工程数学基础教程课后习题答案

合集下载

工程数学基础2019级答案

工程数学基础2019级答案

2019–2020学年第二学期《工程数学基础》试卷标准答案及评分标准考试时间:2020-9-12一、判断题1.×2.×3.×4.5.×6.7.8.×9.×10. 11.×12. 13.×14. 15.×16. 17. 18.×19.×20.×二、填空题1.A c ∩B c 2.−3 3.Y 4.0 5.b−a 6.07.λ−18.09.110.2+√211.0cos x3−x2sin x3e x2x1e x2012.213.−2/5<α<014.16/4515.h2[f(a)+2∑n−1i=1f(x i)+f(b)]16.f(4)(ξ)4!x2(x−2)2,ξ∈(0,2)17.618.2126x+21319.15(b5−a5)20.(0,0.278]三、解:¯A=22−1141−10−14−2−1−8−→4−2−1−81−10−122−114(1分)−→4−2−1−80−1214103−1218−→4−2−1−803−12180−12141−→4−2−1−803−121800164(3分)回代解得x3=24,x2=10,x1=9,即x=(9,10,24)T.(4分)Jacobi迭代格式为x(k+1)1=14·(−2x(k)2−2x(k)3+1),x(k+1)2=12·(−x(k)1−x(k)3+3),x(k+1)3=12·(−x(k)1−x(k)2+7),k=0,1,···.(6分)Jacobi迭代矩阵为M=D−1(L+U)=141212·0−2−2−10−1−1−10=0−12−12−120−12−12−12,由|λE−M|=λ3−34+14=(λ+1)(λ−12)2=0解得M的特征值为λ1,2=12,λ3=−1,所以ρ(M)=1,从而Jocobi迭代发散.(8分)四、解:构造差商表如下(3分)表1:差商表x y 一阶差商二阶差商三阶差商012−3−23−4−1135234315三次Newton 插值多项式N 3(x )=1−2(x −0)+13(x −0)(x −2)+15(x −0)(x −2)(x −3)=15x 3−23x 2−2215x +1,(4分)Newton 插值公式的余项R 3(x )=f [0,2,3,5,x ]x (x −2)(x −3)(x −5).(6分)五、解:(1)λE −A =λ020λ−10−10λ−3−→ −10λ−30λ−10λ02 −→ −10λ−30λ−10002+(λ−3)·λ−→ 10λ−30λ−1000λ2−3λ+2,(4分)所以A 的最小多项式m (λ)=λ2−3λ+2=(λ−1)(λ−2),且J =200010001,C = 10000−2013.(7分)(2)由A 的最小多项式为φ(λ)=(λ−1)(λ−2),设e tA =a 0(t )+a 1(t )A =T (tA ),(2分)因为T (tA )与e tA 在σ(A )={1,2}上的值相同,故有a 0(t )+a 1(t )=e t ,a 0(t )+2a 1(t )=e 2t ,(4分)解得a 1(t )=e 2t −e t ,a 0(t )=2e t −e 2t ,所以e tA =(2e t −e 2t )E +(e 2t −e t )A=2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t2e 2t −e t(6分)所以初值问题的解e tA= 2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t 02e 2t −e t · 101= 4e t −3e 2t 03e 2t −2e t.(8分)六、解:做变换x =12(1+t ),t ∈[−1,1],故t =2x −1.代入得f (x )=14(1+t )2 φ(t ).(2分)对φ(t )在[−1,1]上用Legendre 多项式做最佳平方逼近,设其为¯S ∗1(t )=a 0P 0(t )+a 1P 1(t )则a 0=12∫1−114(t +1)2dt =13,a 1=32∫1−114(t +1)2·tdt =12,(4分)因此有¯S ∗1(t )=13+12t,S ∗1(x )=13+12(2x −1)=x −16.(6分)平方误差为δ2=12∥φ(t )−¯S ∗1(t )∥22=12∫11142(t +1)4dt −121∑k =022k +1a 2k =12(25−2·132−23·122)=1180≈5.56×10−3.(8分)七、解:S 22=4T 23−T 224−1,从而有1=T 23=(3S 22+T 22)/4≈0.401812.其它的有2=S 21=4T 22−T 214−1≈0.400432,3=C 21=42S 22−S 2142−1≈0.400053.八、解:令z =y ′,初值问题化为y ′=z,z ′=(1+x 2)y +1,(0<x ≤1),y (0)=1,z (0)=3.(2分)解此问题的标准Runge-Kutta 格式为y n +1=y n +h 6(k 1+2k 2+2k 3+k 4),z n +1=z n +h 6(l 1+2l 2+2l 3+l 4),k 1=z n ,l 1=(1+x 2n )y n +1,k 2=z n +h 2l 1,l 2=[1+(x n +h 2)2](y n +h2k 1)+1,k 3=z n +h 2l 2,l 2=[1+(x n +h 2)2](y n +h 2k 2)+1,k 4=z n +hl 3,l 4=[1+(x n +h )2](y n +hk 3)+1,y 0=1,z 0=3,(n =0,1,···,N −1)(6分)九、证明:(1)由于(x n )和(y n )都是X 中的Cauchy 序列,则对∀ε>0,∃N 1,N 2∈N ,使得当m,n >N 1时,∥x m −x n ∥<ε;当m,n >N 2时,∥y m −y n ∥<ε.令N =max {N 1,N 2},则当m,n >N 时,有|∥x m −y m ∥−∥x n −y n ∥|≤∥(x m −y m )−(x n −y n )∥≤∥x m −y m ∥+∥x n −y n ∥<ε2+ε2=ε这表明(∥x n −y n ∥)是R 中Cauchy 的序列,由R 的完备性知,数列(∥x n −y n ∥)收敛.(5分)(2)由A 为Hermite 正定矩阵知,存在n 阶酉矩阵U 使得U H AU =diag (λ1,···,λn ).由于A为正定矩阵,因此λi>0,i=1,···,n.令P1=U·diag(1/√λ1, (1)√λn),则P1非奇异,且P H1AP1=E.(3分)同时,显然P H1BP1是Hermite矩阵,因此存在n阶酉矩阵P2,使得P H 2(P H1BP1)P2=diag(µ1,µ2,···,µn),这里µ1,µ2,···,µn为Hermite矩阵P H1BP1的特征值,故为实数.(4分)令P=P1P2,则P非奇异,且P H AP=P H2(P H1AP1)P2=E,P H BP=P H2(P H1BP1)P2=diag(µ1,µ2,···,µn).(5分)。

清华大学版基础工程课后习题答案解析

清华大学版基础工程课后习题答案解析

题2 - 41(1)地区的标准冻结深度为0Z =1.8m(2)按式2-33求设计冻结深度,即d Z =0Z zs ψzw ψze ψ查表2-11求zs ψ第一层土:p I =L ω-P ω=8<10 且d>0.075mm 占土重10%<50% ,为粉土,zs ψ=1.20 第二层土:d>0.25mm 占55%>50% d>0.5mm 占40%<50%,为中砂,zs ψ=1.30 查表2-12求zw ψ第一层土: ω=20% 底层距地下水位0.8m<1.5m 冻胀等级为Ⅲ级 冻胀类别为冻胀zw ψ=0.90第二层土:地下水位离标准冻结深度为0.2m<0.5m 冻胀等级为Ⅳ级 冻胀类别为强冻胀 zw ψ=0.85查表2-13求ze ψ城市人口为30万,按城市的近郊取值 ze ψ=0.95 按第二层土计算:d Z =1.8*1.3*0.85*0.95=1.89m 折算冻结深度:'d Z =1.2 +(1.85 - 1.2)*1.891.85=1.864m 折算冻结深度进入第二层土内,故残留冻土层主要存在于第二层土。

(3)求基础最小埋深按照正方形单独基础,基底平均压力为120a kp ,强冻胀,冰冻等条件,查表2-14得允许残留冻土层厚度max H =0.38m由式2-34求得基础的最小埋置深度min d =d Z -max H =1.864-0.38=1.484m题2 – 42(1)埋置深度d=0.8m ,持力层为粉质粘土规范建议的地基承载力公式为 a f =b M γb+ d M m γd+c M k ck φ=24° 查表2-16得b M =0.80 d M =3.87 c M =6.45γ=2ρg=1.89*9.8=18.53KN m m γ=1ρg=1.8*9.8=17.643KN m则a f =0.8*18.5*2.5+3.87*17.64*0.8+6.45*20=220.6a kp (2)埋置深度d=2.4m ,持力层为细砂,此时b<3m 取b=3mk φ=30°,查表2-16得 b M =1.9 d M =5.59 c M =7.95γ=3ρg=1.94*9.8=193KN m m γ=0.8*17.64 1.6*18.52.4+=18.23KN m则a f =1.9*19*3+5.59*18.2*2.4+7.95*0=352.5a kp题2 – 43土层一:由k φ=16°查表2-16得b M =0.36 d M =2.43 c M =5.00γ=18.5-9.8=8.73KN m m γ=0a f =b M γb+ d M m γd+c M k c =0.36*8.7*3+0+5*15=84.4a kp土层二:cr P =()1203252213222.73++=a kp u P =()14554444334443++=a kp 因为 u P <cr P ∴ak f = 12u P =222a kpL I =pL pωωωω--=0.923>0.85 由表2-15得b η=0 d η=1.0m γ=18.5-9.8=8.73KN m γ=19.6-9.8=9.83KN ma f =ak f +b ηγ(b-3)+d ηm γ(d-0.5)=222+0+1.0*8.7*(2-0.5)=235.05a kp土层三:由k φ=22°查表2-16得b M =0.61 d M =3.44 c M =6.04γ=20-9.8=10.23KN m m γ=(18.59.8)*2(19.69.8)*29.254-+-=3KN m则a f =0.61*10.2*3+3.44*9.25*4+6.04*10=206.35a kp土层四:由k φ=32°查表2-16得b M =2.6 d M =6.35 c M =8.55γ=20.1-9.8=10.33KN mm γ=(18.5-9.8+19.6-9.8+20-9.8)/3=9.573KN m 则a f =2.6*10.3*3+6.35*9.57*6+8.55*0=445a kp 若采用第二层为持力层,由a f =235.05a kp 则1A =a F f d γ-=2500023.25m 235.0520*210*2=-+ 因为桥墩平面尺寸6m*2m, 取基础尺寸为8m*3m 验算基底压力G=γdA=(20-10)*2*8*3=480Kn500480228.338*3k a F G P kp A ++===<a f =235.05a kp 满足承载力要求 基础材料采用C15混凝土,基底平均压力200<k P <300, 由表2-8知,台阶宽高比为1:1.25tan α=11.25t b h =⇒ α=38.66o 基础高度h=0861.2522*0.8t b b b h m tg tg αα--====按长边及刚性角确定基础的尺寸如下图(单位:mm, h>900mm, 做成三层台阶):题2 – 44(1)求基地压力:18820*1*1.2*1p 176.7/1.2*1F G kPa m A ++=== (2)基底至淤泥质粘土顶面的距离z 为1.8m.由z/b=1.8/1.2=1.5>0.5 s1s215==35E E α=查表2-17得压力扩散角θ=23°3sat w 3m b d d m 2tg =1.22*1.8*tg23=2.73m d =2.8m =-=16.59.8=6.7k /m 0.8*17.7+-==11.9k /m 2.8-y =0y =1.0y *( d 0.5)901*11.9*(d z ak b b z N N f f +'=+θ+︒'γ'γγ-γ=+γ'-=+下卧层埋深为下卧层土的浮容重为 (19.49.8)*2下卧层以上土的加权平均容重为查表215得,,(淤泥层)cz z z z cz 2.80.5)117.4=17.7*0.82*=()2*17.7*0.80.2*9.616.081.2*=70.651.22*1.8*tg23p p =33.3670.65=104co co d kPa P kPa b p p b z tg p kPakPakPa f -=+-=+θ=+==+︒++<下卧层顶面处的自重应力:(19.4-9.8)33.36下卧层顶面处的附加压力:p (17.67-16.08)所以p 验算:117.4z kPa +=经验算,第三层软弱土层的承载力满足要求。

