2018年新人教版七年级数学下册导学案全册

合集下载

人教新版七年级数学下册全册导学案

人教新版七年级数学下册全册导学案

七年级下册数学 第五章 相交线与平行线导学1 5.1.1 相交线一、 学习目标:1认识相交线所成的邻补角和对顶角 2对顶角的性质二、 自主学习学生自学P2和P3并做下列练习1、已知:如图所示的四个图形中,∠1和∠2是对顶角的图形共有( )A 0个B 1个C 2个D3个2、如图,直线a 、b 相交于点O,若∠1=040,则∠2等于 ( ) A 050 B 060 C 0140 D 01603、平面上三条不同的直线相交最多能构成对顶角的对数是( ) A 4对 B5对 C 6对 D7对4、如图直线AB 、CD 交于点O ,若∠AOD+∠BOC=2600,则∠BOD 的度数是( ) A 700B600C500D1300CD三、 合作学习1、 有两个角,若第一个角割去它的31后与第二个角互余,若第一个角补上它的32后与第二个角互补,求这两个角的度数2、 如图,直线AB 、CD 相交于点0,∠1—∠2=500,求出∠AOC 和∠BOC 的度数。

C四、 拓展提高如图,∠AOB 和∠BOD 为对顶角,OE 平分∠AOD ,OF 平分∠BOC ,试问:OE 、OF 在一条直线吗?说说你的理由。

E七年级下册数学 第五章 相交线与平行线导学2 5.1.2 垂线(1)一、学习目标1、理解垂线的概念。

2、掌握在同一平面内过一点有且只有一条直线垂直于已知直线。

3、会用三角尺或量角器过一点画一条直线的垂线。

二、自主学习阅读课本第3页完成下列问题1、当两条直线相交所成的四个角中有一个角是90°时,这两条直线互相____,其中一条直线叫做另一条直线的____,两条直线的交点叫____,垂直用符号____ 来表示,读作____,如直线AB 垂直CD ,就记作____。

2、举出日常生活中垂直的例子。

三、合作学习1、用三角尺或量角器画出已知直线l 的垂线,这样的垂线能画出几条?2、经过直线l 上一点A 画出l 的垂线,能画出几条?3、经过直线l 外一点B 画出l 的垂线,能画出几条?由此我们得出如下结论:1、一条直线的垂线有____条。

七年级数学全册导学案

七年级数学全册导学案

1.4幂的乘方与积的乘方(一)备课人:冯枫赵军课型:新授课时间:2.1学习目标1、经历探索幂的乘方的运算性质的过程,进一步体会幂的意义;2、了解幂的乘方的运算性质,并能解决一些实际问题。

3、在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力。

学习重点幂的乘方的运算性质及其应用。

学习难点幂的乘方的运算性质及其应用。

一、学前准备回顾幂的相关知识a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a 叫做底数,•n是指数.二、探究活动1、计算下列各式,并说明理由。

探索练习:64表示_________个___________相乘.(62)4表示_________个___________相乘.a3表示_________个___________相乘.(a2)3表示_________个___________相乘.2、(62)4=________³_________³_______³________=__________(根据a n²a m=a nm) =_________(33)5=_____³_______³_______³________³_______=__________(根据a n²a m=a nm) =_________(a2)3=_______³_________³_______=__________(根据a n²a m=a nm) =______(a m)2=________³_________=__________(根据a n²a m=a nm) =________(a m )n =________³________³…³_______³_______ =__________(根据a n ²a m =a nm ) =_________即 (a m )n = ______________(其中m 、n 都是正整数) 通过上面的探索活动,发现了什么? (a m )n =a mn (m 、n 都是正整数) 幂的乘方,底数不变,指数相乘三、我的课堂我做主1、判断题,错误的予以改正。

七年级数学下册全册导学案(新版人教版)

七年级数学下册全册导学案(新版人教版)

七年级数学下册全册导学案(新版人教版)本资料为woRD文档,请点击下载地址下载全文下载地址:统计调查(二)【学习目标】了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析.【学习重点】对概念的理解及对数据收集整理【学习难点】总体概念的理解和随机抽样的合理性一、【自主学习】、学前准备:自学课本153—155页,写出你的困惑:二、【合作探究】如果要对某校XX名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?.抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查抽样调查:抽取一部分对象进行调查的方法,叫抽样调查.2.总体、个体、样本、样本容量的意义总体:所要考察对象的全体.个体:总体的每一个考察对象叫个体.样本:抽取的部分个体叫做一个样本.样本容量:样本中个体的数目.3.抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查XX名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映XX名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在XX名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.4.抽样调查100名学生最喜爱节目情况如下:节目类型划记人数百分比A新闻8B体育20c动画30D娱乐36E戏曲6合计00请你填充上表,并指出最好选择什么统计图来描述较好.三【达标测试】(A)、1、调查夏季市场销售的凉鞋质量情况适合采用_______________调查.2、了解一个班级学生的数学成绩是否有提高适合采用___________调查.3、数据处理的一般过程是_______________________________________.4、抽查我校一月份5天的用电量,结果如下:(单位:度)120,160,150,140,150,根据以上数据估计我校1月份用电总量为__________度.5、庆元宵校园歌手大奖赛,8位评委给6号选手的评分如下:9.8,9.9,9.5,9.7,9.4,9.7,9.6,9.6在去掉一个最高分和一个最低分后,6号选手最后平均分是__________________________.(B)、1、下列调查方式中,合适的是()A.要了解约90万顶救灾帐蓬的质量,采用普查的方式B.要了解外地游客对旅游景点“x疆民街”的满意程度,采用抽样调查的方式c.要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D.要了解全疆初中学生的业余爱好,采用普查的方式2、为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是()A总体的一个样本B个体c总体D样本容量(即样本中个体的数量)4、下列适合抽样调查而不适合全面调查的是()A了解一批灯泡的使用寿命B了解截止XX年底中国的总人口C了解全市中学生电脑打字速度D了解全市七年级数学期末考试成绩5、甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元.若将甲种糖果8千克,乙种糖果10千克,丙种糖果3千克混合,则售价应定为每千克()元,才能与三种糖果分开卖时卖一样多的钱(保留一位小数)A6.7B6.8c7.5D8.66、下列调查中,样本最具有代表性的是()A在重点中学调查全市高一学生的数学水平。

2018年人教版七年级数学下册导学案全册

2018年人教版七年级数学下册导学案全册

2018年人教版七年级数学下册导学案全册- 1 -课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。

2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。

3.通过辨别对顶角与邻补角,培养识图的能力。

【学习重点】邻补角和对顶角的概念及对顶角相等的性质。

【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。

【自主学习】图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习1.阅读课本P1惯? ,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P内容,探讨两条相交2线所成的角有哪些?各有什么特征?【合作探究】- 2 -- 3 -1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? 例如:(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。

用量角器量一量这两个角的度数,会发现它们的数量关系是(2)∠AOC 和∠BOD (有或没有)公共边,但∠AOC 的两边分别是∠BOD 两边的 ,称这两个角互为 。

用量角器量一量这两个角的度数,会发现它们的数量关系是 。

2.根据观察和度量完成下表:两直线相交所形成的角 分类 位置关系 数量关系3.用语言概括邻补角、对顶角概念.的两个角叫邻补角。

的两个角叫对顶角。

4321ODC BA_O_D_C_B_A- 4 -4.探究对顶角性质.在图1中,∠AOC 的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等...... 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系. 你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗? 【巩固运用】1.例题:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程. 2.练习:完成课本P 3练习. 【反思总结】本节课你学到了什么?有什么收获和体会?还有什么困惑?(小组交流,互助解决) 【达标测评】1.如图所示,∠1和∠2是对顶角的图形有( )ba 4321- 5 -A.1个B.2个C.3个D.4个2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。

人教版七年级数学下册8.1二元一次方程组导学案(集体备课)

人教版七年级数学下册8.1二元一次方程组导学案(集体备课)

集体备课导学案学段初中年级七年级学科数学单元第8单元课题8.1二元一次方程组课型新授主备学校初审人终审人主备人合作H日队课标依据掌握二元一次方程的概念。

教学目标1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

教学重点1、二元一次方程(组)的含义;2、检验一对数是否是某个二元一次方程(组)的解。

教学难点检验一对数是否是某个二元一次方程(组)的解。

导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标2分小黑板呈现目标自主学习温故知新5分认真阅读课本88-89页,理解掌握以下概念1、一元一次方程:只含有___未知数,且未知数的次数都是___的方程。

ax=b(a#O)2、方程的解:能使方程等号两边相等的的值。

3、二元一次方程:方程中含有______未知数,并且_____________的次数都是—O一般式:ax+by二c(a乂0,b尹0)4、二元一次方程组:把具有__________的______二元一次方程用______合在一起,就组成了一个二元一次方程组。

5、二元一次方程的解:一般地,使二元一次方程两边的值相等的——未知数的值,叫做二元一次方程的解。

二元一次方程有个解。

6、二元一次方程组的解:一般地,二元一次让学生认真阅读方程的概念,一元次方程的概念及一元次方程解的概念。

方程组的两个方程的________,叫做二元一次方程组的解。

(能使方程组中两个方程等号两边都相等两个未知数的值。

)二元一次方程组有________个解。

互助释疑3分我的疑难问题。

小组内互相帮助解决.探究出招8分1、课本89业“探究”2、二元一次方程的一般式:ax+by=c(a尹0,b#0)用含x的式子表示y,y=_____________用含y的式子表示x,x=3、方程3x+2y=6,有_一个未知数,且未知数都是—次,因此这个方程是____元_____次方程。

2018年新人教版七年级数学下册导学案全册

2018年新人教版七年级数学下册导学案全册

6
课题: 5.2.1 平行线 ............................................................................................
8
课题: 5.2.2 平行线的判定 ................................................................................
31
课题 :6.2 立方根(第 2 课时) .........................................................................
34
课题 :6.3 实数(第 1 课时) ...........................................................................
60
课题: 8.2.1 消元——解二元一次方程组(代入法) .............................................
63
课题: 8.2.2 消元——解二元一次方程组(代入法 2)...........................................
65
46
课题: 7.1.1 有序数对 .......................................................................................
46
课题: 7.1.2 平面直角坐标系 .............................................................................

