2021年高三第二次月考数学(理)试题含答案

合集下载

江苏省常州市第一职业高级中学2021年高二数学理月考试题含解析

江苏省常州市第一职业高级中学2021年高二数学理月考试题含解析

江苏省常州市第一职业高级中学2020-2021学年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. “方程表示一个圆”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件参考答案:C【分析】根据条件得到方程表示圆则,反之也是正确的,从而得到答案.【详解】方程表示一个圆,则需要满足,反之,则满足方程是一个圆,故选择充要条件.故答案为:C.【点睛】判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.2. 已知A是B的充分不必要条件,B是C的充要条件,则C是A的( ).A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件参考答案:B略3. 如果一个几何体的三视图如图所示(长度单位: cm), 则此几何体的表面积是()A. B.C. D.参考答案:A4. 复数(i是虚数单位)的共轭复数在复平面内对应的点是()A.(2,﹣2)B.(2,2)C.(﹣2,﹣2)D.(﹣2,2)参考答案:B【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解: ==2﹣2i(i是虚数单位)的共轭复数2+2i在复平面内对应的点(2,2).故选:B.5. 设,则()A.0.16 B.0.32 C.0.84 D.0.64参考答案:A6. 若多项式x5+x10=a0+a1(x+1)+a2(x+1)2+……+a9(x+1)9+a10(x+1)10,则a4=( )A.205B.210C.-205D.-210参考答案:A7. 已知椭圆的离心率为,则b等于().A.3B.C.D.参考答案:B8. 阅读下图左边的流程图,若输入,则输出的结果是()A.2 B. 4 C.5 D. 6参考答案:A9. 已知,,且,则的最大值是()A. B. C. D.参考答案:B略10. 已知点P的极坐标为,则点P的直角坐标为()(1,)(1,﹣)C (,1)D(,﹣1)A解答:解:x=ρcosθ=2×cos=1,y=ρsinθ=2×sin=∴将极坐标(2,)化为直角坐标是(1,).故选A.11. 若为实数,则“”是“或”的 ________条件.参考答案:充分而不必要条件略12. 若对任意x>0,≤a恒成立,则a的取值范围是.参考答案:a≥考点:基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:根据x+≥2代入中求得的最大值为进而a的范围可得.解答:解:∵x>0,∴x+≥2(当且仅当x=1时取等号),∴=≤=,即的最大值为,故答案为:a≥点评:本题主要考查了基本不等式在最值问题中的应用.属基础题.13. 对于曲线∶=1,给出下面四个命题:(1)曲线不可能表示椭圆;(2)若曲线表示焦点在x轴上的椭圆,则1<<;(3)若曲线表示双曲线,则<1或>4;(4)当1<<4时曲线表示椭圆,其中正确的是()A .(2)(3) B. (1)(3) C. (2)(4) D.(3)(4)]参考答案:A14. 已知=2, =3, =4,…若=6,(a,t均为正实数),则类比以上等式,可推测a,t的值,a+t= .参考答案:41【考点】F3:类比推理.【分析】观察所给的等式,等号右边是,,…第n 个应该是,左边的式子,写出结果.【解答】解:观察下列等式=2, =3, =4,…照此规律,第5个等式中:a=6,t=a2﹣1=35a+t=41.故答案为:41.【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.15. 已知,,则线段AB的中点坐标为________;_________.参考答案:( -1, -1, -1),;16. 已知集合,,则集合.参考答案:略17. △ABC的三边长分别为3、4、5,P为面ABC外一点,它到△ABC三边的距离都等于2,则P到面ABC的距离是________.参考答案:三、解答题:本大题共5小题,共72分。

辽宁省葫芦岛市绥中县第一高级中学2021-2022学年高三数学理月考试卷含解析

辽宁省葫芦岛市绥中县第一高级中学2021-2022学年高三数学理月考试卷含解析

辽宁省葫芦岛市绥中县第一高级中学2021-2022学年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. (5分)(2011秋?乐陵市校级期末)已知a,b∈R+,A为a,b的等差中项,正数G为a,b的等比中项,则ab与AG的大小关系是()C解答:解:依题意A=,G=,∴AG﹣ab=?﹣ab=(﹣)=?≥0,∴AG≥ab.故选C2. 已知,则函数有()A.最小值6 B.最大值6 C.最小值 D.最大值参考答案:A 3. 设是定义在上的增函数,且对任意,都有恒成立,如果实数满足不等式,那么的取值范围是(9,49)(13,49)(9,25)(3,7)参考答案:4. 设P为等边所在平面内的一点,满足,若AB=1,则的值为()A.4 B.3 C.2 D.1参考答案:B略5. ,复数= ( )A. B. C.D.参考答案:A因为,可知选A6. 椭圆=1的一个焦点为F1,点P在椭圆上.如果线段PF1的中点M在y轴上,那么点M的纵坐标是()A.± B.± C.± D.±参考答案:A略7. 设平面α∥平面β,A∈α,B∈β,C是AB的中点,当A、B分别在α、β内运动时,那么所有的动点C()A.不共面B.当且仅当A,B在两条相交直线上移动时才共面C.当且仅当A,B在两条给定的平行直线上移动时才共面D.不论A,B如何移动都共面参考答案:D【考点】LJ:平面的基本性质及推论.【分析】本题考查空间想象力,因为平面α∥平面β,所以线段AB的中点到平面α和平面β的距离相等,从而动点C构成的图形是到平面α和平面β的距离相等的一个平面.【解答】解:根据平行平面的性质,不论A、B如何运动,动点C均在过C且与α,β都平行的平面上.故选:D8. 2016年鞍山地区空气质量的记录表明,一天的空气质量为优良的概率为0.8,连续两天为优良的概率为0.6,若今天的空气质量为优良,则明天空气质量为优良的概率是()A.0.48 B.0.6 C.0.75 D.0.8参考答案:C【考点】n次独立重复试验中恰好发生k次的概率.【分析】设随后一天的空气质量为优良的概率是p,利用相互独立事件概率乘法公式能求出结果.【解答】解:∵一天的空气质量为优良的概率为0.8,连续两天为优良的概率为0.6,设随后一天空气质量为优良的概率为p,若今天的空气质量为优良,则明天空气质量为优良,则有0.8p=0.6,∴p===0.75,故选:C.9. 已知3sin2α=cosα,则sinα可以是()A.﹣B.C.D.参考答案:B【考点】GI:三角函数的化简求值.【分析】根据二倍角公式化简3sin2α=cosα,消去cosα求出sinα的值.【解答】解:3sin2α=cosα,∴6sinαcosα=cosα,若cosα≠0,则6sinα=1,解得sinα=.故选:B.10. 对于一组数据(,2,3,,),如果将它们改变为(,2,,)其中,则下面结论正确的是()A.平均数与方差均不变B.平均数变了,而方差保持不变C.平均数不变,而方差变了D.平均数与方差均发生了变化参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 复数Z=i(1+i)在复平面内对应的点的坐标为.参考答案:(﹣1,1)【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:Z=i(1+i)=i﹣1在复平面内对应的点的坐标为(﹣1,1).故答案为:(﹣1,1)12. 春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动.已知某种盆栽植物每株成活的概率为p,各株是否成活相互独立.该学校的某班随机领养了此种盆栽植物10株,设X为其中成活的株数,若X的方差,,则p=________.参考答案:0.7【分析】由题意可知:,且,从而可得值.【详解】由题意可知:∴,即,∴故答案为:0.7【点睛】本题考查二项分布的实际应用,考查分析问题解决问题的能力,考查计算能力,属于中档题.13. 设f(x)=,则 ___.参考答案:14. 点G是△ABC 的重心,,(λ,μ∈R),若∠A=120°,,则最小值为.参考答案:【考点】向量的共线定理;两向量的和或差的模的最值;平面向量数量积的运算.【分析】欲求最小值,先求其平方的最小值,这里解决向量模的问题常用的方法.【解答】解:∵点G 是△ABC的重心,∴,∴=∵,∴AB×AC×COSA=﹣2,∴AB×AC=4.∴AG2≥故填.15. 《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷“物不知数”中有如下问题:“今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?”其意思为:“现有一堆物品,不知它的数目.3个3个数,剩2个;5个5个数,剩3个;7个7个数,剩2个.问这堆物品共有多少个?”试计算这堆物品至少有个.参考答案:2316. 设表示等差数列的前项和,且,,若,则=参考答案:15略17. 函数的零点个数为。

湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题含答案

湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题含答案

湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题含答案湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题含答案第一部分:选择题(共计120分)请将答案填写在答题卡上。

1. 已知函数$f(x) = 2^x + 4^{-x}$,则$f(1)+f(-1)$的值为()。

A. 3B. 3/2C. 1D. 1/22. 已知集合$A=\{x | x\in\mathbb{R}, x^2-4x<0\}$,则$A$的解集为()。

A. $(-\infty, 0) \cup (4, +\infty)$B. $(0, 4)$C. $[0, 4]$D. $(0, +\infty)$3. 设等差数列$\{a_n\}$的公差为2,$a_1=3$,若$a_m+a_n=16$,其中$m,n$为正整数,且满足$m\neq n$,则$m+n$的值为()。

A. 8B. 9C. 10D. 114. 若$f(x) = \frac{1}{x}-\frac{1}{x+1}$,则$f(x+1)-f(x)$的值为()。

A. -1B. 1C. $\frac{1}{(x+1)^2}$D. $\frac{1}{(x+1)(x+2)}$5. 已知正方形$ABCD$的边长为1,点$E$为边$AB$上一点,$F$为边$BC$上一点,且满足$\angle EFD=90^\circ$,则$\triangle EFD$的面积为()。

A. $\frac{1}{8}$B. $\frac{1}{6}$C. $\frac{1}{4}$D.$\frac{1}{3}$第二部分:填空题(共计60分)请将答案填写在答题卡上。

1. 若$a, b$为实数,且满足$a^2+b^2=5$,则$a^3+b^3$的值为__________。

2. 已知集合$A = \{x | x\in\mathbb{R}, x^2-4x\leq 0\}$,则集合$A$的元素个数为__________。

河南省周口市沈丘县长安高级中学2022-2023学年高三上学期第二次月考理科数学试题

河南省周口市沈丘县长安高级中学2022-2023学年高三上学期第二次月考理科数学试题

B. a∈[ 3 ,1) 4
C. a∈(0, 1 ] 3
D. a∈[ 3 ,2) 4
8.
函数 y
3x 3x
cos
x
在区间
π 2
,
π 2
的图象大致为()
1
A.
B.
C.
D.
9. 已知函数 f (x) sin 2x 3 cos 2x 的图象向左平移 个单位长度后,得到函数 g(x) 的图象,且 g(x) 的
三、解答题:共 70 分,解答必须写出必要的文字说明、证明过程或者演算步骤.
17.
已知幂函数 f x m2 m 1xm1 2在0,
上为增函数.
(1)求实数 m 的值;
(2)求函数 g x f 2x 3 4x 5 的值域.
18. 已知在锐角△ABC 中,角 A,B,C 所对
边分别为
a,b,c,且
A. 2, 4
B. 0, 2, 4
2 f x x2 x 3 ,则 f 1 ()
C. 1,3,5
D. 0, 2, 4,6
A. 6
B. 5
C. 3
D. 2
3. 设命题甲:“ x2 3x 0 ”,命题乙:“ x 1 3 ”,那么命题甲是命题乙的()
A. 充分非必要条件 C. 充要条件
B. 必要非充分条件 D. 既不充分也不必要条件
为 22. 已知函数 f x 2x2ex , gx ax2alnxaR.
(1)求函数 f x 的单调区间和极值;
(2)若函数 h x f x g x 有 2 个零点,求实数 a 的取值范围.
4
tan C
a2
ab b2
c2

(1)求角 C 大小;

