圆的标准方程 PPT课件
合集下载
圆的标准方程完整ppt课件
解决与圆有关的切线问题
圆的方程可以用来求解与圆有关的切线问题,如切线方程、切点坐 标等。
圆的方程在物理问题中的应用
描述圆形运动轨迹
在物理学中,圆的方程可以用来描述物体做圆周运动时的轨迹。
计算圆形运动的物理量
利用圆的方程,可以计算物体做圆周运动时的线速度、角速度、向 心加速度等物理量。
解决与圆有关的物理问题
切线与半径垂直
切线垂直于经过切点的 半径。
切线长定理
从圆外一点引圆的两条 切线,它们的切线长相
等。
04
圆的方程在实际问题中的应用
圆的方程在几何问题中的应用
确定圆的位置和大小
通过圆的方程,可以准确地确定圆心的坐标和半径的长度,从而 确定圆的位置和大小。
判断点与圆的位置关系
利用圆的方程,可以判断一个点是否在圆上、圆内或圆外,从而解 决相关的几何问题。
3
解决与圆有关的经济问题
圆的方程还可以用来解决一些与圆有关的经济问 题,如圆形区域的经济发展、圆形市场的竞争等 。
05
圆的方程与其他知识点的联系
圆的方程与直线方程的关系
直线与圆的位置关系
通过比较圆心到直线的距离与半径的大小关系,可以确定直线与 圆是相切、相交还是相离。
切线方程
当直线与圆相切时,切线的斜率与圆心和切点的连线垂直,由此 可以求出切线的方程。
根据两点间距离公式,有 $OP = sqrt{(x - a)^{2} + (y
- b)^{2}}$。
将 $OP = r$ 代入上式,得到 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
方程中参数的意义
$a, b$
01
圆心坐标,表示圆心的位置。
圆的方程可以用来求解与圆有关的切线问题,如切线方程、切点坐 标等。
圆的方程在物理问题中的应用
描述圆形运动轨迹
在物理学中,圆的方程可以用来描述物体做圆周运动时的轨迹。
计算圆形运动的物理量
利用圆的方程,可以计算物体做圆周运动时的线速度、角速度、向 心加速度等物理量。
解决与圆有关的物理问题
切线与半径垂直
切线垂直于经过切点的 半径。
切线长定理
从圆外一点引圆的两条 切线,它们的切线长相
等。
04
圆的方程在实际问题中的应用
圆的方程在几何问题中的应用
确定圆的位置和大小
通过圆的方程,可以准确地确定圆心的坐标和半径的长度,从而 确定圆的位置和大小。
判断点与圆的位置关系
利用圆的方程,可以判断一个点是否在圆上、圆内或圆外,从而解 决相关的几何问题。
3
解决与圆有关的经济问题
圆的方程还可以用来解决一些与圆有关的经济问 题,如圆形区域的经济发展、圆形市场的竞争等 。
05
圆的方程与其他知识点的联系
圆的方程与直线方程的关系
直线与圆的位置关系
通过比较圆心到直线的距离与半径的大小关系,可以确定直线与 圆是相切、相交还是相离。
切线方程
当直线与圆相切时,切线的斜率与圆心和切点的连线垂直,由此 可以求出切线的方程。
根据两点间距离公式,有 $OP = sqrt{(x - a)^{2} + (y
- b)^{2}}$。
将 $OP = r$ 代入上式,得到 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
方程中参数的意义
$a, b$
01
圆心坐标,表示圆心的位置。
高中数学必修二课件:圆的一般方程(42张PPT)
此方程表示以(1,-2)为圆心,2为半径长的圆.
问题2:方程x2+y2+2x-2y+2=0表示什么图形?
提示:对方程x2+y2+2x-2y+2=0配方得
(x+1)2+(y-1)2=0,即x=-1且y=1. 此方程表示一个点(-1,1). 问题3:方程x2+y2-2x-4y+6=0表示什么图形? 提示:对方程x2+y2-2x-4y+6=0配方得 (x-1)2+(y-2)2=-1. 由于不存在点的坐标(x,y)满足这个方程,所以这 个方程不表示任何图形.
3.若方程x2+y2+2mx-2y+m2+5m=0表示圆,求 (1)实数m的取值范围; (2)圆心坐标和半径.
解:(1)根据题意知D2+E2-4F=(2m)2+(-2)2- 1 4(m +5m)>0,即4m +4-4m -20m>0,解得m<5,
2 2 2
1 故m的取值范围为(-∞,5).
(2)将方程x2+y2+2mx-2y+m2+5m=0写成标准 方程为(x+m)2+(y-1)2=1-5m, 故圆心坐标为(-m,1),半径r= 1-5m.