人教版七年级数学下册8.3实际问题与二元一次方程组(2)导学案(集体备课)

人教版七年级数学下册8.3实际问题与二元一次方程组(2)导学案(集体备课)

集体备课导学案学段初中年级七年级学科数学单元第8单元课题8.3.1实际问题与二元一次方程组(2)课型新授主备学校初审人终审人主备人合作H日队课标依据掌握代入消元法和加减消元法,能解二元一次方程组。

教学目标1.会借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用;2.通过应用题学习进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性;3.体会列方程组比列一元一次方程容易。

教学重点通过实践与探索,运用二元一次方程组解决有关配套与设计的应用题教学难点通过实践与探索,运用二元一次方程组解决有关配套与设计的应用题导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标2分小黑板呈现目标自主学习温故知新5分1)长方形的面积公式?当宽相同时,面积比等于当长相同时,面积比等于----------------2)回顾列方程解决实际问题的基本思路?复习长方形面积公式和上节课所学知识。

方面公。

长形积式互助释疑3分鼓励学生提出问题小组内互相帮助解决.探究出招8分据统计资料,甲、乙两种作物的单位面积产量的比是1:2.现要把一块长200m,宽100m的长方形土地,分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物先独立分析问题中的数量关的总「( 2”是( 什么;(( 物的彳 设如的数二V解这,Vi 把这f种—(*量的比是3 : 4?1) "甲、乙两种作物的单位面积产量比是1 : -什么意思?2) “甲、乙两种作物的总产量比为3 : 4”是 思?3) 本题中有哪些等量关系?4) 如下图,一种种植方案为:甲、乙两种作冲植区域分别为长方形AEFD 和BCFE. 此时= ato , BE=ym,根据问题中涉及长度、产量 宣关系,列方程组D二C系,列出方程 组,得 出问题 的解 答,然 后再在 小组内 互相交 流与评 价。

个方程组,得丁 =——•史长方形土地的长边上离夬土地分为两块长方形土 一种作物,较小的一块土土5)你还能设计其他种植方EB:地——X —►一端约— 地.较大白 也种____案吗?试―处,一块吐 M 乍物.成看展示交流小组展示3分组长负责,组员在小组内展示。

人教新版七年级(下)数学导学案(全册,117页)

人教新版七年级(下)数学导学案(全册,117页)

(1)OD C B A 课题:5.1相交线【学习目标】:1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题 【重点难点】:邻补角与对顶角的概念.对顶角性质与应用 【学法指导】一、 【自主学习】: (一)【预习自我检测】(阅读课本2-3的内容,完成以下1-4题) 1.画直线AB 、CD 相交于点O,并说出图中4个角, 两两相配共能组成几对角? 各对角的位置关系如何? 根据不同的位置怎么将它们分类? 2.学生根据观察和度量完成下表: 两直线相交 所形成的角 分类 位置关系 数量关系4321ODC BA3 邻补角、对顶角概念.有一条( ),而且另一边( )的两个角叫做邻补角.如果两个角有一个( ), 而且一个角的两边分别是另一角两边的( ),那么这两个角叫对顶角.4 下列说法,你同意吗?如果错误,如何订正. ①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.( )②邻补角可看成是平角被过它顶点的一条射线分成的两个角.( ) ③邻补角是互补的两个角,互补的两个角也是邻补角?( )④.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角( ).⑤.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( ) (二)、【自主学习】:(阅读课本4-5页,把不懂的地方请记录在这里,课堂上我们共同讨论) 我的疑难问题:二、 【合作探究】: 对顶角性质.(1)说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.(2) 在图1中,∠AOC 的邻补角是( )和( )所以∠AOC 与( )互补,∠AOC 与( )互补, 根据( ),可以得出∠AOD=∠BOC, 同理有( )=( )对顶角性质: 三、【达标测试】1、如图,直线a ,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2、如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是_______,∠COF 的邻补角是________,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3、如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.a4321E OD BAEODCB4、判断下列图中是否存在对顶角.5、如图,直线a ,b 相交,(1)若∠2是∠1的3倍,求∠3的度数 (2)若∠2比∠1大40°, 求∠4的度数6、如图所示,三条直线AB 、CD 、EF 相交于O点,∠1=40°,∠2=75°,则∠3等于多少度?7、如图,已知直线AB 与CD 相交于点O ,∠AOE=90°,∠DOE=40°,求∠AOC 和∠BOC 的度数8、如图,直线AB 、CD 相交于点O. (1)若∠AOC+∠BOD=100°,求各角的度数.(2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数.四、【我的感悟】:1、这节课我最大的收获是:2、我还需解决的问题有:五、【课后反思】:课题:5.1.2垂线(1)【学习目标】:了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线.21212121ba4321第5题 OD C B A32O F E DBA C 1A O E DB Cbba P MAN P BP BA 【学习重点】:两条直线互相垂直的概念、性质和画法 【学法重点】:两条直线互相垂直的概念、性质和画法 一、【自主学习】: (一)【预习自我检测】(阅读课本3-5的内容,完成第5页1-2题)(二)、预习疑难(预习后,不懂的地方请记录在这里,课堂上我们共同讨论!) 我的疑难问题:二.【合作探究】:固定木条a,转动木条b, 当b 的位置变化时,a 、b 所成的角α是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a 、b 所成的四个角有什么特殊关系?垂直定义:结合课本图5.1-5学习垂直的表示方法 二、 探究研学1 已知直线a,画出直线a 的垂线.能画几条? a 直线a 的垂线有( )条,2在直线a 上取一点A,过点A 画a 的垂线 a A 经过直线上一点有且只有( )直线与已知直线垂直. 3在直线a 外取一点B, 过点B 画a 的垂线经过直线外一点有且只有( )直线与已知直线垂直. B .a垂线性质1: 三、【达标检测】:1、垂直是相交的一种 ,两条直线互相垂直,其中的一条直线叫做另一条直线的 ,它们的交点叫做 。

新人教版七年级数学(下册)导学案及参考答案

新人教版七年级数学(下册)导学案及参考答案

新人教版七‎年级数学(下册)第九章导学‎案第九章不等式与不‎等式组课题 9.1.1不等式及‎其解集【学习目标】了解不等式‎的解、解集的概念‎,会在数轴上‎表示出不等‎式的解集.【学习重点】不等式的解‎集的概念及‎在数轴上表‎示不等式的‎解集的方法‎。

【学习难点】不等式的解‎集的概念。

【导学指导】一、知识链接1、什么叫等式‎?2、什么叫方程‎?什么叫方程‎的解?3.问题1:一辆匀速行‎驶的汽车在‎11:20时距离‎A地50千‎米。

(1)要在12:00时刚好‎驶过A地,车速应为多‎少?(2)要在12:00以前驶‎过A地,车速应该具‎备什么条件‎?若设车速为‎每小时x千‎米,能用一个式‎子表示吗?二、自主探究阅读课本1‎14-115页,回答下面的‎问题1.不等式:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__2.不等式的解‎:_____‎_____‎_____‎_____‎_____‎_____‎_____‎_____‎___3.思考:判断下列数‎中哪些是不‎等式5032x的解:76,73,79,80,74.9,75.1,90,60你能找出这‎个不等式其‎他的解吗?它到底有多‎少个解?你从中发现‎了什么规律‎?4.不等式的解‎集:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__5.解不等式:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__6、不等式的解‎集在数轴上‎的表示:(1)x>1 (2) x<3;【课堂练习】:1.课本115‎页练习1、2、32.下列式子中‎哪些是不等‎式?(1)a +b=b +a (2)-3>-5 (3)x ≠1 (4)x+3>6 (5)2m <n (6)2x -33.下列式子中‎:①-5<0 ②2x=3 ③3x-1>2 ④ 4x-2y ≤0 ⑤ x 2-3x+2>0 ⑥x-2y 其中属于不‎等式的是_‎_____‎_____‎_,属于一元一‎次不等式的‎是____‎_____‎_(填序号) 【要点归纳】:【拓展训练】:1、绝对值小于‎3的非负整‎数有( )A .1、2B .0、1C .0、1、2D .0、1、32、下列选项中‎,正确的是( ) A . 不是负数,则 B . 是大于0的‎数,则C .不小于-1,则D .是负数,则3、用数轴表示‎不等式x<34的解集正确‎的是( )ABCD4.在数轴上表‎示下列不等‎式的解集:(1)x>2; (2) x<4; (3)-2<x<3【课堂小结】:课题 9.1.2 不等式的性‎质 (1)【学习目标】掌握不等式‎的性质;会根据“不等式性质‎”解简单的一‎元一次不等‎式,并能在数轴‎上表示其解‎集;【学习重点】 理解并掌握‎不等式的性‎质并运用它‎正确地解一‎元一次不等‎式。

人教版七年级数学下册第十章

人教版七年级数学下册第十章

人教版七年级数学下册第十章《数据的收集、整理与描述》导学案1 10.1.1 统计调查(1)主备人:韩姣姣 审核人:余国霞 备课时间:5月4号 上课时间:_________ 班级:_________ 姓名:_________一、学习目标:了解全面调查的意义,初步学会简单的数据的收集、整理以及会用条形统计图、扇形统计图直观地描述数据。

重点:对数据的收集、整理及描述 难点:绘制扇形统计图和条形统计图二、独立学习: 请认真阅读135页问题1 (一)设计调查问题的问卷1、确定调查目的;2、选择调查对象;3、设计调查问题。

