形是等腰三角形。
3.操练(10分钟)学生分组进行操作,每组用一份角平分线模型,尝试证明性质1和性质2。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师给出一些练习题,让学生运用角平分线的性质进行解答。
学生独立完成,教师选取部分题目进行讲解和分析。
角的平分线数学教案
角的平分线数学教案
标题:《探索角的平分线》
一、教学目标
1. 知识与技能目标:理解并掌握角的平分线的概念,能够熟练地运用尺规作图法作出任意角的平分线。
2. 过程与方法目标:通过观察、思考、实践,提高学生的空间观念和逻辑思维能力。
3. 情感态度价值观目标:培养学生对几何学习的兴趣,增强他们解决问题的信心。
二、教学重点和难点
重点:理解和掌握角的平分线的概念,掌握尺规作图法作出任意角的平分线的方法。
难点:理解和应用角的平分线的性质。
三、教学过程
1. 导入新课:通过实例引入角的平分线的概念,引发学生的好奇心和求知欲。
2. 新课讲授:
(1) 角的平分线的概念:讲解角的平分线的定义,并让学生自己画出一些角的平分线,加深理解。
(2) 尺规作图法:详细解释如何使用尺规作图法作出任意角的平分线,包括步骤和注意事项。
(3) 角的平分线的性质:引导学生通过实验、讨论等方式发现角的平分线的一些性质,如等腰三角形的判定定理等。
3. 巩固练习:设计一些习题,让学生在实践中巩固所学知识。
4. 总结反思:回顾本节课的主要内容,鼓励学生分享他们的学习体验和收获。
四、作业布置
设计一些题目,要求学生在家中完成,以检验他们对角的平分线的理解和掌握程度。
五、教学评价
根据学生在课堂上的表现和作业完成情况,对学生的学习效果进行评估。
六、教学反思
教师应反思自己的教学方法是否有效,是否有需要改进的地方,以便更好地满足学生的学习需求。
人教版初中公开课一等奖教案《角平分线的性质》
人教版初中公开课一等奖教案《角平分线的性质》(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。
你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流探究新知(活动一)探究角平分仪的原理。
具体过程如下:播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。
以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。
其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。
使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交叉点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。
学生讨论结果总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。
角的平分线的性质教案
角的平分线的性质教案一、教学目标:知识与技能:1. 让学生理解角的平分线的定义。
2. 掌握角的平分线的性质。
3. 学会运用角的平分线解决实际问题。
过程与方法:1. 通过观察、思考、交流,引导学生发现角的平分线的性质。
2. 培养学生运用几何画图工具进行推理和论证的能力。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生勇于探索、积极思考的科学精神。
二、教学重点与难点:重点:1. 角的平分线的定义。
2. 角的平分线的性质。
难点:1. 理解并证明角的平分线上的点到角的两边的距离相等。
三、教学准备:教师准备:1. 教学PPT或黑板。
2. 几何画图工具。
3. 练习题。
学生准备:1. 课堂笔记本。
2. 几何画图工具。
四、教学过程:1. 导入:1.1 引导学生回顾角的概念。
1.2 提问:能不能找到一种方法,让一个角的大小减半?2. 探究:2.1 让学生尝试画出一个角的平分线。
2.2 学生展示并介绍角的平分线的画法。
2.3 教师提问:角的平分线有什么性质?2.4 学生猜想角的平分线上的点到角的两边的距离相等。
2.5 教师引导学生通过几何画图工具进行推理和论证。
3. 讲解:3.1 教师讲解角的平分线的性质。
3.2 教师举例说明角的平分线在实际问题中的应用。
4. 练习:4.1 学生独立完成练习题。
4.2 学生展示答案,教师点评。
五、课后作业:1. 完成练习册相关题目。
2. 探索角的平分线在实际问题中的应用。
教学反思:本节课通过引导学生探究角的平分线的性质,培养了学生的观察能力、思考能力和动手能力。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。
通过练习题的设置,让学生巩固所学知识,提高解决问题的能力。
六、教学拓展:1. 引导学生思考:角的平分线与角的大小有什么关系?2. 学生通过画图和推理,发现角的平分线把角分成两个相等的小角。
3. 教师讲解角的平分线的另一个性质:角的平分线与角的对边垂直。
《角平分线的性质》教案 2022年 (省一等奖)
角平分线的性质总课题全等三角形总课时数第 16课时课题角平分线的性质〔2〕主备人课型新授时间教学目标1.会表达角的平分线的性质,即“到角两边距离相等的点在角的平分线上〞.2.能应用这两个性质解决一些简单的实际问题.教学重点角平分线的性质及其应用.教学难点灵活应用两个性质解决问题.教学过程教学内容一.创设情境,引入新课师:请同学们拿出一张纸,自己动手,撕下一个角,把撕下的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?生:我发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.师:你的表达太精彩了.这说明角的平分线除了有平分角的性质,还有其他性质,今天我们就来研究这个问题.二.导入新课角平分线的性质即角的平分线,能推出什么样的结论.操作:1.折出如以下图的折痕PD、PE.2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?拿出两名同学的画图,放在投影下,请大家评一评,以达明确概念的目的.[生]同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求.[生甲]噢,对,我知道了.[师]同学甲,你再做一遍加深一下印象.问题1:你能用文字语言表达所画图形的性质吗?[生]角平分线上的点到角的两边的距离相等.问题2:〔出示投影片〕能否用符号语言来翻译“角平分线上的点到角的两边的距离相等〞这句话.请填下表:学生通过讨论作出以下概括:事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.