第 二 章 解 析 几 何 初 步
§2 圆 与 圆 的 方 程
2.2
圆 的 一 般 方 程
理解教材新知
把 握 热 点 考 向
考点一 考点二 考点三
应用创新演练
把圆的标准方程(x-a)2+(y-b)2=r2展开得,x2+y2 -2ax-2by+a2+b2-r2=0,这是一个二元二次方程的形 式,那么,是否一个二元二次方程都表示一个圆呢? 问题1:方程x2+y2-2x+4y+1=0表示什么图形? 提示:对x2+y2-2x+4y+1=0配方得 (x-1)2+(y+2)2=4.
1.若x2+y2-x+y-m=0表示一个圆的方程,则m的取值 范围是 1 A.m>-2 1 C.m<-2 1 B.m≥-2 D.m>-2 ( )
圆的方程课件PPT
2.点与圆的位置关系 设点 P 到圆心的距离为 d,圆的半径为 r,则点与圆的位置有 如表所示的对应关系.
位置关系 点在圆外 点在圆上 点在圆内
d 与 r 的关系 ___d_>_r___ ___d_=__r__ ___d_<_r___
自主探究 探究 1:方程(x-a)2+(y-b)2=r2(a,b,r∈R)表示一个圆吗? 为什么?
解:
法一:设圆的方程为(x-a)2+(y-b)2=r2(r>0).
则b5=-0a,2+2-b2=r2, 3-a2+-2-b2=r2.
a=4, 解得b=0,
r= 5.
∴所求圆的方程为(x-4)2+y2=5.
法二:
∵圆过 A(5,2),B(3,-2)两点, ∴圆心一定在线段 AB 的中垂线上. AB 中垂线的方程为 y=-12(x-4), 令 y=0,得 x=4.即圆心坐标 C(4,0), ∴r=|CA|= 5-42+2-02= 5, ∴所求圆的方程为(x-4)2+y2=5.
【答案】未必表示圆,当 r≠0 时,表示圆心为(a,b),半径 为|r|的圆;当 r=0 时,表示一个点(a,b).
探究 2:由圆的标准方程可以得到圆的哪些几何特征? 【答案】由圆的标准方程可直接得到圆的圆心坐标和半径.
预习测评 1.若一圆的标准方程为(x-1)2+(y+5)2=3,则此圆的圆心和 半径分别是( ) A.(-1,5), 3 B.(1,-5), 3 C.(-1,5),3 D.(1,-5),3
错解:由题意可知圆心在直线 y=2x 上,且在线段 AB 的垂直 平分线 x=2 上,由xy==22,x, 可得圆心 C(2,4),r=|AC|= 17, ∴圆 C 的方程为(x-2)2+(y-4)2=17.
选择必修 第二章 2.4.1 圆的标准方程 课件(共26张PPT)
究位置关系、距离
等问题
新知引入
类比直线方程的研究过程,如何研究圆的方程呢?
圆
平面直角坐标系
圆的方程
代数运算
利用圆的方程,研究
圆有关的位置关系、
几何度量等问题
新知探究
在平面直角坐标系中,如何确定一个圆?
如图,在平面直角坐标系中,⨀A的圆心A的坐标为(a,b),半径为r,M(x,y)为
圆上任意一点,⨀A就是以下点的集合
多边形和圆是平面几何中的两类基本图形.建立直线的方程后,我们可以运
用它研究多边形这些“直线形”,解决边所在直线的平行或垂直、边与边的交
点以及点到线段所在直线的距离等问题.类似地,为了研究圆的有关性质,解决
与圆有关的问题,我们首先需要建立圆的方程.
我国的墨子云:圆,一中同长也.
意思:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等.
程①.于是
(5 − )2 +(1 − )2 = 2 ,
൞(7 − )2 +(−3 − )2 = 2 ,.
(2 − )2 +(−8 − )2 = 2
知新探究
【例2】△ABC的三个顶点分别是A(5,1),B(7,-3),C(2,-8),
求△ABC的外接圆的标准方程.
解: 即
2 + 2 − 10 − 2 + 26 = 2 ,
心A间的距离为r,点M就在⨀A上.
这时,我们把上述方程称为圆心为A,半径为r的圆
的标准方程(standard equation of thecircle).
半径r
圆的几何要素: 圆心(a,b)
圆心在坐标原点,
半径为r的圆的标准
三个独立条件求a,b,r确定一个圆的方程.
等问题
新知引入
类比直线方程的研究过程,如何研究圆的方程呢?
圆
平面直角坐标系
圆的方程
代数运算
利用圆的方程,研究
圆有关的位置关系、
几何度量等问题
新知探究
在平面直角坐标系中,如何确定一个圆?
如图,在平面直角坐标系中,⨀A的圆心A的坐标为(a,b),半径为r,M(x,y)为
圆上任意一点,⨀A就是以下点的集合
多边形和圆是平面几何中的两类基本图形.建立直线的方程后,我们可以运
用它研究多边形这些“直线形”,解决边所在直线的平行或垂直、边与边的交
点以及点到线段所在直线的距离等问题.类似地,为了研究圆的有关性质,解决
与圆有关的问题,我们首先需要建立圆的方程.