基础工程课后习题答案

基础工程课后习题答案

基础工程课后习题答案在基础工程课后习题中,学生通常会面临一些与力学、材料科学、结构分析和施工技术相关的问题。

以下是一些可能的习题答案示例,这些示例旨在帮助学生理解基础工程的基本原理和应用。

一、力学基础1. 问题:确定一个均匀直杆在承受拉力作用下的应力和应变。

答案:应力(σ)是施加在物体单位面积上的力,计算公式为σ = F/A,其中F是施加的力,A是受力面积。

应变(ε)是物体长度的相对变化,计算公式为ε = ΔL/L₀,其中ΔL是长度变化,L₀是原始长度。

对于均匀直杆,在弹性范围内,应力与应变成正比,比例常数为杨氏模量(E)。

2. 问题:解释什么是剪切应力,并给出计算公式。

答案:剪切应力是作用在物体上的力与物体截面垂直,导致物体产生剪切变形的应力。

计算公式为τ = VQ/I,其中V是剪切力,Q是第一力矩,I是截面的惯性矩。

二、材料科学1. 问题:描述混凝土的组成和其对结构强度的影响。

答案:混凝土是由水泥、骨料(如砂和碎石)、水和可能的添加剂混合而成的复合材料。

水泥在硬化过程中形成粘结剂,将骨料粘结在一起,形成具有一定强度和耐久性的材料。

混凝土的强度主要取决于水泥的类型和用量、骨料的粒径和级配、水灰比以及养护条件。

2. 问题:解释钢材的屈服强度和抗拉强度。

答案:屈服强度是材料在塑性变形开始前能够承受的最大应力。

抗拉强度是材料在断裂前能够承受的最大应力。

对于钢材,屈服强度通常低于抗拉强度,这意味着在达到屈服强度后,材料会开始塑性变形,直至达到抗拉强度并发生断裂。

三、结构分析1. 问题:说明单跨简支梁的弯曲矩和剪力的计算方法。

答案:单跨简支梁的弯曲矩(M)和剪力(V)可以通过静力平衡条件和弯矩-剪力方程来计算。

对于简支梁,其弯矩分布通常呈现抛物线形状,而剪力则与梁上荷载分布有关。

计算时,需要考虑梁的支反力、荷载类型(如均布荷载或集中荷载)以及梁的跨度。

2. 问题:解释如何确定悬臂梁的支座反力。

答案:悬臂梁的支座反力可以通过自由体图和静力平衡条件来确定。

工程数学基础(新版教材)习题解答

工程数学基础(新版教材)习题解答

, 即
E11
a
0c
0 T,
E12
a c
b 0 d 0
1 0
0 0
a
c
0E11
aE12
0E21
cE22
, 即
E12
0
a
0 c T,
E21
a c
b 0 d 1
0 0
b d
0
0
bE11
0E12
dE21
0E22
, 即
E21
b
0d
0 T,
3
E22
a c
b 0 d 0
0 1
d1() d2 () d3 () 1 , d 4 ( ) ( 1)4 .
00 1
2. 解 (1)∵ det A() ( 2)4 ,∴ D4 () ( 2)4 ,又∵ 0 1
1 2
2 1 0 , 0
∴ D3 () 1 ,从而 D1() D2 () 1 .于是不变因子为 d1() d 2 () d3 () 1 ,
3.满; 4. sup E 2 , inf E 3; 5. 0 ; 6.0; 7. n ; 8.Y .
B
1. 证 y f (A B) , x A B 使 得 y f (x) . 由 x A B , 得 x A , 且 x B 故 y f (x) f (A) 且 y f (B) ,即 y f (A) f (B) ,因此 f (A B) f (A) f (B) .
1
∴ A~ J i .
i
3 1 0 0 1 3 0 0
(3)∵ E A
4 7
1 0
0
1
1 2 1 1,2 1
4 7
0

基础工程课后习题答案

基础工程课后习题答案
m
取 =1.3m<3m,故无需再进行宽度修正。
(3)软弱下卧层承载力验算
由 , m 0.5 ,查表2-7得 。
下卧层顶面处的附加应力为:
(可以)
(4)基础设计
依题意采用钢筋混凝土条形基础。采用C20混凝土, ,钢筋用HPB235级, 。基础埋深为0.5m
荷载设计值
基底净反力
基础边缘至砖墙计算截面的距离
此基础为墙下条形基础,代入式2-20得条形基础宽度:
m
为符合砖的模数取b=1.2m,砖基础所需的台阶数为:
所以按二皮一收砌法的基础截面如图所示:
2-5某柱基承受的轴心荷载 ,基础埋深为1m,地基土为中砂, , 。试确定该基础的底面边长。
【解】因为基础埋深d=1.0m>0.5m故需先进行地基承载力深度修正,持力层为中砂,查表2-5得 ,得修正后的地基承载力为:
【解】可取基础埋深为1.0m,由上题知地基承载力特征值 。
(1)确定基础底面尺寸
考虑到荷载偏心作用,可将轴心荷载下所得到的基底面积之增大30%得初选基底面积:
取边长比n=1.5得基础宽度:
m,取 m。
m
验算偏心距:
(可以)
(可以)
(2)计算基底净反力设计值
平行于基础短边的柱边Ⅰ-Ⅰ截面的净反力:
(3)确定基础高度
【解】(1)用弯矩分配法计算肋梁弯矩
沿基础纵向的地基净反力为:
边跨固端弯矩为:
中跨固端弯矩为:
1截面(左边)伸出端弯矩:
节点
1
2
3
4
分配系数
0
1.0 0.5
0.5 0.5
0.5 1.0
0
固端弯矩
188.2

天津大学工程数学基础新版习题答案.pdf

天津大学工程数学基础新版习题答案.pdf

4.

设 Y D
是线性空间
X的一族子空间ຫໍສະໝຸດ 要证DY也是X的线性子空间
.显然
D
Y
,z
只需证明
D
Y
对X的线性运算是封闭的.
事实上,x,
y
D
Y

, ,从而对每一个 D ,

x,
y
Y
,故
x
y
Y
,
x
Y
.于是,
x
y
D
Y
,
x
D
Y
.因此,
D
Y

X
的线性子空间.
5. 证 显然W包含零多项式,故非空;又f , g W,及 ,有
(2)y1, y2 Y及1, 2 , x1, x2 X ,s.t.y1 Tx1, y2 Tx2 ,即x1 T 1( y1), x2 T 1( y2 ).于是有
T 1(1 y1 +2 y2 ) T 1[1T (x1) 2T (x2 )] T 1[T (1x1 2 x2 )] 1x1 2 x2 1T 1( y1) 2T 1( y2 ),
故T 1 : Y X是线性的. 7. 解 首先验证: 22 22是线性的,然后求其在即B下的矩阵A.
X1, X2 22 ,k1, k2 ,由的定义,有
( B
1 0
0 0 1 0 0 0 , 0 0 , 1 0 , 0
(k1 X1 +k2 X2 ) A0 (k1 X1 +k2 X2 ) k1 A0 X1 +k2 A0 X2 k1 (X1)+k2 (X2 ),
故: 22 22是线性的.
)0 0
1
关键是求基元E1

工程数学第五章习题解答

工程数学第五章习题解答

第四章习题解答1.1某大学生即将毕业就业,在选择单位时他主要考虑如下因素A.单位的工资待遇;B. 单位的社会地位;C.单位的地域条件;D. 本人的兴趣爱好。

它比较上述各种因素得到成对比较阵(表中数字表示行因素相对于列因素的重要性):(1。

(2)现在他准备在甲和乙两份工作中选一份。

他给两份工作各因素满意度打分解: (1)利用和法近似求权向量:先按列归一化得2/13 3/17 1/4 2/174/13 6/17 3/8 6/171/13 2/17 1/8 3/176/13 6/17 1/4 6/17再求各行和得到[0.6980, 1.3886, 0.4960, 1.4174]’再归一化得到权向量[0.1745,0.3471,0.1240,0.3544]’.(2)甲=0.8×0.1745+0.5× 0.3471+0.5×0.1240+0.2×0.3544=0.4460乙=0.5×0.1745+0.6× 0.3471+0.4×0.1240+0.5×0.3544=0.5223应选乙.2.1学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍. 学生们要组织一个10人的委员会,分别用最大剩余法和Q值法计算名额分配。

如果委员会从10个人增至15人呢?(2)Q 值法:2,3,5 (4,5,6)按人数比例的整数部分已将13席分配完毕 A: p 1=235, n 1=3 B :p 2=333, n 2=4 C :p 3=432, n 3=6计算Q 值:3,2,1,)1(2=+=i n n p Q i i i i ,得:第14席444376432,554454333,460243235232221=⨯==⨯==⨯=Q Q Q 给B (3,5,6) 第15席31,Q Q 不变,36966533322=⨯=Q ,给A (4,5,6)bxx=[0 0.2 0.4 0.6 0.8 1];y=[4.0 4.5 5.0 6.0 6.8 7.7]; fun=@(c,x)3+c(1)*x+exp(-c(2)*x); [c,Q]=lsqcurvefit(fun,[1,0.1],x,y) 结果a=4.6769. b=3.4962。

工程数学习题答案

工程数学习题答案

[cos 2π λ − 1]2 + sin 2 2π λ = 0
整理得
由余弦函数的最大值点得
cos 2π λ = 1
所以特征值和特征函数分别为
2π λ = 2nπ
λn = n2 , X n = Acos nx + B sin nx ,(A 和 B 不全为零)
2.求解常微分方程:
r2
d2R dr 2
+
∑ a0
2
+

[an
n=1
cos nθ
+
bn
sin nθ ] =
Acos 2θ
+
B cos 4θ
用待定系数法得
a2 = A, a4 = B an = 0, (n ≠ 2, n ≠ 4) , bn = 0, (n = 1,2,L)
故原拉普拉斯方程解
u(r,θ ) = r 2 cos 2θ + r 4 cos 4θ
A = Acos λ 2π + B sin λ 2π , B = − Asin λ 2π + B cos λ 2π
联立得线性方程组
⎡cos 2π λ − 1
⎢ ⎣

sin 2π
λ
sin 2π cos 2π
λ λ−
⎤⎡ A⎤
⎥ 1⎦
⎢⎣ B ⎥⎦
=
⎡0⎤ ⎢⎣0⎥⎦
方程组有非零解的条件为系数矩阵行列式为零,即
两端取指数函数,整理得
ln
K
y −
y
=
rx
+
c0
y(x) =
K
1 + exp(−rx − c0 )
2.求傅里叶级数展开