由事项推出的事项:PD=PE.于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.[师]那么到角的两边距离相等的点是否在角的平分线上呢?〔出示投影〕问题3:根据下表中的图形和事项,猜测由事项可推出的事项,并用符号语言填写下表:[生讨论]事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO〔HL〕.于是可得∠PDE=∠POD.由推出的事项:点P在∠AOB的平分线上.[师]这样的话,我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.同学们思考一下,这两个性质有什么联系吗?[生]这两个性质条件和所推出的结论可以互换.[师]对,这是自己的语言,这一点在数学上叫“互逆性〞.下面请同学们思考一个问题.思考:如以下图,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处500m,这个集贸市场应建于何处〔在图上标出它的位置,比例尺为1:20000〕?1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?2.比例尺为1:20000是什么意思?〔学生以小组为单位讨论,教师可深入到学生中,及时引导〕讨论结果展示:1.应该是用第二个性质.•这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,•这就涉及一个单位换算问题了.1m=100cm,所以比例尺为1:20000,其实就是图中1cm•表示实际距离200m的意思.作图如下:第一步:尺规作图法作出∠AOB的平分线OP.第二步:在射线OP上截取OC=,确定C点,C点就是集贸市场所建地了.总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,•使问题简单化.所以假设遇到有关角平分线,又要证线段相等的问题,•我们可以直接利用性质解决问题.[例]如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,•也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.因为BM是△ABC的角平分线,点P在BM上.所以PD=PE.同理PE=PF.所以PD=PE=PF.即点P到三边AB、BC、CA的距离相等.三.随堂练习1.课本P50练习.2.课本P51习题12.3第3题.在这里要提醒学生直接利用角平分线的性质,无须再证三角形全等.四.课时小结今天,我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的距离相等;②到角的两边距离相等的点在角的平分线上.它们具有互逆性,可以看出,随着研究的深入,解决问题越来越简便了.像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等而得出线段相等.五.课后作业:课本P51页习题12.3第4、5、6题.课后反思[教学反思]O BAC学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
角的平分线的性质 优秀教案.doc
《角的平分线的性质》教案教学目标1.知识与技能掌握角平分线的画法;应用三角形全等的知识,解释角平分线的原理;能够记住并证明角平分线的性质;初步会应用角平分线的性质解决问题,并了解这类题的辅助线的作法.2.过程与方法采用“情境引入一合作探究一启发引导一训练反馈”的方法进行本课教学内容.3•情感、态度、价值观通过对证明方法与思路的探究,进一步激发学生对数学证明的兴趣和掌握综合法的信心,养成独立思考,合作交流的良好学习习惯.教学重难点1.利用直尺和圆规作已知角的平分线.2.角平分线的性质定理的理解、证明及其应用.教学过程一、情境引入(一)提出问题下图是一个平分角的仪器,其中AB=AD, BC=DE.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE, AE就是角平分线.你能说明它的道理吗?A(二)解决问1、要说明AC是ZDAC的平分线,其实就是证明ZCAD^ZCAB.2、ZCAD和ZCAB分别在△C4D和厶C4B中,那么证明这两个三角形全等就可以了.(利用“边边边”定理证明)二、授新课(-)合作探究活动一通过上述内容,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示,作己知角的平分线的方法.己知:ZAOB.求作:ZAOB的平分线.作法:(1)以0为圆心,适当长为半径作弧,分别交04、0B于M、N.(2)分别以M、N为圆心,大于丄MN的长为半径作弧.两弧在ZA0B内部交于点C.⑶作射线0C.射线0C即为所求.(%1)合作探究活动二做一做:拿出课前准备好的折纸与剪刀,剪一个角,把剪好的角对折,使角的两边壳合在一起,再把纸片展开,看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?分析:1、第一次对折后的折痕是这个角的平分线;2、再折一次,又会出现两条折痕,大家用尺子量量两条折痕的长度,你会发现什么?:结论:两条折痕等长3、按如下方法折叠,量量,PD、PE是否等长?猜一猜:发现PD=PE,于是猜想:角的平分线上的点到角的两边的距离相等.证一证:下一步我们来验证这个猜想是否正确.已知:ZA0C= ZB0C,点P在0C±, PD丄0A于D, PE丄0B于E,求证:PD=PE.证明:・・・PD丄OA, PE丄OB.・・・ZPDO=ZPE0二90° .在△PDO和△PEO中,ZPDO=ZPEO,ZAOC=ZBOC,OP=OP,:.A PDO A PEO(A AS).:・PD=PE.这样我们验证了我们的猜想,通过(1)明确已知和所求;(2)根据题意,画出图形,并用数学符号表示己知和求证;(3)经过分析,找出由己知推出结论的途径,写出证明过程.这样的步骤,我们证明了一个几何命题,得到了角的平分线的性质:角的平分线上的点到角的两边的距离相等.(三)角平分线的性质定理角的平分线上的点到角的两边的距离相等.三、随堂练习1、如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.教师板书,解释说明证明过程.2、思考:如图所示,耍在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1: 20000) ?(学生以小组为单位讨论,教师可深入到学生中,及时引导)引导学生总结出:角的内部到角的两边的距离相等的点在角的平分线上.利用这一结论解答上题.1、如图,AABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.教师板书,解释说明证明过程.四、课堂小结(1)本节课学习了哪些主要内容?(2)为什么要用推理的方法证明“三角形的内角和等于180° ” ?(3)你是怎么找到三角形内角和定理的证明思路的?(4)有两个角互余的三角形是直角三角形,直角三角形的两个锐角互余. 同学们要灵活运用性质,解决问题.五、课后作业课本第51页习题12. 3的第2、3、4题.六、教学反思通过这节课的教学,自认为让学生动手操作的内容安排得较好,真正锻炼和培养了学生的动手操作能力;另通过层层猜想,步步递进,引导至内容重点,使得大家更能深刻认识和理解内容。