我国的墨子云:圆,一中同长也.
意思:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等.
程①.于是
(5 − )2 +(1 − )2 = 2 ,
൞(7 − )2 +(−3 − )2 = 2 ,.
(2 − )2 +(−8 − )2 = 2
知新探究
【例2】△ABC的三个顶点分别是A(5,1),B(7,-3),C(2,-8),
求△ABC的外接圆的标准方程.
解: 即
2 + 2 − 10 − 2 + 26 = 2 ,
心A间的距离为r,点M就在⨀A上.
这时,我们把上述方程称为圆心为A,半径为r的圆
的标准方程(standard equation of thecircle).
半径r
圆的几何要素: 圆心(a,b)
圆心在坐标原点,
半径为r的圆的标准
三个独立条件求a,b,r确定一个圆的方程.
圆的标准方程ppt课件完整版x-2024鲜版
2024/3/28
25
两圆相离条件(内含和外离)
内含
两圆圆心之间的距离小于两圆半径之差。
外离
两圆圆心之间的距离大于两圆半径之和。
2024/3/28
26
判断方法总结及示例
要点一
判断方法
首先根据两圆圆心距和半径和、半径差的大小关系,确定 两圆的位置关系类型(相交、相切、相离),然后根据具 体类型进一步判断是相交、内切、外切、内含还是外离。
04
2024/3/28
05
4. 从中可以看出,圆心坐标 为 $(2, -3)$,半径 $r = 1$
。
12
03
圆的图像与性质分析
2024/3/28
13
圆心位置对图像影响
圆心决定圆的位置
在平面直角坐标系中,圆心的坐标决定了圆在平面上的位置。
圆心与圆上任一点的距离等于半径
根据圆的定义,圆心到圆上任意一点的距离都等于半径,因此圆心的位置会影响圆的整体形状和大小 。
$(x - a)^{2}$ 和 $(y - b)^{2}$ 分别表示 点 $(x, y)$ 到圆心 $(a, b)$ 的水平和垂 直距离的平方。
2024/3/28
$r$ 表示圆的半径, 即从圆心到圆上任一 点的距离。
10
从一般方程到标准方程的转换
一般方程形式为
$x^{2} + y^{2} + Dx + Ey + F = 0$
当两个质点发生碰撞时,可以通过它们的运动轨迹(即两个圆的 方程)来求解碰撞点的坐标。
分析物体的受力情况
在某些物理问题中,可以通过分析物体运动轨迹的形状(如圆形 或椭圆形)来推断物体所受的力。
31
圆的标准方程 圆的一般方程 教学课件(共39张PPT)高中数学北师大版(2019)选择性必修第一册
(, )
r
由两点间的距离公式得
x
a
2
y b
2
r,
(, )
O
将上式两边平方得 x a
2
y b
2
r 2 .①
x
思考一下
以方程①的解为坐标点一定在圆 C 上吗?
设以方程①的任意解 x, y 为坐标的点记为点 Q ,
因为 x, y 是方程①的解,代入方程①可得: x a 2 y b 2 r 2
10
D +3E
20
4 D+2 E
F050ຫໍສະໝຸດ 5D 5EF0
解得 D
F
2, E
0
4, F
2
2
x
+
y
故所求圆的方程为
20 ,
2x
4y
20
0.
例 5:讨论方程 x +y
2
2
x 3
解: 将原方程组整理为 1 2 x2
当
2
y2 表示的是什么图形?
1 y2
2
0,
6x 9
1 时,方程(1)是一元一次方程 6x 9
思考交流
对于点 Px0 , y0 和圆 C : x a 2 y b 2 r 2 ,由圆的标准方程的概念,可知点 P
在圆 C 上的充要条件是 x0 a2 y0 b2 r 2 .
2
2
当点 P 不在圆 C 上时,一定有 x0 a y0 b r 2 ,此时,存在以下两种情况:
PC r
x0 a 2 y0 b2
r
x0 a y0 b r 2
人教B版高中数学必修二2.3.1《圆的标准方程》ppt课件
•直径的圆的方已程知,两并点判P断1(M4(,69,)9和)、P2(Q6(,53,)3,)是求在以圆P1上P2?为
圆外?圆内?
• [分析] (1)根据所给已知条件可得圆心坐标和半 径.
• (2)判断点在圆上、圆外、圆内的方法是:根据已 知点[到解析圆]心由的已距知离条与件半可径得圆的心大坐小标关为系M来(5,判6),断半.径为 r=12
• 3.以点A(-5,4)为圆心,且与y轴相切的圆的方程
是( )
• A.(x-5)2+(y+4)2=25 B.(x+5)2+(y-4)2=
25
• C.(x-5)2+(y+4)2=16 D.(x+5)2+(y-4)2=
16
• [答案] B
• [解析] ∵与y轴相切,∴r=5,方程为(x+5)2+(y
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知 识逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等 等,这些用语往往体现了老师的思路。来自:学习方法网
此求圆的方程必须具备三个独立条件.