需要注意:(1)调查目的要明确;(2)选择调查对象要合理;(3)设计调查问题要科学。

(二)实施调查,收集数据收集全班同学在上面的问卷调查中的数据。

(三)整理数据(用表格)填完后交数学科代表,由科代表划票, 全班同学在表格中进行统计。

以小组 为单位在练习本上绘制出条形统计图、 扇形统计图、(四)描述数据(用统计图)常见的统计图有:条形统计图、扇形统计图、折线统计图。

(五)全面调查是指____________________________________(也叫做普查)三、能力提升条形统计图能够显示每组中的具体数据,易于比较数据之间的差别;扇形统计图反映了各部分在总体中所占的百分比的大小,易于显示每组数据相对于总数的大小,折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。

四、当堂检测:1、王聪一家三口随旅游团去九寨沟旅游,王聪把这次旅游的费用支出情况制成了如下的统计图:①你能说出王聪一家这次旅游的费用支出情况吗?哪方面的费用出最高?②若他们共花费人民币8600元,则在食宿上用去多少元?往返的路费又是多少元?2、在进行数据描述时,要显示每组中的具体数据,应采用 图;要显示部分在总体中所占的百分比,应采用 图;要显示数据的变化趋势,应采用 图;3、在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是五、堂清1.已知全班有40位学生,他们有的步行,有的骑车,还有的乘车来上学,根据以下已知2、2004年社会消费品零售总额增长速度如图所示,估计5 月份的增长速度约为___________%。

初中数学课堂导学案 配人教版 七年级下册 答案

初中数学课堂导学案 配人教版 七年级下册 答案

一、直接写出得数(10分)5.43+1.47= 5-3.28= 0.46÷4.6= 4×0.25=3÷0.3= 4.5×0.4= 0.63÷0.7= 1.8×0.4= 9.58×101-9.58= 85÷(1-0.9)=二、填空题(20分)1、3.248×1.26的积里有()位小数。

2、非零整数的最小计数单位是();纯小数的最大计数单位是()。

3、把3.08的小数点向左移动一位,再向右移动两位,结果是()。

4、8÷11的商保留两位小数约是();保留一位小数约是();保留整数约是()。

5、当梯形的上底逐渐缩小到一点时,梯形就转化成();当梯形的上底增大到与下底相等时,梯形就转化成()。

6、比x的5倍多8的数是();6除以x的商减去8的差是()。

7、一个平行四边形与一个三角形的面积相等,底也相等,平行四边形的高是6厘米,三角形的高是()。

8、在(24-3x)÷6中,x等于()时,结果是0;等于()时,结果是1。

9、0.8分=()秒 4.26公顷=()公顷()平方米10、比a的4倍少5的数是()。

11、32×5=()12、两个完全一样的三角形可以拼成一个()。

三、判断题(5分)1、两个平行四边形的高相等,它们的面积也相等。

()2、计算一个梯形的面积,必须知道它是上底、下底和高。

()3、4+a=4a ()4、38x-4=0 是方程。

()5、x2=2x ()四、选择题(5分)1、 1÷3的商是()。

A、纯循环小学B、混循环小数C、无限不循环小数2、周长相等的长方形和平行四边形面积相比,()A、平行四边形大B、长方形大C、相等3、一个三角形中,其中两个角的平均度数是45度,这个三角形是()三角形。

A、锐角B、直角C、钝角4、一个数除以一个带小数,所得的商一定()这个数。

A、大于B、等于C、小于5、3.995精确到百分位约是()。

人教版七年级下册数学全册导学案之欧阳治创编

人教版七年级下册数学全册导学案之欧阳治创编

第1课时:5.1.1 相交线导学案时间2021.03.10 创作:欧阳治【学习目标】1、了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角2、理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用.【学习难点】理解对顶角相等的性质.【学习过程】一、温故知新(5分钟)各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报.二、自主探索(15分钟)探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗?.“对顶角”的定义呢?.自学检测一:图11.如图1所示,直线AB 和CD 相交于点O ,OE 是一条射线.(1)写出∠AOC 的邻补角:____ _ ___ __;(2)写出∠COE 的邻补角:__;(3)写出∠BOC 的邻补角:____ _ ___ __;(4)写出∠BOD 的对顶角:_____.2.如图所示,∠1与∠2是对顶角的是( )探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的性质”:.自学检测二:1.如图,直线a ,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____. 三、当堂反馈(25分钟) 预备题: 如图,已知直线a 、b 相交。

∠1=40°,求∠2、∠3、∠4的度数解:∠3=∠1=40°()。

(整套)人教版七年级数学下册精品导学案全集(vip专享)

(整套)人教版七年级数学下册精品导学案全集(vip专享)