角的平分线的性质教案
角的平分线的性质教案教案:角的平分线的性质一、教学内容本节课的教学内容来自初中数学教材第四章“几何图形”的第二节“角的平分线”。
本节课主要讲解角的平分线的性质,包括:1. 角的平分线上的点到角的两边的距离相等;2. 角的平分线与角的对边相交,交点将对边分为两段,这两段长度相等。
二、教学目标1. 让学生理解角的平分线的性质,并能运用性质解决问题;2. 培养学生的观察能力、推理能力和动手能力;3. 培养学生合作学习、积极探究的学习态度。
三、教学难点与重点1. 教学难点:角的平分线性质的理解和运用;2. 教学重点:角的平分线性质的推导和证明。
四、教具与学具准备1. 教具:黑板、粉笔、直尺、圆规;2. 学具:练习本、直尺、圆规、三角板。
五、教学过程1. 实践情景引入:让学生拿出三角板,观察并描述三角板上的角的平分线。
2. 讲解角的平分线的定义:角的平分线是将一个角平分成两个相等角的线段。
3. 推导角的平分线性质:通过画图和逻辑推理,引导学生发现角的平分线上的点到角的两边的距离相等。
4. 证明角的平分线性质:运用几何知识,引导学生证明角的平分线与角的对边相交,交点将对边分为两段,这两段长度相等。
5. 例题讲解:运用角的平分线性质解决实际问题,如:在三角形中,如何找到一个角的平分线。
6. 随堂练习:让学生独立完成练习题,巩固角的平分线性质的理解。
7. 作业布置:布置练习题,要求学生回家后练习,巩固所学知识。
六、板书设计角的平分线的性质:1. 角的平分线上的点到角的两边的距离相等;2. 角的平分线与角的对边相交,交点将对边分为两段,这两段长度相等。
七、作业设计1. 题目:已知直角三角形ABC,∠C为直角,AB为斜边,求证:CD是∠ABC的平分线。
答案:略2. 题目:在三角形ABC中,AB=AC,求证:∠BAD是∠BAC的平分线。
答案:略八、课后反思及拓展延伸本节课通过角的平分线的性质的学习,让学生掌握了角的平分线的基本性质,并能运用性质解决实际问题。
角平分线的性质教案
角平分线的性质教案一、教学目标1. 知识与技能:(1)理解角平分线的定义;(2)掌握角平分线的性质定理;(3)学会运用角平分线解决实际问题。
2. 过程与方法:(1)通过观察、思考、交流,探索角平分线的性质;(2)运用角的平分线性质定理,提高解题能力。
3. 情感态度价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。
二、教学重点与难点1. 教学重点:(1)角平分线的定义;(2)角平分线的性质定理。
2. 教学难点:(1)角平分线性质定理的证明;(2)运用角平分线解决实际问题。
三、教学过程1. 导入:回顾上节课所学的角的概念,引出角平分线的定义。
2. 新课讲解:(1)介绍角平分线的定义;(2)讲解角平分线的性质定理;(3)运用角平分线性质定理解决实际问题。
3. 课堂练习:(1)判断题:判断角平分线是否平分角;(2)填空题:填空完成角平分线性质定理的证明;(3)应用题:运用角平分线解决实际问题。
四、课后作业1. 复习角平分线的定义和性质定理;2. 完成课后练习题,巩固所学知识;3. 预习下一节课内容。
五、教学反思本节课通过讲解角平分线的定义和性质定理,使学生掌握了角平分线的基本性质。
在教学过程中,注意引导学生观察、思考、交流,培养学生的逻辑思维能力和解题能力。
通过课后作业的布置,帮助学生巩固所学知识,为后续课程的学习打下基础。
六、教学拓展1. 对比分析:(1)角平分线与线段中垂线的联系与区别;(2)角平分线与高的联系与区别。
2. 探索问题:(1)角的平分线是否一定是直线?(2)角的平分线在几何中的应用。
七、课堂小结1. 回顾本节课所学内容,总结角平分线的定义、性质定理及应用;2. 强调角平分线在几何中的重要性。
八、测试与评价1. 课堂测试:(1)判断题:判断角平分线与线段中垂线的联系与区别;(2)选择题:选择正确的角平分线性质定理;(3)应用题:运用角平分线解决实际问题。
2. 评价:(1)学生自我评价:总结自己在课堂学习中的收获;(2)同伴评价:评价他人的解题方法和思路;(3)教师评价:对学生的学习情况进行总结和评价。
《角平分线的性质》教案 (公开课)2022年湘教版数学
1.4角平分线的性质1.理解并掌握角平分线的性质及判定;(重点)2.能够对角平分线的性质及判定进行简单应用.(难点)一、情境导入在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短?问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线上的点到角两边的距离相等【类型一】利用角平分线的性质求线段长如图,在△ABC中,∠C=90°,AC =BC,∠BAC的平分线AD交BC于D,DE ⊥AB于E,假设AB=7cm,那么△DBE的周长是____________.解析:在△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于D,DE ⊥AB于E,根据角平分线的性质,可得CD =ED,AC=AE=BC,继而可得△DBE的周长为DE+BD+BE=CD+BD+BE=BC +BE=AE+BE=AB.故答案为7cm.方法总结:此题考查了角平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.【类型二】利用角平分线的性质求面积如图,BD平分∠ABC,DE⊥AB于点E,DF⊥BC且交BC的延长线于点F.假设AB=18cm,BC=12cm,DE cm,求△ABC 的面积.解析:根据角平分线的性质得到DE=DF,再将△ABC分成△BCD和△ADB两个三角形,分别求出它们的面积再求和.解:∵BD平分∠ABC,DE⊥AB,DF ⊥BF,∴DE=DF.∵S△ABC=S△BCD+S△ABD=12BC·DF+12AB·DE=12(BC+AB)·DE=12×30×=36(cm2).方法总结:如果求三角形面积出现困难可将此三角形分成几个三角形再利用一些性质,如角平分线的性质或等腰三角形的性质,求这几个三角形面积的和.