• 3.圆心为(a,b)半径为r(r>0)的圆的方程为: (x_圆-_心_a_)2在_+_(原_y_-点_b_)、_2=_半_r_2 径__为__r_的,圆称方作程圆为的x标2+准y方2=程r.2. 特别地,
• 4.点P(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关
r2=5
故△ABC 的外接圆的标准方程为(x-4)2+(y-1)2=5.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
圆外?圆内?
• [分析] (1)根据所给已知条件可得圆心坐标和半 径.
• (2)判断点在圆上、圆外、圆内的方法是:根据已 知点[到解析圆]心由的已距知离条与件半可径得圆的心大坐小标关为系M来(5,判6),断半.径为 r=12
• 3.以点A(-5,4)为圆心,且与y轴相切的圆的方程
是( )
• A.(x-5)2+(y+4)2=25 B.(x+5)2+(y-4)2=
25
• C.(x-5)2+(y+4)2=16 D.(x+5)2+(y-4)2=
16
• [答案] B
• [解析] ∵与y轴相切,∴r=5,方程为(x+5)2+(y
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知 识逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等 等,这些用语往往体现了老师的思路。来自:学习方法网
此求圆的方程必须具备三个独立条件.
• 3.圆心为(a,b)半径为r(r>0)的圆的方程为: (x_圆-_心_a_)2在_+_(原_y_-点_b_)、_2=_半_r_2 径__为__r_的,圆称方作程圆为的x标2+准y方2=程r.2. 特别地,
• 4.点P(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关
r2=5
故△ABC 的外接圆的标准方程为(x-4)2+(y-1)2=5.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
2.4.1圆的标准方程课件共23张PPT
上、圆内,还是圆外.
解:由已知得,圆心A的位置为线段P1P2的中 6) ,
P1 P2
利用两点间距离公式得 r =
=
2
4 - 6 + 9 - 3
圆的标准方程为: (x-5)2+(y-6) 2=10.
2
2
2
= 10.
2.已知P 1(4, 9) , P 2(6, 3)两点,求以线段P 1P 2为直径
-8) , 求△ABC的外接圆的标准方程.
解:线段AB的垂直平分线l1的方程是 x - 2 y - 8 = 0
同理, 线段AC的垂直平分线l2的方程是 x + 3 y + 7 = 0
x -2y-8 = 0
圆心的坐标就是方程组
的解 .
x +3y +7 = 0
x = 2,
所以, 圆心C的坐标(2 , -3) , 圆的半径
分析:设圆心C的坐标为(a, b) . 由已知条件可知 |CA|=
|CB|, 且a-b+1=0 . 由此可求出圆心坐标和半径 .
又因为线段AB是圆的一条弦 , 根据平面几何知识, AB
的中点与圆心C的连线垂直于AB , 由此可得到另一种解法.
解法1:设圆心C的坐标为(a, b) . 因为圆心C在直线 l :
分析: 不在同一条直线上的三个点可以确定一个圆 ,
三角形有唯一的外接圆 . 显然已知的三个点不在同一条直
线上 . 只要确定了a, b, r , 圆的标准方程就确定了.
例2 △ABC的三个顶点分别是A(5, 1) , B(7, -3) , C(2,
-8) , 求△ABC的外接圆的标准方程.
2
2
2
解: 设所求的方程是 x - a + y - b = r
解:由已知得,圆心A的位置为线段P1P2的中 6) ,
P1 P2
利用两点间距离公式得 r =
=
2
4 - 6 + 9 - 3
圆的标准方程为: (x-5)2+(y-6) 2=10.
2
2
2
= 10.
2.已知P 1(4, 9) , P 2(6, 3)两点,求以线段P 1P 2为直径
-8) , 求△ABC的外接圆的标准方程.
解:线段AB的垂直平分线l1的方程是 x - 2 y - 8 = 0
同理, 线段AC的垂直平分线l2的方程是 x + 3 y + 7 = 0
x -2y-8 = 0
圆心的坐标就是方程组
的解 .
x +3y +7 = 0
x = 2,
所以, 圆心C的坐标(2 , -3) , 圆的半径
分析:设圆心C的坐标为(a, b) . 由已知条件可知 |CA|=
|CB|, 且a-b+1=0 . 由此可求出圆心坐标和半径 .
又因为线段AB是圆的一条弦 , 根据平面几何知识, AB
的中点与圆心C的连线垂直于AB , 由此可得到另一种解法.