工程数学基础教程课后习题答案

工程数学基础教程课后习题答案

.工程数学基础习题解答习 题 一A一、判断题1.√;,2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.√;10.×.二、填空题1.;C C A B2.111(){1,2,3,4},(){,,},(){,,},(){1,4},(){2,3};f f a b e f A a b e f B f b --=====D R3.满;4.2sup =E ,3inf -=E ; 5.0; 6.0; 7. n ; 8.Y .B1.证 ()y f A B ∀∈⋂,x A B ∃∈⋂使得)(x f y =.由x A B ∈⋂,得x A ∈,且x B ∈故()()y f x f A =∈且()y f B ∈,即()()y f A f B ∈⋂,因此()()()f A B f A f B ⋂⊂⋂.当f 是单射时,只需证明()()()f A f B f A B ⋂⊂⋂即可: ()()(),y f A f B f ∀∈⋂⊂R f 由是单射知,().(),(),1X y f x y f A y f B x ∃=∈∈∈使得且,,()(),x A x B x A B y f x f A B ∴∈∈∈⋂=∈⋂且即从而故()()()f A f B f A B ⋂⊂⋂.是可能的,例如,2:,[2, 0],[1, 3],[1, 0].f xx A B A B =-=-⋂=-取则()([1,0])[0, 1], f A B f ⋂=-=于是而[][]()()0, 4[0, 9]0, 4.f A f B ⋂=⋂=从而有 .2. 证(1)n ∀∈,有)2 ,2(12 ,12][-⊂-+-n n ,故 ∞=-⊂-+-1)2 ,2(12 12][n n ,n .另一方面,)2 ,2(-∈∀x ,k ∃∈,使][12 ,12k k x -+-∈,故 ∞=-+-∈1][12 12n n ,n x ,于是⊂-)2 ,2( ∞=-+-1][12 12n n,n .因此, ∞=-+-=-1][12 ,12)2 ,2(n nn .(2)n ∀∈,有)12 ,12(]2 ,2[n n +--⊂-,故 ∞=+--⊂-1)12 ,12(]2 ,2[n n n .另一方面,对任意]2 ,2[-∉x ,即2>x ,k ∃∈,使得212>+>kx ,即)12 ,12(k k x +--∉,从而 ∞=+--∉1)12 ,12(n n n x ,故 ∞=-⊂+--1]2,2[)12 ,12(n n n .因此,∞=+--=-1)12,12(]2,2[n nn . 3. sup ,sup ,sup ,.A A A μμμμ''===证设且要证唯一只需证明即可sup ,,,sup ,,;.inf .A A A A A μμμμμμμμμμ'''=≤=''≤= 因为是最小上界而是的上界故又因为是最小上界而是的上界故因此 类似地可以证明是唯一的 4. 证 设{}D Y αα∈是线性空间X 的一族子空间,要证D Y X αα∈⋂也是的线性子空间.显然D Y αα∈⋂≠∅,z 只需证明.D Y X αα∈⋂对的线性运算是封闭的事实上,,Dx y Y αα∈∀∈⋂及,λ∀∈,从而对每一个D ∈α,有,x y Y α∈,故x y Y α+∈,x Y αλ∈.于是,D x y Y αα∈+∈⋂,D x Y ααλ∈∈⋂.因此,DY αα∈⋂是X 的线性子空间. 5. ,,,W f g W λ∀∈∀∈证显然包含零多项式故非空;又及,有()(0)()(0)(0)(0)(0)(0)[(0)(0)][(0)(0)]000,f g f g f g f g f f g g '''''+++=+++=+++=+=即;()(0)()(0)(0)(0)[(0)(0)]00,.f g W f f f f f f f W λλλλλλλ'''+∈+=+=+==∈即[0, 1].n W P 所以,是的线性子空间1111021121001121 [0, 1],(),()2.(0)(0)0,0,,()(1).n n n n n n n n n n n f W P f x a x a x a x a f x na x a x a f f a a a a f x a x a x a x a x -----'∀∈⊂=++++=+++'+=+==-=++++-设则由得即故23(1,,,,),dim .n x x x x W W n -=由上可知,是的一个基故6. 1(1),(0)0.()0,0.T T T x T T x -⇒===“”:因为是线性的故有于是,若则由存在知是单射,从而有 1T T -⇐“”:要证存在,只需证明是单射:121212121212,,((),()()()0,0,,.x x X T x T x T x x T x T x x x x x T ∀∈=-=-=-==当)即时由条件得即故是单射 1112121211221122(2),,,,,s.t.,,(),().y y Y x x X y Tx y Tx x T y x T y λλ--∀∈∀∈∃∈====及即于是有1111111221122112211221122(+)[()()][()]()(),T y y T T x T x T T x x x x T y T y λλλλλλλλλλ-----=+=+=+=+1:.T Y X -→故是线性的7. 2222:,.B A σ⨯⨯→解首先验证是线性的然后求其在即下的矩阵221212,,,,X X k k σ⨯∀∈∀∈由的定义,有 10010000,,,0001001()B ⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦1122011221012021122(+)(+)+()+(),k X k X A k X k X k A X k A X k X k X σσσ===2222:.σ⨯⨯→故是线性的1112212210010000,,,00001001E E E E B ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦关键是求基元的像在基下的坐标:()()()11111221221110000000,00,Tab acd cE aE E cE E E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()12111221221201000000,00,Tab a cd c E E aE E cE E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()21111221222100010000,00,T ab bcd d E bE E dE E E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()2211122122200001000,00,Tab b cd d E E bE E dE E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即 0000.0000aba b A c d c d ⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎣⎦习 题 二A一、判断题1.√;2.×;3.√;4.√;5.×;6.√;7.×;8.×;9.√;10.√;11.×;12.×.二、填空题1.x ;2.n ;3.2,(1),i,i λλλλ-+-;4. 1,1λλ-+;5.200004014⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;6.200020012⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;7.O ; 8.O ;9.1λ-;10.6.三、单项选择题1.(d);2. (b);3. (b);4. (d);5. (a).B1.解(1)E A λ-()[]−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----=-+212]3,2[]2,1[020012201200120012λλλλλλλ ()[]()[]()[]()[]222311322132232)2(00)2(10001020)2(10201-⋅+-⋅-⋅--⋅+−−→−⎥⎥⎦⎤⎢⎢⎣⎡----−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----λλλλλλλλ ()[]⎥⎥⎦⎤⎢⎢⎣⎡-−−→−⎥⎥⎦⎤⎢⎢⎣⎡---⋅3123)2(11)2(00010001λλ, 3123()()1, ()(2).d d d λλλλ∴===-(2)E A λ-[][]()[]−−→−⎥⎥⎦⎤⎢⎢⎣⎡------−−→−⎥⎥⎦⎤⎢⎢⎣⎡------=+-λλλλλλλ13123,1111111111111()[][]3211222311111011010011012λλλλλλλλλλ+⋅-⎡⎤⎣⎦+----⎡⎤⎡⎤⎢⎥⎢⎥+--−−−→+−−−→⎢⎥⎢⎥⎢⎥⎢⎥-------⎣⎦⎣⎦[]()[]⎥⎥⎦⎤⎢⎢⎣⎡-++−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-++---⋅-+)2)(1(11)2)(1(0001011117312λλλλλλλλ, 1()1d λ∴=,1)(2+=λλd ,)2)(1()(3-+=λλλd .(3)E A λ-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=52340100010012345100010001λλλλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++---→542300100100012λλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++--→543200100010001232λλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++→5432111234λλλλ, 12()()()1d d d λλλ∴===,5432)(2344++++=λλλλλd .(4)[]1,2310013004100140071211721761671E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=−−→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦ ()[]()()()21122314162131113001000021000(1)0004210(4)210611106111λλλλλλλλλλλλλλ+-+⎡⎤⎣⎦-+-⎡⎤⎣⎦+⋅-⎡⎤⎣⎦⋅-⎡⎤⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥-+-⎢⎥⎢⎥−−−−→−−−−→⎢⎥⎢⎥-----+--⎢⎥⎢⎥--⎣⎦⎣⎦[]()2243232100010000(1)000(1)000621062106101010(1)0λλλλλλλλ+⋅⎡⎤⎣⎦+⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→−−−−→⎢⎥⎢⎥------⎢⎥⎢⎥---⎣⎦⎣⎦()()()2421[4()][24(1)]10[246][41][342]2210001000(1)0(1)0000010********(1)(1)0100101010λλλλλλ-⋅-⋅-+⋅-⋅-+⋅-⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥−−−→−−−−→⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦[][]242,4(2)3,4[32]1041000100(1)010001110(1)λλλ-+⋅⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 123()()()1d d d λλλ∴===,44)1()(-=λλd .2. 解 (1)∵4det ()(2)A λλ=-+,∴44)2()(+=λλD ,又∵01021210100≠-=++λλ,∴1)(3=λD ,从而1)()(21==λλD D .于是不变因子为1)()()(321===λλλd d d ,44)2()(+=λλd ;初等因子组为4)2(+λ. (2)2210010010010()00000()000()B λαλαλαλαλλαλαλαλα++⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥≅≅⎢⎥⎢⎥+-+⎢⎥⎢⎥+-+⎣⎦⎣⎦⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++≅22)()(11αλαλ, 故不变因子为 1)()(21==λλd d ,23)()(αλλ+=d ,24)()(αλλ+=d ; 初等因子组为 22)(,)(αλαλ++.(3)显然313()1,det ()(1)()D C D λλλλ==+=,而2(1)(5)08(1)adj ()3(1)(1)6(1)2(1)0(1)(3)C λλλλλλλλλλ+++⎡⎤⎢⎥=+++⎢⎥⎢⎥-++-⎣⎦, ∴1)(2+=λλD .因此2321)1()(,1)(,1)(+=+==λλλλλd d d ; 初等因子组:2)1(,1++λλ.(4)由第1题(4)知1)()()(321===λλλd d d ,44)1()(+=λλd .也可这样解:由行列式的Laplace 展开定理得43121det ()(1)411D λλλλλλ----=⋅=-+,故44)1()(-=λλD ;又)(λD 的左下角的三阶子式372471672170142+-=---+λλλλ与)(4λD 是互质的,所以1)(3=λD ,从而1)()(12==λλD D .因此44321)1()(,1)()(,1)(-====λλλλλd d d d ;初等因子组:4)1(-λ.3.解(1)∵12020(1)(1)(2)211E A λλλλλλλ---=-=+--+,∴1~12A J ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.(2)∵E A λ-611123034371230343104252373-+-+-=-++-+-=--+--=λλλλλλλλλλλλ 611123036411022-+-+++----=λλλλλλλ)i )(i )(1(123+--=-+-=λλλλλλ,∴~A J ⎥⎥⎦⎤⎢⎢⎣⎡-=i i 1. (3)∵[]1,231001300410014007121172117616171E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦[][][])1(12)1(13)6(14+⋅+-⋅+⋅+−−−→−λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------λλλλλλλλλλ2222)1()1(0100000)1(000011160124000)1(00031⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→22)1()1(11λλ, ∴初等因子组为2)1(-λ,2)1(-λ,于是⎥⎦⎤⎢⎣⎡=11011J ,⎥⎦⎤⎢⎣⎡=11012J ,故12111111JJ J ⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (4)0001001E A λλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎣⎦,()det()n nD E A λλλ=-=,又有一个1-n 阶子式0)1(1111≠-=----n λλλ,∴1)()(11===-λλD D n ,故1)()()(121====-λλλn d d d ,n n d λλ=)(;初等因子组为n λ,所以010~110A J ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. (事实上,A 本身就是一个Jordan 块)4.解(1)由第1题(2)知1)(1+=λλϕ,2)2)(1()(22--=-+=λλλλλϕ,所以12100~002011CA C C -⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (2)由第1题(3)知5432)(234++++=λλλλλϕ,故B 的有理标准是0005100401030012C -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦.5.解 由J 立即可知A 的初等因子组为2)1(-λ,2-λ,2)2(-λ,于是不变因子为1)()()(321===λλλd d d ,()24-=λλd ,225)2()1()(--=λλλd .即2)(1-=λλϕ,412136)(2342+-+-=λλλλλϕ,故200000000401001200101300016C ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦.6.解 (1)744744()481099418418f E A λλλλλλλλλ----=-=-+=++++2)9)(9(71490847+-=++--=λλλλλ.因为2441644(9)(9)4171 4114117411A E A E O ---⎡⎤⎡⎤⎢⎥⎢⎥-+=---=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦,所以最小多项式为)9)(9()(+-=λλλm .(2)32310()det()0132(2)(1)23D E B λλλλλλλλλ-=-=-=--=-+--,∵有一个二阶子式01101≠=--λ,∴1)()(21==λλD D .因此,23)1)(2()()(+-==λλλλd m . (3)对E C λ-施行初等变换得其Smith 标准形23()diag(1, 1, 1,(3),(3))S λλλ=--,∴35)3()()(-==λλλd m .7.证 若A 可对角化,则A 的最小多项式)(λm 无重零点,必要性得证. 若A 有一个无重零点的零化多项式)(λϕ,则因为)(deg )(deg λϕλ≤m ,故)(λm 也无重零点,由定理2.16知A 可对角化.8. 证 (1) 22A A E +=,22A A E O +-=,∴)1)(2(2)(2+-=-+=λλλλλϕ是A 的一个无重零点的零化多项式,故A 可对角化. (2)mA E =,∴1-mλ是A 的零化多项式,其零点2i ek mk πλ=(0,1,,1)k m =-是互不相同的,故A 可对角化.习 题 三A一、判断题1.√;2.√;3.√;4.√;5.√;6.√;7.√;8.×;9.√;10.×;11.√;12.√;13.×; 14.× 15.√;16.√;17.√;18.√;19.√;20.×;21.√;22√;.23.×;24.√;25.√.二、填空题1.0;2.0y ;3.()T111,,,2n;4. 12;5.Banach ;6.1;7.3;8.15,2FA A A∞==+=;9.3.三、单项选择题1.(c);2. (c);3. (b);4. (a);5. (b);6.(c).B1. 证 仅验证三角不等式,其余是显然的.设Tn ),,(1ξξ =x ,T n ),,(1ηη =y 是n中的任意两个元素.∑∑∑∑====+=+=+≤+=+n i ni ni i ni i i i i i 1111111)(y x y x ηξηξηξ;i ni i ni i i ni i ni ηξηξηξ≤≤≤≤≤≤≤≤∞+≤+≤+=+11111max max }{max max y x∞∞+=y x .2. 证 因为[],, x y C a b ∀∈及∈∀α,有(N 1) t t x x bad )( 1⎰=0≥,显然若0=x ,即0)(≡t x ,则01=x ;反之,若01=x ,即0d )( =⎰t t x ba,则由)(t x 的连续性,知0)(≡t x ,即0=x ;(N 2) 11d )(d )(x t t x t t x xba b aαααα===⎰⎰;(N 3) t t y t t x t t y t x yx bab ab ad )(d )(d )()(1⎰⎰⎰+≤+=+11y x +=;所以1 ⋅是[], C a b 上的范数.3.解121i 1i 22,max{1,i ,1i}x x x ∞=+-++===-+= 4.解1max{101,210,i 11i }max{2,3,22max{12i ,011,101i }max{4,2,1 4.A A ∞=++-++-+-+-===++-++--++-==5.证 (1)lim ,lim ,.n n n n x x X x y Y x y →∞→∞=∈=∈=设又只需证明即可 {}0lim lim lim lim lim 000,0,0,.n n n n n n n n n n n x y x y x x x y x x x y x x x y x y x y x y →∞→∞→∞→∞→∞≤-=-=-+-≤-+-=-+-=+=∴-=-==故即122lim ,1,,1,1, 1. max{,,,,1},,().n n n n n n N n n x x X N n N x x x x x x x x M x x x x n x M x ε→∞=∈=∃∈>-≤-≤-≤≤+=+∀∈≤ ()设则对使得当时,恒有从而有即取则,有故有界6.证 设x 是,()n X x X x 中任意一点是中收敛于的任一序列.()():,lim ()();:,lim ()().lim()()()(),:.n n n n n n n f X Y Y f x f x g Y Z Z g f x g f x g f x g f x g f X Z x →∞→∞→∞→=→==∴→ 由连续知在中有又由连续知在中有即在点处连续,:.x X g f X Z ∈→由的任意性知是连续映射7. 证 由于()n x 和()n y 都是X 中的Cauchy 序列,则0>∀ε,12,N N ∃∈,使得当1,N m n >时,2ε<-m n x x ; 当2,N m n >时,2ε<-m n y y .令},m ax {21N N N =,则当N n m >,时,有)()( m m n n m m n n y x y x y x y x ---≤---εεε=+<-+≤22m n m n y y x x ,这表明()n n x y -是中Cauchy 的序列,由的完备性知,数列()n n x y -收敛.100001110101010121 (1)[0, 1],0,[0, 1],()0,max ()()0,(N ).d(())d(())[0, 1],,max ()maxmax ()max ,d d (N ). ,[0,dx d ddx x x x d f C f x f x f f x f x f x f x f C f f x f x fx x f g C λλλλλλλ≤≤≤≤≤≤≤≤≤≤∀∈≠∃∈>≥≥>⋅∀∈∀∈=+=+=⋅∀∈8.证且即使得故即满足即满足01010101010d(()())1],max ()()maxd d ()dg() max ()()max d d max ()max dx x x x x f x g x f gf xg x xf x x f xg x x x f x ≤≤≤≤≤≤≤≤≤≤++=++⎡⎤≤⎡+⎤++⎢⎥⎣⎦⎣⎦≤+101010101010131d ()dg()()max maxd d d ()dg()max ()maxmax ()max ,d d (N ).,[0, 1].x x x dd x x x x d d f x x g x x x f x x f x g x f g x x C ≤≤≤≤≤≤≤≤≤≤≤≤≤≤++⎡⎤⎡⎤=+++=+⎢⎥⎢⎥⎣⎦⎣⎦⋅⋅即满足 所以是上的范数(2):D ]1 ,0[1C ]1 ,0[C →显然是线性的.因为1[0, 1]f C ∀∈,有110101d ()d ()maxmax ()max ,d d dx x t f x f x Df f x f x x≤≤≤≤≤≤=≤+=故D 是有界的. 9. 证 由于 ⋅是n n⨯上的方阵范数,故,n nA B ⨯∀∈及α∀∈,有(1)1*0AS AS -=≥,并且11*0A S AS S AS O A O --==⇔=⇔=;(2)11**A S AS O S AS A αααα--====;(3)()11111*A B S A B S S AS S BS S AS S BS -----+=+=+≤+**A B =+;(4)111*()()AB S ABS S AS S BS ---==11**S AS S BS AB --≤=;因此,* ⋅是n n⨯上的方阵范数.10. 2;F A 解 21i()det(),()0;i1f E A A λλλλρλ--=-==∴=-+H HH 21i 1i 22i 22i,(4),()4,i 1i 12i 22i 22.A A E A A A A A λλλλρλ---⎡⎤⎡⎤⎡⎤==-==-=⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦∴=11. 证 显然A λ≤.∵λ是可逆阵A 的特征值,则λ1是1A -特征值,故11A λ-≤,即11Aλ-≥. ∴11A A λ-≤≤.12.证 要证0(),x T ∈N 只需证明00.Tx =()0()(),0.lim ,,n n nn x T Tx n xx T →∞⊂=∀∈=由知于是当且是有界线性算子时有N0(lim )lim ()lim00,n n n n n Tx T x T x →∞→∞→∞====故0().x T ∈N习 题 四A一、判断题1.×;2.√;3.√;4.×;5.√;6.√;7.×;8.×.二、填空题1.2213e e 001cos x x x x ⎡⎤⎢⎥⎣⎦;2.222(1)tE t -+;3.1;4. 3e t ;5.22222222e e e e e e tt t t tt t t t ------⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 6.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-t t t 2cos 2cos cos ;7.1; 8.3e -. B1. sin cos d (),d cos sin tt A t t tt -⎡⎤=⎢⎥--⎣⎦解 []22d d det ()cos sin 0d d A t t t t t =+=⎡⎤⎣⎦,22sin cos d ()det()sin cos 1.d cos sin t t A t t t t t t-==+=-- 2. 2213e e 0 ().01cos x x x f x ⎡⎤'=⎢⎥⎣⎦解x3. 1 1 0 0 11 10 0 0 110 0e d e d e 11 ()d d2d 11.sin d cos d 1cos1sin1t tt t t A t t t t t t t t t ⎡⎤-⎡⎤⎰⎰⎢⎥⎢⎥==⎰⎰⎰⎢⎥⎢⎥⎢⎥⎢⎥-⎰⎰⎣⎦⎣⎦解 4. 