(人教版)七年级数学下册(全册)精品导学案汇总七年级数学自学案5.1.1相交线一、自学范围(第1页——第3页练习)二、自学目标:1、在具体的情境或图形中找出相交线和平行线.2、知道什么是邻补角和对顶角, 即: 邻补角和对顶角的概念.3、知道并能为“对顶角相等”说明理由.三、自学重点、难点:重点: 邻补角、对顶角的概念,对顶角性质与应用.难点: 理解对顶角相等的性质的探索四、自学过程:1、欣赏第五章前的彩图, 找出这里的平行线和相交线, 举出生活中的相交线与平行线.举例: 说出你区别相交线与平行线的理由: 2、 在练习本上任意画几条直线, 观察它们的关系. 3、 自学课本第2页第一段.动手做实验: (也可找两根小木棍中间用钉子或绳子固定)观察角度是如何变化的, 这些角有怎样的关系? 4、 自学第2页“探究”, 并完成课本中的填表.5、 根据上图: 用课本中的定义说明1∠与2∠是邻补角: 用课本中的定义说明2∠与4∠是对顶角: 找出其它的邻补角与对顶角写在下面的横线上6、 你认为2∠与4∠相等吗, 能得到什么结论?说出你的理由:五、 学效测试:7、完成课本3页的练习.8、 1.如图所示,∠1和∠2是对顶角的图形有( )C12121221A.1个B.2个C.3个D.4个9、如图所示,AB 与CD 相交所成的四个角中,∠1的邻补角是 ,∠1的对顶角10、如图所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.七年级数学达标测试题5.1.2垂线1、对顶角指的是( )A 、有公共顶点的两个角B 、两条直线相交所成的两个角C 、有公共顶点, 并且相等的两个角D 、角的两边互为反向延长线的两个角 2、下列说法下正确的是( )A 、有一边互为反向延长线的两个角是邻补角B 、有一公共边的两个角是邻补角C 、互补的角也是邻补角D 、邻补角可看成是一条直线与端点在直线上的一射线组成的两个角3、如图: 直线AB 、CD 相交于点O,0110=∠AOD ,则=∠BOD=∠BOC4、如图当剪子口AOB ∠增大100时COD ∠增大5、已知直线AB 、CD 交于O,OA 平分EOC ∠, 且0120=∠EOD ,则34D CBA 12BC=∠BOD6、选做题: 直线AB 、CD 、EF 相交于点O, 如图: (1)写出AOD ∠、EOC ∠的对顶角;(2)写出AOC ∠、EOB ∠的邻补角;(3)已知050=∠AOC , 求BOD ∠、COB ∠的度数.七年级数学自学案5.1.2垂线 一、自学范围(3页——6页练习) 二、自学目标:1、知道垂线的定义、能过一点画出已经直线的垂线、会用符号表示垂直.2、理解垂线的两个性质 三、自学重点理解垂线的性质 四、自学过程:1、自学第一、二自然段:2、什么是垂直呢:垂直是相交的一种 情况, 当两条直线相交所成的四个角中, 有一个角是 时, 就说这两条直线互相 , 其中一条直线叫做另一条直线的 , 它们的交点叫做 .3、什么上垂直呢?如图一: 直线AB 、CD 互相垂直, 记作“AB ⊥CD ”或“CD ⊥AB ”, 读作“AB 垂直于CD ”, 如果垂足为O , 记作“AB ⊥CD , 垂足为O ”4、举出生活中垂直的例子:F E DC BA O 图一如下图, 当∠AOC =90°时,∠BOD 、∠AOD 、∠BOC 等于多少度?为什么?这种位置有几种?直线AB 与直线CD 的位置关系怎样?5、自学4页探究: 用课本中的作图方法完成下面图形 (1)过直线l 上一点A,作直线AB ⊥l 垂足为A(2)过直线AB 外一点C,作CD ⊥AB,垂足为D.(3)各能画几条, 得到怎样的结论呢?6、自学5页的思考与探究.在左图中: 与点P 相边的线段中 是最短的, 与直线l 的关系是 , 点P 到直 线l 的距离是 的长度, 五、学效测试7、下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个8、如图所示,直线AB 与直线CD 的位置关系是_______,记作_______,此时,•∠AOD=∠_______=∠_______=∠_______=90°.9、过一点有且只有________直线与已知直线垂直.十字路口的两条道路lA CA 7A 12A 3A 45A 89lO DCBA10、画一条线段或射线的垂线,就是画它们________的垂线. 11、直线外一点到这条直线的_________,叫做点到直线的距离.12、完成6页练习七年级数学当堂检测题5.1.2垂线1、两条直线互相垂直, 所得的四个角中直角的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个2、在两条直线相交所成的四个角中, 不能判定这两直线垂直的是( ) A 、对顶角相等 B 、四对邻补角 C 、三个角相等 D 、邻补角相等3、点到直线的距离是指( )A 、直线外一点与这条直线上任意一点的距离B 、直线外一点到这条直线的垂线段的长度C 、直线外一点到这条直线的垂线段D 、直线外一点到这条直线的垂线段的长度3、如图: NP OM ⊥,NP ON ⊥,所以直线ON 与OM 生命, 其理由是( )A 、两点确定一条直线B 、过一点有且只有一条直垂直于已知直线C 、过一点只能作一条直线D 、垂线段最短 4、如图, 点P 为直线l 外一点, 点A 、B 、C 、D 、E 为 直线l 上五, PD=2厘米, 则点P 到直线lA 、2厘米B 、小于2厘米 C、不大于2厘米D 、大于2厘米 5、如图, 过ABC ∆的A 、B、C 三点, 分别画它们对边的垂线.6、如图: O 为直线AB 上一点, BOC AOC ∠=∠31, OC 是AOD ∠的平分线(1)求COD ∠的度数l(2)判断OD 与AB 的位置关系, 并说明理由七年级数学自学案5.1.3同位角、内错角、同旁内角一、自学范围(6页——7页) 二、自学目标:1、理解同位角、内错角、同旁内角的概念.2、结合图形识别同位角、内错角、同旁内角. 三、自学重、难点在复杂的图形中辨认同位角、内错角、同旁内角 四、自学过程:1、 如图: 直线AB 与CD 相交于点O, 4321∠∠∠∠有怎样的关系?2、若直线AB 、CD 都和EF 相交, (即直线AB 、CD 被EF 所截), 共 个角, (即三线 角)不在同一个顶点的角可怎样分类呢?(自学课本6页)3、上图中1∠与5∠, 这两个角分别在直线AB 、CD 的 方, 并且都在直线EF 的 侧, 所以他们是同位角, 象这样的角还有4、上图中3∠与5∠, 这两个角都在直线AB 、CD , 并且分别在直线EF , 所以他们是内错角, 象这样的角还有O DCBA43215、上图中3∠与6∠, 这两个角都在直线AB 、CD , 但它们在直线EF 的 , 所以他们是同旁内角, 象这样的角还有 .6、自学例题: (注意说明原因) 五、学效测试7、练习1: (把答案写在下面) 8、七年级数学当堂检测题 5.1.3同位角、内错角、同旁内角1、如图, 2∠与3∠是 角, 2∠和4∠是 角, 2∠与5∠是 角, 2∠与8∠是 角,2∠与6∠是 角2、如图, 直线ED 、CD 被直线AB 所截, 4∠与 是同位角, 4∠与 是内错角, 4∠与 是同旁内角. 3、如图一所示, BDE ∠的同位角是 ,BDE ∠的内错角是 , BDE ∠的同旁内角是 ,ADE ∠与DGC ∠是两条直线 和 被直线 所截成的角.4、如图二所示, 直线AB 、CD 被CE 所截, C ∠的同位角是 , 同旁内角是 ; 1∠与2∠是两条直线 和 被三条直线 所截得的 角; 直线AB 和CD 被AD 所截, A ∠的内错角是 , A ∠与ADC ∠是 角; 直线AB 和CD 被BD 所截, 和 是内错角.七年级数学自学案5.2.1平行线 一、自学范围(12页——13页练习) 二、自学目标:1、了解平行线的概念、平面内两条直线相交和平行的两种位置4321E DCB A87654321图一ECBFDA 21图二EDCBA关系, 知道平行公理以及平行公理的推论.2.会用符号语言表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.三、自学重点:平行公理也及平行公理的推论四、自学过程:1、自学12页思考, 体会在平面内两条直线能存在几种位置关系?2、根据课本填空: 在同一平面内, 如果存在一条直线a与直线b 不相交的位置, 这时直线a与直线b互相 , 记作:3、举出生活中平行的例子.4、在同一平面内, 不重合的两条直线有几种位置关系?动手画一画.5、自学13页上方的思考: (该怎样经过一点画已知直线的平行线呢)(提示: 参考一下13页下面的思考)CBa用三角尺和直尺分别过B点和C点作直线a的平行线b和c.(1)过点B能作条(2)过点C能作条6、平行公理: 经过直线外一点, 有且只有条直线与这条直线平行.7、在上面的作图中, b∥a c∥a,那b与c平行吗?推论: 如果两条直线都与第三直线平行, 那么这两条直线也互相平行. (想一想为什么)五、学效测试:8、12页练习9、在同一平面内,两条不重合直线的位置关系可能是( )A.平行或相交B.垂直或相交;C.垂直或平行D.平行、垂直或相交10.下列说法正确的是( )A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行11.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )A.0个B.1个C.2个D.3个12.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a 与c不相交.A.1个B.2个C.3个D.4个七年级数学当堂检测题5.2.1平行线1、在同一平面内()A 、不相交的两条线段平行B 、不相交的两射给平行C 、线段与直线不平行就相交D 、不相交的两直线平行 2、下列说法不正确的是( ) A 、已知直线的平行线有无数条 B 、过一点有无数条直线平行于已知直线C 、过直线外一点有且只有一条直线平行于已知直线D 、过有有且只有一条直线垂垂直于已知直线3、在同一平面内, 直线l 与两条平行线a 、b 的位置关系是( ) A 、l 一定与a 、b 都平行 B 、l 可能与a 平行, 与b 相交 C 、l 一定与a 、b 都相交 D 、l 与a, b 都平行或都相交4、若11∥l 2, l 2∥l 3,则l 1 l 3,这是根据 .5、如图所示, 直线AB ∥CD, 点O 在直线AB 、CD 外. (1)用三角板和直尺过点O 画直线EF, 使EF ∥AB, (2)你能判断EF 与CD 的位置关系吗?为什么?6、读句画图: M 是直线AB 外一点, 过点M 的直线MN 与AB 交于点N, 过点M 画直线CD, 使CD ∥AB.七年级数学自学案5、2、2平行线的判定一、自学范围(13页——15页) 二、自学目标:DCB AO1、通过用直尺和三角尺画平行线的方法理解平行线的判定定理1.2、能用平行线的判定定理1来推理判定2和判定3.3、学会推理的方法 三、自学重点了解和应用平行线的判定方法 四、自学过程 1、回顾三线八角2、自学13页思考及14页第一段:判定方法1: 两条直线被第三条直线所截, 如果同位角 , 那这么两条直线平行.即: 1、 51∠=∠ ∴ a ∥ b( 同位角相等, 两直线平行)你还能其它的同位角说明吗: 3、说一说木工用图中的角尺画平行线的道理.4、自学14页思考:判定方法2: 两条直线被第三条直线所以截, 如果 相等, 那么这两条直线平行.试用此图说明理由:ab c87654321abc3215、自学15页, 你还能用什么方法来证明两条直线是平行的, 说明你的理由:五、学效测试: 6、完成课后练习 7、判断题(1)两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )(2)两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )8、如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a ∥b,理由是__________.a b 七年级数学法堂测试5.2.2平行线的判定1、如图: 如果21∠=∠, 那么 ∥ ;如果42∠=∠, 那么 ∥87654321a;如果018031=∠+∠, 那么 ∥ .2、下列条件不能判定AB ∥CD 的是( ) A 、41∠=∠ B 、32∠=∠ C 、B ∠=∠5 D 、0180=∠+∠D BAD3、如图: 若1∠与2∠互补, 2∠与4∠互补, 则( ) A 、d ∥c B 、 a ∥b C 、 a ∥ c D 、 b ∥c4、在同一平面内的三条直线满足a ⊥b , a ⊥c, 则b 与c 的位置关系是 .5、已知如图, 若018021=∠+∠, 则=∠+∠43 , AB CD.6、如图, 直线AB 、CD 被EF 所截, 且21∠=∠, 试说明直线AB 与CD 的位置关系(用多种方法)七年级数学自学案 5.3.1平行线的性质一、自学范围(19页——21页练习) 二、自学目标:1、了解平行线的性质2、能够进行推理说明平行线的性质. 三、自学重、难点重点:探索并掌握平行线的性质,能用平行线性质进行简单的推E4321c b a 4321ba H G FE DCB A21理和计算.难点:能区分平行线的性质和判定 四、自学过程:1、平行线的判定定理1中“两条直线被第三条直线所截, 如果同位角相等, 那么这两条直线平行”. 其中同位角是条件, 两条直线平行是结论, 那么把这个结论反过来成立吗?即: “如果两条平行线被第三条直线所截, 那么同位角相等. ”成立吗?2、带着上面的问题认真自学课本19页, 并完成课本上的填空.3、性质1: 两条 被第三条直线所截, 同位角 . 可以简单的说:性质2: 性质3: 4、自学20页思考, 并完成课本上的填空.左图中: a ∥b,说明2∠+3∠=1800(提示: 应该性质1) 5、自学20页例题 五、学效测试: 6、判断题(1)两条直线被第三条直线所截,则同旁内角互补.( )abc321(2)两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )7、如图: 直线a ∥b,1∠=540,那么2∠, 3∠, 4∠各是多少度?8、如图(3),AB ∥EF,∠ECD=∠E,则CD ∥AB.说理如下: 因为∠ECD=∠E,所以CD ∥EF( ) 又AB ∥EF,所以CD ∥AB( ).七年级数学法堂测试5.3.1平行线的性质 一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( ) 二、选择题1.∠1和∠2是直线AB 、CD 被直线EF 所截而成的内错角,那么∠1和∠2 的大小关系是( )A.