解法1:设圆心C的坐标为(a, b) . 因为圆心C在直线 l :
分析: 不在同一条直线上的三个点可以确定一个圆 ,
三角形有唯一的外接圆 . 显然已知的三个点不在同一条直
线上 . 只要确定了a, b, r , 圆的标准方程就确定了.
例2 △ABC的三个顶点分别是A(5, 1) , B(7, -3) , C(2,
-8) , 求△ABC的外接圆的标准方程.
2
2
2
解: 设所求的方程是 x - a + y - b = r
圆的标准方程公开课一等奖课件
例题1
已知圆O的半径为5cm,弦AB长为8cm,P是弦AB所对的优弧上的一个动点,则PC+PD的最 小值为_______.
分析
根据垂径定理和勾股定理求出圆心O到弦AB的距离,再利用切线长定理求出PC+PD的最小值。
解答
过点O作OE⊥AB于点E,连接OA,则AE=BE=1/2AB=4cm。在Rt△AOE中,OA=5cm, AE=4cm,根据勾股定理得OE=3cm。因为P是优弧上的一个动点,所以当PC和PD为切线时, PC+PD的值最小。根据切线长定理得PC=PD,所以PC+PD=2OE=6cm。故答案为6cm。
典型例题分析与解答
01
例题1
已知圆的标准方程为 $(x - 2)^{2} + (y + 1)^{2} = 9$,求圆心坐标
和半径。
03
例题2
将一般方程 $x^{2} + y^{2} - 4x + 6y + 12 = 0$ 化为标准方程,并指
出圆心坐标和半径。
02
解析
直接对比标准方程形式,可得圆心 坐标为 $(2, -1)$,半径 $r = sqrt{9} = 3$。
圆的标准方程公开课一等奖课件
contents
目录
• 圆的基本概念与性质 • 圆的标准方程及其推导 • 直线与圆的位置关系判断 • 圆的对称性与中心对称性探究 • 复杂图形中涉及圆的问题解决方法 • 总结回顾与拓展延伸
01
圆的基本概念与性质
圆的定义及基本要素
圆的定义:平面上所有与定点 (圆心)距离等于定长(半径) 的点的集合。
04
圆的对称性与中心对称性 探究
圆的对称性表现形式
图形对称
已知圆O的半径为5cm,弦AB长为8cm,P是弦AB所对的优弧上的一个动点,则PC+PD的最 小值为_______.
分析
根据垂径定理和勾股定理求出圆心O到弦AB的距离,再利用切线长定理求出PC+PD的最小值。
解答
过点O作OE⊥AB于点E,连接OA,则AE=BE=1/2AB=4cm。在Rt△AOE中,OA=5cm, AE=4cm,根据勾股定理得OE=3cm。因为P是优弧上的一个动点,所以当PC和PD为切线时, PC+PD的值最小。根据切线长定理得PC=PD,所以PC+PD=2OE=6cm。故答案为6cm。
典型例题分析与解答
01
例题1
已知圆的标准方程为 $(x - 2)^{2} + (y + 1)^{2} = 9$,求圆心坐标
和半径。
03
例题2
将一般方程 $x^{2} + y^{2} - 4x + 6y + 12 = 0$ 化为标准方程,并指
出圆心坐标和半径。
02
解析
直接对比标准方程形式,可得圆心 坐标为 $(2, -1)$,半径 $r = sqrt{9} = 3$。
圆的标准方程公开课一等奖课件
contents
目录
• 圆的基本概念与性质 • 圆的标准方程及其推导 • 直线与圆的位置关系判断 • 圆的对称性与中心对称性探究 • 复杂图形中涉及圆的问题解决方法 • 总结回顾与拓展延伸
01
圆的基本概念与性质
圆的定义及基本要素
圆的定义:平面上所有与定点 (圆心)距离等于定长(半径) 的点的集合。
04
圆的对称性与中心对称性 探究
圆的对称性表现形式
图形对称
人教A版高中数学必修二4.1.1 圆的标准方程 课件(共16张PPT)
设圆的标准方程为(x-a)2+(y-b)2=r2。
六.小结
1.圆心是 A(a,b),半径为r的圆A的标准方程是(x–a)2+(y–b )2=r2 2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系
几何法 先求出点M与圆心A的距离d
(1)若点M在圆A上,则d=r; (2)若点M在圆A内,则 d<r; (3)若点M在圆A外,则 d>r.
数与形,本是相倚依 焉能分作两边飞 数无形时少直觉 形少数时难入微 数形结合百般好 隔离分家万事休 切莫忘,几何代数统一体 永远联系莫分离
—— 华罗庚
O
平面直角坐标系
数
直线方程 1.点斜式方程 ������ − ������������ = ������(������ − ������������)
r2
③
展开平方后,
(x–2)2+(y+3)2=y25.
① ②得:a 2b 8 0
A(5,1)
③-②得:a b 1 0
几
解得a=2,b=-3,r=5.