证明(1)d d d d d d ()()()()d d d d d d T T T T T f x x x x Ax Ax x Ax Ax x A t t t t t t==+=+d d d d d ()2;d d d d d T T T T T T T T x x x x x x A x A x A x A x A t t t t t=+=+=.(2)d d d d d d ()()2.d d d d d d T T T T T T T x x x x x x x x x x x x t t t t t t=+=+=5. 证(1)若lim k k A A →∞=,则2lim 0k k A A →∞-=. ∵222()T TTk k k A AA A A A -=-=-(可以证明[1]2222H T A A A A ===),∴2lim 0T Tk k A A →∞-=,即lim T Tk k A A →∞=. 同理可证lim k k A A →∞=,由上已证的结果立即可得lim H H k k A A →∞=.(2)000()lim ()lim ()NNTkT kk Tk k k N N k k k c A c A c A ∞→∞→∞=====∑∑∑0lim()Nk Tk N k c A →∞==∑ 0(lim )N k T k N k c A →∞==∑0()k Tk k c A ∞==∑ 6. 证 令()3200det()11120113E A λλλλλ--=---=-=--得A 的全部特征值均为 2. 于是13B A =的所有特征值都是32,故()213B ρ=<,因此lim k k B O →∞=.7. 证 方法一: 当0=t 时,显然成立,故设0≠t .记010100t t A t ⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦. 22det()(i )(i )E A t t t λλλλ-=+=-+,t i 1=λ,t i 2-=λ.对t i 1=λ,解方程(i )0tE A x -=可得11i x ⎡⎤=⎢⎥⎣⎦;对t i 2-=λ解方程(i )0tE A x --=得21i x ⎡⎤=⎢⎥-⎣⎦.令11i i P ⎡⎤=⎢⎥-⎣⎦,则P 可逆且11/2i /21/2i /2P --⎡⎤=⎢⎥⎣⎦.所以01i 10i i 1i 111/2i /2e 0ee diag(e ,e )i i 1/2i /20e tt Attt P P ⎡⎤⎢⎥---⎣⎦--⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡+---+=----t t t t t t t t t t t t cos sin sin cos )e e (21)e e (i 21)e e (i 21)e e (21i i i i i i i i .方法二:记0110B ⎡⎤=⎢⎥-⎣⎦,21det()11E B λλλλ--==+,{}()i,i B σ=-.B 的最小多项式1)(2+=λλϕ,2)(deg =λϕ. 故设01e ()()tB a t E a t B =+.∵λt e 与λ)()(10t a t a +在()B σ上的值相等,即⎩⎨⎧=-=+-tt t a t a t a t a i 10i 10e )(i )(e )(i )(, ∴t t a t t cos 2e e )(i i 0=+=-,t t a tt sin i2e e )(i i 1=-=-.因此0110cos sin ecos sin sin cos t t t tE tB t t ⎡⎤⎢⎥-⎣⎦⎡⎤=+=⎢⎥-⎣⎦.8. 2eJordan ,e e e .e e e 2ttAtt t tt A t t t ------⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦解是块 9. 解 2214det()02(2)(1)031E A λλλλλλ----=-=----.∵(2)()A E A E O --≠,∴A 的最小多项式)1()2()(2--=λλλϕ.3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=. 由()f t λ与()T t λ在{}()1,2A σ=上的值相等,于是(1)对()e Atf At =有⎪⎩⎪⎨⎧=+=++=++tttt t a t a t a t a t a t a t a t a 2212210210e )(4)(e )(4)(2)(e )()()(,解得⎪⎩⎪⎨⎧+-=-+-=+-=t t t t t t t t t t t a t t a t t a 222221220e e e )(e 3e 4e 4)(e 2e 3e 4)(所以22100e (4e 3e 2e )010001tA t t t t ⎡⎤⎢⎥=-+⎢⎥⎢⎥⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+130020412)e 3e 4e 4(22t t t t⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+19004012164)e e e (22t t t t ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-=ttt t t t t t t tt e e 3e 300e 0e 4e 4e 13e 12e 12e 222222(2)对()sin()f At At =有01201212()()()sin ()2()4()sin 2()4()cos 2a t a t a t t a t a t a t t a t a t t t ++=⎧⎪++=⎨⎪+=⎩,解得⎪⎩⎪⎨⎧+-=-+-=+-=tt t t t a t t t t t a t t t t t a 2cos 2sin sin )(2cos 32sin 4sin 4)(2cos 22sin 3sin 4)(210. ∴2012sin()()()()At a t E a t A a t A =++sin 212sin 12sin 213cos 24sin 4sin 20sin 2003sin 3sin 2sin t t t t t t t t t t t -+-+⎡⎤⎢⎥=⎢⎥⎢⎥-+⎣⎦(注)可利用(1)的结果求(2)(或cos()At ):在(1)中分别以t i 和t i -替代t 得i e tA 和i etA-,再由公式i i i i e e e e sin()(cos())2i 2tA tA tA tAAt At ---+==或即得. 10. 解 210det()01(+1)01+2E A λλλλλλ-==-()A A E O -≠且,故A 的最小多项式2()(1)φλλλ=+,3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=,即012100010001()()010()001()012001012023f At a t a t a t -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦012021212012()()()0()()()2()0()2()()2()3()a t a t a t a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥=--+⎢⎥⎢⎥--+⎣⎦. 由()f t λ与()T t λ在A 上的谱值相等,于是(1)对()e Atf At =有001212()1()()()e ()2()e tta t a t a t a t a t a t t --=⎧⎪-+=⎨⎪-=⎩,解得012()1()22e e ()1e e t t t t a t a t t a t t ----=⎧⎪=--⎨⎪=--⎩012021212012()()()e 0()()()2()0()2()()2()3()122e e 1e e 0e e e 0e e e At t t t t t t tt t ta t a t a t a t a t a t a t a t a t a t a t a t t t t t t t -----------⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦-++-+⎡⎤⎢⎥=+-⎢⎥⎢⎥-⎣⎦. (2)对()sin()f At At =有001212()0()()()sin ()2()cos a t a t a t a t t a t a t t t =⎧⎪-+=-⎨⎪-=⎩,解得012()0()2sin cos ()sin cos a t a t t t t a t t t t =⎧⎪=-⎨⎪=-⎩.012021212012()()()sin()0()()()2()0()2()()2()3()a t a t a t At a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦02sin cos sin cos 0sin cos cos 0cos sin cos t t t t t t t t t t t t t t t t -+-⎡⎤⎢⎥=-+-⎢⎥⎢⎥--⎣⎦11.tr 2i 332i det(e )e e e .A A +-===解12. 解 此处775885050A --⎡⎤⎢⎥=---⎢⎥⎢⎥-⎣⎦,122()()()()x t x t x t x t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321C ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.因为775det()885(5)(5)(15),deg ()3,05E A λλλλλλϕλλ+--=+=-++=故设2012e ()()()()At a t E a t A a t A T At =++=.由tλe 与)(t T λ在(){5,5,15}A σ=--上的值相同,得方程组⎪⎩⎪⎨⎧=+-=+-=++--ttt t a t a t a t a t a t a t a t a t a 1521052105210e )(225)(15)( e )(25)(5)( e )(25 )(5 )(,解得 ⎪⎩⎪⎨⎧+-=-=-+=-----)e e 2(e )( )e (e )( )e 6e (3e )(1555200125510111555810t t t t t t t tt a t a t a ;于是 0121775105800e ()1()885()12014501050404025At a t a t a t --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+---+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--+-+-+-+---+--++=---------------t t tt t t t t t t t t t tt t t t t t t t t t 551555155555155515555515551555e 5e 5e 2e e 3e 24e e 2e 5e 5e 6e e 3e64e 2e e 5e 5e 4e e 3e 44e e 2101. 所以,解为 55155515551517e 9e 4e 1()e 17e 9e 6e 1017e 9e 2e t t t At t t t t t tx t C ------++⎡⎤⎢⎥==--+⎢⎥⎢⎥-+⎣⎦,即⎪⎪⎩⎪⎪⎨⎧+-=+--=++=------)e 2e 9e 17(101)()e 6e 9e 17(101)()e 49e e 17(101)(155531555215551tt t t t t t t t t x t x t x .习 题 五A一、判断题1.√;2.×;3.√;4.√;5.√;6.×;7.√;8.√;9.×;10.√;11.√;12.×;13.√;14.√ 15.√.二、填空题1.0;2.{}0;3.span A ;4.1;5.3;6.O ;7.123()1,()1,()(1)(2)d d d λλλλλλ==-=--;8.实;9.0; 10.1;11.1,a b c ===.三、单项选择题1.(d);2. (c);3. (c).B1.证 121212(1)(,,,),(,,,),(,,,),,T T T nn n n x y z ξξξηηηςςςλμ∀===∈∀∈及,有1111(I ),(),,;nnnk k k k k k k k k k k k k x y z k k k x z y z λμλξμηςλξςμηςλμ===<+>=+=+=<>+<>∑∑∑211(I ),,;n nk k k k k k k k x y k k y x ξηηξ==<>===<>∑∑231221(I ),0, ,=01,2,,,=01,2,,,00;nk k k nk kk k k x x k x x k k n k n x ξξξξ==<>=≥<>=⇔∀=⇔∀==⇔=∑∑且有有,.nk <⋅⋅>故是上的一种内积(2),,,,n nij ij ij A a B b C c λμ⨯⎡⎤⎡⎤⎡⎤∀===∈∀∈⎣⎦⎣⎦⎣⎦及,有1111111(I ),(),,;nnnnnnij ij ij ij ij ij ij i j i j i j A B C a b c a c b c A C B C λμλμλμλμ======<+>=+=+=<>+<>∑∑∑∑∑∑2111111(I ),,;nnnnnnij ij ij ij ij ij i j i j i j A B a b a b a b B A ======<>====<>∑∑∑∑∑∑2311112211(I ),0, ,0,1,2,,,00;n n n nij ij ij i j i j nnijijij i j A A a a a A A a i j n a a A O ======<>==≥<>==⇔∀===⇔=∑∑∑∑∑∑且有即,.n n⨯<⋅⋅>故是上的一种内积12211.nnij F i j A a A ==⎛⎫>== ⎪⎝⎭∑∑2. 证 右端) , ,(41>--<->++<=y x y x y x y x><+><+><+><=y y x y y x x x ,,,,(41),,,,><-><+><+><-y y x y y x x x 1(4,)4x y =<>=左端.3.证 (1)若⊥∈B x ,则B y ∈∀皆有y x ⊥,由假设B A ⊂,于是对每一个A y ∈皆有y x ⊥,即⊥∈A x ,故⊥⊥⊂A B .(2)若A x ∈,则⊥∈∀A y 皆有y x ⊥,故⊥⊥∈)(A x ,于是⊥⊥⊂)(A A .4.解 显然123.det 20,det 110,det 380,.A A A A A =>=>=>∴是实对称矩阵正定其余略.5. 证 “⇒”: 若n nA ⨯∈正定,则det det 0n A A =>,故A 非奇异.“⇐”: 若A 非奇异,则1det 0ni i A λ==≠∏,从而),,2,1(0n i i =≠λ. 又因为A 半正定,故有0≥i λ,于是),,2,1(0n i i =>λ,所以A 是正定的.6.证 先验证2A 是Hermite 矩阵.22222()()(),Hermite .H H H H H H H H H H H A A AA AA A A AA A AA A AA AA AAA A A A A ======∴是矩阵再证2A 是正定的.12222 ,,Hermite 0(1,2,,).0(1,2,,),.n i i i A n A i n A i n A λλλλλλ∈≠=>=设是的个特征值,由是矩阵且可逆知,且从而的所有特征值故是正定矩阵7. 解 (1)令3i 1i 02010E A λλλλλλ---==-=-得01=λ,22=λ,23-=λ,由此判定A不是正定的.对01=λ解方程组0Ax -=,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000i 0100i 1i 0321ξξξ,亦即⎩⎨⎧==+ 00i 132ξξξ,得⎩⎨⎧==321i 0ξξξ. 若取13=ξ,则有10i 1x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=. 对22=λ解)0A x -=可得2i 1x ⎢⎥⎢⎥⎣⎦=-.对23-=λ解()0A x -=可得⎥⎥⎦⎤⎢⎢⎣⎡--=1i 23x .由于1x ,2x ,3x 分别对应于A 的不同特征值,故彼此正交.将它们单位化,得10i 1/α⎡⎤⎢⎢⎢⎣=,2i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦=-,3i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦-=-.令[]12301/,,i i /2i /21/21/2U ααα⎡-⎢==--⎢⎥⎢⎥⎢⎥⎣⎦,01/i /21/2i /21/2H U ⎡-⎢=⎢⎥⎢⎥-⎢⎥⎣⎦,则0H U AU ⎡⎤⎢⎥=⎢⎥⎢⎣.习 题 六A一、判断题1.×;2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.×.二、填空题1.1122112201010-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦;2. (1)()12(1)(1)()213(1)(1)321( 3 24)41(3 30)(0,1,2,)41( 24)4k k k k k k k x x x x x k x x +++++⎧=-+⎪⎪=-++=⎨⎪⎪=-⎩;3.1()D L U --;4.Seidel,Jacobi .B1. 解(1)110000100005000.55000A-⎡⎤⎢⎥⎣⎦-=-, 3.0001A ∞=,120000A-∞=,∴cond 60002A ∞=.(2)1 1.38 2.1810.2106 2.79 4.56B -⎡⎤⎢⎥⎣⎦-=-,17.35B =,1132.00B -=,∴1cond 235.2B =.(3)12212max{,}1009910099,cond (6-3).min{,}99989998C C λλλλλλ--⎡⎤==⎢⎥--⎣⎦是实对称矩阵故见令12122019810,9999cond 39206.C λλλλλλ=--===∴==≈得 2. 解(1)对增广矩阵施行行的初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡330002121041123232300212104112522162134112得到等价的上三角方程组⎪⎩⎪⎨⎧==+-=++330212142332321x x x x x x .进行回代,得方程组的解为:12/)4( ,1)21/(21 ,13/3321323=--==--===x x x x x x .故解为(1,1,1).T x =(2)对增广矩阵施行初等行变换11034110341103421111011590115931123041715003132112314033280001319⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦得到等价的上三角方程组1242343443459313211319x x x x x x x x x ++=⎧⎪---=-⎪⎨+=⎪⎪-=-⎩.进行回代,得方程组的解:43419219/(13), (2113)/3,133x x x =--==-=2341244055(95), 433939x x x x x x =--++==--=-,故解为()5540192,,,.3939313Tx -=3. 解 首先用顺序Gauss 消去法.对增广矩阵施行初等行变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1.982.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯-⨯→-65424101798.0104453.0101467.00104441.0108007.0106667.006781.0167.001.0012.0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯→-9924109774.0101762.000104441.0108007.0106667.006781.0167.001.0012.0,经回代得547.53=x ,43.722=x ,05.811-=x . 此时,620.174310Ax b -=⨯. 下面用列主元素Gauss 消去法.对增广矩阵施行初等行变换(下画横线者为主元素)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9812.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-6744.01670.0105500.00101179.0105909.04584.009812.41200320022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-5329.0109610.000101179.0105909.04584.009812.41200320012, 经回代得46.17,76.45,545.5123=-==x x x . 此时,289.22=-b Ax .列主元素Gauss 消去法比顺序Gauss 消去法的精度高.4. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ). 计算结果如下表:解为767354.01=x ,138410.12=x ,125368.23=x .Seidel 迭代格式与计算结果如下:()()()⎪⎪⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k );5. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ), 因为()()21113300044335110,det(),1,444481100044M E M M λλλλλρλ⎡⎤-⎢⎥⎢⎥=--=-=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦所以Jacobi 迭代格式收敛.Seidel 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ).因为系数矩阵A 对称,且123det 40,det 70,det 240,,A A A A =>=>=>从而正定故Seidel 迭代格式收敛.6. 解(1)Jacobi 迭代矩阵1111022()10111022M D L U -⎡⎤-⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎣⎦;215det()()4E M λλλ-=+,1()1M ρ=>.因此,Jacobi 迭代格式发散.Seidel 迭代矩阵12111000222011111()100010222000111000222M D L U -⎡⎤⎡⎤-⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥--⎣⎦⎣⎦; 221det()()2E M λλλ-=+,21()2M ρ=.因此Seidel 迭代格式收敛.(2)Jacobi 迭代矩阵1100022022010101101001220220M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦;31det()E M λλ-=,1()0M ρ=.因此, Jacobi 迭代格式收敛.Seidel 迭代矩阵2100022022110001023021000002M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦;()22det()2E M λλλ-=-,2()21M ρ=>.因此, Seidel 迭代格式发散.*7.用追赶法解线性方程组12123233 1, 247, 259.x x x x x x x +=-⎧⎪++=⎨⎪+=⎩解 系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=520142013A .31=u ,3/2/212==u l ,3/101422=⋅-=l u ,5/3/223==u l ,5/221533=⋅-=l u ;11-=y ,3/237122=-=y l y ,5/229233=-=y l y ;1/333==∴u y x ,2/)1(2322=⋅-=u x y x ,1/)1(1211-=⋅-=u x y x .即解为(1,2,1).Tx =- 8. 解 把方程组调整为⎪⎩⎪⎨⎧=+=+=++22846231312123x x x x x x x , 此时系数矩阵为312041102A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.Seidel 迭代矩阵111200033301211()000010044000111106263M D L U -⎡⎤⎡⎤--⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥=-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦, 11det()(66E M λλλλ-=---+,()1M ρ=<.因此,此时Seidel 迭代格式()()()()()()()⎪⎪⎩⎪⎪⎨⎧-=-=--=++++ )2(21)8(41)26(3113111121213k k k k k k k x x x x x x x 收敛.习 题 七A一、判断题1.×;2.√;3.×;4.×.二、填空题1.1,1n +;2. 11:455;:;:33-一阶差商,,二阶差商1,三阶差商;3.16.640,0.096,16.736.B1. 解 因为0120.15,0.00,0.10,0.20.x x x x ====故取则2(0.150.10)(0.150.20)(0.15)(0.15)0.000(0.000.10)(0.000.20)(0.150.00)(0.150.20)0.0998(0.100.00)(0.100.20)(0.150.00)(0.15 f L --≈=⨯----+⨯----+0.10)0.1987(0.200.00)(0.200.10)00.074850.074510.1494.⨯--=++= 521(0.15)(0.150.00)(0.150.10)(0.150.20) 6.2510.3!R -≤---=⨯2.解 对于点76.35x =,取076x =,177x =,278x =,379x =. 作差商表于是有2(1)(76.35)(76.35)2.832670.0689(76.3576)0.00306(76.3576)(76.3577) 2.832670.024120.00070 2.85609.f N ≈=+-+--=+-=32(2)(76.35)(76.35)(76.35)0.00017(76.3576)(76.3577)(76.3578) 2.856090.00006 2.85615.f N N ≈=+---=+=3. 解 选01220.20,0.40,0.60,0.80x x x x ====.作差商表:。