∠1=∠2B.∠1>∠2;C.∠1<∠2D.无法确定 2.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是( )A.向右拐85°,再向右拐95°;B.向右拐85°,再向左拐85°abc4321F EDC B AC.向右拐85°,再向右拐85°;D.向右拐85°,再向左拐95° 三、填空1.如图(1),若AD ∥BC,则______=_______,∠_______=∠_______,∠ABC+_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.2.如图(3),AB ∥EF,∠ECD=∠E,则CD ∥AB.说理如下:因为∠ECD=∠E,所以CD ∥EF( ) 又AB ∥EF,所以CD ∥AB( ).三、解答(选做题)如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.七年级数学自学案5.3.2命题、定理一、自学范围(21页——22页练习) 二、自学目标1、了解命题的概念, 会把命题写成“如果……那么……”的形式.2、能判断一些简单的命题是真命题还是假命题. 三、自学重点命题的概念, 把命题写成“如果……那么……”的形式 四、自学过程1、对一件事情______的语句,叫做命题.2、命题由_____和 _____是已知事项, _____是由已知事项.3、命题常可以写成__________的形式, “_____”后接的部分是题没, “_______”后接的部分是结论.87654321DCB A FED CB A E21DCB4、_______叫真命题_______叫假命题 , _______叫定理.5、指出下列命题的题设和结论:(1)如果AB⊥CD,垂足是O,那么∠AOC=90·,(2)两直线平行,同位角相等.(3)同位角相等(4)如果a>b,a>c6、把下列命题改写成“如果………那么………”的形式,并判断其是真命题,还是假命题.若是假命题,举出一个反例.(5)内错角相等,两直线平行.(6)在同一平面内,平行于同一条直线的两直线平行.(7)等角的补角相等(8)的三条边都相等五、学效测试7、22页练习8、下列句子哪些是命题:(1)猴子是动物的一种 (2)玫瑰花是动物(3)美丽的天空 (4)动物都需要水(5)负数都泪于零 (6)过直线外一点作直线l的平才线(7)所有的质数都是奇数(8)你的作业呢?9、指出下列命题的题设和结论(1)三角形的内角和是160·(2)相等的角是对顶角(3)互补的角是邻补角10、判断下列命题是真命题,还是假命题,若是假命题, 举出一个反例.(1) 邻补角是互补的角(2)两个角等于平角时,这两个角互为补角(3)内错角相等(4)两条平行线被第三条直线所截,同旁内角互补11、举出你学过的几何定理七年级数学自学案5.4平移一、自学范围(27页——29页)二、自学目标:1、了解平移的概念, 理解平移的性质2、会进行点的平移, 能处理简单的平移问题三、自学重点平移的概念和作图方法四、自学过程1、认真观察27页图5.4-1, 想想这些图是怎样得到的.2、你能按着这个图案画下去吗?3、自学28页思考.4、填空(1)把一个图形整体沿某一方向移动, 全得到一个新的 , 新图形与原图形的和完全相同.(2)新图形中每一点, 都是由原图形中的移动后得到CD的, 这两个点是 , 连接各级对应点的线段 . (3) 叫做平移变换, 简称 . 5、举出生活中平移的例子.6、自学29页例题, 学会如何把一个简单的图形进行平移. 五、学效测试7、你能继续往下画吗.8、把图中的三角形顶点A 移动到A '画出平移后的线段A 'B '(注意先找B 点的对应点)9、经过平移三角形ABC 的端点A 移到了点D, 你能作出三角形ABC平移后的图形吗?第六章 面直角坐标系 第1 6.1.1 有序数对一、自学范围P39—40二、自学目标1、理解有序数对对我们有何用处?2、能用有序数对表示实际生活中物体的位置.三、自学重点用有序数对表示位置四、自学过程(一)、做游戏(说明: 列是从左起, 非是从前往后)1、在教室里, 只给一数据如“第3列”, 你能确定是指哪位同学的位置吗?2、给两个数据如“第3列, 第2排”, 是的位置.3、如果确定一个位置, 你认为需要几个数据?(二)、自学39页1、在图6.1—1中找出参加数学问题讨论的同学.小组内交流一下, 看一看你们找的位置相同吗?如果不同, 为什么?2、请回答P40思考题.3、我们把这种有顺序的______个数a与b组成的_______叫做_______, 记作( , ).五、学效测试1、P40练习.2、利用________________, 可以准确地表示出一个位置, 如电影院的座号, “3排2号”、“2排3号”.3、用有序数对表示物体位置时,(2,4)与(4,2)表示的位置相同吗?请结合图形说明.4、如图所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经 (3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?23654176第1课时 6.1.1 有序数对当堂检测题一、选择题1.如图1所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( )A.(4,5);B.(5,4);C.(4,2);D.(4,3) 2.如图1所示,B 左侧第二个人的位置是 ( ) A.(2,5); B.(5,2); C.(2,2); D.(5,5) 3.如图1所示,如果队伍向西前进,那么A 北侧第二个人的位置是 ( )A.(4,1);B.(1,4);C.(1,3);D.(3,1) 4.如图1所示,(4,3)表示的位置是 ( ) A.A B.B C.C D.D二.应用题(1)如图, 点A 用(3, 1)表示, 点B 用(8, 5)表示.若用(3, 3)→(•5, 3)→(5, 4)→(8, 4)→(8, 5)表示由A 到B 的一种走法, 并规定从A 到B 只能向上或向右走, 小刚家在A 点, 小强家在B 点, 小刚要约小强踢球, 用上述表示法写出另两种走法, •并判断这几种走法的路程是否相等.七年级数学自学案6.1.2 平面直角坐标系一、自学范围P40—43思考 二、自学目标1、理解平面直角坐标系, 以及横轴、纵轴、原点、坐标的概念. 会画平面直角坐标系, 并能在给定的平面直角坐标系中由点的位置写出它的坐标, 以及(1)DC BA五行三行六行六列五列四列三列二列一行一列能根据坐标描出点的位置.2、知道平面直角坐标系内有几个象限, 清楚各象限的点的坐标的符号特点.3、给出坐标能判断所在象限.三、自学重点1、在给定的平面直角坐标系内, 会根据坐标确定点, 根据点的位置写出点的坐标.2、知道象限内点的坐标符号的特点, 根据点的坐标判断其所在象限.四、自学难点:坐标轴上点的坐标的特点五、自学过程1、画一条数轴, 在数轴上标出 3 , -3 , 0 , 2数轴上的点可以用个数来表示, 这个数叫做 .2、直线上的一个点可以用数轴上一个数来表示, 那么直线外一点(平面内的一点)还用能一个数来表示吗?如图6.1-3中A、B、C、D各点.3、自学41页填空.(1)我们可以在平面内画两条互相_________、__________重合的数轴, 组成________________, 水平的数轴称为_____轴或_____轴,习惯上取向____为正方向;竖直的数轴称为____轴或____轴,取向___方向为正方向;两坐标轴的交点为平面直角坐标系的________.(2)如何确定点的坐标. (阅读P41最后一段)写出点B、C、D的坐标4、读42页图6.1-5,建立了平面直角坐标系以后, 坐标平面就被两条坐标轴分成四个部分, 分别叫做第一象限、第二象限、第三象限和第四象限. 四个象限在坐标系内按_______(顺、逆)时针排列的. 坐标轴上的点____属于任何象限.5、请在平面直角坐标系中找出以下各点①A(1, 1) B(2, 3)②C(-1, 2) D(-2, 3)③E(-1, -3) F(-4, -2)④ G(1, -2) H(4, -2)⑤I(1, 0) J(-1, 0)⑥K(0, 1) L(0, -2)点的位置横坐标符号纵坐标符号在第一象限在第二象限在第三象限在第四象限在x轴上在正半轴上6.如图1所示,点A的坐标是 ( )A.(3,2);B.(3,3);C.(3,-3);D.(-3,-3)7.如图1所示,横坐标和纵坐标都是负数的点是 ( )A.A点B.B点C.C点D.D点8.如图1所示,坐标是(-2,2)的点是 ( )A.点AB.点BC.点CD.点D9.点A(-3,2)在第_______象限,点D(-3,-2)在第_______象限,点C( 3, 2) 在第______象限,(1)点D(-3,-2)在第_______象限,点E(0,2)在______轴上, 点F( 2, 0) 在______轴上.10、点P的坐标是(-1, -2), 则-1是点P的, -2是点P的,点p在第象限.10.已知点M(a,b),当a>0,b>0时,M在第_______象限;当a____,b______时,M 在第二象限;当a_____,b_______时,M在第四象限;当a<0,b<0时,M在第______象限.11、已知点P(x, y)在第四象限, 且︱x︱=3, ︱y︱=5, 则P点坐标是___________.12、画一个平面直角坐标系, 描出A(-1,-2) B(3,-4) C(3,0) D(0,-2)E(-2,5)前指出在第几象限.第三课时6.1.2 平面直角坐标系(2)一、自学范围P42—43二、自学目标1、知道平面直角坐标系内有几个象限, 是如何分布的.2、探究出各象限的点的坐标的符号特点.三、自学重点探究出各象限的点的坐标的符号特点.四、自学过程1、自学42页思考下面第一段和图6.1-5, 回答下列问题:(1)四个象限在坐标系内按_______(顺、逆)时针排列的.(2)x轴和y轴上的点_____属于任何象限.2、自学例题.3、做一做P44习题6.1中的第2题填表.4、做一做P43探究.五、学效测试1、在平面直角坐标系中, 点(-3, 2)在()A第一象限 B第二象限 C第三象限 D第四象限2、在平面直角坐标系中, 标出下列各点:点A在y轴上, 位于原点上方, 距离原点2个单位长度;点B在x轴上, 位于原点右侧, 距离原点1个单位长度;点C在x轴上方, y轴右侧, 距离每条坐标轴都是2个单位长度;点D在x轴上, 位于原点右侧, 距离原点3个单位长度;点E在x轴上方, y轴右侧, 距离x轴2个单位长度, 距离y 轴4个单位长度.依次连接这些点, 你能得到什么图形?3、点B(4, 3), 到x轴距离为_____,到y轴距离为____.6.1.2 平面直角坐标系(2)当堂检测题1.若点M的坐标是(a,b),且a>0,b<0,则点M在_______________.2.点A(-3,2)在第_______象限,点D(-3,-2)在第_______象限,点C( 3, 2) 在第______象限,点D(-3,-2)在第_______象限,点E(0,2)在______轴上, 点F( 2, 0) 在______轴上.3.已知点M(a,b),当a>0,b>0时,M在第_______象限;当a____,b______时,M 在第二象限;当a_____,b_______时,M在第四象限;当a<0,b<0时,M在第______象限.4、已知点P(x, y)在第四象限, 且︱x︱=3, ︱y︱=5, 则P点坐标是___________.5、已知正方形ABCD的边长为4, 它在坐标系内的位置如图所示, 请求出下列情况下四个顶点的坐标.第四课时用坐标表示地理位置一、自学范围P49-50二、自学目标1、会运用平面直角坐标系来确定一个点或某地的地理位置.2、能根据实际问题和背景建立适当的坐标系来描述某地的位置.三、自学重点学会建立适当的平面直角坐标系描述地理位置的方法.四、自学过程1、自学40页思考探究, 并回答题中问题.2、归纳建立适当的平面直角坐标系描述地理位置的方法:(1)建立坐标系, 选择一个适当的参照点为_______,确定x轴、y轴的___________;(2)根据具体问题确定__________;(3)在坐标平面内画出这些点, 写出各点的_________和各个地点的___________.五、学效测试1、在比例尺是1: 38000的南京交通浏览图上, 量得玄武湖隧道长约7CM, 它的实际长度约为()A 0.266kmB 2.66kmC 26.6kmD 266km2、以学校所在位置为原点, 分别以正东, 正北方向为x轴, y轴的正方向, 若出校门向东150m, 再向北走200m, 记作(150, 200), 小刚家的位置(-100, -150)的含义是_______________________, 出校门向北走200m, 再向西走50m是小聪的家, 则小聪家的位置应记作_____________.3、你能根据以下条件画一幅地图, 标出教学楼、图书馆、运动场、校门的位置吗?图书馆: 出教学楼向西走100m.运动场: 出教学楼向北走100m, 再向东走200m.校门: 出教学楼向南走150m, 再向东走50m.4、做课本54页第5题.用坐标表示地理位置当堂检测1、边长为300 m的正方形广场四个顶点有四家商场, 如果商场A的坐标是(150, 150), 商场C的坐标是(-150, -150), 那么商场B、D的坐标分别为____________.2、从教学楼出门向北走160 m, 再向西走100 m就是图书馆; 从教学楼出门向东走200 m, 再向南走120 m, 最后向东走50 m就是综合楼. 请根据以上条件建立适当的坐标系, 标出教学楼、图书馆、餐厅、综合楼的位置.第五课时6.2.2 用坐标表示平移(1)一、自学范围P51归纳二、自学目标:探究点的平移引起的点的坐标的变化规律.三、自学重点点的平移引起的点的坐标的变化规律四、自学过程1、读51页探究填空:将点A(-2,-3)作以下平移,请在图上标出平移后的点,并写出它们的坐标A(-2,-3)向右平移5个单位→()A(-2,-3)向左平移5个单位→ ()A(-2,-3)向上平移4个单位→ ()A(-2,-3)向下平移4个单位→ ()观察:平移前后的点的坐标的变化,你能从中发现什么规律?归纳:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点( ,y)(或(, ))将点(x,y)向上(或向下)平移b个单位长度,可以得到对应点(, )(或(, )).2、由上可知, 在平面直角坐标系中, 将一个点向右(向左)平移, 这个点的_____(横、纵)坐标变, _____坐标不变.向上(向下)平移, 这个点的_____(横、纵)坐标变, _____坐标不变.。