华南师范大学附属中学2022-2023学年高三上学期月考(二)数学含答案

华南师范大学附属中学2022-2023学年高三上学期月考(二)数学含答案

华南师大附中2023届高三月考(二)数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号等填写在答题卡上,并用铅笔在答题卡上的相应位置填涂.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号. 3.回答第Ⅱ卷时,必须用黑色字迹的钢笔或签字笔作答,答案必须写在答卷各题目指定区域内,不准使用铅笔和涂改液.不按以上要求作答的答案无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}=0A x R x ∈≤,{}=11B x R x −∈≤≤,则()()RR A B =( )A .(,0)−∞B .[1,0]−C .[0,1]D .(1,)+∞2.如图,在复平面内,复数1z ,2z 对应的向量分别是OA ,OB ,则12z z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.函数()sin tan f x x x =⋅的图象大致为( )A .B .C .D .4.赤岗塔是广州市级文物保护单位,是广州市明代建筑中较具特色的古塔之一,与琶洲塔、莲花塔并称为广州明代三塔,如图,在A 点测得塔底位于北偏东60°方向上的点D 处,塔顶C 的仰角为30°,在A 的正东方向且距D 点61m 的B 点测得塔底位于北偏西45°方向上(A ,B ,D 在同一水平面),则塔的高度CD 约为( )2.45≈)A .40mB .45mC .50mD .55m5.在ABC ∆中,D 为BC 边上的点,当2ABD ADC S S =△△,AB xAD y AC =+,则( ) A .3x =,2y =− B .32x =,12y =− C .2x =−,3y =D .12x =−,32y =6.在ABC ∆中,2cos cos cos c bc A ac B ab C =++,则此三角形必是( ) A .等边三角形 B .直角三角形 C .等腰三角形D .钝角三角形7.设实数,a b 满足0b >,且2a b +=,则18a a b+的最小值是( ) A .98B .916 C .716D .148.已知函数()2ln f x x x x =−的图象上有且仅有两个不同的点关于直线1y =的对称点在10kx y +−=的图象上,则实数k 的取值范围是( )A .(),1−∞B .[)0+∞,C .[)0,1D .(),1−∞−二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分. 9.设,m n 为不同的直线,αβ,为不同的平面,则下列结论中正确的是( ) A .若//m α,//n α,则//m n B .若,,m n αα⊥⊥则//m n C .若//m α,m β⊂,则//αβ D .若,,m n m n αβ⊥⊥⊥则αβ⊥ 10.函数()()sin f x x ωϕ=+(0,20,A πωϕ><>)的部分图象如图所示,下列结论中正确的是( )A .直线6x π=−是函数()f x 图象的一条对称轴B .函数()f x 的图象关于点(),062k k Z ππ⎛⎫−+∈ ⎪⎝⎭对称 C .函数()f x 的单调递增区间为()5,1212k k k Z ππππ⎡⎤−++∈⎢⎥⎣⎦D .将函数()f x 的图象向由右平移12π个单位得到函数()sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象11. 分形几何学是数学家伯努瓦·曼德尔布罗在20世纪70年代创立的一门新的数学学科,分形几何学不仅让人们感悟到数学与艺术审美的统一,而且还有其深刻的科学方法论意义.按照如图甲所示的分形规律可得如图乙所示的一个树形图:记图乙中第n 行白圈的个数为n a ,黑圈的个数为n b ,则下列结论中正确的是( ) A .1239a a a +=+B .12n n n a b b +=+C .当1k =±时,{}n n a kb +均为等比数列D .1236179b b b b ++++=12.曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,表明曲线偏离直线的程度,曲率越大,表示曲线的弯曲程度越大.曲线()y f x =在点(,())x f x 处的曲率()()() 1.52''()1f x K x f x '=⎡⎤+⎣⎦,其中()''f x 是()f x '的导函数.下面说法正确的是( )A .若函数3()f x x =,则曲线()y f x =在点3(,)a a −−与点3(,)a a 处的弯曲程度相同B .若()f x 是二次函数,则曲线()y f x =的曲率在顶点处取得最小值C .若函数()sin f x x =,则函数()K x 的值域为[0,1]D .若函数1()(0)f x x x =>,则曲线()y fx =第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分. 13.已知向量,a b 夹角为4π,且||1a =,||2b =,则2a b +=______. 14.已知1sin 83πα⎛⎫−= ⎪⎝⎭,则sin2cos2αα+=__________.15.某学生在研究函数()3f x x x =−时,发现该函数的两条性质:①是奇函数;②单调性是先增后减再增.该学生继续深入研究后发现将该函数乘以一个函数()g x 后得到一个新函数()()()h x g x f x =,此时()h x 除具备上述两条性质之外,还具备另一条性质:③()'00h =.写出一个符合条件的函数解析式()g x =__________.16.已知数列{}n a 的通项公式为n a n t =+,数列{}n b 为公比小于1的等比数列,且满足148b b ⋅=,236b b +=,设22n n n n n a b a b c −+=+,在数列{}n c 中,若4()n c c n N *≤∈,则实数t 的取值范围为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知ABC ∆的内角,,A B C 的对边分别为a ,b ,c ,且2cos cos tan 2sin sin B AB A+=−A .(1)求C ;(2)若6a =,ABC S ∆=c 的值.设数列{}n a 的前n 项和为n S ,已知12a =,122n n a S +=+. (1)求{}n a 的通项公式; (2)若23n n a b n =,求数列{}n b 的前n 项和n T .19.(本小题满分12分)某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程数”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,得到他们的电动汽车的“实际平均续航里程数”.从年龄在40岁以下的客户中抽取10位归为A 组,从年龄在40岁及以上的客户中抽取10位归为B 组,将他们的电动汽车的“实际平均续航里程数”整理成下图,其中“+”表示A 组的客户,“⊙”表示B 组的客户.注:“实际平均续航里程数”是指电动汽车的行驶总里程与充电次数的比值.(1)记A ,B 两组客户的电动汽车的“实际平均续航里程数”的平均值分别为m ,n ,根据图中数据,试比较m ,n 的大小(直接写结论);(2)从抽取的20位客户中随机抽取2位,求其中至少有1位是A 组的客户的概率;(3)如果客户的电动汽车的“实际平均续航里程数”不小于350,那么称该客户为“驾驶达人”,现从该市使用这种电动汽车的所有客户中,随机抽取年龄40岁以下和40岁以上的客户各1位,记“驾驶达人”的人数为X ,求随机变量X 的分布列和数学期望. 20. (本小题满分12分)在斜三棱柱111ABC A B C −中,1AA BC ⊥,11AB AC AA AC ====,1B C = (1)证明:1A 在底面ABC 上的射影是线段BC 中点; (2)求平面11A B C 与平面111A B C 夹角的余弦值.已知()2,0A ,()0,1B 是椭圆()2222:10x y E a b a b+=>>的两个顶点.(1)求椭圆E 的标准方程;(2)过点()2,1P 的直线l 与椭圆E 交于C ,D 两点,与直线AB 交于点M ,求PM PMPC PD+的值.22.(本小题满分12分)设函数1()e ,()ln x f x m g x x n −==+,m n 、为实数,()()g x F x x=有最大值为21e .(1)求n 的值; (2)若2()()e f x xg x >,求实数m 的最小整数值.华南师大附中2023届高三月考(二)数学参考答案一、单项选择题:1.D 2.C 3.A 4.C 5.A 6.B 7.C 8.A 二、多项选择题:9.BD 10.BCD 11.BCD 12.ACD 11. 【答案】BCD【详解】易得-1113,2,2n n n n n n n n n a b a a b b b a +++==+=+,且有111,0a b ==,故有11113()n n n n n n n n a b a b a b a b +++++=+⎧⎨−=−⎩,故131n n n n na b a b −⎧+=⎪⎨−=⎪⎩ 故11312312n n n n a b −−⎧+=⎪⎪⎨−⎪=⎪⎩,进而易判断BCD 正确,A 错误.故选:BCD. 12.【答案】ACD【详解】对于A ,2()3f x x '=,()6f x x ''=,则22 1.56()[1(3)]x K x x =+,又()()K x K x =−,所以()K x 为偶函数,曲线在两点的弯曲长度相同,故A 正确;对于B ,设2()(0)f x ax bx c a =++≠,()2()2f x ax b f x a '''=+=,,则 1.52|2|()1(2)a K x ax b =⎡⎤++⎣⎦,当且仅当20ax b +=,即2bx a=−时,曲率取得最大值,故B 错误; 对于C ,()cos ()sin f x x f x x '''==−,,()()1.51.522|sin |()(|sin |[0,1])1cos 2x tK x t x x t −===∈+−,当0t =时,()0K x =;当01t <≤时,函数()1.52()2tp t t =−为增函数,所以()p t 的最大值为(1)1p =,故C 正确; 对于D ,2312()()f x f x x x '''=−=,,3 1.542()11x K x x =≤⎛⎫+ ⎪⎝⎭, 当且仅当1x =时,等号成立,故D 正确.故选ACD .三、填空题:13.14.915. 2x (答案不唯一) 16. []4,2−− 16.【详解】在等比数列{}n b 中,由142388b b b b ⋅=⇒⋅=,又236b b +=,且公比小于1,323214,2,2b b b q b ∴==∴==,因此242211422n n n n b b q −−−⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, 由22n nn n n a b a b c +=+-,得到()(){},n n n n n n nn b a b c c a a b ⎧≤⎪=∴⎨>⎪⎩是取,n n a b 中最大值. 4()n c c n N *≤∈,4c ∴是数列{}n c 中的最小项,又412n n b −⎛⎫= ⎪⎝⎭单调递减,n a n t =+单调递增,∴当44c a =时,4n c c ≤,即44,n a c a ≤∴是数列{}n c 中的最小项,则必须满足443b a b <≤,即得44341143222t t −−⎛⎫⎛⎫<+≤⇒−<≤− ⎪⎪⎝⎭⎝⎭,当44c b =时,4n c c ≤,即4n b c ≤,4b ∴是数列{}n c 中的最小项,则必须满足445a b a ≤≤,即得44145432t t t −⎛⎫+≤≤+⇒−≤≤− ⎪⎝⎭,综上所述,实数t 的取值范围是[]4,2−−,故答案为[]4,2−−.四、解答题: 17.(1)由2cos cos tan 2sin sin B A A B A +=−得2cos cos sin 2sin sin cos B A AB A A+=−,(1分)即222cos cos cos 2sin sin sin B A A B A A +=−,()222cos cos sin sin cos sin B A B A A A ∴−=−−, ()1cos 2B A ∴+=−,(3分)()0A B π+∈,,2π3A B ∴+=,(4分) π3C =∴.(5分) (2)由6a =,π3C =,1sin 2ABC S ab C ∆== 解得2b =,(7分)22212cos 364262282c a b ab C ∴=+−=+−⨯⨯⨯=,c ∴=.(10分) 18.解: (1)122n n a S +=+,① 当2n ≥时,122n n a S −=+,②(1分) ①-②得()1122n n n n n a a S S a +−−=−=,(2分) ∴13(2)n n a a n +=≥,∴13n na a +=,(3分)∵12a =,∴21226a S =+=,∴21632a a ==也满足上式,(4分) ∴数列{}n a 为等比数列且首项为2,公比为3,∴111323n n n a a −−=⋅=⋅.即{}n a 的通项公式为123n n a −=⨯.(5分)(2)由(1)知123n n a −=⨯,所以233n n n n nb a ==,(6分) 令211213333n n n n nT −−=++++,①(7分)得231112133333n n n n nT +−=++++,②(8分) ①-②得23121111333333n n n nT +=++++−(9分)1111331313n n n +⎛⎫− ⎪⎝⎭=−− (10分)1111233n n n +⎛⎫=−− ⎪⎝⎭ (11分) 所以323443n nn T +=−⨯.(12分) 19.解:(1)m n <;(1分)(2)设“从抽取的20位客户中随机抽取2位,至少有1位是A 组的客户”为事件M ,则()112101010220C C C 29C 38P M +==,所以从抽取的20位客户中随机抽取2位,至少有1位是A 组的客户的概率是2938;(4分) (3)题图,知A 组“驾驶达人”的人数为1人,B 组“驾驶达人”的人数为2人,(5分) 则可估计该市使用这种电动汽车的所有客户中,在年龄40岁以下的客户中随机抽取1位,该客户为“驾驶达人”的概率为110,在年龄40岁以上的客户中随机抽取1位,该客户为“驾驶达人”的概率为21105=;(6分) 依题意,X 所有可能取值为0,1,2.(7分)则()111801110525P X ⎛⎫⎛⎫==−⨯−= ⎪ ⎪⎝⎭⎝⎭,(8分)()11111311110510550P X ⎛⎫⎛⎫==−⨯+⨯−= ⎪ ⎪⎝⎭⎝⎭,(9分)()111210550P X ==⨯=,(10分) 所以随机变量X 的分布列为故X 数学期望为181313()01225505010E X =⨯+⨯+⨯=.(12分)20. 解:(1)法一:取BC AC 、的中点M N 、,连接11,,,AM MN A M A N ∵AB AC =且M 为BC 的中点,则AM BC ⊥(1分) 又∵1AA BC ⊥,1AMAA A =,且1,AM AA ⊂平面1AA M∴BC ⊥平面1AA M (2分)1A M ⊂平面1AA M ,1A M ∴⊥BC (3分)由题意可得1BB BC ⊥,则2BC == ∴222BC AC AB =+,则AB AC ⊥ ∵MN AB ∥,则MN AC ⊥(4分)又∵1AAC △为等边三角形且N 为AC 的中点,则1A N AC ⊥ 1MNA N N =,且1,MN A N ⊂平面1A MN∴AC ⊥平面1A MN1A M ⊂平面1A MN ,则1A M ⊥AC (5分)又ACBC C =,且,AC BC ⊂平面ABC∴1A M ⊥平面ABC 即1A 在底面ABC 上的射影是线段BC 中点M (6分) 法二:取BC 的中点M ,连接1,M 由=AB AC 得AM BC ⊥(1分) 又由A A BC A AAM A ⊥11,=得BC A AM⊥1平面(2分) 因为A M A AM ⊂11平面,所以BC A M ⊥1(3分) 由于11//BB AA ,1AA BC ⊥得1BB BC ⊥在1Rt BB C ∆中,2BC ===,112MC BC ==在1Rt A MC ∆中,11A M ===,(4分)同理1AM =在1A AM ∆中,22211+2A M AM A A ==,因此1A M AM ⊥(5分)又由于AM BC M =,所以1A M ⊥平面ABC 即1A 在底面ABC 上的射影是线段BC 中点M (6分)(2)如图,以M 为坐标原点,以1MC MA MA ,,所在的直线为,,x y z 轴建立空间直角坐标系,(7分)则()()()()10,0,1,0,1,0,1,0,0,1,0,0A A B C −,∴()()1111,1,0,1,0,1B A BA CA ===−(8分)设平面11A B C 的法向量(),,m x y z =,则11100m B A m CA ⎧⋅=⎪⎨⋅=⎪⎩即00x y x z +=⎧⎨−+=⎩ 令1x =,则1,1y z =−=,即()1,1,1m =−(9分) 平面111A B C 的法向量()0,0,1n =(10分) ∴13cos 33m n m n m n⋅⋅===(11分)即平面11A B C 与平面111A B C .(12分)21.解:(1)由()2,0A ,()0,1B 是椭圆()2222:10x y E a b a b+=>>的两个顶点, 得2a =,1b =,即22:14x E y +=;(3分) (2)当直线l 的斜率不存在时,直线l 与椭圆有且只有一个公共点,不成立,(4分) 所以设()11,C x y ,()22,D x y ,()33,M x y ,直线l 的斜率为k ,则(12P x x P C x =−=− 同理(22x PD =−(32x PM =−, 则33122222x x x x PMPMPC PD −−=+−−+ (5分) 设l :()12y k x −=−,而AB :12x y +=,联立解得3421k x k =+, 所以342222121k x k k −=−=++ (6分) 联立直线l 与椭圆E 方程,消去y 得:()()2224182116160k x k k x k k +−−+−=,(7分) ()()()222=82144116160k k k k k ∆⎡−⎤−+−>⎣⎦解得0k > 所以()12282141k k x x k −+=+,2122161641k k x x k −=+,(8分) 所以()()()1212121212124411222224x x x x x x x x x x x x +−+−+=−=−−−−−−++(9分) ()()2222821441218211616244141k k k k k k k k k k −−+=−=+−−−⨯+++,(11分) 所以()33122222122221x x k x x k −−+=⨯+=−−+,即2PM PM PC PD+=.(12分) 22.解:(1)()ln ()g x x n F x x x +==,定义域为()0,∞+, 21ln ()x n F x x −−=',(1分) 当10e n x −<<时,()0F x '>,当1e n x −>时,()0F x '<,所以()F x 在1e n x −=处取得极大值,也是最大值,(2分) 所以1211()e en n n F x −−+==,解得:1n =−;(3分) (2)()12e ln 1e x m x x −>−,即()3e ln 1x m x x −>−,()3ln 1e x x x m −−>,(4分) 令()()3ln 1e x x x h x −−=,定义域为()0,+∞,()3ln ln e x x x x x h x −'−+=,(5分) 令()ln ln x x x x x ϕ=−+,0x >,则()11ln 11ln x x x x x ϕ=−−+=−', 可以看出()1ln x x xϕ=−'在()0,+∞单调递减,(6分) 又()110ϕ'=>,()12ln 202ϕ=−<', 由零点存在性定理可知:()01,2x ∃∈,使得()00x ϕ'=,即001ln x x =,(7分) 当()00,x x ∈时,()0x ϕ'>,当()0,x x ∈+∞时,()0x ϕ'<, ()x ϕ在0x x =处取得极大值,也是最大值, ()()000000max 01ln ln 111x x x x x x x x ϕϕ==−+=−+>=,(8分) 1112110e e e e ϕ⎛⎫=−++=−< ⎪⎝⎭,7777775717ln ln ln 75ln 022********ϕ⎛⎫⎛⎫=−+=−=−> ⎪ ⎪⎝⎭⎝⎭, ()446ln 20ϕ=−<, 故存在101,e x x ⎛⎫∈ ⎪⎝⎭,27,42x ⎛⎫∈ ⎪⎝⎭,使得()()120,0x x ϕϕ==,(9分) 所以当()12,x x x ∈时,()0x ϕ>,当()()120,,x x x ∞∈⋃+时,()0x ϕ<,所以()3ln ln ex x x x x h x −'−+=在()12,x x x ∈上大于0,在()()120,,x x x ∞∈⋃+上小于0, 所以()()3ln 1e x x x h x −−=在()12,x x x ∈单调递增,在()()120,,,x x +∞上单调递减, 且当e x <时,()()3ln 10e x x x h x −−=<恒成立,(10分) 所以()()3ln 1ex x x h x −−=在2x x =处取得极大值,也是最大值,其中2222ln ln 0x x x x −+=, ()()22222233ln 1ln e ex x x x x h x −−−==,27,42x ⎛⎫∈ ⎪⎝⎭(11分) 令()3ln e x x x φ−=,7,42x ⎛⎫∈ ⎪⎝⎭, ()31ln e x x x x φ−'−=,当7,42x ⎛⎫∈ ⎪⎝⎭时,()31ln 0ex x x x φ−−=<', 故()7327ln 21ex φ−<<,所以实数m 的最小整数值为1. (12分)。