大学数学基础教程课后答案(微积分)

大学数学基础教程课后答案(微积分)

z c -a
-b a x
O
b y
(4) D = ( x, y, z ) x ≥ 0, y ≥ 0, z ≥ 0, x 2 + y 2 + z 2 < 1
{
}
z 1
O x 1

y
2
4.求下列各极限: (1) lim 1 − xy 1−0 = =1 2 2 x +y 0 +1 ln( x + e y ) = ln( 1 + e 0 ) = ln 2 1+ 0
4
t t t t z x = −2 sin 2( x − ), z t = sin 2( x − ), z xt = 2 cos 2( x − ), z tt = − cos 2( x − ) 2 2 2 2 t t 2 z tt + z xt = −2 cos 2( x − ) + 2 cos 2( x − ) = 0 . 2 2 y x 1 y 1 x e , z y = e x , dz = − 2 e x dx + e dy ; 2 x x x x
(1)为使函数表达式有意义,需 y − 2 x ≠ 0 ,所以在 y − 2 x = 0 处,函数间
(2)为使函数表达式有意义,需 x ≠ y ,所以在 x = y 处,函数间断。 习题 1—2 1.( 1) z =
x y + y x
∂z 1 y ∂z 1 x = − 2; = − . ∂x y x ∂y x y 2 (2) ∂z = y cos( xy) − 2 y cos( xy) sin( xy) = y[cos( xy) − sin( 2 xy)] ∂x ∂z = x cos( xy) − 2 x cos( xy) sin( xy) = x[cos( xy) − sin( 2 xy)] ∂y (3) ∂z = y (1 + xy) y −1 y = y 2 (1 + xy) y −1 , ∂x lnz= yln(1+xy),两边同时对 y 求偏导得 1 ∂z x = ln( 1 + xy) + y , z ∂y 1 + xy

北京工业大学出版社工程图学基础答案

北京工业大学出版社工程图学基础答案

c
d
返回
下一页
P17-1
过点D作直线垂直与已知平面
d' e' e a d
b'
a'
c' b
c
返回
下一页
P17-2
过点M作平面垂直与已知两平面
c'd' e' a'b' b a m' g' d m c g
返回
下一页
f' e f
P17-3
判断已知两平面是否垂直
c' b' a' a c PH b
垂直
返回
p27
p28
返回
立体与立体相交
p29
1 3 2 4 12 13
p30
5 7
6 8 14 p33 15
p31
9 10 11
p32
16 17 p34 18
19 20 p35 21 22
返回
轴侧图
1 p36 3 5
2 4
p37
6 7
1 p38 3 5
2 4
返回
组合体
1 p39 3 5 2 4 6
1 p40 3
下一页
PV
P17-4
判断两已知平面是否垂直
PV
QV
QH
PH
垂直
返回
下一页
P18-1
用换面法求AB实长及与H、V面的夹角
返回
下一页
P18-2
求三角形ABC的实形
返回
下一页
P18-3
用换面法求平行四边形ABCD的实形
返回
下一页
P19-4
求三角形ABC与H面的夹角

工程数学-线性代数第五版课后习题答案

工程数学-线性代数第五版课后习题答案

10 求下列矩阵的逆矩阵
(1)
1 2
2 5

A
12 25
|A| 1 故 A 1 存在 因为
A*
A11 A21
A12 A22
52 21

A 1 1 A* | A|
52 21
(2) cos sin
sin cos
解 A co s si n
a13 a23 a33 x3
(a11x1 a12x2 a13x3
a 12x1 a22x2 a23x3
x1
a13x1 a23x2 a33x3) x2
x3
a11 x12 a22 x22 a33 x32 2a12 x1x2 2a13 x1x3 2a23 x2x3
4 设A
12 13
B
10 12

(1)AB BA 吗 ?
所以有 x2 12 z1 4 z2 9 z3
x3 10 z1 z2 16 z3
11 1
1 23
2 设A 1 1 1 B 1 2 4
1 11
0 51
求 3AB 2A 及 ATB
11 1 1 2 3
11 1
解 3 AB 2 A 3 1 1 1 1 2 4 2 1 1 1
1 11 0 5 1
1 11
058 30 56
3 32 3
0
3 32
00
3
4 436 2
0
4 43
00
4
5 5 4 10 3
0
5 54
00
5
k k k 1 k (k 1) k 2
Ak
0
k
2 k k1
00
k
用数学归纳法证明

工程数学基础教程天津大学课后答案

工程数学基础教程天津大学课后答案

工程数学基础教程天津大学课后答案
第二章
2-1
某建筑物场地地表以下土层依次为:(1)中砂,厚2.0m,潜水面在地表下1m处,(2)粘土隔离层,厚2.0m,重度(3)粗砂饱和重度含承压水,承压水位高出地表2.0m(取无隆起的危险?若基础埋深)。