【类型三】利用角平分线的性质进行证明如图,∠1=∠2,P为BN上一点且PD⊥BC于D,AB+BC=2BD,求证:∠BAP +∠BCP=180°.解析:过点P作PE⊥BA,根据条件得Rt△BPE≌Rt BPD,再根据AB+BC=2BD 得AE=CD,可证Rt△APE和Rt PDC,可得∠PCD=∠P AE,根据邻补角互补可得∠BAP+∠BCP=180°.证明:过P作PE⊥AB,交BA的延长线于E.∵PD⊥BC,∠1=∠2,∴PE=PD,在Rt△BPE和Rt△BPD中,⎩⎪⎨⎪⎧PE=PD,BP=BP,∴Rt△BPE≌Rt△BPD(HL),∴BE=BD.∵AB +BC=2BD,BC=CD+BD,AB=BE-AE,∴AE=CD.∵PE⊥BE,PD⊥BC,∴∠PEA =∠PDC=90°.在△PEA和△PDC中,⎩⎪⎨⎪⎧PE =PD ,∠PEB =∠PDC ,AE =CD ,∴△PEA ≌△PDC (SAS),∴∠PCD =∠P AE .∵∠BAP +∠EAP =180°,∴∠BAP +∠BCP =180°.方法总结:题目中有角平分线可过角平分线上的点作角两边的垂线,这是角平分线题目中常见的辅助线.探究点二:角的内部到角两边距离相等的点在角的平分线上如以下图,在△ABC 中,PD 垂直平分BC ,PM ⊥AB 于点M ,PN ⊥AC 交AC 的延长线于点N ,且BM =CN .求证:∠1=∠2.解析:先根据中垂线性质得出PB =PC ,再根据HL 证Rt △PBM ≌Rt △PCN ,再根据角平分线性质的逆定理得出结论.证明:连接PB 、PC .∵PD 垂直平分BC ,∴PB =PC .∵PM ⊥AB ,PN ⊥AC ,∴∠PMB =∠PNC =90°.在Rt △PBM 与Rt △PCN 中,∵PB =PC ,BM =CN ,∴Rt △PBM ≌Rt △PCN (HL).∴PM =PN .∴点P 在∠BAC 的平分线上,即∠1=∠2.方法总结:证明一条射线是角的平分线有两种方法:一是利用三角形全等证明;二是利用角平分线性质定理的逆定理证明.显然,方法二比方法一更简捷,在用方法二判定一条射线是一个角的平分线时一般分两步:一是找出或作出射线上的一点到角两边的垂线段;二是证明这两条线段相等.探究点三:角平分线的性质和判定的综合应用如以下图,在△ABC 外作等腰三角形ABD 和等腰三角形ACE ,且使它们的顶角∠DAB =∠EAC ,连接BE 、CD 相交于P 点,AP 的延长线交BC 于F 点,试判断∠BPF 与∠CPF 的关系,并加以说明.解析:首先猜测∠BPF =∠CPF ,即∠DP A =∠EP A ,显然这两个角所在的三角形不一定全等,可考虑用角平分线的判定来求解.解:∠BPF =∠CPF ,理由如下:过A 点作AM ⊥DC 于M ,作AN ⊥BE 于N .∵∠DAB =∠EAC ,∴∠DAB +∠BAC =∠EAC +∠BAC ,∴∠DAC =∠BAE ,在△BAE 和△DAC 中,⎩⎪⎨⎪⎧AB =AD ,∠BAE =∠DAC ,AE =AC ,∴△BAE ≌△DAC (SAS),∴BE =DC ,S △BAE =S △DAC .∵AM ⊥DC ,AN ⊥BE ,∴12BE ·AN =12DC ·AM ,∴AN =AM ,∴P A 平分∠DPE ,∴∠DP A =∠APE .又∵∠DP A =∠CPF ,∠EP A =∠BPF ,∴∠BPF =∠CPF .方法总结:证明两个角相等:①如果在一个三角形里,通常利用等边对等角;②如果在两个三角形里,通常证所在的两个三角形全等或利用角平分线的判定.探究点四:利用角平分线的性质作图 如以下图,一条南北走向的铁路与一条东西走向的公路交叉通过,一工厂在铁路的东面,公路的南面,距交叉路口300m ,并且工厂到铁路与公路的距离相等.请在图上标出工厂的位置,并说明理由(比例尺为1∶20000).解:画出∠AOB的平分线OC,在射线OC上量出表示实际距离300m长度的图上距离线段OP,OP=300×120000=0.015(m)=1.5(cm).因为角平分线上的点到角的两边的距离相等,所以点P即是工厂在图中的位置.方法总结:解决此类问题的关键是把实际问题转化为数学模型,进一步运用数学知识来解决.三、板书设计角平分线的性质:角平分线上的点到角两边的距离相等.角平分线的判定:角的内部到角的两边距离相等的点在角的平分线上.在教学中要注意强调与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等,从而可以简化解题过程.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点) 3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式;(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?二、合作探究探究点:一次函数与实际问题利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t以内(包括10t)的用户,每吨收水费a元;月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的局部,按每吨b元(b>a)收费.设某户居民月用水x t,应收水费y元,y与x之间的函数关系如以下图.(1)求a的值,并求出该户居民上月用水8t应收的水费;(2)求b的值,并写出当x>10时,y与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t时,设其函数表达式为y=ax,由上图可知图象经过点(10,15),从而求得a的值;再将x=8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t多还是比10t少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x≤10时,图象过原点,所以设y=ax.把(10,15)代入,解得ayx(0≤x≤10).