人教版数学七年级下册--第六章 实数 复习导学案

人教版数学七年级下册--第六章 实数 复习导学案

【学习目标】 1.进一步了解平方根、立方根、实数及其相关概念;会用根号表示并求数的立方根、平方根;能进行有关实数的简单加减运算。

2.掌握估算的方法。

【课前预习】 1.已知下列各数:①1727- ②2.572 ③17 ④0 ⑤364- ⑥0.4646646664…其中是无理数的是____________是有理数的是_____________(只填序号)2.已知x 的平方根是±8,则x 的立方根是________.3.=-2)3(π________; =-32 _________ 4.比较大小:5______6;310______5; (填“>”“<”或“=”符号) 5.计算:()531054--; 144169643+-6. 实数a 、b 在数轴上的位置如图所示,化简:222()a b a b -+-7.已知a 是小于35+的整数,且22a a -=-,那么a 的所有可能值是__________8.对于实数a b 、,若有24|3|0a b -+-=,则a b +=_________.【教学设计部分】专题一:无理数的识别无理数即无限不循环小数,现在主要学习了三类:含π的数,如:ππ31,-等,开方开不尽的数,如36,2等;特定结构的数,例0.010 010 001…等。

判断一个数是否是无理数,不能只看形式,要看运算1 1结果,如16,0π是有理数,而不是无理数。

例1、下列语句中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无理数一定是无限不循环小数D .无限小数是无理数例2、38-,3,711,6.0&,π,3.10这六个数,无理数有( )个。

A .2个B .3个C .4个D .6个专题二:平方根、立方根的概念性质及开方运算若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;若a<0,则a 没有平方根和算术平方根;若a为任意实数,则a 的立方根是3a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年新人教版七年级数学下册导学案目录第五章相交线与平行线........................................ 错误!未定义书签。

课题:相交线............................................. 错误!未定义书签。

课题:垂线............................................... 错误!未定义书签。

课题:同位角、内错角、同旁内角........................... 错误!未定义书签。

课题:平行线............................................. 错误!未定义书签。

课题:平行线的判定....................................... 错误!未定义书签。

课题:平行线的性质....................................... 错误!未定义书签。

课题:平行线的判定及性质习题课............................ 错误!未定义书签。

课题:命题、定理.......................................... 错误!未定义书签。

课题:平移................................................ 错误!未定义书签。

课题:相交线与平行线全章复习.............................. 错误!未定义书签。

第六章实数.................................................. 错误!未定义书签。

课题:平方根(第1课时)................................. 错误!未定义书签。

课题:平方根(第2课时)................................. 错误!未定义书签。

课题:平方根(第3课时)................................. 错误!未定义书签。

课题:立方根(第1课时)................................. 错误!未定义书签。

课题:立方根(第2课时)................................. 错误!未定义书签。

课题:实数(第1课时).................................. 错误!未定义书签。

课题:实数(第2课时).................................. 错误!未定义书签。

课题:实数复习(一)..................................... 错误!未定义书签。

课题:实数复习(二)..................................... 错误!未定义书签。

第七章平面直角坐标系........................................ 错误!未定义书签。

课题:有序数对........................................... 错误!未定义书签。

课题:平面直角坐标系..................................... 错误!未定义书签。

课题:平面直角坐标系习题课................................ 错误!未定义书签。

课题:用坐标表示地理位置.................................. 错误!未定义书签。

课题:用坐标表示平移...................................... 错误!未定义书签。

课题:平面直角坐标系全章复习.............................. 错误!未定义书签。

第八章二元一次方程组..................................... 错误!未定义书签。

课题:二元一次方程组................................... 错误!未定义书签。

课题:消元——解二元一次方程组(代入法).................. 错误!未定义书签。

课题:消元——解二元一次方程组(代入法2)................ 错误!未定义书签。

课题:消元——解二元一次方程组(加减法1)................ 错误!未定义书签。

课题:消元——解二元一次方程组(加减法2)................ 错误!未定义书签。

课题:实际问题与二元一次方程组(1)....................... 错误!未定义书签。

课题:实际问题与二元一次方程组(2)....................... 错误!未定义书签。

课题:实际问题与二元一次方程组(3)....................... 错误!未定义书签。

课题:三元一次方程组...................................... 错误!未定义书签。

第九章不等式与不等式组.................................. 错误!未定义书签。

课题:不等式及其解集...................................... 错误!未定义书签。

课题:不等式的性质........................................ 错误!未定义书签。

课题:实际问题与一元一次不等式............................ 错误!未定义书签。

课题:一元一次不等式组(1)............................... 错误!未定义书签。

课题:一元一次不等式组(2)............................... 错误!未定义书签。

章末复习.................................................. 错误!未定义书签。

第十章数据的收集、整理与描述................................. 错误!未定义书签。

课题:统计调查(第1课时).............................. 错误!未定义书签。

课题:统计调查(第2课时).............................. 错误!未定义书签。

课题:直方图(第1课时)................................ 错误!未定义书签。

课题:直方图(第2课时)................................ 错误!未定义书签。

第五章相交线与平行线课题:相交线【学习目标】了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用.【学习难点】理解对顶角相等的性质.【学习过程】一、学前准备各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报.二、探索思考探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗?.“对顶角”的定义呢?.练习一:1.如图1所示,直线AB和CD相交于点O,OE是一条射线.(1)写出∠AOC的邻补角:____ _ ___ __;图1(2)写出∠COE的邻补角: __;(3)写出∠BOC的邻补角:____ _ ___ __;(4)写出∠BOD的对顶角:____ _.2.如图所示,∠1与∠2是对顶角的是()探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的性质”:.练习二:1.如图,直线a ,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.三、当堂反馈1.如图所示,∠1和∠2是对顶角的图形有( )个 个 个 个2.如图(1),三条直线AB,CD,EF 相交于一点O , ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。