2020-2021学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科) Word版含解析

2020-2021学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科) Word版含解析

2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.45.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.86.设x,y 满足约束条件,则目标函数z=的最小值为()A.2 B.1 C.D.﹣27.设f(x)定义如下面数表,{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),则x2022的值为()x 1 234 5f(x)4 135 2A.4 B.1 C.3 D.28.如图,长沙河西先导区某广场要划定一矩形区域ABCD,并在该区域内开拓出三块外形大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,则该矩形区域ABCD占地面积的最小值为()平方米.A.900 B.920 C.948 D.9689.已知函数,若存在x1<x2,使得f(x1)=f(x2),则x1•f(x2)的取值范围为()A.B.C.D.10.设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为()A.12 B.1 6 C.18 D.20二.填空题:本大题共1小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11、12、13题中任选两题作答,假如全做,则按前两题给分)【几何证明选讲】11.如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,已知⊙O的半径为3,PA=2,则OE=.【极坐标系与参数方程选讲】12.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为,它们的交点在平面直角坐标系中的坐标为.【不等式选讲】1011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B=.(二)必做题(14~16题)14.设(其中e为自然对数的底数),则的值为.15.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是.16.已知数列{a n}的前n项和S n=(﹣1)n •n,若对任意正整数n,(a n+1﹣p)(a n﹣p )<0恒成立,则实数P 的取值范围是.三.解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.17.设函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的最大值和最小值.18.设数列{a n}的前n项和为S n,已知对任意正整数n,都有S n+2=2a n成立.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:T n<3.19.如图所示,在平面四边形ABCD中,,与的夹角为,与的夹角为.(1)求△CDE的面积S;(2)求.20.已知函数f(x )=lnx﹣ax+﹣1(a∈R)(1)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,争辩f(x)的单调性.21.若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),推断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)22.已知函数f(x)=(1)当x>0时,证明:f(x)>;(2)当x>﹣1且x≠0时,不等式f(x)<恒成立,求实数k的值.2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}考点:交集及其运算.专题:集合.分析:依据集合的基本运算进行求解即可.解答:解:∵A={﹣2,﹣1,0,1,2,3},集合,∴A∩B={﹣1,0,1},故选:B点评:本题主要考查集合的基本运算,比较基础.2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:规律型.分析:推断出“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则能推出A∩B≠∅”确定成立,利用充要条件的有关定义得到结论.解答:解:若“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则有A∩B=A≠∅,所以A∩B≠∅”确定成立,所以A∩B≠∅是A⊆B的必要不充分条件,故选B.点评:本题考查推断一个条件是另一个的什么条件,应当先化简各个条件,若条件是数集的形式,常转化为推断集合间的包含关系.3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.考点:同角三角函数基本关系的运用.专题:计算题.分析:先依据诱导公式化简已知条件,得到sinα的值,然后由α的范围,利用同角三角函数间的基本关系求出cosα的值,把所求的式子利用诱导公式化简后,再依据同角三角函数间的基本关系把切化弦后,将sinα和cosα的值代入即可求出值.解答:解:由,又,得,则.故选B点评:此题考查同学机敏运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.同学在求cosα的值时应留意α的范围.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.4考点:简洁空间图形的三视图.专题:计算题;空间位置关系与距离.分析:三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中做出底边上的高的长度,得到结果.解答:解:由题意知三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是,∴侧视图的面积是2故选:A.点评:本题考查简洁的空间图形三视图,考查三视图的面积的计算,考查通过原图观看三视图的大小,比较基础.5.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.8考点:平面对量数量积的运算.。

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0}, 则A∩()=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}2.下列函数在其定义域内既是奇函数又是增函数的是( ) (A)y=tanx (B)y=3x (C)y= (D)y=lg|x|3.下列四种说法中,错误的个数是( ) ①A={0,1}的子集有3个;②“若am 2<bm 2,则a<b ”的逆命题为真;③“命题p ∨q 为真”是“命题p ∧q 为真”的必要不充分条件;④命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得x 02-3x 0-2≤0”. (A)0 (B)1 (C)2 (D)3 4.已知函数则f(f())的值是( ) (A)9(B)(C)-9(D)-5.若a=log 20.9,则( )(A)a<b<c (B)a<c<b (C)c<a<b(D)b<c<a6.若函数y=-x 2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )()()()()53A B C D 4664ππππ7.已知命题p:函数f(x)=2ax 2-x-1(a ≠0)在(0,1)内恰有一个零点;命题q:函数y=x 2-a 在(0,+∞)上是减函数.若p 且﹁q 为真命题,则实数a 的取值范围是 ( ) (A)a>1(B)a ≤2 (C)1<a ≤2(D)a ≤1或a>28.函数f(x)=的大致图象为( )9.设函数f (x )=x 2+xsinx ,对任意x 1,x 2∈(﹣π,π), 若f (x 1)>f (x 2),则下列式子成立的是( ) A .x 1>x 2B .C .x 1>|x 2|D .|x 1|<|x 2|10函数y=f(x)(x ∈R)满足f(x+1)=-f(x),且x ∈[-1,1]时f(x)=1-x 2,函数()lg x,x 0,g x 1,x 0,x>⎧⎪=⎨-<⎪⎩则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为( ) (A)7(B)8(C)9(D)10二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知集合M={y|y=x 2﹣1,x ∈R},,则M∩N=_____ 12.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是 [﹣1,0],则a+b= .13.已知p:≤x ≤1,q:(x-a)(x-a-1)>0,若p 是﹁q 的充分不必要条件,则实数a 的取值范围是 .14.若f (x )=是R 上的单调函数,则实数a 的取值范围为 . 15.若方程有正数解,则实数的取值范围是_______三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知p :∀x ∈R ,2x >m (x 2+1),q :∃x 0∈R , x+2x 0﹣m ﹣1=0,且p ∧q 为真,求实数m 的取值范围.17、(12分)已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.18.(12分)已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=﹣是f(x)的极值点,求f(x)在[1,4]上的最大值.19.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).20. (13分)已知函数f(x)满足()()()x 121f x f 1e f 0x x .2-='-+(1)求f(x)的解析式及单调区间.(2)若f(x)≥x 2+ax+b,求(a+1)b 的最大值.21、 (14分)已知函数21()(21)2ln ()2f x ax a x x a R =-++∈.(Ⅰ)若曲线y=f (x )在x=1和x=3处的切线互相平行,求a 的值; (Ⅱ)求f (x )的单调区间;(Ⅲ)设g (x )=x 2﹣2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得 f (x 1)<g (x 2),求a 的取值范围.高三数学第一次检测题答案解析1. C .2.C.3.D.4.B.5.B.6.D.7.C 8、D.9.【解析】∵f (﹣x )=(﹣x )2﹣xsin (﹣x )=x 2+xsinx=f (x ),∴函数f (x )=x 2+xsinx 为偶函数,又f′(x )=2x+sinx+xcosx ,∴当x >0时,f′(x )>0,∴f (x )=xsinx 在[0,π]上单调递增,∴f (﹣x )=f (|x|);∵f (x 1)>f (x 2),∴结合偶函数的性质得f (|x 1|)>f (|x 2|),∴|x 1|>|x 2|,∴x 12>x 22.故选B .10.选A.由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)的零点,即求f(x)=g(x)在区间[-5,4]的解的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.11、解:∵集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},={x|﹣},∴M∩N=.故答案为:.12、解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:13.q:x>a+1或x<a,从而﹁q:a≤x≤a+1.由于p是﹁q的充分不必要条件,故a111a2≥⎧⎪⎨≤⎪⎩+,,即0≤a≤.答案:[0,]14、解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)15.16、解:不等式2x>m(x2+1),等价为mx2﹣2x+m<0,若m=0,则﹣2x<0,即x>0,不满足条件.若m≠0,要使不等式恒成立,则,即,解得m<﹣1.即p:m<﹣1.———————————————————————4分若∃x0∈R,x+2x﹣m﹣1=0,则△=4+4(m+1)≥0,解得m≥﹣2,即q:m≥﹣2.———————————————————————8分若p∧q为真,则p与q同时为真,则,即﹣2≤m<﹣1————12分17、解:(1)⇔﹣1<x<0或0<x<1,故f(x)的定义域为(﹣1,0)∪(0,1);————————————4分(2)∵,∴f(x)是奇函数;————————————————————————————6分(3)设0<x1<x2<1,则∵0<x1<x2<1,∴x2﹣x1>0,x1x2>0,(1﹣x1)(1+x2)=1﹣x1x2+(x2﹣x1)>1﹣x1x2﹣(x2﹣x1)=(1+x1)(1﹣x2)>0∴,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减——————————————————12分另解:∴当x∈(0,1)时,f′(x)<0故f(x)在(0,1)内是减函数.—————————————————12分18、解:(1)求导函数,可得f′(x)=3x2﹣2ax﹣3,∵f(x)在区间[1,+∞)上是增函数,∴f′(x)≥0在区间[1,+∞)上恒成立∴3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立∴且f′(1)=﹣2a≥0∴a≤0———4分(2)∵x=﹣是f(x)的极值点,∴∴∴a=4——6分∴f(x)=x3﹣4x2﹣3x,f′(x)=3x2﹣8x﹣3,∴x1=﹣,x2=3令f′(x)>0,1<x<4,可得3<x<4;令f′(x)<0,1<x<4,可得1<x<3;∴x=3时,函数取得最小值﹣18∵f(1)=﹣6,f(4)=﹣12∴f(x)在[1,4]上的最大值为﹣6.————————————————12分19、解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v (x)=ax+b再由已知得,解得故函数v(x)的表达式为.——————4分(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.—————————————————————————10分答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.——————————————————————————12分20.(1)∵f(x)=f′(1)e x-1-f(0)x+x2,∴f′(x)=f′(1)e x-1-f(0)+x,令x=1得:f(0)=1,∴f(x)=f′(1)e x-1-x+x2,∴f(0)=f′(1)e-1=1,∴f′(1)=e得:f(x)=e x-x+x2.—————————4分设g(x)=f′(x)=e x-1+x,g′(x)=e x+1>0,∴y=g(x)在R上单调递增.令f′(x)>0=f′(0),得x>0,令f′(x)<0=f′(0)得x<0,∴f(x)的解析式为f(x)=e x-x+x2且单调递增区间为(0,+∞),单调递减区间为(-∞,0).————————————-4分(2)由f(x)≥x2+ax+b得e x-(a+1)x-b≥0,令h(x)=e x-(a+1)x-b,则h′(x)=e x-(a+1).①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增.x→-∞时,h(x)→-∞与h(x)≥0矛盾.——————————6分②当a+1>0时,由h′(x)>0得x>ln(a+1),由h′(x)<0得x<ln(a+1)=(a+1)-(a+1)ln(a+1)-b≥0.———8分得当x=ln(a+1)时,h(x)min(a+1)b≤(a+1)2-(a+1)2ln(a+1) (a+1>0).令F(x)=x2-x2ln x(x>0),则F′(x)=x(1-2ln x),——————10分由F′(x)>0得0<x<,由F′(x)<0得x>,当x=时,F(x)=,∴当a=-1,b=时,(a+1)b的最大值为.—————————max—————————————13分21、解:(Ⅰ)∵函数,∴(x>0).∵曲线y=f(x)在x=1和x=3处的切线互相平行,∴f'(1)=f'(3),即,解得.————————————4分(Ⅱ)(x>0).①当a≤0时,x>0,ax﹣1<0,在区间(0,2)上,f'(x)>0;在区间(2,+∞)上f'(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当时,,在区间(0,2)和上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是(0,2)和,单调递减区间是③当时,,故f(x)的单调递增区间是(0,+∞).④当时,,在区间和(2,+∞)上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.————————————8分(Ⅲ)由已知,在(0,2]上有f(x)max <g(x)max.由已知,g(x)max=0,由(Ⅱ)可知,①当时,f(x)在(0,2]上单调递增,故f(x)max=f(2)=2a﹣2(2a+1)+2ln2=﹣2a﹣2+2ln2,所以,﹣2a﹣2+2ln2<0,解得a>ln2﹣1,故.——————————————————12分②当时,f(x)在上单调递增,在上单调递减,故.由可知,2lna>﹣2,﹣2lna<2,所以,﹣2﹣2lna<0,f(x)max<0,综上所述,a>ln2﹣1.————————————————14分21072 5250 剐31873 7C81 粁31426 7AC2 竂z33043 8113 脓e35722 8B8A 變 39463 9A27 騧K34467 86A3 蚣38124 94EC 铬=40272 9D50 鵐。