问地基开挖深达1m 时,坑底有水,施工时除将中砂层内地下水位降到坑底外,还须设法将粗砂层中的承压水位降几米才行?
【解】
(1)地基开挖深1m时持力层为中砂层承压含水层顶面以上土的总覆盖压力:20×1+19×2=58kPa承压含水层顶部净水压力:10×(2+2+2)=60kPa 因为58承压含水层顶面以上土的总覆盖压力:20×0.5+19×2=48kPa≥承压含水层顶部净水压力=10×≤4.8m;故,还应将承压水位降低6-4.8=1.2m。

仅作参考。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程数学基础习题解答习题一A一、判断题1.√;,2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.√;10.×.二、填空题1.;C C A B2.111(){1,2,3,4},(){,,},(){,,},(){1,4},(){2,3};f f a b e f A a b e f B f b --=====D R3.满;4.2sup =E ,3inf -=E ; 5.0; 6.0; 7. n ; 8.Y .B1.证 ()y f A B ∀∈⋂,x A B ∃∈⋂使得)(x f y =.由x A B ∈⋂,得x A ∈,且x B ∈故()()y f x f A =∈且()y f B ∈,即()()y f A f B ∈⋂,因此()()()f A B f A f B ⋂⊂⋂.当f 是单射时,只需证明()()()f A f B f A B ⋂⊂⋂即可: ()()(),y f A f B f ∀∈⋂⊂R f 由是单射知,().(),(),1X y f x y f A y f B x ∃=∈∈∈使得且,,()(),x A x B x A B y f x f A B ∴∈∈∈⋂=∈⋂且即从而故()()()f A f B f A B ⋂⊂⋂.是可能的,例如,2:,[2, 0],[1, 3],[1, 0].f xx A B A B =-=-⋂=-取则()([1,0])[0, 1], f A B f ⋂=-=于是而[][]()()0, 4[0, 9]0, 4.f A f B ⋂=⋂=从而有 .2. 证(1)n ∀∈,有)2 ,2(12 ,12][-⊂-+-n n ,故 ∞=-⊂-+-1)2 ,2(12 12][n n ,n .另一方面,)2 ,2(-∈∀x ,k ∃∈,使][12 ,12k k x -+-∈,故 ∞=-+-∈1][12 12n n ,n x ,于是⊂-)2 ,2( ∞=-+-1][12 12n n,n .因此, ∞=-+-=-1][12 ,12)2 ,2(n nn .(2)n ∀∈,有)12 ,12(]2 ,2[n n +--⊂-,故 ∞=+--⊂-1)12 ,12(]2 ,2[n n n .另一方面,对任意]2 ,2[-∉x ,即2>x ,k ∃∈,使得212>+>kx ,即)12 ,12(k k x +--∉,从而 ∞=+--∉1)12 ,12(n n n x ,故 ∞=-⊂+--1]2,2[)12 ,12(n n n .因此, ∞=+--=-1)12,12(]2,2[n n n .3. sup ,sup ,sup ,.A A A μμμμ''===证设且要证唯一只需证明即可sup ,,,sup ,,;.inf .A A A A A μμμμμμμμμμ'''=≤=''≤= 因为是最小上界而是的上界故又因为是最小上界而是的上界故因此 类似地可以证明是唯一的 4. 证 设{}D Y αα∈是线性空间X 的一族子空间,要证D Y X αα∈⋂也是的线性子空间.显然D Y αα∈⋂≠∅,z 只需证明.D Y X αα∈⋂对的线性运算是封闭的事实上,,Dx y Y αα∈∀∈⋂及,λ∀∈,从而对每一个D ∈α,有,x y Y α∈,故x y Y α+∈,x Y αλ∈.于是,D x y Y αα∈+∈⋂,D x Y ααλ∈∈⋂.因此,DY αα∈⋂是X 的线性子空间. 5. ,,,W f g W λ∀∈∀∈证显然包含零多项式故非空;又及,有()(0)()(0)(0)(0)(0)(0)[(0)(0)][(0)(0)]000,f g f g f g f g f f g g '''''+++=+++=+++=+=即;()(0)()(0)(0)(0)[(0)(0)]00,.f g W f f f f f f f W λλλλλλλ'''+∈+=+=+==∈即 [0, 1].n W P 所以,是的线性子空间1111021121001121 [0, 1],(),()2.(0)(0)0,0,,()(1).n n n n n n n n n n n f W P f x a x a x a x a f x na x a x a f f a a a a f x a x a x a x a x -----'∀∈⊂=++++=+++'+=+==-=++++-设则由得即故23(1,,,,),dim .n x x x x W W n -=由上可知,是的一个基故6. 1(1),(0)0.()0,0.T T T x T T x -⇒===“”:因为是线性的故有于是,若则由存在知是单射,从而有 1T T -⇐“”:要证存在,只需证明是单射:121212121212,,((),()()()0,0,,.x x X T x T x T x x T x T x x x x x T ∀∈=-=-=-==当)即时由条件得即故是单射 1112121211221122(2),,,,,s.t.,,(),().y y Y x x X y Tx y Tx x T y x T y λλ--∀∈∀∈∃∈====及即于是有1111111221122112211221122(+)[()()][()]()(),T y y T T x T x T T x x x x T y T y λλλλλλλλλλ-----=+=+=+=+1:.T Y X -→故是线性的7. 2222:,.B A σ⨯⨯→解首先验证是线性的然后求其在即下的矩阵221212,,,,X X k k σ⨯∀∈∀∈由的定义,有 10010000,,,0001001()B ⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦1122011221012021122(+)(+)+()+(),k X k X A k X k X k A X k A X k X k X σσσ===2222:.σ⨯⨯→故是线性的1112212210010000,,,00001001E E E E B ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦关键是求基元的像在基下的坐标:()()()11111221221110000000,00,Tab acd cE aE E cE E E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()12111221221201000000,00,Tab a cd c E E aE E cE E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()21111221222100010000,00,Tab bcd dE bE E dE E E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()2211122122200001000,00,Tab b cd d E E bE E dE E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即0000.0000aba b A c d c d ⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎣⎦习 题 二A一、判断题1.√;2.×;3.√;4.√;5.×;6.√;7.×;8.×;9.√;10.√;11.×;12.×.二、填空题1.x ;2.n ;3.2,(1),i,i λλλλ-+-;4. 1,1λλ-+;5.200004014⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;6.200020012⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;7.O ; 8.O ;9.1λ-;10.6.三、单项选择题1.(d);2. (b);3. (b);4. (d);5. (a).B1.解(1)E A λ-()[]−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----=-+212]3,2[]2,1[020012201200120012λλλλλλλ ()[]()[]()[]()[]222311322132232)2(00)2(10001020)2(10201-⋅+-⋅-⋅--⋅+−−→−⎥⎥⎦⎤⎢⎢⎣⎡----−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----λλλλλλλλ ()[]⎥⎥⎦⎤⎢⎢⎣⎡-−−→−⎥⎥⎦⎤⎢⎢⎣⎡---⋅3123)2(11)2(00010001λλ,3123()()1, ()(2).d d d λλλλ∴===-(2)E A λ-[][]()[]−−→−⎥⎥⎦⎤⎢⎢⎣⎡------−−→−⎥⎥⎦⎤⎢⎢⎣⎡------=+-λλλλλλλ13123,1111111111111()[][]3211222311111011010011012λλλλλλλλλλ+⋅-⎡⎤⎣⎦+----⎡⎤⎡⎤⎢⎥⎢⎥+--−−−→+−−−→⎢⎥⎢⎥⎢⎥⎢⎥-------⎣⎦⎣⎦[]()[]⎥⎥⎦⎤⎢⎢⎣⎡-++−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-++---⋅-+)2)(1(11)2)(1(0001011117312λλλλλλλλ, 1()1d λ∴=,1)(2+=λλd ,)2)(1()(3-+=λλλd .(3)E A λ-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=52340100010012345100010001λλλλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++---→542300100100012λλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++--→543200100010001232λλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++→5432111234λλλλ, 12()()()1d d d λλλ∴===,5432)(2344++++=λλλλλd .(4)[]1,2310013004100140071211721761671E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=−−→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦()[]()()()21122314162131113001000021000(1)0004210(4)210611106111λλλλλλλλλλλλλλ+-+⎡⎤⎣⎦-+-⎡⎤⎣⎦+⋅-⎡⎤⎣⎦⋅-⎡⎤⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥-+-⎢⎥⎢⎥−−−−→−−−−→⎢⎥⎢⎥-----+--⎢⎥⎢⎥--⎣⎦⎣⎦ []()2243232100010000(1)000(1)000621062106101010(1)0λλλλλλλλ+⋅⎡⎤⎣⎦+⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→−−−−→⎢⎥⎢⎥------⎢⎥⎢⎥---⎣⎦⎣⎦()()()2421[4()][24(1)]10[246][41][342]2210001000(1)0(1)0000010********(1)(1)0100101010λλλλλλ-⋅-⋅-+⋅-⋅-+⋅-⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥−−−→−−−−→⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦[][]242,4(2)3,4[32]1041000100(1)010001110(1)λλλ-+⋅⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 123()()()1d d d λλλ∴===,44)1()(-=λλd .2. 解 (1)∵4det ()(2)A λλ=-+,∴44)2()(+=λλD ,又∵01021210100≠-=++λλ,∴1)(3=λD ,从而1)()(21==λλD D .于是不变因子为1)()()(321===λλλd d d ,44)2()(+=λλd ;初等因子组为4)2(+λ. (2)2210010010010()00000()000()B λαλαλαλαλλαλαλαλα++⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥≅≅⎢⎥⎢⎥+-+⎢⎥⎢⎥+-+⎣⎦⎣⎦⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++≅22)()(11αλαλ, 故不变因子为 1)()(21==λλd d ,23)()(αλλ+=d ,24)()(αλλ+=d ;初等因子组为 22)(,)(αλαλ++.(3)显然313()1,det ()(1)()D C D λλλλ==+=,而2(1)(5)08(1)adj ()3(1)(1)6(1)2(1)0(1)(3)C λλλλλλλλλλ+++⎡⎤⎢⎥=+++⎢⎥⎢⎥-++-⎣⎦, ∴1)(2+=λλD .因此2321)1()(,1)(,1)(+=+==λλλλλd d d ; 初等因子组:2)1(,1++λλ.(4)由第1题(4)知1)()()(321===λλλd d d ,44)1()(+=λλd .也可这样解:由行列式的Laplace 展开定理得43121det ()(1)411D λλλλλλ----=⋅=-+,故44)1()(-=λλD ;又)(λD 的左下角的三阶子式372471672170142+-=---+λλλλ与)(4λD 是互质的,所以1)(3=λD ,从而1)()(12==λλD D .因此44321)1()(,1)()(,1)(-====λλλλλd d d d ;初等因子组:4)1(-λ.3.解(1)∵12020(1)(1)(2)211E A λλλλλλλ---=-=+--+,∴1~12A J ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.(2)∵E A λ-611123034371230343104252373-+-+-=-++-+-=--+--=λλλλλλλλλλλλ 611123036411022-+-+++----=λλλλλλλ)i )(i )(1(123+--=-+-=λλλλλλ,∴~A J ⎥⎥⎦⎤⎢⎢⎣⎡-=i i 1. (3)∵[]1,231001300410014007121172117616171E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦[][][])1(12)1(13)6(14+⋅+-⋅+⋅+−−−→−λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------λλλλλλλλλλ2222)1()1(0100000)1(000011160124000)1(00031⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→22)1()1(11λλ, ∴初等因子组为2)1(-λ,2)1(-λ,于是⎥⎦⎤⎢⎣⎡=11011J ,⎥⎦⎤⎢⎣⎡=11012J ,故12111111JJ J ⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (4)0001001E A λλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎣⎦,()det()n nD E A λλλ=-=,又有一个1-n 阶子式0)1(1111≠-=----n λλλ,∴1)()(11===-λλD D n ,故1)()()(121====-λλλn d d d ,n n d λλ=)(;初等因子组为n λ,所以010~110A J ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. (事实上,A 本身就是一个Jordan 块)4.解(1)由第1题(2)知1)(1+=λλϕ,2)2)(1()(22--=-+=λλλλλϕ,所以12100~002011CA C C -⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (2)由第1题(3)知5432)(234++++=λλλλλϕ,故B 的有理标准是0005100401030012C -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦.5.解 由J 立即可知A 的初等因子组为2)1(-λ,2-λ,2)2(-λ,于是不变因子为1)()()(321===λλλd d d ,()24-=λλd ,225)2()1()(--=λλλd .即2)(1-=λλϕ,412136)(2342+-+-=λλλλλϕ,故200000000401001200101300016C ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦.6.解 (1)744744()481099418418f E A λλλλλλλλλ----=-=-+=++++2)9)(9(71490847+-=++--=λλλλλ.因为2441644(9)(9)4171 4114117411A E A E O ---⎡⎤⎡⎤⎢⎥⎢⎥-+=---=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦,所以最小多项式为)9)(9()(+-=λλλm .