3.如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD -∠DOB=50°,•求∠EOB 的度数.4.如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数四、学习反思本节课我学会了: ; 我的困惑是: . 课题: 垂线【学习目标】1、了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;2、会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用.【学习难点】垂线的画法以及对点到直线的距离的概念的理解.【学习过程】第1题 第2题第3题一、学前准备在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一点,得到四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB 与CD 相交于点O ”. 我们如果把直线CD 绕点O 旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BOD 的大小都将发生变化.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图用几何语言表示:方式⑴∵ ∠AOC=90° ∴ AB_____CD ,垂足是_____方式⑵∵ AB ⊥CD 于O ∴ ∠AOC=______二、探索思考探索一:请你认真画一画,看看有什么收获.⑴如图1,利用三角尺或量角器画已知直线l 的垂线,这样的垂线能画__________条;⑵如图2,经过直线l 上一点A 画l 的垂线,这样的垂线能画_____条;⑶如图3,经过直线l 外一点B 画l 的垂线,这样的垂线能画_____条;(图1) (图2) (图3a ) (图3b )经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直. 练习一:1.如图所示,OA ⊥OB ,OC 是一条射线,若∠AOC=120°,求∠BOC 度数2.如图所示,直线AB ⊥CD 于点O ,直线EF 经过点O ,若∠1=26°,求∠2的度数.3.如图所示,直线AB ,CD 相交于点O ,P 是CD 上一点.(1)过点P 画AB 的垂线PE ,垂足为E .l l l BlB(2)过点P画CD的垂线,与AB相交于F点.(3)比较线段PE,PF,PO三者的大小关系探索二:仔细观察测量比较上题中点P分别到直线AB上三点E、F、O的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________简单说成:.还有,直线外一点到这条直线的垂线段的叫做点到直线的距离.注意:垂线是,垂线段是一条,点到直线的距离是一个数量,不能说“垂线段”是距离.练习二:1.在下列语句中,正确的是().A.在同一平面内,一条直线只有一条垂线B.在同一平面内,过直线上一点的直线只有一条C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D.在同一平面内,垂线段就是点到直线的距离2.如图所示,AC⊥BC,CD⊥AB于D,AC=5cm,BC=12cm,AB=13cm,则点B到AC的距离是________,点A到BC的距离是_______,点C到AB•的距离是_______,•AC>CD•的依据是_________.三、当堂反馈1.如图所示AB,CD相交于点O,EO⊥AB于O,FO⊥CD于O,∠EOD与∠FOB的大小关系是()A.∠EOD比∠FOB大 B.∠EOD比∠FOB小C.∠EOD与∠FOB相等 D.∠EOD与∠FOB大小关系不确定2.如图,一辆汽车在直线形的公路AB上由A向B行驶,C,D是分别位于公路AB两侧的加油站.设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中的公路上分别画出点M,N的位置并说明理由.3.如图,AOB为直线,∠AOD:∠DOB=3:1,OD平分∠COB.(1)求∠AOC的度数;(2)判断AB与OC的位置关系.四、学习反思本节课我学会了:;我的困惑是: .课题:同位角、内错角、同旁内角【学习目标】1.使学生理解三线八角的意义,并能从复杂图形中识别它们;2.通过三线八角的特点的分析,培养学生抽象概括问题的能力.【学习重点】三线八角的意义,以及如何在各种变式的图形中找出这三类角.【学习难点】能准确在各种变式的图形中找出这三类角.【学习过程】一、学前准备在前面我们学习了两条直线相交于一点,得到四个角,即“两线四角”,这四个角里面,有对对顶角,有对邻补角.如果是一条直线分别与两条直线相交,结果又会怎样呢?二、探索思考探索:如图,直线c分别与直线a、b相交(也可以说两条直线a、b被第三条直线c所截),得到8个角,通常称为“三线八角”,那么这8个角之间有哪些关系呢?观察填表:表一ab c1.如图1所示,∠1与∠2是__ _角,∠2与∠4是_ 角,∠2与∠3是__ _角.(图1) (图2) (图3)2.如图2所示,∠1与∠2是___ _角,是直线______和直线_______•被直线_______所截而形成的,∠1与∠3是___ __角,是直线________和直线______•被直线________所截而形成的.3.如图3所示,∠B同旁内角有哪些?三、当堂反馈1.如图,(1)直线AD、BC被直线AC所截,找出图中由AD、BC被直线AC所截而成的内错角是_________和__________(2)∠3和∠4是直线_________和_________被_________所截,构成内错角.2.已知∠1与∠2是同旁内角,且∠1=60°,则∠2为()A. 60°B. 120°C. 60°或120°D.无法确定3.如图,判断正误①∠1和∠4是同位角;()②∠1和∠5是同位角;()③∠2和∠7是内错角;()④∠1和∠4是同旁内角;()4.如图,直线DE、BC被直线AB所截.⑴∠1与∠2、∠1与∠3、∠1与∠4各是什么角?⑵如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?四、学习反思本节课我学会了:;我的困惑是: .课题:平行线【学习目标】1.使学生知道平行线的概念,掌握平行公理;2.了解平行线具有传递性,能够画出已知直线的平行线.【学习重点】平行线的概念和平行公理,利用直尺和三角板画已知直线的平行线.【学习难点】用几何语言描述画图过程,根据几何语言画出图形.【学习过程】一、学前准备在上学期我们学过点和直线的位置关系,同学们还记得点和直线有几种位置关系吗?请画出来,并尝试用几何语言来表示.二、探索思考探索一:我们知道,火车行驶的两条笔直的铁轨、人行道上的斑马线等都给我们平行的形象.一般地,在同一平面内,不相交的两条直线叫做平行线.如图,记作“a ∥b ”或“AB ∥CD ”,读作“直线a 平行于直线b ”.请同学们思考一下:在同一平面内,两条不重合的直线有几种位置关系?动手画一画,并尝试用几何语言来表示..练习一:1.下列说法中,正确的是( ).A .两直线不相交则平行B .两直线不平行则相交C .若两线段平行,那么它们不相交D .两条线段不相交,那么它们平行2.在同一平面内,有三条直线,其中只有两条是平行的,那么交点有( ).A .0个B .1个C .2个D .3个探索二:请同学们仔细阅读课本P13页“平行线的讨论”,认真思考.通过观察和画图,可以体验一个基本事实(平行公理):经过直线外一点, 一条直线与这条直线平行.同样,我们还有(平行线的传递性):如果两条直线都与第三条直线平行,那么这两条直线也互相平行.简单的说就是:平行于同一直线的两直线平行.用几何语言可表示为:如果b ∥a ,c ∥a ,那么 .练习二:1.如图1所示,与AB 平行的棱有_______条,与AA ′平行的棱有_____条.2.如图2所示,按要求画平行线.(1)过P 点画AB 的平行线EF ;(2)过P 点画CD 的平行线MN .3.如图3所示,点A ,B 分别在直线1l ,2l 上,(1)过点A 画到2l 的垂线段;(2)过点B 画直线3l ∥1l .(图1) (图2) (图3)4.下列说法中,错误的有( ).①若a 与c 相交,b 与c 相交,则a 与b 相交;②若a ∥b ,b ∥c ,那么a ∥c;A BC Da b③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、•相交、垂线三种A.3个 B.2个 C.1个 D.0个三、当堂反馈1.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.2.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________________.3.判断题(1)不相交的两条直线叫做平行线.( )(2)在同一平面内,不相交的两条射线是平行线.( )(3)如果一条直线与两条平行线中的一条平行, 那么它与另一条也互相平行.( )4.读下列语句,并画出图形:⑴点P是直线AB外一点,直线CD经过点P,且与直线AB平行,直线EF也经过点P•且与直线AB 垂直.⑵直线AB,CD是相交直线,点P是直线AB,CD外一点,直线EF经过点P•且与直线AB平行,与直线CD相交于E.四、学习反思本节课我学会了:;我的困惑是: .课题:平行线的判定【学习目标】使学生掌握平行线的判定,并能应用这些知识判断两条直线是否平行,培养学生简单的推理能力.【学习重点】平行线的三种判定方法,并运用这三种方法判断两直线平行.【学习难点】运用平行线的判定方法进行简单的推理.【学习过程】一、学前准备还知道“三线八角”吗?请画一画,找出一组同位角、一组内错角、一组同旁内角.二、探索思考探索一:请同学们仔细阅读课本P13页“平行线判定的思考”,你知道在画平行线这一过程中,三角尺所起的作用吗?由此我们可以得到平行线的判定方法,如图,将下列空白补充完整(填1种就可以)判定方法1(判定公理)几何语言表述为:∵∠___=∠___ ∴ AB∥CD由判定方法1,结合对顶角的性质,我们可以得到:判定方法2(判定定理)几何语言表述为:∵∠___=∠___ ∴ AB∥CD由判定方法1,结合邻补角的性质,我们可以得到:判定方法3(判定定理)几何语言表述为:∵∠___+∠___=180°∴ AB∥CD练习一:(1题) (2题1.如图1所示,若∠1=∠2,则_____∥______.若∠1=∠3,则______∥______,根据是_____ ____.2.如图2所示,若∠1=62°,∠2=118°,则_____∥_____,根据是_____ ___3.根据图3完成下列填空(括号内填写定理或公理)(1)∵∠1=∠4(已知)∴∥()(2)∵∠ABC +∠ =180°(已知)∴AB∥CD()(3)∵∠ =∠(已知)∴AD∥BC()(4)∵∠5=∠(已知)∴AB∥CD()探索二:木工师傅用角尺画出工件边缘的两条垂线,就可以再找出两条平行线,如图所示,a∥b,你能说明是什么道理吗?结论(判定推论):在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.简记为:在同一平面内,垂直于同一直线的两直线平行.如图,几何语言表述为:∵a ⊥2l ,b ⊥2l ∴练习二:1.如图所示,AB ⊥BC ,BC ⊥CD ,BF 和CE 是射线,并且∠1=∠2,试说明BF ∥CE .三、当堂反馈1.如图所示,在下列条件中,不能判断L 1∥L 2的是( ).A .∠1=∠3B .∠2=∠3C .∠4+∠5=180°D .∠2+∠4=180°2.如图所示,已知∠1=120°,∠2=60°.试说明a 与b 的关系?3.