高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题

高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题

2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>04.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣26.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.278.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.49.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.2011.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=__________.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是__________.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=__________.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}【考点】Venn图表达集合的关系及运算.【专题】应用题;集合思想;定义法;集合.【分析】由图知,阴影部分表示的集合中的元素是在集合N中的元素但不在集合M中的元素组成的,即N∩C U M.【解答】解:由韦恩图知阴影部分表示的集合为N∩(C U M)M={x|y=ln(x2﹣2x) }∴x2﹣2x>0,解得x<0,或x>2,∴M={x|x<0,或x>2},∴C U M={x|0≤x≤2}=[0,2],N={y|y=}={y|y≥1}=[1,+∞),∴N∩(C U M)=[1,2],故选:C【点评】本小题主要考查Venn图表达集合的关系及运算、二次不等式的解法等基础知识,属于基础题2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣【考点】分段函数的应用;函数的零点.【专题】函数的性质及应用.【分析】由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.【解答】解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.【点评】本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0【考点】命题的真假判断与应用.【专题】计算题;规律型;简易逻辑.【分析】利用命题的否定判断A的正误;四种命题的逆否关系判断B的正误;充要条件判断C 的正误;命题的真假判断D的正误;【解答】解:对于A,命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠x0,不满足命题的否定形式,所以不正确;对于B,命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5,不满足否命题的形式,所以不正确;对于C,若ω=1是函数f(x)=cosx在区间[0,π]上单调递减的,而函数f(x)=cosωx在区间[0,π]上单调递减的,ω≤1,所以ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件,正确.对于D,命题:∃x0∈R,x02+a<0为假命题,则命题:a≥0,∀x∈R,x2+a≥0是真命题;所以,命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0,不正确;故选:C.【点评】本题考查命题的真假的判断与应用,基本知识的考查.4.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.【考点】由三视图求面积、体积.【专题】图表型.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,一般组合体的体积要分部分来求.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣2【考点】椭圆的简单性质.【专题】计算题.【分析】通过题意可推断出当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.进而可根据椭圆的方程求得焦点的坐标和P的坐标,进而求得和,则•的值可求得.【解答】解:根据题意可知当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.这时,F1(﹣,0),F2(,0),P(0,1),∴=(﹣,﹣1),=(,﹣1),∴•=﹣2.故选D【点评】本题主要考查了椭圆的简单性质.考查了学生数形结合的思想和分析问题的能力.6.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】分别讨论a,b,c的取值X围,即可比较大小.【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,则c<a<b,故选:B.【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.27【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的R,P,Q的值,当Q=0时,满足条件Q=0,退出循环,输出P的值为3.【解答】解:模拟执行程序,可得P=153,Q=63不满足条件Q=0,R=27,P=63,Q=27不满足条件Q=0,R=9,P=27,Q=9不满足条件Q=0,R=0,P=9,Q=0满足条件Q=0,退出循环,输出P的值为9.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的R,P,Q的值是解题的关键,属于基本知识的考查.8.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.4【考点】三角函数的化简求值.【专题】计算题;转化思想;转化法;三角函数的求值.【分析】先根据对数的运算性质求出tanθ,再化简代值计算即可.【解答】解:点(16,tanθ)在函数y=log2x的图象上,∴tanθ=log216=4,∴====,故选:B.【点评】本题考查了二倍角公式,函数值的求法,以及对数的运算性质,属于基础题.9.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】由函数的性质可知,f(x)=()x﹣log3x在(0,+∞)上是减函数,且可得f(x0)=0,由0<x0<x1,可得f(x1)<f(x0)=0,即可判断【解答】解:∵实数x0是方程f(x)=0的解,∴f(x0)=0.∵函数y()x,y=log3x在(0,+∞)上分别具有单调递减、单调递增,∴函数f(x)在(0,+∞)上是减函数.又∵0<x0<x1,∴f(x1)<f(x0)=0.∴f(x1)的值恒为负.故选A.【点评】本题主要考查了函数的单调性的简单应用,解题的关键是准确判断函数f(x)的单调性并能灵活应用.10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.20【考点】数列的求和.【专题】等差数列与等比数列.【分析】首先根据题中的已知条件已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,进一步求出数列的通项公式,然后根据通项公式求出各项的值,最后确定结果.【解答】解:已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2则:∴a n=3n﹣5a2+a4+a5+a9=40故选:B【点评】本题考查的知识点:根据点的斜率求出数列的通项公式,由通项公式求数列的项.11.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.【考点】对数的运算性质;函数的图象与图象变化.【分析】根据函数y=e|lnx|﹣|x﹣1|知必过点(1,1),再对函数进行求导观察其导数的符号进而知原函数的单调性,得到答案.【解答】解:由y=e|lnx|﹣|x﹣1|可知:函数过点(1,1),当0<x<1时,y=e﹣lnx﹣1+x=+x﹣1,y′=﹣+1<0.∴y=e﹣lnx﹣1+x为减函数;若当x>1时,y=e lnx﹣x+1=1,故选D.【点评】本题主要考查函数的求导与函数单调性的关系.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)【考点】函数奇偶性的性质.【专题】转化思想;数学模型法;函数的性质及应用;导数的综合应用.【分析】f(x)是定义在R上的奇函数,可得:f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增.又g(0)=0,g(﹣x)=x2f(﹣x)=﹣g(x),∴函数g(x)是R上的奇函数,∴g(x)是R上的增函数.由不等式g(x)<g(1﹣3x),∴x<1﹣3x,解得.∴不等式g(x)<g(1﹣3x)的解集为:.故选:B.【点评】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据对数和幂的运算性质计算即可.【解答】解:()+lg+lg70+=+lg()+1﹣lg3=+lg+1=+1+1=,故答案为:.【点评】本题考查了对数和幂的运算性质,关键是掌握性质,属于基础题.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是﹣8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】将z=x﹣3y变形为,此式可看作是斜率为,纵截距为的一系列平行直线,当最大时,z最小.作出原不等式组表示的平面区域,让直线向此平面区域平移,可探求纵截距的最大值.【解答】解:由z=x﹣3y,得,此式可看作是斜率为,纵截距为的直线,当最大时,z最小.画出直线y=x,x+2y=2,x=﹣2,从而可标出不等式组表示的平面区域,如右图所示.由图知,当动直线经过点P时,z最小,此时由,得P(﹣2,2),从而z min=﹣2﹣3×2=﹣8,即z=x﹣3y的最小值是﹣8.故答案为:﹣8.【点评】本题考查了线性规划的应用,为高考常考的题型,求解此类问题的一般步骤是:(1)作出已知不等式组表示的平面区域;(2)运用化归思想及数形结合思想,将目标函数的最值问题转化为平面中几何量的最值问题处理.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【考点】奇偶性与单调性的综合;函数的周期性.【专题】数形结合.【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.【考点】命题的真假判断与应用;奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】是结合复合函数单调性的关系进行判断.②根据基本由函数奇偶性的定义判断函数为偶函数判断;③利用对勾函数的单调性判断;④由对勾函数的最值及函数奇偶性的性质进行判断即可.【解答】解:①函数f(x)=lg,(x∈R且x≠0).∵=2,∴f(x)=lg≥2,即f(x)的最小值是lg2,故①正确,②∵f(﹣x)==f(x),∴函数f(x)为偶函数,图象关于y轴对称,故②正确;③当x>0时,t(x)=,在(0,1)上单调递减,在(1,+∞)上得到递增,∴f(x)=lg在(0,1)上单调递减,在(1,+∞)上得到递增,故③错误;④∵函数f(x)是偶函数,由③知f(x)在(0,1)上单调递减,在(1,+∞)上得到递增,∴在(﹣1,0)上单调递增,在(﹣∞,﹣1)上得到递减,故④正确,故答案为:①②④【点评】本题考查了命题的真假判断与应用,考查了函数奇偶性的性质,考查了复合函数的单调性,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.【考点】必要条件;绝对值不等式的解法.【专题】规律型.【分析】先求出命题p,q的等价条件,利用¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,建立条件关系即可求出m的取值X围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m≥9.【点评】本题主要考查充分条件和必要条件的应用,将¬p是¬q的必要不充分条件转化为q 是p的必要不充分条件是解决本题的关键.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.【考点】函数零点的判定定理;根的存在性及根的个数判断.【专题】计算题;函数的性质及应用;导数的综合应用;不等式的解法及应用.【分析】(1)由基本不等式可得g(x)=x+≥2=2e,从而求m的取值X围;(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,求导F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);从而判断函数的单调性及最值,从而确定m的取值X围.【解答】解:(1)∵g(x)=x+≥2=2e;(当且仅当x=,即x=e时,等号成立)∴若使函数y=g(x)﹣m有零点,则m≥2e;故m的取值X围为[2e,+∞);(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);故当x∈(0,e)时,F′(x)<0,x∈(e,+∞)时,F′(x)>0;故F(x)在(0,e)上是减函数,在(e,+∞)上是增函数,故只需使F(e)<0,即e+e+e2﹣2e2﹣m+1<0;故m>2e﹣e2+1.【点评】本题考查了基本不等式的应用及导数的综合应用,同时考查了函数零点的判断与应用,属于中档题.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.【考点】求对数函数解析式;函数解析式的求解及常用方法;函数最值的应用.【专题】计算题;转化思想.【分析】(1)由已知条件可知函数g(x)的图象上的任意一点P(x,y)关于原点对称的点Q (﹣x,﹣y)在函数f(x)图象上,把Q(﹣x,﹣y)代入f(x),整理可得g(x)(2)由(1)可令h(x)=f(x)+g(x),先判断函数h(x)在[0,1)的单调性,进而求得函数的最小值h(x)min,使得m≤h(x)min【解答】解:(1)设点P(x,y)是g(x)的图象上的任意一点,则Q(﹣x,﹣y)在函数f (x)的图象上,即﹣y=log a(﹣x+1),则∴(2)f(x)+g(x)≥m 即,也就是在[0,1)上恒成立.设,则由函数的单调性易知,h(x)在[0,1)上递增,若使f(x)+g(x)≥m在[0,1)上恒成立,只需h(x)min≥m在[0,1)上成立,即m≤0.m的取值X围是(﹣∞,0]【点评】本题(1)主要考查了函数的中心对称问题:若函数y=f(x)与y=g(x)关于点M (a,b)对称,则y=f(x)上的任意一点(x,y)关于M(a,b)对称的点(2a﹣x,2b﹣y)在函数y=g(x)的图象上.(2)主要考查了函数的恒成立问题,往往转化为求最值问题:m≥h(x)恒成立,则m≥h(x)m≤h(x)恒成立,max则m≤h(x)min20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.【考点】基本不等式在最值问题中的应用.【专题】计算题.【分析】(1)赢利总额y元即x年中的收入50x减去购进机床的成本与这x年中维修、保养的费用,维修、保养的费用历年成等差数增长,,(2)由(1)的结论解出结果进行判断得出何年开始赢利.(3)算出每一种方案的总盈利,比较大小选择方案.【解答】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.【点评】考查审题及将题中关系转化为数学符号的能力,其中第二问中考查了一元二次不等式的解法,第三问中考查到了基本不等式求最值,本题是一个函数基本不等式相结合的题.属应用题中盈利最大化的问题.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;导数的综合应用.【分析】(1)求导数,利用导数的正负,即可讨论函数h(x)=的单调性;(2)求出g(x)max=g(2)=1,当x∈[,2]时,f(x)=+xlnx恒成立,等价于a≥x﹣x2lnx 恒成立,然后利用导数求函数u(x)=x﹣x2lnx在区间[,2]上取得最大值,则实数a的取值X围可求.【解答】解:(1)h(x)==+lnx,h′(x)=,①a≤0,h′(x)≥0,函数h(x)在(0,+∞)上单调递增②a>0时,h'(x)>0,则x∈(,+∞),函数h(x)的单调递增区间为(,+∞),h'(x)<0,则x∈(0,),函数h(x)的单调递减区间为(0,),.(2)g(x)=x3﹣x2﹣3,g′(x)=3x(x﹣),x 2g′(x)0 ﹣0 +g(x)﹣递减极小值递增 13由上表可知,g(x)在x=2处取得最大值,即g(x)max=g(2)=1所以当x∈[,2]时,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x 2lnx恒成立,记u(x)=x﹣x2lnx,所以a≥u(x)max,u′(x)=1﹣x﹣2xlnx,可知u′(1)=0,当x∈(,1)时,1﹣x>0,2xlnx<0,则u′(x)>0,∴u(x)在x∈(,2)上单调递增;当x∈(1,2)时,1﹣x<0,2xlnx>0,则u′(x)<0,∴u(x)在(1,2)上单调递减;故当x=1时,函数u(x)在区间[,2],上取得最大值u(1)=1,所以a≥1,故实数a的取值X围是[1,+∞).【点评】本题考查了利用导数研究函数的单调性,考查了导数在最大值、最小值问题中的应用,考查了数学转化思想方法和函数构造法,训练了利用分离变量法求参数的取值X围,属于中档题.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数的意义;简单曲线的极坐标方程.【专题】选作题;转化思想;综合法;坐标系和参数方程.【分析】(1)把参数方程和极坐标方程化为直角坐标方程,联立方程组求出交点的坐标,再把交点的直角坐标化为极坐标;(2)画出图象,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.【解答】解:(1)由(θ为参数),消去参数得:x2+(y﹣2)2=4,即x2+y2﹣4y=0;由ρ=﹣4cosθ,得ρ2=﹣4ρcosθ,即x2+y2=﹣4x.两式作差得:x+y=0,代入C1得交点为(0,0),(﹣2,2).其极坐标为(0,0),(2,);(2)如图,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.此时|AB|=2+4,O到AB的距离为.∴△OAB的面积为S=×(2+4)×=2+2.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的X围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得 x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想;还考查了分段函数的应用,求函数的值域,属于中档题.。

2021-2022年高三上学期10月月考数学(理)试题含答案

2021-2022年高三上学期10月月考数学(理)试题含答案

2021-2022年高三上学期10月月考数学(理)试题含答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集集合{}{}1,2,5,4,5,6U A C B ==,则集合A. B. C. D.2.若,则下列不等式中成立的是A. B. C. D.3.函数的零点有A.0个B.1个C.2个D.3个 4.设0.13592,1,log 210a b g c ===,则a,b,c 的大小关系是 A. B. C. D.5.下面几种推理过程是演绎推理的是A.两条直线平行,同旁内角互补,如果是两条平行直线的同旁内角,则B.由平面三角形的性质,推测空间四面体的性质C.某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人D.在数列中,()11111,221n n n a a a n a -⎛⎫==+≥ ⎪-⎝⎭,计算,由此猜测通项 6.已知函数的导函数为,且满足,则A. B. C.1 D.e7.函数)0,0y a a =>≠的定义域和值域都是,则A.1B.2C.3D.48.函数满足,那么函数的图象大致为9.设函数是定义在R 上周期为3的奇函数,若,则有 A. B. C.D.10.已知()32log ,03,,,,1108,333x x f x a b c d x x x ⎧<≤⎪=⎨-+>⎪⎩是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是A.B. C. D.第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.请把答案填在题中横线上.11. __________.12.设实数满足240,0,0.x y x y y +-≤⎧⎪-≥⎨⎪>⎩则的最大值为_________.13.观察下列式子222222131151117:1,1,1222332344+<++<+++<,…,根据上述规律,第n 个不等式应该为__________________________.14.在等式“”的两个括号内各填入一个正整数,使它们的和最小,则填入的两个数依次为_______、_______.15.下列四个命题:①命题“若a=0,则ab=0”的否命题是“若a=0,则ab ”;②若命题,则;③若命题“”与命题“”都是真命题,则命题q 一定是真命题;④命题“若,则()1log 1log 1a a a a ⎛⎫+<+ ⎪⎝⎭”是真命题. 其中正确命题的序号是_________.(把所有正确命题序号都填上)三、解答题:本大题有6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤16. (本题满分12分)已知集合{}{}22log 8,0,14x A x x B xC x a x a x +⎧⎫=<=<=<<+⎨⎬-⎩⎭. (I )求集合;(II )若,求实数a 的取值范围.17. (本题满分12分)设命题p :函数在R 上是增函数,命题()2:,2310q x R x k x ∃∈+-+=,如果是假命题,是真命题,求k 的取值范围.18. (本题满分12分)已知函数.(I )若函数的图象在处的切线方程为,求a,b 的值;(II )若函数在R 上是增函数,求实数a 的最大值.19. (本题满分12分)已知二次函数()()2,f x x bx c b c R =++∈. (I )若,且函数的值域为,求函数的解析式;(II )若,且函数在上有两个零点,求的取值范围.20. (本题满分13分)某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161,04815,42x x y x x ⎧-≤≤⎪⎪-=⎨⎪-<≤10⎪⎩,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.(I )若一次喷洒4个单位的去污剂,则去污时间可达几天?(II )若第一次喷洒2个单位的去污剂,6天后再喷洒a (1≤a ≤4)个单位的去污剂,要使接下来的4天中能够持续有效去污,试求a 的最小值(精确到0.1,参考数据:取1.4).21. (本题满分14分)设,函数.(I)求的单调递增区间;(II)设,问是否存在极值,若存在,请求出极值;若不存在,请说明理由;(III)设是函数图象上任意不同的两点,线段AB的中点为,直线AB的斜率为为k.证明:.T *35356 8A1C 訜21153 52A1 务24278 5ED6 廖37058 90C2 郂40714 9F0A 鼊B21961 55C9 嗉35803 8BDB 诛e24194 5E82 庂F。