当x=8时,y×8=12,即该户居民的水费为12元;(2)当x>10时,设y=bx+m(b≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x 千克,那么购进乙种水果(140-x )千克,根据题意可得5x +9(140-x )=1000,解得x =65,∴140-x =75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W ,由题意可得W =3x +4(140-x )=-x +560,故W 随x 的增大而减小,那么x 越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x ≤3x ,解得x ≥35,∴当x =35时,W 最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm 2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h (cm)与注水时间t (s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm 3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm 2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s ;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm 3/s ,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm ,根据圆柱的体积公式得a ·(30-15)=18×5,解得a =6,于是得到“几何体〞上方圆柱的高为5cm ,设“几何体〞上方圆柱的底面积为S cm 2,根据圆柱的体积公式得5×(30-S )=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm ,两个实心圆柱组成的“几何体〞的高度为11cm ,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】建立一次函数模型解决实际问题某商场欲购进A、B两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y关于x的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:由表格中的信息可得到A、B两种品牌每箱的利润,再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B种饮料有(500-x)箱,那么y=(63-55)x+(40-35)(500-x)=3xy=3x+2500(0≤x≤500);(2)由题意,得55x+35(500-x)≤x≤125.∴当x=125时,y最大值=3×125+2500=2875.∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23.答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
《角平分线的性质教案 》教案 (公开课获奖)
角平分线的性质教学目标1.体会角的对称性,掌握角平分线的性质和判定;2.能用尺规作图,作出已知角的平分线;3.运用角平分线的性质解决实际问题。
教学重难点重点:角平分线的性质难点:运用角平分线的性质解决实际问题教学手段多媒体,小黑板等教学课时第一课时教学过程个人复备【自主学习】活动一:探索角的轴对称性探索交流画∠AOB,折纸使OA、OB重合,折痕与∠AOB有什么关系?小结:角是轴对称图形,对称轴是角平分线所在的直线。
活动二:用尺规画角的平分线自学课本作图,完成以下问题,小组交流已知:∠BAC,求作:∠BAC的平分线AP作法:1、以为圆心,以为半径画弧,分别交这个角的两边于D、E两点,2、分别以D、E为,以为半径画弧,两弧交于点P,3、作射线AP,结论:学生动手操作:用折叠的方法验证尺规作图的正确性。
活动三:角平分线的性质学习课本第51-52页实验与探究,自主完成,交流结果。
结论:角平分线上的点到这个角的两边距离相等。
引导学生掌握数学语言 强调说明:在上面结论中,有两个条件(1)OC 是∠AOB 的平分线;(2)点P 在OC 上,PD ⊥OA ,PE ⊥OB ,才能得出PD =PE ,两者缺一不可.下图中PD =PE 吗?各缺少了什么条件? 活动四:思考:在角的内部到角的两边距离相等的点位置上有什么特征?因此处还没有学直角三角形的判定方法:HL ,所以只能用折叠来验证。
练习:课本53页练习 【课堂小结】谈谈你本节课的收获【学以致用】1、如右图所示,在一次军事演习中,红方侦查员发现蓝方指挥部在A 区内,并且该指挥部到公路(实线)、铁路(虚线)的距离相等,距公路和铁路的交叉处B 点700m ,如果你是红方的指挥员,请你在右所示的作战地图上标出蓝方指挥部的位置。
(比例尺为1:40000)2、某市农副产品集散地M 位于三个村庄A 、B 、C 之间,其位置到三条公路AB 、AC 、BC 的距离相等,你能找到M 的位置吗?【巩固提升】1.在线段、角、圆、正方形这四种几何图形中,是轴对称图形的有( ) A.1种 B.2种 C.3种 D.4种2.如图,在Rt △ABC 中,∠C=90°,BD 平分∠ABC 交AC 于点D ,且DE 垂直平分斜边AB 于E.ABCA OBC D EPP E DC B OA(1)请你在图形中找出至少两对相等的线段,并说明它们为什么相等?(2)如果BC=6,AC=8,则△BDC的周长为多少?【达标检测】1.到三角形的三条边距离相等的点是()。
5.3第3课时角平分线的性质(教案)2023春七年级下册数学(北师大版)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《5.3第3课时角平分线的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将一个角平分成两个相等角的情况?”比如,在制作风筝或修理家具时。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索角平分线的奥秘。
2.在实践活动和小组讨论中,部分学生参与度不高,我需要在今后的教学中关注这些学生,鼓励他们积极参与,提高课堂互动性。
3.教学过程中,我需要注意时间的分配,确保每个环节都能顺利进行,让所有学生都有足够的时间消化和吸收知识。
2.教学难点
-性质的理解:学生对角平分线性质的理解可能仅停留在表面,难以深入理解性质的本质。
-证明的思路和方法:学生可能难以独立构思证明的步骤,不知如何选择合适的辅助线或运用全等、相似等几何知识。
-知识的灵活应用:学生可能难以将学到的性质灵活应用于解决复杂问题,特别是在综合题中的应用。
举例解释:
对于性质的理解,教师可以通过设计不同类型的例题和练习题,让学生在解答过程中深化对性质的理解。例如,给出一个复杂的图形,要求学生找出其中的角平分线,并解释为什么该直线是角平分线。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“角平分线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“除了在几何图形中,角平分线还能在哪些领域发挥作用?”