代
何
O M
(6,-1) x B(7,-3)
∴ △ABC的外接圆方程为
数
(x–2)2+(y+3)2=25.
法
C(2,-8)
kAB 2
(1 a)2 (1 b)2 r 2
(2 a)2 (2 b)2 r 2
ab1 0
a 3 解得 b 2
r 5
∴圆C方程是(x-3)2+(y-2)2=25.
代
何
O
x
数
法
C
六.小结
1.圆心是 A(a,b),半径为r的圆A的标准方程是(x–a)2+(y–b )2=r2 2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系
几何法 先求出点M与圆心A的距离d
(1)若点M在圆A上,则d=r; (2)若点M在圆A内,则 d<r; (3)若点M在圆A外,则 d>r.
数与形,本是相倚依 焉能分作两边飞 数无形时少直觉 形少数时难入微 数形结合百般好 隔离分家万事休 切莫忘,几何代数统一体 永远联系莫分离
—— 华罗庚
O
平面直角坐标系
数
直线方程 1.点斜式方程 ������ − ������������ = ������(������ − ������������)
r2
③
展开平方后,
(x–2)2+(y+3)2=y25.
① ②得:a 2b 8 0
A(5,1)
③-②得:a b 1 0
几
解得a=2,b=-3,r=5.
代
何
O M
(6,-1) x B(7,-3)
∴ △ABC的外接圆方程为
数
(x–2)2+(y+3)2=25.
法
C(2,-8)
kAB 2
(1 a)2 (1 b)2 r 2
(2 a)2 (2 b)2 r 2
ab1 0
a 3 解得 b 2
r 5
∴圆C方程是(x-3)2+(y-2)2=25.
代
何
O
x
数
法
C
圆的标准方程 课件(48张)
()
(2)方程(x-a)2+(y-b)2=m2 一定表示圆.
()
(3)圆(x+2)2+(y+3)2=9 的圆心坐标是(2,3),半径是 9.
()
[答案] (1)√ (2)× (3)×
[提示] (1)正确.确定圆的几何要素就是圆心和半径. (2)错误.当 m=0 时,不表示圆. (3)错误.圆(x+2)2+(y+3)2=9 的圆心为(-2,-3),半径为 3.
类型 2 待定系数法求圆的标准方程
【例 2】 (对接教材人教 B 版 P99 例 2)求下列各圆的标准方程. (1)圆心在 y=0 上且过两点 A(1,4),B(3,2); (2)圆心在直线 x-2y-3=0 上,且过点 A(2,-3),B(-2,-5).
[解] (1)设圆心坐标为(a,b),半径为 r, 则所求圆的方程为(x-a)2+(y-b)2=r2. ∵圆心在 y=0 上,故 b=0, ∴圆的方程为(x-a)2+y2=r2. 又∵该圆过 A(1,4),B(3,2)两点,
1234 5
回顾本节知识,自我完成以下问题: 1.方程(x-a)2+(y-b)2=m 一定表示圆吗? [提示] 不一定.当 m>0 时,表示圆心为 C(a,b),半径为 m的 圆; 当 m=0 时,表示一个点 C(a,b); 当 m<0 时,不表示任何图形.
1234 5
3.圆心为点 P(-2,3),并且与 x 轴相切的圆的方程是( ) A.(x+2)2+(y-3)2=4 B.(x-2)2+(y+3)2=4 C.(x+2)2+(y-3)2=9 D.(x-2)2+(y+3)2=9 C [因为圆心 P(-2,3)到 x 轴的距离为 3,且圆与 x 轴相切, 所以圆的半径为 3,则该圆的标准方程为(x+2)2+(y-3)2=9.]