(2)32310()det()0132(2)(1)23D E B λλλλλλλλλ-=-=-=--=-+--,∵有一个二阶子式01101≠=--λ,∴1)()(21==λλD D .因此,23)1)(2()()(+-==λλλλd m . (3)对E C λ-施行初等变换得其Smith 标准形23()diag(1, 1, 1,(3),(3))S λλλ=--,∴35)3()()(-==λλλd m .7.证 若A 可对角化,则A 的最小多项式)(λm 无重零点,必要性得证. 若A 有一个无重零点的零化多项式)(λϕ,则因为)(deg )(deg λϕλ≤m ,故)(λm 也无重零点,由定理2.16知A 可对角化.8. 证 (1) 22A A E +=,22A A E O +-=,∴)1)(2(2)(2+-=-+=λλλλλϕ是A 的一个无重零点的零化多项式,故A 可对角化. (2)mA E =,∴1-mλ是A 的零化多项式,其零点2i ek mk πλ=(0,1,,1)k m =-是互不相同的,故A 可对角化.习 题 三A一、判断题1.√;2.√;3.√;4.√;5.√;6.√;7.√;8.×;9.√;10.×;11.√;12.√;13.×; 14.× 15.√;16.√;17.√;18.√;19.√;20.×;21.√;22√;.23.×;24.√;25.√.二、填空题1.0;2.0y ;3.()T111,,,2n;4. 12;5.Banach ;6.1;7.3;8.15,2FA A A∞==+=;9.3.三、单项选择题1.(c);2. (c);3. (b);4. (a);5. (b);6.(c).B1. 证 仅验证三角不等式,其余是显然的.设T n ),,(1ξξ =x ,Tn ),,(1ηη =y 是n中的任意两个元素.∑∑∑∑====+=+=+≤+=+n i ni ni i ni i i i i i 1111111)(y x y x ηξηξηξ;i ni i ni i i ni i ni ηξηξηξ≤≤≤≤≤≤≤≤∞+≤+≤+=+11111max max }{max max y x∞∞+=y x .2. 证 因为[],, x y C a b ∀∈及∈∀α,有(N 1) t t x x bad )( 1⎰=0≥,显然若0=x ,即0)(≡t x ,则01=x ;反之,若01=x ,即0d )( =⎰t t x ba,则由)(t x 的连续性,知0)(≡t x ,即0=x ;(N 2) 11d )(d )(x t t x t t x xba b aαααα===⎰⎰;(N 3) t t y t t x t t y t x yx bab ab ad )(d )(d )()(1⎰⎰⎰+≤+=+11y x +=;所以1 ⋅是[], C a b 上的范数.3.解121i 1i 22,max{1,i ,1i}x x x ∞=+-++===-+=4.解1max{101,210,i 11i }max{2,3,22max{12i ,011,101i }max{4,2,1 4.A A ∞=++-++-+-+-===++-++--++-==5.证 (1)lim ,lim ,.n n n n x x X x y Y x y →∞→∞=∈=∈=设又只需证明即可 {}0lim lim lim lim lim 000,0,0,.n n n n n n n n n n n x y x y x x x y x x x y x x x y x y x y x y →∞→∞→∞→∞→∞≤-=-=-+-≤-+-=-+-=+=∴-=-==故即122lim ,1,,1,1, 1. max{,,,,1},,().n n n n n n N n n x x X N n N x x x x x x x x M x x x x n x M x ε→∞=∈=∃∈>-≤-≤-≤≤+=+∀∈≤ ()设则对使得当时,恒有从而有即取则,有故有界6.证 设x 是,()n X x X x 中任意一点是中收敛于的任一序列.()():,lim ()();:,lim ()().lim()()()(),:.n n n n n n n f X Y Y f x f x g Y Z Z g f x g f x g f x g f x g f X Z x →∞→∞→∞→=→==∴→ 由连续知在中有又由连续知在中有即在点处连续,:.x X g f X Z ∈→由的任意性知是连续映射7. 证 由于()n x 和()n y 都是X 中的Cauchy 序列,则0>∀ε,12,N N ∃∈,使得当1,N m n >时,2ε<-m n x x ; 当2,N m n >时,2ε<-m n y y .令},m ax {21N N N =,则当N n m >,时,有)()( m m n n m m n n y x y x y x y x ---≤---εεε=+<-+≤22m n m n y y x x ,这表明()n n x y -是中Cauchy 的序列,由的完备性知,数列()n n x y -收敛.100001110101010121 (1)[0, 1],0,[0, 1],()0,max ()()0,(N ).d(())d(())[0, 1],,max ()maxmax ()max ,d d (N ). ,[0,dx d ddx x x x d f C f x f x f f x f x f x f x f C f f x f x fx x f g C λλλλλλλ≤≤≤≤≤≤≤≤≤≤∀∈≠∃∈>≥≥>⋅∀∈∀∈=+=+=⋅∀∈8.证且即使得故即满足即满足01010101010d(()())1],max ()()maxd d ()dg() max ()()max d d max ()max dx x x x x f x g x f gf xg x xf x x f xg x x x f x ≤≤≤≤≤≤≤≤≤≤++=++⎡⎤≤⎡+⎤++⎢⎥⎣⎦⎣⎦≤+101010101010131d ()dg()()max maxd d d ()dg()max ()maxmax ()max ,d d (N ).,[0, 1].x x x dd x x x x d d f x x g x x x f x x f x g x f g x x C ≤≤≤≤≤≤≤≤≤≤≤≤≤≤++⎡⎤⎡⎤=+++=+⎢⎥⎢⎥⎣⎦⎣⎦⋅⋅即满足 所以是上的范数(2):D ]1 ,0[1C ]1 ,0[C →显然是线性的.因为1[0, 1]f C ∀∈,有110101d ()d ()maxmax ()max ,d d dx x t f x f x Df f x f x x≤≤≤≤≤≤=≤+=故D 是有界的. 9. 证 由于 ⋅是n n⨯上的方阵范数,故,n nA B ⨯∀∈及α∀∈,有(1)1*0AS AS -=≥,并且11*0A S AS S AS O A O --==⇔=⇔=;(2)11**A S AS O S AS A αααα--====;(3)()11111*A B S A B S S AS S BS S AS S BS -----+=+=+≤+**A B =+;(4)111*()()AB S ABS S AS S BS ---==11**S AS S BS AB --≤=;因此,* ⋅是n n⨯上的方阵范数.10. 2;F A ==解 21i()det(),()0;i1f E A A λλλλρλ--=-==∴=-+H HH 21i 1i 22i 22i,(4),()4,i 1i 12i 22i 22.A A E A A A A A λλλλρλ---⎡⎤⎡⎤⎡⎤==-==-=⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦∴=11. 证 显然A λ≤.∵λ是可逆阵A 的特征值,则λ1是1A -特征值,故11A λ-≤,即11Aλ-≥. ∴11A A λ-≤≤.12.证 要证0(),x T ∈N 只需证明00.Tx =()0()(),0.lim ,,n n nn x T Tx n xx T →∞⊂=∀∈=由知于是当且是有界线性算子时有N0(lim )lim ()lim00,n n n n n Tx T x T x →∞→∞→∞====故0().x T ∈N习 题 四A一、判断题1.×;2.√;3.√;4.×;5.√;6.√;7.×;8.×.二、填空题1.2213e e 001cos x x x x ⎡⎤⎢⎥⎣⎦;2.222(1)tE t -+;3.1;4. 3e t ;5.22222222e e e e e e tt t t tt t t t ------⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 6.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-t t t 2cos 2cos cos ;7.1; 8.3e -. B1. sin cos d (),d cos sin tt A t t tt -⎡⎤=⎢⎥--⎣⎦解 []22d d det ()cos sin 0d d A t t t t t =+=⎡⎤⎣⎦,22sin cos d ()det()sin cos 1.d cos sin t t A t t t t t t-==+=-- 2. 2213e e 0 ().01cos x x x f x ⎡⎤'=⎢⎥⎣⎦解x 3. 1 1 0 0 11 10 0 0 110 0e d e d e 11 ()d d2d 11.sin d cos d 1cos1sin1t tt t t A t t t t t t tt t ⎡⎤-⎡⎤⎰⎰⎢⎥⎢⎥==⎰⎰⎰⎢⎥⎢⎥⎢⎥⎢⎥-⎰⎰⎣⎦⎣⎦解 4. 证明(1)d d d d d d ()()()()d d d d d d T T T T T f x x x x Ax Ax x Ax Ax x A t t t t t t==+=+ d d d d d ()2;d d d d d T T T T T T T T x x x x x x A x A x A x A x A t t t t t=+=+=.(2)d d d d d d ()()2.d d d d d d T T T T T T T x x x x x x x x x x x x t t t t t t=+=+=5. 证(1)若lim k k A A →∞=,则2lim 0k k A A →∞-=. ∵222()T TTk k k A AA A A A -=-=-(可以证明[1]2222H T A A A A ===),∴2lim 0T T k k A A →∞-=,即lim T Tk k A A →∞=. 同理可证lim k k A A →∞=,由上已证的结果立即可得lim H H k k A A →∞=.(2)000()lim ()lim ()NNTkT kk Tk k k N N k k k c A c A c A ∞→∞→∞=====∑∑∑0lim()Nk Tk N k c A →∞==∑ 0(lim )N k Tk N k c A →∞==∑0()k T k k c A ∞==∑6. 证 令()32det()11120113E A λλλλλ--=---=-=--得A 的全部特征值均为2. 于是13B A =的所有特征值都是32,故()213B ρ=<,因此lim k k B O →∞=.7. 证 方法一: 当0=t 时,显然成立,故设0≠t .记010100t t A t ⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦. 22det()(i )(i )E A t t t λλλλ-=+=-+,t i 1=λ,t i 2-=λ.对t i 1=λ,解方程(i )0tE A x -=可得11i x ⎡⎤=⎢⎥⎣⎦;对t i 2-=λ解方程(i )0tE A x --=得21i x ⎡⎤=⎢⎥-⎣⎦.令11i i P ⎡⎤=⎢⎥-⎣⎦,则P 可逆且11/2i /21/2i /2P --⎡⎤=⎢⎥⎣⎦. 所以01i 10i i 1i 111/2i /2e 0ee diag(e ,e )i i 1/2i /20e tt Attt P P ⎡⎤⎢⎥---⎣⎦--⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ ⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡+---+=----t t t t t t t t t t t t cos sin sin cos )e e (21)e e (i 21)e e (i 21)e e (21i i i i i i i i .方法二:记0110B ⎡⎤=⎢⎥-⎣⎦,21det()11E B λλλλ--==+,{}()i,i B σ=-.B 的最小多项式1)(2+=λλϕ,2)(deg =λϕ. 故设01e ()()tB a t E a t B =+.∵λt e 与λ)()(10t a t a +在()B σ上的值相等,即⎩⎨⎧=-=+-ttt a t a t a t a i 10i 10e)(i )(e )(i )(, ∴t t a ttcos 2ee )(i i 0=+=-,t t a tt sin i2e e )(i i 1=-=-.因此0110cos sin ecos sin sin cos t t t tE tB t t ⎡⎤⎢⎥-⎣⎦⎡⎤=+=⎢⎥-⎣⎦.8. 2eJordan ,e e e .e e e 2t tA tt t tt A t t t ------⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦解是块 9. 解 2214det()02(2)(1)031E A λλλλλλ----=-=----.∵(2)()A E A E O --≠,∴A 的最小多项式)1()2()(2--=λλλϕ.3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=. 由()f t λ与()T t λ在{}()1,2A σ=上的值相等,于是(1)对()e Atf At =有⎪⎩⎪⎨⎧=+=++=++tttt t a t a t a t a t a t a t a t a 2212210210e )(4)(e )(4)(2)(e )()()(,解得⎪⎩⎪⎨⎧+-=-+-=+-=t t t t t t t t t t t a t t a t t a 222221220e e e )(e 3e 4e 4)(e 2e 3e 4)( 所以22100e (4e 3e 2e )010001tA t t t t ⎡⎤⎢⎥=-+⎢⎥⎢⎥⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+130020412)e 3e 4e 4(22t t t t⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+19004012164)e e e (22t t t t ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-=ttt t t t t t t tt e e 3e 300e 0e 4e 4e 13e 12e 12e 222222(2)对()sin()f At At =有01201212()()()sin ()2()4()sin 2()4()cos 2a t a t a t t a t a t a t t a t a t t t ++=⎧⎪++=⎨⎪+=⎩,解得⎪⎩⎪⎨⎧+-=-+-=+-=tt t t t a t t t t t a t t t t t a 2cos 2sin sin )(2cos 32sin 4sin 4)(2cos 22sin 3sin 4)(210. ∴2012sin()()()()At a t E a t A a t A =++sin 212sin 12sin 213cos 24sin 4sin 20sin 2003sin 3sin 2sin t t t t t t t t t t t -+-+⎡⎤⎢⎥=⎢⎥⎢⎥-+⎣⎦(注)可利用(1)的结果求(2)(或cos()At ):在(1)中分别以t i 和t i -替代t 得i e tA 和i etA-,再由公式i i i i e e e e sin()(cos())2i 2tA tA tA tA At At ---+==或即得. 10. 解 210det()01(+1)01+2E A λλλλλλ-==-()A A E O -≠且,故A 的最小多项式2()(1)φλλλ=+,3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=,即012100010001()()010()001()012001012023f At a t a t a t -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦012021212012()()()0()()()2()0()2()()2()3()a t a t a t a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥=--+⎢⎥⎢⎥--+⎣⎦. 由()f t λ与()T t λ在A 上的谱值相等,于是(1)对()e Atf At =有001212()1()()()e ()2()e tta t a t a t a t a t a t t --=⎧⎪-+=⎨⎪-=⎩,解得012()1()22e e ()1e e t t t t a t a t t a t t ----=⎧⎪=--⎨⎪=--⎩012021212012()()()e 0()()()2()0()2()()2()3()122e e 1e e 0e e e 0e e e At t t t t t t tt t ta t a t a t a t a t a t a t a t a t a t a t a t t t t t t t -----------⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦-++-+⎡⎤⎢⎥=+-⎢⎥⎢⎥-⎣⎦. (2)对()sin()f At At =有001212()0()()()sin ()2()cos a t a t a t a t t a t a t t t =⎧⎪-+=-⎨⎪-=⎩,解得012()0()2sin cos ()sin cos a t a t t t t a t t t t =⎧⎪=-⎨⎪=-⎩.012021212012()()()sin()0()()()2()0()2()()2()3()a t a t a t At a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦02sin cos sin cos 0sin cos cos 0cos sin cos t t t t t t t t t t t t t t t t -+-⎡⎤⎢⎥=-+-⎢⎥⎢⎥--⎣⎦11.tr 2i 332i det(e )e e e .A A +-===解12. 