初中数学角的平分线教案
初中数学角的平分线教案一、教学目标1.让学生掌握角的平分线的定义、性质及判定方法。
2.培养学生运用角的平分线知识解决实际问题的能力。
3.培养学生的逻辑思维能力和空间想象能力。
二、教学重点与难点1.重点:角的平分线的定义、性质及判定方法。
2.难点:运用角的平分线知识解决实际问题。
三、教学过程1.导入新课(1)复习旧知识:让学生回顾角的定义、分类及性质。
(2)提出问题:如何将一个角平分成两个相等的角?2.角的平分线定义(1)引导学生观察角的平分线模型,让学生直观感受角的平分线。
(2)给出角的平分线定义:从角的顶点出发,将这个角平分成两个相等的角的射线,叫做这个角的平分线。
(3)让学生举例说明角的平分线。
3.角的平分线性质(1)引导学生观察角的平分线性质,让学生直观感受角的平分线性质。
(2)给出角的平分线性质:角的平分线上的点到这个角的两边的距离相等。
(3)让学生举例说明角的平分线性质。
4.角的平分线判定方法(1)引导学生探究角的平分线判定方法。
(2)给出角的平分线判定方法:如果一条射线将一个角平分成两个相等的角,那么这条射线就是角的平分线。
(3)让学生举例说明角的平分线判定方法。
5.应用举例(1)让学生独立完成课本上的例题,巩固角的平分线知识。
(2)引导学生运用角的平分线知识解决实际问题,如求角度、证明角相等。
6.练习与巩固(1)让学生完成课后练习,巩固角的平分线知识。
(2)教师批改练习,及时反馈,指导学生掌握角的平分线知识。
7.课堂小结(2)教师点评学生表现,鼓励学生积极思考、参与课堂。
8.课后作业(1)完成课后练习。
(2)预习下节课内容,了解角的平分线在生活中的应用。
四、教学反思本节课通过直观的模型、生动的实例,让学生掌握了角的平分线的定义、性质及判定方法。
在教学过程中,注重培养学生的逻辑思维能力和空间想象能力。
通过课后作业,巩固所学知识,为下节课的学习打下坚实基础。
附:课后练习1.判断题:角的平分线上的点到这个角的两边的距离相等。
最新版初中数学教案《角平分线的性质》精品教案(2022年创作)
第1课时角平分线性质一、新课导入1.导入课题:投影教材第48页开头的“思考〞中的文字和图形,让学生说明道理后提出问题:你能从“思考〞中得到的启示通过运用尺规作一个角的平分线吗?2.学习目标:〔1〕学会角平分线的画法.〔2〕探究并认知角平分线的性质.〔3〕熟练地运用角平分线的性质解决实际问题.3.学习重、难点:重点:角的平分线的性质.难点:运用角平分线的性质解决相关的问题.二、分层学习1.自学指导:〔1〕自学内容:探究“角平分线的作法〞.〔2〕自学时间:5分钟.〔3〕自学方法:阅读、作图、总结、归纳.〔4〕自学参考提纲:①投影中AE平分∠DAB是由什么方法得到∠DAE=∠BAE?证明△ABC≌△ADC(SSS).②由平分角的仪器尝试画∠AOB的平分线.③由导入得到作角平分线的方法:a.作法(1)能得到OM=ON;b.作法(2)能得到MC=NC;△OMC≌△ONC,得到∠MOC=∠NOC,∴OC是∠AOB的平分线;d.在作法的第二步中,去掉“大于12MN的长〞这个条件行吗?不行.2.自学:学生结合自学指导进行探究式学习.3.助学:(1)师助生:①明了学情:利用角平分仪悟出画角平分线的方法,由实物抽象出几何图形,应用了数学里面的建模思想,局部学生理解起来还存在一定的困难.②差异指导:a.引导学生理解角平分仪平分角的道理是证明两角相等,回忆前面证明角相等的方法是证明三角形全等.b.在尺规作图的过程中引导学生运用三角形三边关系定理,理解“大于12MN的长〞这个条件.〔2〕生助生:学生之间相互交流帮助.4.强化:〔1〕让学生口述角平分线的作法步骤.〔2〕尝试练习:作出△ABC的三条角平分线〔保存作图痕迹,写出作法〕.〔3〕练习:平分平角∠AOB,通过作角平分线得到射线OC,然后反向延长OC得到直线CD,直线CD与直线AB存在什么样的位置关系?互相垂直.〔4〕给一张三角形纸片,你能不借助任何工具找到某一个角的平分线吗?能,将这个三角形沿过一个顶点的线折叠,使在该顶点的角的两边重合,那么该线就是这个角的平分线.1.自学指导:〔1〕自学内容:探究“角平分线上的点到角的两边的距离相等〞.〔2〕自学时间:5分钟.〔3〕学习方法:先通过折纸画图、测量得出角平分线的性质,再探究几何证明方法.〔4〕探究提纲:①如图,OC平分∠AOB,点P是OC上任一点,P点到OA、OB的距离怎么找?过点P分别向OA、OB作垂线,P点与垂足之间的线段的长就是P点到OA、OB的距离.②这两个距离可采用什么方法得到它们的大小关系?证三角形全等,然后得出这两个距离相等.③用你采用的方法,得到了什么结论?结论:角的平分线上的点到角的两边的距离相等..④将性质用图形、几何语言表示〔填写下表〕:图形:事项:∠AOB,OC是∠AOB的平分线,P为OC上一点,且PD ⊥OA,PE⊥OB,垂足分别为D、E.由事项推出的事项:PD=PE⑤根据探究的内容,写出、求证及证明结论的过程.:∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO≌△PEO(AAS),∴PD=PE.⑥由上述证明过程,总结证明一个几何命题的一般步骤:1.明确命题中的和求证;2.根据题意,画出图形,并用符号表示和求证;3.经过分析,找出由推出要证的结论的途径,写出证明过程.2.自学:学生可结合自学指导探究式学习.3.助学:(1)师助生:①明了学情:通过第二层次的学习,学生能够理解角平分线的性质定理,但在证明过程中,大局部学生不习惯把文字语言改成几何语言,教师应了解学生在几何表述中存在的问题.②差异指导:得出结论之后,要通过证明,才能确定命题的正确性,引导学生学会证明文字语言描述的几何题的步骤.(2)生助生:学生之间相互交流帮助.4.强化:(1)用文字及几何语言表述定理;(2)证明题的根本步骤.三、评价1.学生的自我评价:学生相互交谈自己的收获和学习困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的缺乏进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本节课由于采用了动手操作、直观模型的观察以及讨论交流等教学方法.从而有效地增强了学生对角以及角的平分线的感性认识,提高了学生对新知识的理解与感性.所以本节课的教学效果较好,学生对所学的新知识掌握较好,到达了教学的目的,不是之处:少数学生在尺规作图上还存在问题,需要在今后的教学与作业中进一步加强稳固和训练.一、根底稳固〔第1、2、3题每题10分,第4题20分,共50分〕1.角平分线的性质定理:角平分线上的点到角的两边的距离相等.2.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.以下结论中错误的选项是(D)A.PC=PDB.OC=ODC.∠CPO=∠DPOD.OC=PO第2题图第3题图第4题图3.