圆的标准方程精品课件
3
证明
设P和Q是圆上关于任意直线l对称的两点,则 AP=BQ,且PO=QO。由于PQ与l垂直,所以 △APO≌△BQA,从而证明了P和Q关于l对称。
06 圆的实际应用
生活中的圆的应用
交通工具
车轮、自行车轮胎、火车 铁轨等都采用了圆形的结 构,使得运动更加平稳和 高效。
建筑学
建筑物的窗户、门洞、柱 基等常采用圆形或圆弧形, 不仅美观大方,而且符合 结构力学原理。
圆的弦长定理
总结词
弦长与半径的关系
详细描述
在圆中,通过圆心的弦被平分,并且弦长等于两个半径之和。如果弦不经过圆心,则弦长小于两个半径之和。这 个定理用于计算弦的长度以及与半径之间的关系。
04 圆的面积与周长
圆的面积计算公式
圆的面积计算公式
$S = pi r^{2}$,其中$S$表示圆的面积,$r$表示圆的半径。
圆的标准方程的图形表示
以圆心为坐标原点,以半径为长度单 位,在平面直角坐标系中画出的圆形。
圆的标准方程推导
推导过程
通过将圆上任一点的坐标表示为$(x, y)$,利用点到圆心 的距离等于半径的性质,将圆的方程转化为标准形式。
推导步骤
设圆上任一点$P(x, y)$,圆心$O(h, k)$,半径为$r$,则 $OP = r$,即$sqrt{(x - h)^{2} + (y - k)^{2}} = r$,平 方两边得到标准方程。
自然界
自然界中许多物体呈现圆 形或类圆形,如星球、花 朵、叶子等。
02 圆的标准方程
圆的标准方程形式
圆的标准方程
圆的标准方程的应用
$(x - h)^{2} + (y - k)^{2} = r^{2}$, 其中$(h, k)$是圆心坐标,$r$是半径。
圆的一般方程.ppt -优质课
(a)2+(b)2=r2 (1-a)2+(1-b)2=r2 (4-a)2+(2-b)2=r2
所求圆的方程为:
a=4
解得
b=-3
r=5
即(x-4)2+(y+3)2=25
圆的一般方程.ppt -优质课
圆的一般方程.ppt -优质课
举例
例1: 求过三点O(0,0),M1 (1,1) ,M2(4,2)
它表示以
-
D 2
,-
E 2
为圆心,
以
D2 +E2 -4F r=
为半径的圆;
2
( 2 ) 当 D2+E2-4F=0 时 , 方 程 表 示 一 个 点 (- D ,- E ) ;
22
(3)当D2+E2-4F<0时,方程无 实数解,不表示任何图形.
所以形如x2 +y 2+Dx+Ey+F=0 (D2+E2-4F>0)可表示圆的方程
方程都表示的曲线是圆呢? 下列方程表示什么图形?
(1)x2+y2-2x+4y+1=0; (2)x2+y2-2x-4y+5 =0; (3)x2+y2-2x+4y+6=0.
将 x2+y2+D+ xEy +F=0 左边配方,得
(x+D)2+(y+E)2=D 2+E2-4F
2
2
4
(1)当 D2+E2-4F>0 时,
②若已知三点求圆的方程,我们常常采用圆的一般 方程用待定系数法求解.
(特殊情况时,可借助图象求解更简单)
圆的一般方程.ppt -优质课
圆的一般方程.ppt -优质课
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(x 2)2 ( y 3)2 25 24
小结
1.圆的标准方程
(x a)2 (y b)2 r2 (圆心C(a,b),半径r)
2.点与圆的位置关系
3.求圆的标准方程的方法:
点在圆内
点在圆上
点在圆外
| OM 0 | <r
| OM 0 | =r
(x0-a)2+(y0-b)2<r2; (x0-a)2+(y0-b)2=r2
| OM 0 | >r
(x0-a)2+(y0-b)2>r2
知识探究二:点与圆的位置关系
练习3.请判断点A(m, 4)与圆x2 + y2 =16的位置关 系是( D )
(3) 经过点P(5,1),圆心在点C(8,-3).
(x 8)2 ( y 3)2 25
2.说出下列圆的圆心和半径:
(1)(x+1)2+(y-1)2=1;
圆心A(-1,1),r=1
(2) x2+(y+4)2=7;
圆心A(0,-4),r= 7
(3)(x+1)2+ (y+2)2=m2 (m≠0);圆心A(-1,-2), r= m
2、直线可以用一个方程表示,圆是否也可以 用一个方程来表示呢? 如果可以,那么它方 程形式又是怎样的呢?
自我探究
问题1、圆上的动点具有什么几何性质? 如何将该几何性质用数学式子 表示出来呢?
问题2、圆的标准方程中那些是不变的常数? 怎样求圆的标准方程?
探究新知
设点M (x,y)为圆上任意一点,则 |MA|=r.
典型例题
例1 写出圆心为 A(2,3) ,半径长等于5的圆的方
程,并判断点 M1(5,7) , M 2 ( 5,1)是否在这个圆上。
解:圆心是 A(2,3) ,半ຫໍສະໝຸດ 长等于5的圆的标准方程是:
(x 2)2 ( y 3)2 25
把M1(5,7) 的坐标代入方程(x 2)2 (y 3)2 25 左右两边相等,点M 1 的坐标适合圆的方程,所以点
A、圆内
B、圆上
C、圆外
D、圆上或圆外
例2 ⊿ABC的三个顶点的坐标分别是A(5,1), B(7,-3),C(2,-8),求它的外接圆的方程。
y
待定系数法
A(5,1)
O
x
B(7,-3)
C(2,-8)
y
L2 L1
A(5,1)
R
x
D B(7,-3)
O
E C(2,-8)
练习4 ⊿AOB的顶点的坐标分别是A(4,0), B(0,3),O(0,0),求它的外接圆的方程。
4.1.1 圆的标准方程
y
OA
x
r
创设情境 引入新课
一石激起千层浪
师生互动探究
1、在初中我们是如何定义圆的?