天津市南开大学附属中学2021届高三上学期第二次月考数学试卷(理科) Word版含解析

天津市南开大学附属中学2021届高三上学期第二次月考数学试卷(理科) Word版含解析

天津市南开高校附属中学2021届高三上学期其次次月考数学试卷(理科)一、选择题(每题5分,共40分)1.(3分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i2.(3分)“a3>b3”是“log3a>log3b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(3分)设变量x,y 满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.54.(3分)若﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,则ab=()A.15 B.﹣l5 C.±l5 D.105.(3分)已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不行能是()A.B.πC.2πD .6.(3分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m⊥α,n⊥m则n∥αB.若α⊥β,β⊥γ则α∥βC.若m⊥β,n⊥β则m∥n D.若m∥α,m∥β,则α∥β7.(3分)已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,设a n=g(n)﹣g(n﹣1)(n∈N*),则数列{a n}是()A.等差数列B.等比数列C.递增数列D.递减数列8.(3分)在平面四边形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD 是正三角形,则•的值为()A.﹣2 B.2C.D .二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)为了解某校高中同学的近视眼发病率,在该校同学中进行分层抽样调查,已知该校2022-2021学年高一、2022-2021学年高二、2021届高三分别有同学800名、600名、500名.若2021届高三同学共抽取25名,则2022-2021学年高一同学共抽取名.10.(5分)如图是一个空间几何体的三视图,则该几何体的体积大小为.11.(5分)已知=(3,﹣2).=(1,0),向量λ与﹣2垂直,则实数λ的值为.12.(5分)对于任意x∈R,满足(a﹣2)x2+2(a﹣2)x﹣4<0恒成立的全部实数a构成集合A,使不等式|x ﹣4|+|x﹣3|<a的解集为空集的全部实数a构成集合B,则A∩∁R B=.13.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为.14.(5分)若a是1+2b与1﹣2b 的等比中项,则的最大值为.三、解答题:本大题共6小题,共80分,解题应写出文字说明、证明过程或演算步骤.15.(16分)已知函数.(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x )在区间上的值域.16.(16分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c ,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.17.(16分)如图所示,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD 上一点,PE=2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D﹣AC﹣E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.18.(16分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设的前n项和S n.19.(16分)已知数列{a n},a1=1,前n项和S n满足nS n+1﹣(n+3)S n=0,(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=4()2,求数列{(﹣1)n b n}的前n项和T n;(Ⅲ)设C n=2n (﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.20.(16分)已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足,并确定这样的x0的个数.天津市南开高校附属中学2021届高三上学期其次次月考数学试卷(理科)参考答案与试题解析一、选择题(每题5分,共40分)1.(3分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i考点:复数相等的充要条件.专题:数系的扩充和复数.分析:依据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z的值.解答:解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(3分)“a3>b3”是“log3a>log3b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:函数的性质及应用;简易规律.分析:依据指数函数和对数函数的图象和性质,求出两个命题的等价命题,进而依据充要条件的定义可得答案.解答:解:“a3>b3”⇔“a>b”,“log3a>log3b”⇔“a>b>0”,故“a3>b3”是“log3a>log3b”的必要不充分条件,故选:B点评:推断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤推断命题p与命题q所表示的范围,再依据“谁大谁必要,谁小谁充分”的原则,推断命题p与命题q的关系.3.(3分)设变量x,y 满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.5考点:简洁线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的学问,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.4.(3分)若﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,则ab=()A.15 B.﹣l5 C.±l5 D.10考点:等比数列的性质;等差数列的性质.专题:等差数列与等比数列.分析:利用等差数列与等比数列的性质可求得a=﹣5,b=﹣3,从而可得答案.解答:解:∵﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,∴2a=﹣1﹣9=﹣10,b2=9,∴a=﹣5,b=﹣3(b为第三项,b<0),∴ab=15.故选:A.点评:本题考查等差数列与等比数列的性质,b=﹣3的确定是易错点,属于中档题.5.(3分)已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不行能是()A.B.πC.2πD .考点:三角函数的最值.专题:计算题.分析:结合三角函数R上的值域[﹣2,2],当定义域为[a,b],值域为[﹣2,1],可知[a,b]小于一个周期,从而可得.解答:解:函数y=2sinx在R上有﹣2≤y≤2函数的周期T=2π值域[﹣2,1]含最小值不含最大值,故定义域[a,b]小于一个周期b﹣a<2π故选C点评:本题考查了正弦函数的图象及利用图象求函数的值域,解题的关键是生疏三角函数y=2sinx的值域[﹣2,2],而在区间[a,b]上的值域[﹣2,1],可得函数的定义域与周期的关系,从而可求结果.6.(3分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m⊥α,n⊥m则n∥αB.若α⊥β,β⊥γ则α∥βC.若m⊥β,n⊥β则m∥n D.若m∥α,m∥β,则α∥β考点:空间中直线与平面之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:对选项逐一分析,依据空间线面关系,找出正确选项.解答:解:对于A,直线n有可能在平面α内;故A 错误;对于B,α,γ还有可能相交,故B 错误;对于C,依据线面垂直的性质以及线线平行的判定,可得直线m,n平行;对于D,α,β有可能相交.故选C.点评:本题主要考查了平面与平面之间的位置关系,考查空间想象力量、运算力量和推理论证力量,属于基础题.7.(3分)已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,设a n=g(n)﹣g(n﹣1)(n∈N*),则数列{a n}是()A.等差数列B.等比数列C.递增数列D.递减数列考点:等比关系的确定.专题:计算题.分析:依据g(n)的通项公式可求得g(1),g(2),g(3)直至g(n),进而可求a1,a2,a3,┉,a n进而发觉数列{a n}是等比数列解答:解:已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,则g(1)=b+1,g(2)=b2+b+1,g(3)=b3+b2+b+1,┉,g(n)=b n+┉+b2+b+1.a1=b,a2=b2,a3=b3,┉,a n=b n故数列{a n}是等比数列点评:本题主要考查等比关系的确定.属基础题.8.(3分)在平面四边形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD 是正三角形,则•的值为()A.﹣2 B.2C.D .考点:平面对量数量积的运算.专题:平面对量及应用.分析:如图所示,建立直角坐标系.取AC的中点E,连接DE,BE.由A(0,3),C(4,0),可得.由于,可得=0.利用•==即可得出.解答:解:如图所示,建立直角坐标系.取AC的中点E,连接DE,BE.∵A(0,3),C(4,0),∴.∵,∴=0.∴•====8﹣=.故选:C.点评:本题考查了向量垂直与数量积的关系、数量积运算性质、向量的三角形法则,考查了推理力量与计算力量,属于中档题.二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)为了解某校高中同学的近视眼发病率,在该校同学中进行分层抽样调查,已知该校2022-2021学年高一、2022-2021学年高二、2021届高三分别有同学800名、600名、500名.若2021届高三同学共抽取25名,则2022-2021学年高一同学共抽取40名.考点:分层抽样方法.专题:概率与统计.分析:依据分层抽样在各部分抽取的比例相等求解.解答:解:依据分层抽样在各部分抽取的比例相等,分层抽样抽取的比例为=,∴2022-2021学年高一应抽取的同学数为800×=40.故答案为:40.点评:本题考查了分层抽样的定义,娴熟把握分层抽样的特征是关键.10.(5分)如图是一个空间几何体的三视图,则该几何体的体积大小为.考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球.代入长方体的体积公式和球的体积公式,即可得到答案.解答:由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球.所以长方体的体积为2×2×1=4,半球的体积为,所以该几何体的体积为.故答案为:.点评:本题考查的学问点是由三视图求体积,其中依据已知中的三视图推断出几何体的外形是解题的关键.11.(5分)已知=(3,﹣2).=(1,0),向量λ与﹣2垂直,则实数λ的值为.考点:数量积推断两个平面对量的垂直关系.专题:计算题.分析:由题意得(λ)•(﹣2)=λ+(1﹣2λ)﹣2=13λ+3(1﹣2λ)﹣2=0,解得λ值,即为所求.解答:解:由题意得(λ)•(﹣2)=λ+(1﹣2λ)﹣2=13λ+3(1﹣2λ)﹣2=0,解得λ=﹣,故答案为﹣.点评:本题考查两个向量的数量积公式的应用,两个向量垂直的性质,求得13λ+3(1﹣2λ)﹣2=0,是解题的关键.12.(5分)对于任意x∈R,满足(a﹣2)x2+2(a﹣2)x﹣4<0恒成立的全部实数a构成集合A,使不等式|x ﹣4|+|x﹣3|<a的解集为空集的全部实数a构成集合B,则A∩∁R B=(1,2].考点:交、并、补集的混合运算.专题:集合.分析:分a﹣2为0与不为0两种状况求出(a﹣2)x2+2(a﹣2)x﹣4<0恒成立a的范围,确定出A ,求出访不等式|x﹣4|+|x﹣3|<a的解集为空集的全部实数a的集合确定出B,求出B补集与A的交集即可.解答:解:(a﹣2)x2+2(a﹣2)x﹣4<0,当a﹣2=0,即a=2时,﹣4<0,满足题意;当a﹣2≠0,即a≠2时,依据题意得到二次函数开口向下,且与x轴没有交点,即a﹣2<0,△=4(a﹣2)2+16(a﹣2)<0,解得:a<2,﹣2<a<2,综上,a的范围为﹣2<a≤2,即A=(﹣2,2],使不等式|x﹣4|+|x﹣3|<a的解集为空集的全部实数a构成的B=(﹣∞,1),∴∁R B=[1,+∞),则A∩∁R B=(1,2].故答案为:(1,2]点评:此题考查了交、并、补集的混合运算,娴熟把握各自的定义是解本题的关键.13.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为4.考点:与圆有关的比例线段.专题:计算题.分析:连接OC,BE,由圆角定定理,我们可得BE⊥AE,直线l是过C的切线,故OC⊥直线l,△OBC 为等边三角形,结合等边三角形的性质及30°所对的直角边等于斜边的一半,我们易求出线段AE的长.解答:解:连接OC,BE,如下图所示:则∵圆O的直径AB=8,BC=4,∴△OBC为等边三角形,∠COB=60°又∵直线l是过C的切线,故OC⊥直线l又∵AD⊥直线l∴AD∥OC故在Rt△ABE中∠A=∠COB=60°∴AE=AB=4故答案为:4点评:本题考查的学问点是切线的性质,圆周角定理,其中依据切线的性质,圆周角定理,推断出△ABE 是一个∠B=30°的直角三角形是解答本题的关键.14.(5分)若a是1+2b与1﹣2b的等比中项,则的最大值为.考点:等比数列的性质.专题:综合题;等差数列与等比数列.分析:由a是1+2b与1﹣2b的等比中项得到4|ab|≤1,再由基本不等式法求得的最大值.解答:解:a是1+2b与1﹣2b的等比中项,则a2=1﹣4b2⇒a2+4b2=1≥4|ab|.∴.∵a2+4b2=(|a|+2|b|)2﹣4|ab|=1.∴≤=∵∴≥4,∴的最大值为=.故答案为:.点评:本题考查等比中项以及不等式法求最值问题,考查同学分析解决问题的力量,属于中档题.三、解答题:本大题共6小题,共80分,解题应写出文字说明、证明过程或演算步骤.15.(16分)已知函数.(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x )在区间上的值域.考点:三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的对称性.专题:三角函数的图像与性质.分析:(1)先依据两角和与差的正弦和余弦公式将函数f(x)开放再整理,可将函数化简为y=Asin(wx+ρ)的形式,依据T=可求出最小正周期,令,求出x的值即可得到对称轴方程.(2)先依据x的范围求出2x ﹣的范围,再由正弦函数的单调性可求出最小值和最大值,进而得到函数f(x)在区间上的值域.解答:解:(1)∵=sin2x+(sinx﹣cosx)(sinx+cosx)===∴周期T=由∴函数图象的对称轴方程为(2)∵,∴,由于在区间上单调递增,在区间上单调递减,所以当时,f(x)取最大值1,又∵,当时,f(x )取最小值,所以函数f(x )在区间上的值域为.点评:本题主要考查两角和与差的正弦公式和余弦公式,以及正弦函数的基本性质﹣﹣最小正周期、对称性、和单调性.考查对基础学问的把握状况.16.(16分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c ,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.考点:余弦定理;平面对量数量积的运算;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)利用平面对量的数量积运算法则化简•=2,将cosB的值代入求出ac=6,再利用余弦定理列出关系式,将b,cosB以及ac的值代入得到a2+c2=13,联马上可求出ac的值;(Ⅱ)由cosB的值,利用同角三角函数间基本关系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,进而求出cosC的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.解答:解:(Ⅰ)∵•=2,cosB=,∴c•acosB=2,即ac=6①,∵b=3,∴由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2﹣4,∴a2+c2=13②,联立①②得:a=3,c=2;(Ⅱ)在△ABC中,sinB===,由正弦定理=得:sinC=sinB=×=,∵a=b>c,∴C为锐角,∴cosC===,则cos(B﹣C)=cosBcosC+sinBsinC=×+×=.点评:此题考查了正弦、余弦定理,平面对量的数量积运算,以及同角三角函数间的基本关系,娴熟把握定理是解本题的关键.17.(16分)如图所示,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD 上一点,PE=2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D﹣AC﹣E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.考点:用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定.专题:计算题;证明题;综合题.分析:(I)依据勾股定理的逆定理,得到△PAD是以PD为斜边的直角三角形,从而有PA⊥AD,再结合PA⊥CD,AD、CD 相交于点D,可得PA⊥平面ABCD;(II)过E作EG∥PA 交AD于G,连接BD交AC于O,过G作GH∥OD,交AC于H,连接EH.利用三垂线定理结合正方形ABCD的对角线相互垂直,可证出∠EHG为二面角D﹣AC﹣E的平面角.分别在△PAB中和△AOD中,求出EH=,GH=,在Rt△EHG中利用三角函数的定义,得到tan∠EHG==.最终由同角三角函数的关系,计算得cos∠EHG=.(III)以AB,AD,PA为x轴、y轴、z轴建立空间直角坐标系.分别给出点A、B、C、P、E的坐标,从而得出=(1,1,0),=(0,,),利用向量数量积为零的方法,列方程组可算出平面AEC的一个法向量为=(﹣1,1,﹣2 ).假设侧棱PC上存在一点F,使得BF∥平面AEC ,则=+=(﹣λ,1﹣λ,λ),且有⋅=0.所以⋅=λ+1﹣λ﹣2λ=0,解之得λ=,所以存在PC的中点F,使得BF∥平面AEC.解答:解:(Ⅰ)∵PA=AD=1,PD=,∴PA2+AD2=PD2,可得△PAD是以PD为斜边的直角三角形∴PA⊥AD﹣﹣﹣(2分)又∵PA⊥CD,AD、CD 相交于点D,∴PA⊥平面ABCD﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)过E作EG∥PA 交AD于G,∵EG∥PA,PA⊥平面ABCD,∴EG⊥平面ABCD,∵△PAB中,PE=2ED∴AG=2GD,EG=PA=,﹣﹣﹣﹣﹣﹣(5分)连接BD交AC于O,过G作GH∥OD,交AC于H,连接EH.∵OD⊥AC,GH∥OD∴GH⊥AC∵EG⊥平面ABCD,HG是斜线EH在平面ABCD内的射影,∴EH⊥AC,可得∠EHG为二面角D﹣AC﹣E的平面角.﹣﹣﹣﹣﹣(6分)∴Rt△EGH中,HG=OD=BD=,可得tan∠EHG==.由同角三角函数的关系,得cos∠EHG==.∴二面角D﹣AC﹣E 的平面角的余弦值为﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)以AB,AD,PA为x轴、y轴、z轴建立空间直角坐标系.则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),E(0,,),=(1,1,0),=(0,,)﹣﹣﹣(9分)设平面AEC 的法向量=(x,y,z),依据数量积为零,可得,即:,令y=1,得=(﹣1,1,﹣2 )﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)假设侧棱PC上存在一点F ,且=λ,(0≤λ≤1),使得:BF∥平面AEC ,则⋅=0.又∵=+=(0,1,0)+(﹣λ,﹣λ,λ)=(﹣λ,1﹣λ,λ),∴⋅=λ+1﹣λ﹣2λ=0,∴λ=,所以存在PC的中点F,使得BF∥平面AEC.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)点评:本题给出一个特殊的棱锥,通过证明线面垂直和求二面角的大小,着重考查了用空间向量求平面间的夹角、直线与平面平行的判定与性质和直线与平面垂直的判定与性质等学问点,属于中档题.18.(16分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设的前n项和S n.考点:等差数列与等比数列的综合;数列的求和.专题:计算题.分析:(I)依据a3+2是a2,a4的等差中项和a2+a3+a4=28,求出a3、a2+a4的值,进而得出首项和a1,即可求得通项公式;(II)先求出数列{b n}的通项公式,然后求出﹣S n﹣(﹣2S n),即可求得的前n项和S n.解答:解:(I)设等比数列{a n}的首项为a1,公比为q∵a3+2是a2,a4的等差中项∴2(a3+2)=a2+a4代入a2+a3+a4=28,得a3=8∴a2+a4=20∴∴或∵数列{a n}单调递增∴a n=2n(II)∵a n=2n∴b n ==﹣n•2n∴﹣s n=1×2+2×22+…+n×2n①∴﹣2s n=1×22+2×23+…+(n﹣1)×2n+n2n+1②∴①﹣②得,s n=2+22+23+…+2n﹣n•2n+1=2n+1﹣n•2n+1﹣2点评:本题考查了等比数列的通项公式以及数列的前n项和,对于等差数列与等比数列乘积形式的数列,求前n项和一般实行错位相减的方法.19.(16分)已知数列{a n},a1=1,前n项和S n满足nS n+1﹣(n+3)S n=0,(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=4()2,求数列{(﹣1)n b n}的前n项和T n;(Ⅲ)设C n=2n (﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.考点:数列的求和;数列的函数特性;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)对已知等式整理成数列递推式,然后用叠乘法,求得S n,最终利用a n=S n﹣S n﹣1求得答案.(Ⅱ)依据(Ⅰ)中a n,求得b n,设出C n,分n为偶数和奇数时的T n.(Ⅲ)依据数列为递减数列,只需满足C n+1﹣C n<0,求得﹣的最大值,即可求得λ的范围.解答:解:(Ⅰ)由已知=,且S1=a1=1,当n≥2时,S n=S1••…•=1•••…•=,S1也适合,当n≥2时,a n=S n﹣S n﹣1=,且a1也适合,∴a n =.(Ⅱ)b n=4()2=(n+1)2,设C n=(﹣1)n(n+1)2,当n为偶数时,∵C n﹣1+C n=(﹣1)n﹣1•n2+(﹣1)n•(n+1)2=2n+1,T n=(C1+C2)+(C3+C4)+…(C n﹣1+C n)=5+9+…+(2n﹣1)==,当n为奇数时,T n=T n﹣1+C n =﹣(n+1)2=﹣,且T1=C1=﹣4也适合.综上得T n =(Ⅲ)∵C n=2n (﹣λ),使数列{C n}是单调递减数列,则C n+1﹣C n=2n (﹣﹣λ)<0,对n∈N*都成立,则(﹣)max<λ,∵﹣==,当n=1或2时,(﹣)max =,∴λ>.点评:本题主要考查了数列的求和问题,求数列通项公式问题.对于利用a n=S n﹣S n﹣1肯定要a1对进行验证.20.(16分)已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足,并确定这样的x0的个数.考点:利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.专题:压轴题.分析:(Ⅰ)首先求出函数的导数,然后依据导数与函数单调区间的关系确定t的取值范围,(Ⅱ)运用函数的微小值进行证明,(Ⅲ)首先对关系式进行化简,然后利用根与系数的关系进行判定.解答:(Ⅰ)解:由于f′(x)=(2x﹣3)e x+(x2﹣3x+3)e x,由f′(x)>0⇒x>1或x<0,由f′(x)<0⇒0<x<1,∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,∵函数f(x)在[﹣2,t]上为单调函数,∴﹣2<t≤0,(Ⅱ)证:由于函数f(x)在(﹣∞,0)∪(1,+∞)上单调递增,在(0,1)上单调递减,所以f(x)在x=1处取得微小值e,又f(﹣2)=13e﹣2<e,所以f(x)在[﹣2,+∞)上的最小值为f(﹣2),从而当t>﹣2时,f(﹣2)<f(t),即m<n,(Ⅲ)证:由于,∴,即为x02﹣x0=,令g(x)=x2﹣x ﹣,从而问题转化为证明方程g(x)==0在(﹣2,t)上有解并争辩解的个数,由于g(﹣2)=6﹣(t﹣1)2=﹣,g(t)=t(t﹣1)﹣=,所以当t>4或﹣2<t<1时,g(﹣2)•g(t)<0,所以g(x)=0在(﹣2,t)上有解,且只有一解,当1<t<4时,g(﹣2)>0且g(t)>0,但由于g(0)=﹣<0,所以g(x)=0在(﹣2,t)上有解,且有两解,当t=1时,g(x)=x2﹣x=0,解得x=0或1,所以g(x)=0在(﹣2,t)上有且只有一解,当t=4时,g(x)=x2﹣x﹣6=0,所以g(x)=0在(﹣2,t)上也有且只有一解,综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足,且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,当1<t<4时,有两个x0适合题意.点评:本小题主要考查导数的概念和计算,应用导数争辩函数单调性的方法及推理和运算力量.。