如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,假设AB=10cm,那么△DBE的周长等于(A)4.如图,P是∠AOB角平分线上的点,C、D分别是OA、OB上的点,且PC=PD,PE⊥OA于E,PF⊥OB于F,求证:CE=DF.证明:∵OP是∠AOB的平分线,PE⊥OA,PF⊥OB,∴∠PEC=∠PFD=90°,PE=PF,在Rt△PEC和Rt△PFD中,PC=PD,PE=PF,∴Rt△PEC ≌Rt△PFD(HL),∴CE=DF.二、综合应用〔第5题10分,第6题20分,共30分〕5.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,DE ⊥AB,DF⊥AC,垂足分别是E、F,那么以下四个结论:①AD上任意一点到点C、点B的距离相等;②AD上任意一点到AB,AC的距离相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中,正确的个数是〔D〕第5题图第6题图6.如图,在△ABC中,AD为∠BAC的平分线,∠B=90°,DF⊥AC,垂足为F,DE=DC,求证:BE=CF.证明:∵DF⊥AC,∴∠DFA=∠B=90°.∵AD为∠BAC的平分线,∴△BDE和Rt△FDC中,DE=CD,DB=DF,∴Rt△BDE≌Rt△FDC〔HL〕.∴BE=CF.三、拓展延伸〔20分〕7.如图,点D、B分别在∠MAN的两边上,C是∠MAN内一点,AB=AD,BC=CD,CE⊥AM于E,CF⊥AN于F.求证:CE =CF.证明:在△ABC和△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC ≌△ADC(SSS).∴∠DAC=∠BAC.∴AC平分∠MAN.∵CE⊥AM,CF⊥AN,∴CE=CF.【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又效劳于生活,表达事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.〔1〕你能从图案中找出多边形吗?〔2〕你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题〔2〕的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出和求证.:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE 形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EA==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE 3BCE CDA AB是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带着学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了稳固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°〔n-2〕n例1〔课本106页例题〕有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积〔结果保存小数点后一位〕.分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24〔m〕.过O点作OP⊥△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:〔1〕用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可防止地存在误差.〔2〕用尺规等分圆正方形的作法:如图〔1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,那么可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图〔2〕任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,那么A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图〔3〕由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,那么∠APB的度数为_______./π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.〔1〕求图1中的∠MON的度数;〔2〕在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;〔3〕试探索∠MON的度数与正n边形边数n之间的关系.〔直接写出答案〕【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.°4.解:〔1〕连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与〔1〕相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回忆,教师再予以补充和点评.1.布置作业:从教材“〞中选取.练习册中本课时练习的“课后作业〞局部.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些根本概念,引导学生将实际问题转化为数学问题,表达了化归的思想.其次,在这一根底上,又教给学生用等分圆周的方法作正多边形,这可以开展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最根本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3课时 角平分线的性质
1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;(重点)
2.能运用角的平分线性质定理解决简单的几何问题.(难点)
一、情境导入
问题:在S 区有一个集贸市场P ,它建在公路与铁路所成角的平分线上,要从P 点建两条路,一条到公路,一条到铁路.
问题1:怎样修建道路最短?
问题2:往哪条路走更近呢?
二、合作探究
探究点一:角平分线的性质 【类型一】 利用角平分线的性质证明线段相等
如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,∠FDC =∠BDE .试说明:(1)CF =EB ;(2)AB =AF +2EB .