平面内到定点距离等于定长的点的轨迹是圆.
师生互动探究
1、在初中我们是如何定义圆?
平面内与定点距离等于定长的点的集合(轨迹)是圆.
定点----圆心------确定圆的位置 定长----半径------确定圆的大小
(x a)2 (y b)2 r
(x-a)2+(y-b)2=r2
y M(x,y)
r
O
A(a,b) x
问题2、圆的标准方程中那些是不变的常数? 怎样求圆的标准方程?
小试牛刀
1.求下列圆的方程:
(1)圆心在原点, 半径为3.
x2 y2 9
(2) 以O(0,0),A(6,8)为直径的圆. (x 3)2 (y 4)2 25
M 1 在这个圆上;
把点 M 2 ( 5,1)的坐标代入此方程,左右两边不
相等,点M
2
的坐标不适合圆的方程,所以点
M
不在
2
这个圆上.
知识探究二:点与圆的位置关系
怎样判断点 M0 (x0, y0 ) 在 圆 (x a)2 ( y b)2 r2
内呢?圆上?还是在圆外呢? M0
M0 O
O M0
O
小结
1.圆的标准方程
(x a)2 (y b)2 r2 (圆心C(a,b),半径r)
2.点与圆的位置关系
3.求圆的标准方程的方法:
点在圆内
点在圆上
点在圆外
| OM 0 | <r
| OM 0 | =r
(x0-a)2+(y0-b)2<r2; (x0-a)2+(y0-b)2=r2
| OM 0 | >r
(x0-a)2+(y0-b)2>r2
知识探究二:点与圆的位置关系
练习3.请判断点A(m, 4)与圆x2 + y2 =16的位置关 系是( D )
(3) 经过点P(5,1),圆心在点C(8,-3).
(x 8)2 ( y 3)2 25
2.说出下列圆的圆心和半径:
(1)(x+1)2+(y-1)2=1;
圆心A(-1,1),r=1
(2) x2+(y+4)2=7;
圆心A(0,-4),r= 7
(3)(x+1)2+ (y+2)2=m2 (m≠0);圆心A(-1,-2), r= m
2、直线可以用一个方程表示,圆是否也可以 用一个方程来表示呢? 如果可以,那么它方 程形式又是怎样的呢?
自我探究
问题1、圆上的动点具有什么几何性质? 如何将该几何性质用数学式子 表示出来呢?
问题2、圆的标准方程中那些是不变的常数? 怎样求圆的标准方程?
探究新知
设点M (x,y)为圆上任意一点,则 |MA|=r.
典型例题
例1 写出圆心为 A(2,3) ,半径长等于5的圆的方
程,并判断点 M1(5,7) , M 2 ( 5,1)是否在这个圆上。
解:圆心是 A(2,3) ,半ຫໍສະໝຸດ 长等于5的圆的标准方程是:
(x 2)2 ( y 3)2 25
把M1(5,7) 的坐标代入方程(x 2)2 (y 3)2 25 左右两边相等,点M 1 的坐标适合圆的方程,所以点
A、圆内
B、圆上
C、圆外
D、圆上或圆外
例2 ⊿ABC的三个顶点的坐标分别是A(5,1), B(7,-3),C(2,-8),求它的外接圆的方程。
y
待定系数法
A(5,1)
O
x
B(7,-3)
C(2,-8)
y
L2 L1
A(5,1)
R
x
D B(7,-3)
O
E C(2,-8)
练习4 ⊿AOB的顶点的坐标分别是A(4,0), B(0,3),O(0,0),求它的外接圆的方程。
4.1.1 圆的标准方程
y
OA
x
r
创设情境 引入新课
一石激起千层浪
师生互动探究
1、在初中我们是如何定义圆的?
平面内到定点距离等于定长的点的轨迹是圆.
师生互动探究
1、在初中我们是如何定义圆?
平面内与定点距离等于定长的点的集合(轨迹)是圆.
定点----圆心------确定圆的位置 定长----半径------确定圆的大小
(x a)2 (y b)2 r
(x-a)2+(y-b)2=r2
y M(x,y)
r
O
A(a,b) x
问题2、圆的标准方程中那些是不变的常数? 怎样求圆的标准方程?
小试牛刀
1.求下列圆的方程:
(1)圆心在原点, 半径为3.
x2 y2 9
(2) 以O(0,0),A(6,8)为直径的圆. (x 3)2 (y 4)2 25
M 1 在这个圆上;
把点 M 2 ( 5,1)的坐标代入此方程,左右两边不
相等,点M
2
的坐标不适合圆的方程,所以点
M
不在
2
这个圆上.
知识探究二:点与圆的位置关系
怎样判断点 M0 (x0, y0 ) 在 圆 (x a)2 ( y b)2 r2
内呢?圆上?还是在圆外呢? M0
M0 O
O M0
O