2021届湖南省常德市一中高三上学期第二次月考数学试题

2021届湖南省常德市一中高三上学期第二次月考数学试题

常德市一中2021届高三年级第二次月考数学试题本试卷满分150分 考试时间:120分钟一、单项选择题(共8小题,每小题5分,共40分)1.已知集合{lg(1)}A xy x ==+∣,{2}B x x =<,则A B =( )A .(1,2)-B .(0,2)C .(2,0)-D .(2,1)--2.若复数z 满足(23)13i z +=,则复平面内表示z 的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知2log 0.2a =,0.22b =,0.30.2c =,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.已知1sin 64πα⎛⎫+=⎪⎝⎭,则2cos 23πα⎛⎫-= ⎪⎝⎭( ) A .1516 B .1516-C .78D .78-5.函数4||ln ||()x x f x x=的图象大致为( ) A . B .C .D .6.向量1,13a ⎛⎫= ⎪⎝⎭,(cos ,sin )b αα=,α为第三象限角,且a b ∥,则2021cos 2πα⎛⎫+=⎪⎝⎭( )A .BC .D 7.南北朝时期的数学古籍《张邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出;下四人后入得三斤,持出;中间三人未到者,亦依等次更给.问:每等人比下等人多得几斤?”( )A .439B .778C .776D .5818.函数()(21)xf x e x ax a =--+,(1)a <,若存在唯一整数0x 使得()00f x <,则a 的范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭二、多项选择题(共4小题,每小题5分,共20分) 9.已知下列四个条件,能推出11a b<成立的有( ) A .0b a >>B .0a b >>C . 0a b >>D .0a b >>10.已知0ω>,函数()sin 4f x x πω⎛⎫=+⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调递减,则ω的可能取值是( ) A .14B .12 C .34D .5411.已知函数312,0()2,0x x x f x x x ⎧-≤=⎨->⎩,当(,]x m ∈-∞,()f x 的取值范围为[]16,-+∞,则m 取下列哪些值时符合题意( ) A .2-B .4C .6D .1012.若二次函数2()(0)f x ax bx c a =++≠的图象和直线y x =无交点,现有下列结论:①方程[()]f f x x =一定没有实数根;②若0a >,则不等式[]()f f x x >对一切实数x 都成立; ③若0a <,则必存在实数0x ,使()00f f x x >⎡⎤⎣⎦;④函数2()(0)g x ax bx c a =-+≠的图象与直线y x =-一定没有交点. 其中,正确的是( ) A .①B .②C .③D .④二、填空题(共12小题,每小题5.0分,共60分)13.命题“x ∀∈R ,|2||4|3x x -+->”的否定是_________.14.化简413322338124a a ba b ⎛-÷-= ⎝+_________.15.已知,(0,)αβπ∈,且1tan()2αβ-=,1tan 7β=-,则2αβ-=_________.16.已知()x f x xe =,方程2[()]()10()f x tf x t ++=∈R 有四个实根,则t 的范围为_________. 三、解答题(共6题,共70分)17.集合{}25A x x =-≤≤∣,集合{}121B x m x m =+≤≤-∣. (1)若B A ⊆,求实数m 的取值范围;(2)当R x ∈时,没有元素x 使x A ∈与x B ∈同时成立,求实数m 的取值范围. 18.已知n S 是数列{}n a 的前n 项和,且满足24n n S a n -=-. (1)证明:{}2n S n -+为等比数列; (2)求数列{}n S 的前n 项和n T .19.已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π. (1)求函数()f x 的单调递增区间; (2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y x g =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.20.常德某店铺在网上直播专卖某种特产.由以往的经验表明,不考虑其他因素,该特产每日的销售量y (千克)与销售价格x (元/千克,15x <≤)满足:当13x <≤时,2(3)1by a x x =-+-(a ,b 为常数);当35x <≤时,70490y x =-+.已知当销售价格为2元/千克时,每日可售出700千克;当销售价格为3元/千克时,每日可售出150千克. (1)求a ,b 的值,并确定y 关于x 的函数解析式;(2)若该特产的销售成本为1元/千克,试确定销售价格x 的值,使店铺每日销售该特产所获利润()f x最大.(x 精确到0.01元/千克)21.如图,在ABC △中,30B ∠=︒,AC =D 是边AB 上一点.(1)求ABC △面积的最大值;(2)若2CD =,ACD △的面积为4,ACD ∠为锐角,求AD 的长. 22.已知函数2()ln f x a x x =+(a 为实常数)(1)当4a =-时,求函数()f x 在[]1,e 上的最大值及相应的x 值; (2)当[]1,x e ∈时,讨论方程()0f x =的根的个数;(3)若0a >,且对任意的12,[1,]x x e ∈,都有()()121211f x f x x x -≤-,求实数a 的取值范围. 常德市一中2021届高三数学月考答案选择题ADBDADBD ABD BCD ABC ABD 填空题0x ∃∈R ,使得00243x x -+-≤A34π-21,e e ⎛⎫+-∞- ⎪⎝⎭7.【解析】设第十等人得金1a 斤,第九等人得金2a 斤,以此类推,第一等人得金10a 斤,则数列{}n a 构成等差数列, 设公差为d ,则每一等人比下一等人多得d 斤金,由题意得1234891034a a a a a a a +++=⎧⎨++=⎩,即114633244a d a d +=⎧⎨+=⎩,解得778d =, ∴每一等人比下一等人多得778斤金. 8.【解析】设()(21)xg x e x =-,y ax a =-由题知存在唯一的整数0x ,使得()0g x 在直线y ax a =-的下方, 因为()(21)xg x e x '=+,所以当12x <-时,()0g x '<; 当12x >-时,()0g x '>,所以当12x =-时,12min [()]2g x e -=-.当0x =时,(0)1g =-,(1)0g e =>, 直线()1y a x =-恒过()1,0且斜率为a , 故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得312a e≤<,故选D . 12.【解析】因为函数()f x 的图象与直线y x =没有交点,所以()(0)f x x a >>或()(0)f x x a <<恒成立. 因为[()]()f f x f x x >>或[()]()f f x f x x <<恒成立, 所以[()]f f x 没有实数根,故①正确;若0a >,则不等式[()]()f f x f x x >>对一切实数x 都成立,故②正确; 若0a <,则不等式[()]f f x x <对一切实数x 都成立, 所以不存在实数0x ,使()00f f x x >⎡⎤⎣⎦,故③错误; 由函数()()g x f x =-与()f x 的图象关于y 轴对称, 所以()g x 和直线y x =-也一定没有交点. 故④正确,答案为①②④.二、填空题16.【解析】,0(),0x xxxe x f x xe xe x ⎧≥==⎨-<⎩,易知()f x 在[)0,+∞上是增函数. 当(,0)x ∈-∞时,()xf x xe =-,()(1)x f x e x '=-+,故()f x 在(),1-∞-上是增函数; 在()1,0-上是减函数.作其图象如下,且1(1)f e-=, 故若方程2[()]()10()f x tf x t ++=∈R 有四个实数根, 则方程210()x tx t ++=∈R 有两个不同的实根, 且110,x e ⎛⎫∈ ⎪⎝⎭,21,x e ⎛⎫∈+∞ ⎪⎝⎭,故200101110t e e ++>++<⎧⎪⎨⎪⎩,解得21,e t e ⎛⎫+∈-∞- ⎪⎝⎭.三、解答题 17.【答案】(1)当121m m +>-,即2m <时,B =∅满足B A ⊆;当121m m +≤-,即2m ≥时,要使B A ⊆成立,则12215m m +≥-⎧⎨-≤⎩,解得23m ≤≤.综上所述,当3m ≤时,有B A ⊆.(2)因为x ∈R ,且{}25A x x =-≤≤∣,{}121B x m x m =+≤≤-∣,又没有元素x 使x A ∈与x B ∈同时成立,则①若B =∅,即121m m +>-,得2m <时满足条件; ②若B ≠∅,则要满足条件12115m m m +≤-+>⎧⎨⎩,解得4m >,或121212m m m +≤--≤-⎧⎨⎩,解无解.综上所述,实数m 的取值范围为2m <或4m >.18.(1)证明因为1(2)n n n a S S n -=-≥,所以()124(2)n n n S S S n n ---=-≥, 则124(2)n n S S n n -=-+≥,所以[]122(1)2(2)n n S n S n n --+=--+≥, 又由题意知1123a a -=-, 所以13a =,则1124S -+=,所以{}2n S n -+是首项为4,公比为2等比数列. (2)解由(1)知122n n S n +-+=,所以122n n S n +=+-,于是()231222(12)2n n T n n +=++⋅⋅⋅++++⋅⋅⋅+-()32412(1)23821222n n n n n n n +-++--=+-=-. 19.解:(1))2()2sin cos 2sin 1f x x x x ωωω=-sin 2x xωω=2sin 23x πω⎛⎫=- ⎪⎝⎭.由最小正周期为π,得1ω=, 所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭, 由222()232k x k k Z πππππ-≤-≤+∈,整理得5()1212k x k k Z ππππ-≤≤+∈ 所以函数()f x 的单调递增区间是5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位, 得2sin 21y x =+的图象;所以()2sin 21g x x =+.令()0g x =, 得712x k ππ=+或11()12x k k Z ππ=+∈, 所以在[0,]π上恰好有两个零点,若()y g x =在[0,]b 上有10个零点, 则b 不小于第10个零点的横坐标即可. 所以b 的最小值为115941212πππ+=. 20.【答案】(1)因为2x =时,700y =;3x =时,150y =,所以1502700ba b ⎧=⎪⎨⎪+=⎩,解得400a =,300b =.每日的销售量2300400(3)(13)170490(35)x x y x x x ⎧-+<≤⎪=-⎨⎪-+<≤⎩, (2)由(1)知,①当13x <≤时,每日销售利润2300()400(3)(1)1f x x x x ⎡⎤=-+-⎢⎥-⎣⎦2400(3)(1)300x x =--+()324007159300(13)x x x x =-+-+<≤.由()2()40031415f x x x '=-+, 令()0f x '=,得53x =或3x =, 且当51,3x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增;当5,33x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减. 所以,53x =是函数()f x 在(]1,3的唯一极大值点, 532400300700327f ⎛⎫=⨯+> ⎪⎝⎭;②当35x <≤时,每日销售利润()2()(70490)(1)7087f x x x x x =-+⋅-=--+,()f x 在4x =处有最大值,且5(4)6303f f ⎛⎫=< ⎪⎝⎭.综上,销售价格51.673x =≈元/千克时,每日利润最大.21.解析:(1)∵在ABC △中,30B ∠=︒,AC =D 是边AB 上一点,由余弦定理,得222202cos AC AB BC AB BC B ==+-⋅∠22(2AB BC BC AB BC =+⋅≥-⋅.∴40AB BC ⋅≤=+,∴1sin 102ABC S AB BC B =⋅∠≤+△∴ABC △面积的最大值为10+ (2)设ACD θ∠=,在ACD △中,∵2CD =,ACD △的面积为4,ACD ∠为锐角,∴12ACD S AC =△.1sin 2sin 42CD θθ=⨯=,∴sin 5θ=,cos 5θ=,由余弦定理,得2222cos 20416AD AC CD AC CD θ=+-⋅=+-=, ∴4AD =22.【答案】解:(1)当4a =-时,2()4ln f x x x =-+,函数的定义域为(0,)+∞.42(()2x x f x x x x+'=-+=.当x ∈时,()0f x '<,所以函数()f x 在⎡⎣上为减函数,在)e 上为增函数.2(1)4ln111f =-+=,22()4ln 4f e e e e =-+=-,所以函数()f x 在[]1,e 上的最大值为24e -,相应的x 值为e .(2)由2()ln f x a x x =+,得22()2a x af x x x x+'=+=.若0a ≥,则在[]1,e 上()f x ',函数2()ln f x a x x =+在[]1,e 上为增函数, 由()110f =>知,方程()0f x =的根的个数是0;若0a <,由()0f x '=,得x =x =1≤,即20a -≤<,2()ln f x a x x =+在[]1,e 上为增函数, 由(1)10f =>知,方程()0f x =的根的数是0;e ≥,即22a e ≤-, 2()lnf x a x x =+在[]1,e 上为减函数,又(1)1f =,222()ln 0f e a e e e a e =+=+≤-<, 所以方程()0f x =在[]1,e 上有1个实数根;若1<222e a -<<-,()f x 在⎡⎢⎣上为减函数,在e ⎤⎥⎦上为增函数,又(1)10f =>,2()f e e a =+.min ()ln ln 122222a a a a a f x f ⎡⎤⎛⎫⎛⎫==--=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 当2ae -<,即22e a -<<-时,0f >,方程()0f x =在[]1,e 上的根的个数是0; 当2a e =-时,方程()0f x =在[]1,e 上的根的个数是1;当22e a e -≤<-时,0f <,2()0f e a e =+≥, 方程()0f x =在[]1,e 上的根的个数是2; 当222e a e -<<-时,0f <,2()0f e a e =+<, 方程()0f x =上的根的个数是1.(3)若0a >,由(2)知,函数2()ln f x a x x =+在[]1,e 上为增函数,不妨设12x x <,则()()121211f x f x x x -≤-, 即为()()212111f x f x x x +<+, 由此说明函数1()()G x f x x =+在[]1,e 上单调递减, 所以21()20a G x x x x'=+-≤, 对[1,]x e ∈恒成立,即212a x x≤-+对[1,]x e ∈恒成立, 而212x x -+在[]1,e 上单调递减,所以212a e e ≤-+. 所以,满足0a >,且对任意的12,[1,]x x e ∈,都有()()121211f x f x x x -≤-成立的实数a 的取值范围不存在.。