解析:(1)根据角平分线的性质,可得点D 到AB 的距离等于点D 到AC 的距离,即DE =DC .再根据△CDF ≌△EDB ,得CF =EB ;(2)利用角平分线的性质可得△ADC 和△ADE 全等,从而得到AC =AE ,然后通过线段之间的相互转化进行求解.
解:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .∵在△CDF 和△EDB 中,∵⎩⎪⎨⎪⎧∠C =∠DEB =90°,DC =DE ,∠FDC =∠BDE ,
∴△CDF ≌△EDB (ASA).∴CF =EB ;
(2)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴∠CAD =∠EAD ,∠ACD =∠AED
=90°.在△ADC 和△ADE 中,∵⎩⎪⎨⎪⎧∠CAD =∠EAD ,∠ACD =∠AED ,AD =AD ,
∴△ADC ≌
△ADE (AAS),∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .
方法总结:角平分线的性质是判定线段相等的一个重要依据,在运用时一定要注意是两条垂线段相等. 【类型二】 角平分线的性质与三角形面积的综合运用
如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 的长是( )
A .6
B .5
C .4
D .3
解析:过点D 作DF ⊥AC 于F .∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =2,
∴S △ABC =12×4×2+12
AC ×2=7,解得AC =3.故选D. 方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.
【类型三】 角平分线的性质与全等三角形综合
如图所示,D 是△ABC 外角∠ACG 的平分线上的一点.DE ⊥AC ,DF ⊥CG ,垂足分别为E ,F .试说明:CE =CF .
解析:由△DEC ≌△DFC 得出CD 平分∠EDF ,根据角平分线的性质,得出CE =CF . 解:∵CD 是∠ACG 的平分线,∴∠ECD =∠FCD .在△DEC 和△DFC 中,∵⎩⎪⎨⎪⎧∠DEC =∠DFC =90°,∠ECD =∠FCD ,DC =DC ,
∴△DEC ≌△DFC (AAS),∠EDC =∠FDC .又∵DE ⊥AC ,DF ⊥CG ,∴CE =CF .
方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.
【类型四】 角平分线的性质与线段垂直平分线性质的综合运用
如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O .
(1)找出图中相等的线段;
(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系. 解析:(1)由垂直平分线的性质可得出相等的线段;(2)由条件可得△AOC ≌△AOD ,可得AO 平分∠DAC ,根据角平分线的性质可得OE =OF .
解:(1)∵AB 、CD 互相垂直平分,∴OC =OD ,AO =OB ,AC =BC =AD =BD ;
(2)OE =OF ,理由如下:在△AOC 和△AOD 中,∵⎩⎪⎨⎪⎧AC =AD ,OC =OD ,AO =AO ,
∴△AOC ≌△AOD (SSS),
∴∠CAO =∠DAO .又∵OE ⊥AC ,OF ⊥AD ,∴OE =OF .
方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键. 【类型五】 角平分线的性质与等腰三角形的性质综合的探究性问题
如图,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE ⊥BC ,垂足为D .
(1)请你写出图中所有的等腰三角形;
(2)请你判断AD 与BE 垂直吗?并说明理由.
(3)如果BC =10,求AB +AE 的长.
解析:(1)由△ABC 是等腰直角三角形,BE 为角平分线,可得△ABE ≌△DBE ,即AB =BD ,AE =DE ,所以△ABD 和△ADE 均为等腰三角形.由∠C =45°,ED ⊥DC ,可知△EDC 也是等腰三角形;(2)BE 是∠ABC 的平分线,AE ⊥AB ,DE ⊥BC ,根据角平分线定理可知△ABE 关于BE 与△DBE 对称,可得出BE ⊥AD ;(3)根据(2),可知△ABE 关于BE 与△DBE 对称,且△DEC 为等腰直角三角形,可推出AB +AE =BD +DC =BC =10.
解:(1)△ABC ,△ABD ,△ADE ,△EDC ;
(2)AD 与BE 垂直.理由如下:由BE 为∠ABC 的平分线,知∠ABE =∠DBE .又∵∠BAE =∠BDE =90°,BE =BE ,∴△ABE 沿BE 折叠,一定与△DBE 重合,∴A 、D 是对称点,∴AD ⊥BE ;
(3)∵BE 是∠ABC 的平分线,∴∠ABE =∠DBE ,∵DE ⊥BC ,EA ⊥AB ,∴∠BAE =∠BDE .
在△ABE 和△DBE 中,⎩⎪⎨⎪⎧∠ABE =∠DBE ,∠BAE =∠BDE ,BE =BE ,
∴△ABE ≌△DBE (AAS),∴AB =BD ,AE =DE .
又∵△ABC 是等腰直角三角形,∠BAC =90°,∴∠C =45°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形,∴DE =DC =AE ,即AB +AE =BD +DC =BC =10.
探究点二:角平分线的画法
如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,
F 两点,再分别以E 、F 为圆心,大于12
EF 的长为半径画弧,两弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =120°,求∠MAB 的度数.
解析:根据AB ∥CD ,∠ACD =120°,得出∠CAB =60°.再根据尺规作图得出AM 是∠CAB 的平分线,即可得出∠MAB 的度数.
解:∵AB ∥CD ,∴∠ACD +∠CAB =180°.又∵∠ACD =120°,∴∠CAB =60°.由尺
规作图知AM 是∠CAB 的平分线,∴∠MAB =12
∠CAB =30°. 方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM 是∠BAC 的角平分线是解题的关键.
三、板书设计
1.角平分线的性质:
角平分线上的点到这个角的两边的距离相等.
2.角平分线的作法
本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练。