如图所示,已知∠OEB=130°,∠FOD=25°,OF 平分∠EOD ,试说明AB ∥CD .四、学习反思本节课我学会了: ; 我的困惑是: . 课题: 平行线的性质【学习目标】1.使学生掌握平行线的三个性质,并能应用它们进行简单的推理论证;2.使学生经过对比后,理解平行线的性质和判定的区别和联系.【学习重点】平行线的三个性质及其应用.【学习难点】正确理解性质与判定的区别和联系,并正确运用它们去推理证明.【学习过程】一、学前准备通过前面的学习,你知道判定两条直线平行有哪几种方法吗? 1 2 a b 3 c⑴平行线的定义:⑵平行线的传递性:⑶平行线的判定公理:⑷平行线的判定定理1:⑸平行线的判定定理2:⑹平行线的判定推论:二、探索思考探索一:请同学们仔细阅读课本P19页,完成课本上的探究.根据探究内容,我们可以得到平行线的性质,如图,将下列空白补充完整(填1种就可以)性质1(性质公理)几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___由性质1,结合对顶角的性质,我们可以得到:性质2(性质定理)几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___由性质1,结合邻补角的性质,我们可以得到:性质3(性质定理)几何语言表述为:∵ AB ∥CD ∴ ∠___+∠___=练习一:1. 根据右图将下列几何语言补充完整(1)∵AD ∥ (已知)∴∠A+∠ABC=180°( )(2)∵AB ∥ (已知)∴∠4=∠ ( )∠ABC=∠ ( ) 2. 如右图所示,BE 平分∠ABC ,DE ∥ BC ,图中相等的角共有( )A. 3对B. 4对C. 5对D. 6对3、如图,AB ∥CD,∠1=45°,∠D=∠C,求∠D 、∠C 、∠B 的度数.1 2 3 4 5 B A DE D C B A 1A 2A 1B 2B 3B 4B 5B 1C 2C3C 5C 4C探索二:用三角尺和直尺画平行线,做成一张5×5个格子的方格纸.观察做出的方格纸的一部分(如图),线段11C B 、22C B 、…、55C B 都与两条平行的横线51B A 和52C A 垂直吗? 它们的长度相等吗?像这样,同时垂直于两条平行直线,并且夹在这两条平行线间的线段的长度相等,叫做这两条平行线间的距离,即平行线间的距离处处相等.练习二:1.如图所示,已知直线AB ∥CD ,且被直线EF 所截,若∠1=50°,则∠2=____,•∠3=______.(1题) (2题) (3题)2.如图所示,AB ∥CD ,AF 交CD 于E ,若∠CEF=60°,则∠A=______.3.如图所示,已知AB ∥CD ,BC ∥DE ,∠1=120°,则∠2=______.三、当堂反馈1.如图所示,如果AB ∥CD ,那么( ).A .∠1=∠4,∠2=∠5B .∠2=∠3,∠4=∠5C .∠1=∠4,∠5=∠7D .∠2=∠3,∠6=∠8(1题) (2题) (3题)2.如图所示,DE ∥BC ,EF ∥AB ,则图中和∠BFE 互补的角有( ).A .3个B .2个C .5个D .4个3.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.四、学习反思本节课我学会了: ; 我的困惑是: . 课题:平行线的判定及性质习题课【学习目标】加深对平行线的判定及性质的理解及其应用.【学习重点】平行线的判定及性质的应用.【学习难点】灵活运用平行线的判定及性质去推理证明.【学习过程】一、学前准备通过前面的学习,你知道判定两条直线平行有哪几种方法吗?⑴平行线的定义:⑵平行线的传递性:⑶平行线的判定公理:⑷平行线的判定定理1:⑸平行线的判定定理2:⑹平行线的判定推论:通过前面的学习,你还知道两条直线平行有哪些性质吗?⑴根据平行线的定义:⑵平行线的性质公理:⑶平行线的性质定理1:⑷平行线的性质定理2:⑸平行线间的距离.二、探索思考练习:让我先试试,相信我能行.1.如图1,若∠1=∠2,那么_____∥______,根据___ __.若a∥b,•那么∠3=_____,根据___ __.(图1) (图2) (图3) (图4)2.如图2,∵∠1=∠2,∴_______∥_______,根据___ _____.∴∠B=______,根据___ _____.3.如图3,若AB∥CD,那么________=•_______;•若∠1=•∠2,•那么_____•∥_____;若BC∥AD,那么_______=_______;若∠A+∠ABC=180°,那么______∥_____4.如图4,•一条公路两次拐弯后,•和原来的方向相同,•如果第一次拐的角是136°(即∠ABC),那么第二次拐的角(∠BCD)是度,根据___ .5.如图,修高速公路需要开山洞,为节省时间,要在山两面A,B同时开工,•在A处测得洞的走向是北偏东76°12′,那么在B处应按什么方向开口,才能使山洞准确接通,请说明其中的道理.6.如图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射∠1=∠2,∠3=∠4,请你解释为什么开始进入潜望镜的光线和最后离开潜望镜的光线是平行的.三、当堂反馈1.已知如图1,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=74°,那么吸管与易拉罐下部夹角∠2=_______.2.已知如图2,边OA ,OB 均为平面反光镜,∠AOB=40°,在OB 上有一点P ,从P 点射出一束光线经OA 上的Q 点反射后,反射光线QR 恰好与OB 平行,则∠QPB 的度数是( ).A .60°B .80°C .100°D .120°(图1) (图2) (图3)3.如图3,已知∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并对结论进行说理.4.如图,直线DE 经过点A ,DE ∥BC ,∠B=44°,∠C=85°.⑴求∠DAB 的度数;⑵求∠EAC 的度数;⑶求∠BAC 的度数;⑷通过这道题你能说明为什么三角形的内角和是180°吗?四、学习反思 本节课我学会了: ; 我的困惑是: .课题:命题、定理【学习目标】了解命题、定理的概念,能够区分命题的题设和结论.A D EB C【学习重点】能够区分命题的题设和结论.【学习难点】能够区分命题的题设和结论.【学习过程】一、学前准备歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“独路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,边走边大声说道:“我从来不给傻子让路!”而对如此的尴尬的局面,歌德笑容可掏,谦恭的闪在一旁,有礼貌地回答道“呵呵,我可恰相反”,结果故作聪明的批评家,反倒自讨没趣.你知道为什么吗?二、探索思考探索:在日常生活中,我们会遇到许多类似的情况,需要对一些事情作出判断,例如:⑴今天是晴天;⑵对顶角相等;⑶如果两条直线都与第三条直线平行,那么这两条直线也互相平行.像这样,判断一件事情的语句,叫做命题.每个命题都是由_______和______组成.每个命题都可以写成.“如果……,那么……”的形式,用“如果”开始的部份是,用“那么”开始的部份是 .像前面举例中的⑵⑶两个命题,都是正确的,这样的命题叫做真命题,即正确的命题叫做______.例如:“如果一个数能被2整除,那么这个数能被4整除”,很明显是错误的命题,这样的命题叫做假命题,即错误的命题叫做______.我们把从长期的实践活动中总结出来的正确命题叫做公理;通过正确的推理得出的真命题叫做定理.练习:1.下列语句是命题的个数为()①画∠AOB的平分线; ②直角都相等; ③同旁内角互补吗?④若│a│=3,则a=3.A.1个 B.2个 C.3个 D.4个2.下列5个命题,其中真命题的个数为()①两个锐角之和一定是钝角; ②直角小于夹角; ③同位角相等,两直线平行; •④内错角互补,两直线平行; ⑤如果a<b,b<c,那么a<c.A.1个 B.2个 C.3个 D.4个3.下列说法正确的是()A.互补的两个角是邻补角 B.两直线平行,同旁内角相等C.“同旁内角互补”不是命题 D.“相等的两个角是对顶角”是假命题4.“同一平面内,垂直于同一条直线的两条直线互相平行”是命题,其中,题设是,结论是,5.将下列命题改写成“如果……那么……”的形式.(1)直角都相等.(2)末位数是5的整数能被5整除.(3)三角形的内角和是180°.(4)平行于同一条直线的两条直线互相平行.三、当堂反馈1.下列语句中不是命题的有()⑴两点之间,直线最短;⑵不许大声讲话;⑶连接A、B两点;⑷花儿在春天开放.A.1个 B.2个 C.3个 D.4个2.下列命题中,正确的是()A.在同一平面内,垂直于同一条直线的两条直线平行;B.相等的角是对顶角;C.两条直线被第三条直线所截,同位角相等;D.和为180°的两个角叫做邻补角.3.下列命题中的条件(题设)是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;(2)如果两条直线都与第三条直线平行,那么这两条直线也平行;4.将下列命题改写成“如果……那么……”的形式,并判断正误.(1)对顶角相等;(2)同位角相等;(3)同角的补角相等.四、学习反思本节课我学会了:;我的困惑是: .课题:平移【学习目标】1了解平移的概念,知道生活中常见的平移例子;2掌握平移的规律,会利用平移画图.【学习重点】平移的规律,画图.【学习难点】利用平移的特征画图.【学习过程】一、学前准备生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?请你试一试.二、探索思考探究一:请同学们仔细阅读课本P27~28页,你能发现并归纳平移的特征吗?平移的特征:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小;(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是;(3)连接各组对应点的线段平行(或在同一条直线上)且 .即,在平面内,将一个图形沿移动一定的,图形的这种移动,叫做平移变换,简称平移.注意:图形平移的方向,不一定是水平的.图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.(填“改变”或“不改变”)练习一:1.几何图形经过平移,图形中对应点所连的线段平行(或在同一条直线上)且,对应线段且,对应角 .2.平移改变的是图形的().A.位置 B.形状 C.大小 D.位置、形状、大小3.下列现象中,不属于平移的是().A.滑雪运动员在的平坦雪地上滑行 B.大楼上上下下地迎送来客的电梯C.钟摆的摆动 D.火车在笔直的铁轨上飞驰而过4.下列各组图形,可经平移变换由一个图形得到另一个图形的是().探究二:你能按要求将图形平移吗?动手试一试.如图所示,把△ABC沿AB方向平移,平移的距离为线段a的长.练习二:1.如图所示,经过平移,四边形ABCD的顶点A移到点A′,作出平移后的四边形.三、当堂反馈1.一个图形先向右平移5个单位,再向左平移7个单位,所得到的图形可以看作是原来位置的图形一次性向_____平移______个单位得到.2.∠DEF是∠ABC经过平移得到的,∠ABC=60°,则∠DEF=3.如图,△ABC平移后得到了△A'B'C',其中点C的对应点是点C',已经标明,请你将点B'、点A'在图中标出来,并画出△A'B'C';若AB边上的中点为M,请你再标出点M的对应点M'.4.已知△ABC、,过点D作△ABC平移后的图形,其中点D与点A对应.四、学习反思本节课我学会了:;我的困惑是: .课题:相交线与平行线全章复习一、本章知识结构图二、本章知识梳理。

相关文档
最新文档