2021-2022学年安徽省六安市裕安区新安中学普通班高三(上)第二次月考数学试卷(理科)(解析版)

2021-2022学年安徽省六安市裕安区新安中学普通班高三(上)第二次月考数学试卷(理科)(解析版)

2021-2022学年安徽省六安市裕安区新安中学普通班高三(上)第二次月考数学试卷(理科)一、单选题(共12小题,每小题5分,共60分).1.设集合A={x|﹣2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4} 2.设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.已知函数f(x)=,则f(f(﹣1))的值为()A.﹣1B.0C.1D.24.下列函数中,既是奇函数又在定义域内递增的是()A.f(x)=x3+x B.f(x)=x3﹣1C.D.f(x)=log3|x| 5.函数y=的一段大致图象是()A.B.C.D.6.已知f(x)=sin x﹣cos x,则=()A.0B.C.D.17.已知a=(),b=log23,c=log47,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<a<b D.a<c<b8.函数的单调递增区间是()A.(﹣∞,+∞)B.[1,+∞)C.(0,1]D.(0,+∞)9.函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2﹣)∪(2﹣,2)C.(2,+∞)D.(0,+∞)10.如果幂函数y=(m2﹣3m+3)的图象不过原点,则m取值是()A.﹣1≤m≤2B.m=1或m=2C.m=2D.m=111.函数y=ax3﹣x在(﹣∞,+∞)上的减区间是[﹣1,1],则()A.a=B.a=1C.a=2D.a≤012.已知函数f(x)的定义域为(0,+∞),且满足f(x)+xf′(x)>0(f′(x)是f(x)的导函数),则不等式(x﹣1)f(x2﹣1)<f(x+1)的解集为()A.(﹣∞,2)B.(1,+∞)C.(﹣1,2)D.(1,2)二、填空题(每题5分,合计20分)13.计算求值:+lg5+lg2+e ln2lg0.01=.14.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,则f(1)+2f′(1)的值是.15.若关于x的不等式ax2+ax+2≥0的解集为R,则a的取值范围为.16.已知函数f(x)=log a(2x﹣a)在区间上恒有f(x)>0,则实数a的取值范围为.三、解答题(17题10分,18-22每题12分,共70分)17.已知关于x的不等式(a﹣x)(x+1)≥0的解集为A,不等式|x﹣1|<1的解集为B.(1)若a=3,求A;(2)若A∪B=A,求正数a的取值范围.18.已知函数f(x)=a x+log a x(a>0,a≠1)在[1,2]上的最大值与最小值之和为6+log a2.(1)求实数a的值;(2)对于任意的x∈[2,+∞),不等式kf(x)﹣1≥0恒成立,求实数k的取值范围.19.函数f(x)是实数集R上的奇函数,当x>0时,f(x)=log2x+x﹣3.(1)求f(﹣1)的值和函数f(x)的表达式;(2)求方程f(x)=0在R上的零点个数.20.已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f()=.(1)求函数的解析式;(2)判断函数f(x)在(﹣1,1)上的单调性,并用定义证明;(3)解关于t的不等式:f(t+)+f(t﹣)<0.21.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y =﹣4x+1,y=f(x)在x=3处有极值.(1)求f(x)的解析式.(2)求y=f(x)在[0,4]上的最小值.22.已知函数f(x)=+alnx﹣2(a>0).(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(2)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.参考答案一、单选题(共12小题,每小题5分,共60分).1.设集合A={x|﹣2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}【分析】直接利用交集运算得答案.解:∵A={x|﹣2<x<4},B={2,3,4,5},∴A∩B={x|﹣2<x<4}∩{2,3,4,5}={2,3}.故选:B.2.设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】由x3>8得到|x|>2,由|x|>2不一定得到x3>8,然后结合查充分条件、必要条件的判定方法得答案.解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.3.已知函数f(x)=,则f(f(﹣1))的值为()A.﹣1B.0C.1D.2【分析】利用分段函数的性质先求f(﹣1)的值,再求f(f(﹣1))的值.解:∵函数f(x)=,∴f(﹣1)=3﹣(﹣1)=4,f(f(﹣1))=f(4)==2.故选:D.4.下列函数中,既是奇函数又在定义域内递增的是()A.f(x)=x3+x B.f(x)=x3﹣1C.D.f(x)=log3|x|【分析】由常见函数的奇偶性和单调性,可得结论.解:f(x)=x3+x,由f(﹣x)=﹣x3﹣x=﹣f(x),可得f(x)为奇函数,且f(x)在R上递增,故A符合题意;而f(x)=x3﹣1不为奇函数;f(x)=﹣是奇函数,但在定义域内不单调;f(x)=log3|x|为偶函数.故BCD不符题意.故选:A.5.函数y=的一段大致图象是()A.B.C.D.【分析】根据函数的奇偶性和特殊值即可判断.解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.6.已知f(x)=sin x﹣cos x,则=()A.0B.C.D.1【分析】根据题意,求出函数的导数,将x=代入计算可得答案.解:f(x)=sin x﹣cos x,则f′(x)=cos x+sin x,则f′()=cos+sin=,故选:C.7.已知a=(),b=log23,c=log47,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<a<b D.a<c<b【分析】利用对数函数、指数函数的单调性直接求解.解:∵,∴0<a=()<()0=1,b=log23=log49>c=log47>log44=1,∴a,b,c的大小关系为a<c<b.故选:D.8.函数的单调递增区间是()A.(﹣∞,+∞)B.[1,+∞)C.(0,1]D.(0,+∞)【分析】化简函数的解析式,可得它的单调性.解:∵函数=,故它的单调递增区间为[1,+∞),故选:B.9.函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2﹣)∪(2﹣,2)C.(2,+∞)D.(0,+∞)【分析】问题等价于f′(x)=2在(0,+∞)上有解,分离出参数a,转化为求函数值域问题即可.解:函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,即f′(x)=2在(0,+∞)上有解,而f′(x)=+a,即k=2在(0,+∞)上有解,a=2﹣,因为x>0,所以2﹣<2,所以a<2.所以a的取值范围是(﹣∞,2).当直线2x﹣y=0就是f(x)=lnx+ax的切线时,设切点坐标(m,lnm+am),可得,解得m=e,a=2﹣.所以实数a的取值范围是:(﹣∞,2﹣)∪(2﹣,2).故选:B.10.如果幂函数y=(m2﹣3m+3)的图象不过原点,则m取值是()A.﹣1≤m≤2B.m=1或m=2C.m=2D.m=1【分析】幂函数的图象不过原点,所以幂指数小于等于0,系数为1,建立不等式组,解之即可.解:幂函数的图象不过原点,所以解得m=1或2,符合题意.故选:B.11.函数y=ax3﹣x在(﹣∞,+∞)上的减区间是[﹣1,1],则()A.a=B.a=1C.a=2D.a≤0【分析】由f(x)=ax3+x的减区间为[﹣1,1],得f′(x)=3ax2﹣1=0的两个根为﹣1,1,解出a即可.解:f′(x)=3ax2﹣1由题意得3ax2﹣1=0的根为﹣1,1则3a﹣1=0,所以a=.故选:A.12.已知函数f(x)的定义域为(0,+∞),且满足f(x)+xf′(x)>0(f′(x)是f(x)的导函数),则不等式(x﹣1)f(x2﹣1)<f(x+1)的解集为()A.(﹣∞,2)B.(1,+∞)C.(﹣1,2)D.(1,2)【分析】根据条件构造函数g(x)=xf(x),求函数的导数,利用函数单调性和导数之间的关系进行转化求解即可.解:设g(x)=xf(x),则g′(x)=f(x)+x•f'(x),∵f(x)+x•f'(x)>0,∴g′(x)>0,即g(x)在(0,+∞)为增函数,则不等式(x﹣1)f(x2﹣1)<f(x+1)等价为(x﹣1)(x+1)f(x2﹣1)<(x+1)f(x+1),即(x2﹣1)f(x2﹣1)<(x+1)f(x+1),即g(x2﹣1)<g(x+1),∵g(x)在(0,+∞)为增函数,∴,即,即1<x<2,故不等式的解集为(1,2),故选:D.二、填空题(每题5分,合计20分)13.计算求值:+lg5+lg2+e ln2lg0.01=3.【分析】由指数与对数的运算性质求解即可.解:+lg5+lg2+e ln2lg0.01=+lg5×2+2+lg10﹣2=2﹣1+lg10+2+×(﹣2)=+3﹣=3.故答案为:3.14.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,则f(1)+2f′(1)的值是2.【分析】因为切点坐标一定满足切线方程,所以据此可以求出f(1)的值,又因为切线的斜率是函数在切点处的导数,就可求出f′(1)的值,把f(1)和f′(1)代入f(1)+2f'(1)即可.解:∵点(1,f(1))是切点,∴在切线上,∴1﹣2f(1)+1=0,f(1)=1∵函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,∴切线斜率是即f′(1)=∴f(1)+2f'(1)=1+2×=2故答案为215.若关于x的不等式ax2+ax+2≥0的解集为R,则a的取值范围为[0,8].【分析】分a=0和a≠0两种情况,并结合二次函数的图象与性质,即可得解.解:当a=0时,不等式为2≥0,满足题意;当a≠0时,要使不等式的解集为R,则,解得0<a≤8,综上所述,a的取值范围为[0,8].故答案为:[0,8].16.已知函数f(x)=log a(2x﹣a)在区间上恒有f(x)>0,则实数a的取值范围为(,).【分析】由题意利用对数函数的单调性和特殊点,函数的恒成立问题,求得实数a的取值范围.解:函数f(x)=log a(2x﹣a)在区间上恒有f(x)>0,即当a>1时,2x﹣a>1,或当0<a<1时,0<2x﹣a<1.∴①,或②.由①求得a∈∅,由②求得<a<.综合可得实数a的取值范围为(,),故答案为:(,).三、解答题(17题10分,18-22每题12分,共70分)17.已知关于x的不等式(a﹣x)(x+1)≥0的解集为A,不等式|x﹣1|<1的解集为B.(1)若a=3,求A;(2)若A∪B=A,求正数a的取值范围.【分析】(1)当a=3时,可得不等式(3﹣x)(x+1)≥0,解不等式即可得到集合A;(2)由A∪B=A,得B⊆A,所以a>0,此时A={x|﹣1≤x≤a}.由B是A的子集,得a≥2.解:(1)a=3,由(3﹣x)(x+1)≥0,得(x﹣3)(x+1)≤0,解得﹣1≤x≤3,所以A={x|﹣1≤x≤3}.(2)B={x||x﹣1|<1}={x|0<x<2}.由A∪B=A,得B⊆A,所以a>0,此时A={x|﹣1≤x≤a},所以a≥2,即a的取值范围为[2,+∞).18.已知函数f(x)=a x+log a x(a>0,a≠1)在[1,2]上的最大值与最小值之和为6+log a2.(1)求实数a的值;(2)对于任意的x∈[2,+∞),不等式kf(x)﹣1≥0恒成立,求实数k的取值范围.【分析】(1)由函数f(x)在[1,2]上是单调函数,从而可得f(x)在[1,2]上的最大值与最小值之和为a+a2+log a2=6+log a2,计算即可求解a的值;(2)将已知不等式转化为对于任意的x∈[2,+∞),k≥恒成立,求出的最大值,即可求解k的取值范围.解:(1)因为函数y=a x,y=log a x(a>0,a≠1)在[1,2]上的单调性相同,所以函数f(x)=a x+log a x(a>0,a≠1)在[1,2]上是单调函数,所以函数f(x)在[1,2]上的最大值与最小值之和为a+a2+log a2=6+log a2,所以a2+a﹣6=0,解得a=2或a=﹣3(舍),所以实数a的值为2.(2)由(1)可知f(x)=2x+log2x,因为对于任意的x∈[2,+∞),不等式kf(x)﹣1≥0恒成立,所以对于任意的x∈[2,+∞),k≥恒成立,当x∈[2,+∞)时,f(x)=2x+log2x为单调递增函数,所以f(x)≥f(2)=5,所以≤,即k≥,所以实数k的取值范围是[,+∞).19.函数f(x)是实数集R上的奇函数,当x>0时,f(x)=log2x+x﹣3.(1)求f(﹣1)的值和函数f(x)的表达式;(2)求方程f(x)=0在R上的零点个数.【分析】(1)根据题意,由函数的解析式求出f(1)的值,结合函数的奇偶性可得f(﹣1)的值,设x<0,则﹣x>0,结合函数的解析式和奇偶性分析可得f(x)的表达式,又由f(0)=0,综合3种情况即可得函数的解析式;(2)根据题意,由函数的解析式分段分析:当x>0时,易得f(x)为增函数,由解析式可得f(1)<0,f(3)>0,由函数零点判定定理可得f(x)在(0,+∞)上有唯一的零点,结合函数的奇偶性可得f(x)在(﹣∞,0)上也有唯一的零点以及f(0)=0,综合即可得答案.解:(1)由题知,当x>0时,f(x)=log2x+x﹣3,则f(1)=log21+1﹣3=﹣2,又由函数f(x)是实数集R上的奇函数,则有f(﹣1)=﹣f(1)=﹣(﹣2)=2;设x<0,则﹣x>0,f(﹣x)=log2(﹣x)+(﹣x)﹣3=log2(﹣x)﹣x﹣3,又由f(x)为奇函数,则f(x)=﹣f(﹣x)=﹣log2(﹣x)+x+3,又由f(0)=0,则f(x)=;(2)根据题意,由(1)的结论,f(x)=;当x>0时,f(x)=log2x+x﹣3,易得f(x)为增函数,又由f(1)=﹣2<0,f(3)=log23>0,则f(x)在(0,+∞)上有唯一的零点,又由函数f(x)为奇函数,则f(x)在(﹣∞,0)上也有唯一的零点,又由f(0)=0,综合可得:方程f(x)=0在R上有3个零点.20.已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f()=.(1)求函数的解析式;(2)判断函数f(x)在(﹣1,1)上的单调性,并用定义证明;(3)解关于t的不等式:f(t+)+f(t﹣)<0.【分析】(1)由奇函数的性质可知,f(0)=0,代入可求b,然后根据,代入可求a;(2)任取﹣1<x1<x2<1,然后利用作差法比较f(x1)与f(x2)的大小即可判断;(3)结合(2)的单调性即可求解不等式.解:(1)由奇函数的性质可知,f(0)=0,∴b=0,f(x)=,∵=.∴a=1,f(x)=;(2)函数f(x)在(﹣1,1)上是增函数.证明:任取﹣1<x1<x2<1,则,所以函数f(x)在(﹣1,1)上是增函数;(3)由,∴.故不等式的解集为(﹣,0).21.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y =﹣4x+1,y=f(x)在x=3处有极值.(1)求f(x)的解析式.(2)求y=f(x)在[0,4]上的最小值.【分析】(1)由题意得到关于a,b的方程组,求解方程组即可确定函数的解析式;(2)结合(1)中求得的函数解析式研究函数的极值和函数在端点处的函数值确定函数的最小值即可.解:(1)f′(x)=3x2+2ax+b,f′(1)=3+2a+b.∴k=f′(1)=3+2a+b=﹣4 ①曲线y=f(x)在点P处的切线方程为y﹣f(1)=﹣4(x﹣1),即y=﹣4x+4+f(1)=﹣4x+1∴f(1)=﹣3=1+a+b+c②∵y=f(x)在x=3处有极值,所以f′(3)=0,∴27+6a+b=0 ③由①②③得,a=﹣5,b=3,c=﹣2所以f(x)=x3﹣5x2+3x﹣2…(2)由(1)知f′(x)=3x2﹣10x+3=(3x﹣1)(x﹣3).令f′(x)=0,得x1=3,x2=.当x∈[0,)时,f′(x)>0;当x∈时,f′(x)<0;当x∈[3,4]时,f′(x)>0,∴f(x)极小值=f(3)=﹣11.又因f(0)=﹣2,所以f(x)在区间[0,4]上的最小值为﹣11.22.已知函数f(x)=+alnx﹣2(a>0).(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(2)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.【分析】(I)先求出函数f(x)的定义域和导函数f′(x),再由f′(1)=﹣1求出a的值,代入f′(x),由f′(x)>0和f′(x)<0进行求解,即判断出函数的单调区间;(II)由(I)和题意求出g(x)的解析式,求出g′(x),由g′(x)>0和g′(x)<0进行求解,即判断出函数的单调区间,再由条件和函数零点的几何意义列出不等式组,求出b的范围.解:(I)由题意得,f(x)的定义域为(0,+∞),∵f′(x)=,∴f′(1)=﹣2+a,∵直线y=x+2的斜率为1,∴﹣2+a=﹣1,解得a=1,所以f(x)=,∴f′(x)=,由f′(x)>0解得x>2;由f′(x)<0解得0<x<2.∴f(x)的单调增区间是(2,+∞),单调减区间是(0,2)(II)依题得g(x)=,则=.由g′(x)>0解得x>1;由g′(x)<0解得0<x<1.∴函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.又∵函数g(x)在区间[,e]上有两个零点,∴,解得1<b≤,∴b的取值范围是(1,].。