解 此处775885050A --⎡⎤⎢⎥=---⎢⎥⎢⎥-⎣⎦,122()()()()x t x t x t x t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321C ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.因为775det()885(5)(5)(15),deg ()3,05E A λλλλλλϕλλ+--=+=-++=故设2012e ()()()()At a t E a t A a t A T At =++=.由tλe 与)(t T λ在(){5,5,15}A σ=--上的值相同,得方程组⎪⎩⎪⎨⎧=+-=+-=++--ttt t a t a t a t a t a t a t a t a t a 1521052105210e )(225)(15)( e )(25)(5)( e )(25 )(5 )(, 解得 ⎪⎩⎪⎨⎧+-=-=-+=-----)e e 2(e )( )e (e )( )e 6e (3e )(1555200125510111555810t t t t t t t tt a t a t a ;于是 0121775105800e ()1()885()12014501050404025At a t a t a t --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+---+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--+-+-+-+---+--++=---------------t t tt t t t t t t t t t tt t t t t t t t t t 551555155555155515555515551555e 5e 5e 2e e 3e 24e e 2e 5e 5e 6e e 3e64e 2e e 5e 5e 4e e 3e 44e e 2101. 所以,解为 55155515551517e 9e 4e 1()e 17e 9e 6e 1017e 9e 2e t t t At t t t t t tx t C ------++⎡⎤⎢⎥==--+⎢⎥⎢⎥-+⎣⎦,即⎪⎪⎩⎪⎪⎨⎧+-=+--=++=------)e 2e 9e 17(101)()e 6e 9e 17(101)()e 49e e 17(101)(155531555215551tt t t t t t t t t x t x t x .习 题 五A一、判断题1.√;2.×;3.√;4.√;5.√;6.×;7.√;8.√;9.×;10.√;11.√;12.×;13.√; 14.√ 15.√.二、填空题1.0;2.{}0;3.span A ;4.1;5.3;6.O ;7.123()1,()1,()(1)(2)d d d λλλλλλ==-=--;8.实;9.0; 10.1;11.1,a b c ===三、单项选择题1.(d);2. (c);3. (c).B1.证 121212(1)(,,,),(,,,),(,,,),,T T T nn n n x y z ξξξηηηςςςλμ∀===∈∀∈及,有1111(I ),(),,;nnnk k k k k k k k k k k k k x y z k k k x z y z λμλξμηςλξςμηςλμ===<+>=+=+=<>+<>∑∑∑211(I ),,;n nk k k k k k k k x y k k y x ξηηξ==<>===<>∑∑231221(I ),0, ,=01,2,,,=01,2,,,00;nk k k nk kk k k x x k x x k k n k n x ξξξξ==<>=≥<>=⇔∀=⇔∀==⇔=∑∑且有有,.nk <⋅⋅>故是上的一种内积(2),,,,n nij ij ij A a B b C c λμ⨯⎡⎤⎡⎤⎡⎤∀===∈∀∈⎣⎦⎣⎦⎣⎦及,有1111111(I ),(),,;nnnnnnij ij ij ij ij ij ij i j i j i j A B C a b c a c b c A C B C λμλμλμλμ======<+>=+=+=<>+<>∑∑∑∑∑∑2111111(I ),,;nnnnnnij ij ij ij ij ij i j i j i j A B a b a b a b B A ======<>====<>∑∑∑∑∑∑2311112211(I ),0, ,0,1,2,,,00;n n n nij ij ij i j i j nnijijij i j A A a a a A A a i j n a a A O ======<>==≥<>==⇔∀===⇔=∑∑∑∑∑∑且有即,.n n⨯<⋅⋅>故是上的一种内积12211.n n ij F i j A a A ==⎛⎫>== ⎪⎝⎭∑∑2. 证 右端) , ,(41>--<->++<=y x y x y x y x><+><+><+><=y y x y y x x x ,,,,(41),,,,><-><+><+><-y y x y y x x x 1(4,)4x y =<>=左端.3.证 (1)若⊥∈B x ,则B y ∈∀皆有y x ⊥,由假设B A ⊂,于是对每一个A y ∈皆有y x ⊥,即⊥∈A x ,故⊥⊥⊂A B .(2)若A x ∈,则⊥∈∀A y 皆有y x ⊥,故⊥⊥∈)(A x ,于是⊥⊥⊂)(A A .4.解 显然123.det 20,det 110,det 380,.A A A A A =>=>=>∴是实对称矩阵正定其余略.5. 证 “⇒”: 若n nA ⨯∈正定,则det det 0n A A =>,故A 非奇异.“⇐”: 若A 非奇异,则1det 0ni i A λ==≠∏,从而),,2,1(0n i i =≠λ. 又因为A 半正定,故有0≥i λ,于是),,2,1(0n i i =>λ,所以A 是正定的. 6.证 先验证2A 是Hermite 矩阵.22222()()(),Hermite .H H H H H H H H H H H A A AA AA A A AA A AA A AA AA AAA A A A A ======∴是矩阵再证2A 是正定的.12222 ,,Hermite 0(1,2,,).0(1,2,,),.n i i i A n A i n A i n A λλλλλλ∈≠=>=设是的个特征值,由是矩阵且可逆知,且从而的所有特征值故是正定矩阵7. 解 (1)令3i 1i 02010E A λλλλλλ---==-=-得01=λ,22=λ,23-=λ,由此判定A不是正定的.对01=λ解方程组0Ax -=,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000i 0100i 1i 0321ξξξ,亦即⎩⎨⎧==+ 00i 132ξξξ,得⎩⎨⎧==321i 0ξξξ. 若取13=ξ,则有10i 1x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=. 对22=λ解)0A x -=可得2i 1x ⎢⎥⎢⎥⎣⎦=-.对23-=λ解()0A x -=可得⎥⎥⎦⎤⎢⎢⎣⎡--=1i 23x .由于1x ,2x ,3x 分别对应于A 的不同特征值,故彼此正交.将它们单位化,得10i 1/α⎡⎤⎢⎢⎢⎣=,2i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦=-,3i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦-=-.令[]12301/,,i i /2i /21/21/2U ααα⎡-⎢==--⎢⎥⎢⎥⎢⎥⎣⎦,01/i /21/2i /21/2H U ⎡-⎢=⎢⎥⎢⎥-⎢⎥⎣⎦,则0H U AU ⎡⎤⎢⎥=⎢⎥⎢⎣.习 题 六A一、判断题1.×;2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.×.二、填空题1.1122112201010-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦;2. (1)()12(1)(1)()213(1)(1)321( 3 24)41(3 30)(0,1,2,)41( 24)4k k k k k k k x x x x x k x x +++++⎧=-+⎪⎪=-++=⎨⎪⎪=-⎩;3.1()D L U --;4.Seidel,Jacobi .B1. 解(1)110000100005000.55000A-⎡⎤⎢⎥⎣⎦-=-, 3.0001A ∞=,120000A-∞=,∴cond 60002A ∞=.(2)1 1.38 2.1810.2106 2.79 4.56B -⎡⎤⎢⎥⎣⎦-=-,17.35B =,1132.00B -=,∴1cond 235.2B =.(3)12212max{,}1009910099,cond (6-3).min{,}99989998C C λλλλλλ--⎡⎤==⎢⎥--⎣⎦是实对称矩阵故见令12122019810,9999cond 39206.C λλλλλλ=--===∴==≈得 2. 解(1)对增广矩阵施行行的初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡330002121041123232300212104112522162134112得到等价的上三角方程组⎪⎩⎪⎨⎧==+-=++330212142332321x x x x x x .进行回代,得方程组的解为:12/)4( ,1)21/(21 ,13/3321323=--==--===x x x x x x .故解为(1,1,1).T x =(2)对增广矩阵施行初等行变换11034110341103421111011590115931123041715003132112314033280001319⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦得到等价的上三角方程组1242343443459313211319x x x x x x x x x ++=⎧⎪---=-⎪⎨+=⎪⎪-=-⎩.进行回代,得方程组的解:43419219/(13), (2113)/3,133x x x =--==-=2341244055(95), 433939x x x x x x =--++==--=-,故解为()5540192,,,.3939313Tx -=3. 解 首先用顺序Gauss 消去法.对增广矩阵施行初等行变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1.982.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯-⨯→-65424101798.0104453.0101467.00104441.0108007.0106667.006781.0167.001.0012.0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯→-9924109774.0101762.000104441.0108007.0106667.006781.0167.001.0012.0,经回代得547.53=x ,43.722=x ,05.811-=x . 此时,620.174310Ax b -=⨯. 下面用列主元素Gauss 消去法.对增广矩阵施行初等行变换(下画横线者为主元素)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9812.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-6744.01670.0105500.00101179.0105909.04584.009812.41200320022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-5329.0109610.000101179.0105909.04584.009812.41200320012, 经回代得46.17,76.45,545.5123=-==x x x . 此时,289.22=-b Ax .列主元素Gauss 消去法比顺序Gauss 消去法的精度高. 4. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ). 计算结果如下表:解为767354.01=x ,138410.12=x ,125368.23=x .Seidel 迭代格式与计算结果如下:()()()⎪⎪⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k );5. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ), 因为()()21113300044335110,det(),1,444481100044M E M M λλλλλρλ⎡⎤-⎢⎥⎢⎥=--=-=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦所以Jacobi 迭代格式收敛.Seidel 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ).因为系数矩阵A 对称,且123det 40,det 70,det 240,,A A A A =>=>=>从而正定故Seidel 迭代格式收敛.6. 解(1)Jacobi 迭代矩阵1111022()10111022M D L U -⎡⎤-⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎣⎦;215det()()4E M λλλ-=+,1()1M ρ=>.因此,Jacobi 迭代格式发散.Seidel 迭代矩阵12111000222011111()100010222000111000222M D L U -⎡⎤⎡⎤-⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥--⎣⎦⎣⎦; 221det()()2E M λλλ-=+,21()2M ρ=.因此Seidel 迭代格式收敛.(2)Jacobi 迭代矩阵1100022022010101101001220220M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦;31det()E M λλ-=,1()0M ρ=.因此, Jacobi 迭代格式收敛.Seidel 迭代矩阵2100022022110001023021000002M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦;()22det()2E M λλλ-=-,2()21M ρ=>.因此, Seidel 迭代格式发散.*7.用追赶法解线性方程组12123233 1, 247, 259.x x x x x x x +=-⎧⎪++=⎨⎪+=⎩解 系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=520142013A . 31=u ,3/2/212==u l ,3/101422=⋅-=l u ,5/3/223==u l ,5/221533=⋅-=l u ;11-=y ,3/237122=-=y l y ,5/229233=-=y l y ;1/333==∴u y x ,2/)1(2322=⋅-=u x y x ,1/)1(1211-=⋅-=u x y x .即解为(1,2,1).Tx =-8. 解 把方程组调整为⎪⎩⎪⎨⎧=+=+=++22846231312123x x x x x x x , 此时系数矩阵为312041102A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.Seidel 迭代矩阵111200033301211()000010044000111106263M D L U -⎡⎤⎡⎤--⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥=-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦,11det()(66E M λλλλ-=---+,()1M ρ=<.因此,此时Seidel 迭代格式()()()()()()()⎪⎪⎩⎪⎪⎨⎧-=-=--=++++ )2(21)8(41)26(3113111121213k k k k k k k x x x x x x x 收敛.习 题 七A一、判断题1.×;2.√;3.×;4.×.二、填空题1.1,1n +;2. 11:455;:;:33-一阶差商,,二阶差商1,三阶差商;3.16.640,0.096,16.736.B1. 解 因为0120.15,0.00,0.10,0.20.x x x x ====故取则2(0.150.10)(0.150.20)(0.15)(0.15)0.000(0.000.10)(0.000.20)(0.150.00)(0.150.20)0.0998(0.100.00)(0.100.20)(0.150.00)(0.15 f L --≈=⨯----+⨯----+0.10)0.1987(0.200.00)(0.200.10)00.074850.074510.1494.⨯--=++= 521(0.15)(0.150.00)(0.150.10)(0.150.20) 6.2510.3!R -≤---=⨯2.解 对于点76.35x =,取076x =,177x =,278x =,379x =. 作差商表于是有2(1)(76.35)(76.35)2.832670.0689(76.3576)0.00306(76.3576)(76.3577) 2.832670.024120.00070 2.85609.f N ≈=+-+--=+-=32(2)(76.35)(76.35)(76.35)0.00017(76.3576)(76.3577)(76.3578) 2.856090.00006 2.85615.f N N ≈=+---=+=3. 解 选01220.20,0.40,0.60,0.80x x x x ====.。

相关文档
最新文档