2021-2022年高三上学期10月月考试题数学(理)含答案

2021-2022年高三上学期10月月考试题数学(理)含答案

2021-2022年高三上学期10月月考试题数学(理)含答案一、填空题:1. 设全集为,集合,集合,则(∁)= ▲2. 命题“对,都有”的否定为 ▲3. 对于函数,“是奇函数”是“的图象关于轴对称”的_____▲_____条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)4. 函数)12(log 1)(21+=x x f 的定义域为 ▲5. 已知向量,,,若,则实数 ▲6. 过原点作曲线的切线,则此切线方程为 ▲7. 已知的零点在区间上,则的值为 ▲8. 已知为非零向量,且夹角为,若向量,则 ▲9. 函数]2,0[,sin 21π∈-=x x x y 的单调增区间为 ▲ 10. 设是定义在上周期为4的奇函数,若在区间,⎩⎨⎧≤<-<≤-+=20,102,)(x ax x b ax x f ,则 ▲ 11. 已知定义在上的奇函数和偶函数满足2)()(+-=+-x x a a x g x f ,且,若,则 ▲12. 在面积为2的中,分别是的中点,点在直线上,则的最小值是 ▲13.若函数定义在上的奇函数,且在上是增函数,又,则不等式的解集为 ▲14. 已知函数)(|1|)(22R m x mx x x f ∈--+=,若在区间上有且只有1个零点,则实数的取值范围是 ▲二、解答题:15. 已知函数为定义在上的奇函数,且当时,.(1)求的解析式;(2)若函数在区间上单调递增,求实数的取值范围.16. 设集合,|lg ,0,3x a B x y a a R a x -⎧⎫==≠∈⎨⎬-⎩⎭. (1)当1时,求集合;(2)当时,求的取值范围.17. 如图,在△OAB 中,已知P 为线段AB 上的一点,(1)若,求,的值;(2)若,,,且与的夹角为60°时,求 的值.18. 某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求的值;(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.19.中心在原点,焦点在轴上的椭圆的焦距为2,两准线间的距离为10. 设过点作直线交椭圆于两点,过点作轴的垂线交椭圆于另一点(1)求椭圆的方程;(2)求证直线过轴上一定点(3)若过点作直线与椭圆只有一个公共点求过两点,且以为切线的圆的方程.20.已知函数.(1)求函数的极值;(2)求函数(为实常数)的单调区间;(3)若不等式对一切正实数恒成立,求实数的取值范围.数学答题纸xx.10一、填空题(14×5=70分)1、2、,3、充分不必要4、5、16、7、18、9、10、11、12、13、14、或二、解答题(共90分)19、(16分)(1)设椭圆的标准方程为依题意得:222,1,,210,c c a a c=⎧=⎧⎪⎪⎨⎨==⎪⎩⎪⎩得 所以,椭圆的标准方程为(2)设,,AP=tAQ ,则.结合⎪⎪⎩⎪⎪⎨⎧=+=+14514522222121y x y x ,得⎪⎩⎪⎨⎧-=+-=t t x t x 233221. 设B (x ,0),则,,所以,直线过轴上一定点B (1,0). (3)设过点的直线方程为:代入椭圆方程 得: 2222(45)50125200k x k x k +-+-=.依题意得:即2222(50)4(45)(12520)0k k k -+-=得:且方程的根为.当点位于轴上方时,过点与垂直的直线与轴交于点,直线的方程是:11),(,0)5y x E =-∴.所求的圆即为以线段为直径的圆,方程为:22324()(;5525x y -+-=同理可得:当点位于轴下方时,圆的方程为:22324()(.5525x y -++=20. 已知函数.(1)求函数的极值;(2)求函数(为实常数)的单调区间;(3)若不等式对一切正实数恒成立,求实数的取值范围.解:(1)g (x )=lnx -x +1,g′(x )=1x -1=1-x x ,当0<x <1时,g′(x )>0;当x >1时,g′(x )<0,可得g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故g (x )有极大值为g (1)=0,无极小值.(2)h (x )=lnx +|x -a|.当a ≤0时,h (x )=lnx +x -a ,h′(x )=1+1x >0恒成立,此时h (x )在(0,+∞)上单调递增;当a >0时,h (x )=⎩⎨⎧lnx +x -a ,x ≥a ,lnx -x +a ,0<x <a .①当x ≥a 时,h (x )=lnx +x -a ,h′(x )=1+1x >0恒成立,此时h (x )在(a ,+∞)上单调递增;②当0<x <a 时,h (x )=lnx -x +a ,h′(x )=1x -1=1-x x .当0<a ≤1时,h′(x )>0恒成立,此时h (x )在(0,a )上单调递增;当a >1时,当0<x <1时h′(x )>0,当1≤x <a 时h′(x )≤0,所以h (x )在(0,1)上单调递增,在(1,a )上单调递减.综上,当a ≤1时,h (x )的增区间为(0,+∞),无减区间;当a >1时,h (x )增区间为(0,1),(a ,+∞);减区间为(1,a ).(3)不等式(x 2-1)f (x )≥k (x -1)2对一切正实数x 恒成立,即(x 2-1)lnx ≥k (x -1)2对一切正实数x 恒成立.当0<x <1时,x 2-1<0;lnx <0,则(x 2-1)lnx >0;当x ≥1时,x 2-1≥0;lnx ≥0,则(x 2-1)lnx ≥0.因此当x >0时,(x 2-1)lnx ≥0恒成立.又当k ≤0时,k (x -1)2≤0,故当k ≤0时,(x 2-1)lnx ≥k (x -1)2恒成立. 下面讨论k >0的情形.当x >0且x ≠1时,(x 2-1)lnx -k (x -1)2=(x 2-1)[lnx -k(x -1)x +1]. 设h (x )=lnx -k(x -1)x +1( x >0且x ≠1),222)1(1)1(2)1(21)('++-+=+-=x x x k x x k x x h . 记△=4(1-k )2-4=4(k 2-2k ).① 当△≤0,即0<k ≤2时,h′(x )≥0恒成立,故h (x )在(0,1)及(1,+∞)上单调递增.于是当0<x <1时,h (x )<h (1)=0,又x 2-1<0,故(x 2-1) h (x )>0,即(x2-1)lnx>k(x-1)2.当x>1时,h(x)>h(1)=0,又x2-1>0,故(x2-1)h(x)>0,即(x2-1)lnx>k(x-1)2.又当x=1时,(x2-1)lnx=k(x-1)2.因此当0<k≤2时,(x2-1)lnx≥k(x-1)2对一切正实数x恒成立.②当△>0,即k>2时,设x2+2(1-k)x+1=0的两个不等实根分别为x1,x2(x1<x2).函数φ(x)=x2+2(1-k)x+1图像的对称轴为x=k-1>1,又φ(1)=4-2k<0,于是x1<1<k-1<x2.故当x∈(1,k-1)时,φ(x)<0,即h′(x)<0,从而h(x)在(1,k-1)在单调递减;而当x∈(1,k-1)时,h(x)<h(1)=0,此时x2-1>0,于是(x2-1)h(x)<0,即(x2-1)lnx<k(x-1)2,因此当k>2时,(x2-1)lnx≥k(x-1)2对一切正实数x不恒成立.综上,当(x2-1)f (x)≥k(x-1)2对一切正实数x恒成立时,k≤2,即k的取值范围是(-∞,2].22481 57D1 埑S=}20695 50D7 僗lo37408 9220 鈠39810 9B82 鮂"p38024 9488 针T。

黑龙江省2024-2025学年高三上学期10月月考试题 数学含答案

黑龙江省2024-2025学年高三上学期10月月考试题 数学含答案

黑龙江省2024-2025学年高三学年上学期第二次月考数学试题(答案在最后)考试时间:120分钟总分:150分命题人:高三数学备课组一、单项选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合要求)1.若集合},{0|23A x mx m =->∈R ,其中2A ∈且1A ∉,则实数m 的取值范围是()A.33,42⎛⎤⎥⎝⎦B.33,42⎡⎫⎪⎢⎣⎭C.33,42⎛⎫⎪⎝⎭D.33,42⎡⎤⎢⎥⎣⎦2.“5π12α=”是“223cos sin 2αα-=-”的()A.充要条件B.既不充分又不必要条件C.必要不充分条件D.充分不必要条件3.已知复数z 满足()()22i 1i z -=+,则复数z 的共轭复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.若正数a b ,满足1232ab a b =++,则ab 的最小值为()A.3B.6C.9D.125.已知函数=的定义域为,且−=,若函数=的图象与函数()2log 22x xy -=+的图象有交点,且交点个数为奇数,则()0f =()A .1- B.0C.1D.26.在ABC V 中,6BC =,4AB =,π2CBA ∠=,设点D 为AC 的中点,E 在BC 上,且0AE BD ⋅= ,则BC AE ⋅= ()A.16B.12C.8D.4-7.已知函数()445sin cos 8f x x x ωω=+-在π0,4⎛⎤⎥⎝⎦上有且仅有两个零点,则ω的取值范围是()A.48,33⎛⎤ ⎥⎝⎦B.48,33⎡⎫⎪⎢⎣⎭C.81633⎛⎤ ⎥⎝⎦, D.816,33⎡⎫⎪⎢⎣⎭8.在ABC V 中,内角,,A B C 所对的边分别为,,.a b c 已知222π,24,3A b c ABC =+= 的外接圆半径R D =是边AC 的中点,则BD 长为()A.1+ B. C.D.二、多项选择题(共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有错选得0分)9.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则()A.该图像向右平移π6个单位长度可得3sin2y x =的图象B.函数=的图像关于点π,06⎛⎫-⎪⎝⎭对称C.函数=的图像关于直线5π12x =-对称D.函数=在2ππ,36⎡⎤--⎢⎥⎣⎦上单调递减10.已知a ,b ,c是平面上的三个非零向量,那么()A.若()()a b c b c a ⋅=⋅,则a c∥ B.若a b a b +=-,则0a b ⋅= C.若a b a b ==+ ,则a 与a b - 的夹角为π3D.若a b a c ⋅=⋅r r r r,则b ,c 在a 方向上的投影向量相同11.定义在R 上的函数()f x 满足()()()()()322,6,12f x f x f f x f x f ⎛⎫++=+=-=⎪⎝⎭,则()A.()f x 是周期函数B.()20240f =C.()f x 的图象关于直线()21x k k =-∈Z 对称D.20241120242k k f k =⎛⎫-= ⎪⎝⎭∑三、填空题(共3小题,每小题5分,共15分)12.已知πsin 63x ⎛⎫+= ⎪⎝⎭,则ππcos 2cos 233πcos 2sin cos 3x x x x x⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫+ ⎪⎝⎭________.13.若数列{}n a 满足211111n na a a +==-,,则985a =__________.14.已知函数()f x 及其导函数′的定义域均为ππ,22⎛⎫-⎪⎝⎭,且()f x 为偶函数,若0x ≥时,()()tan f x f x x '≥,且π23f ⎛⎫= ⎪⎝⎭,则不等式()1cos f x x <的解集为__________.四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤)15.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知12cos sin 2sin sin BC A B=+.(1)求C ;(2)若32a b c +=且3a =,求ABC V 的外接圆半径.16.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c,设向量π2π(2sin ),(cos ,cos sin ),(),,63m A A A n A A A f A m n A ⎡⎤=+=-=⋅∈⎢⎥⎣⎦.(1)求函数(A)f 的最小值;(2)若6()0,sin 2f A a B C ==+=,求ABC V 的面积.17.已知锐角ABC V 的三个内角,,A B C ,所对的边为,,a b c ,()()()cos cos cos cos sin sin A B A B C C A +-=-.(1)求角B 的大小;(2)求222a cb +的取值范围.18.已知函数()()()22ln 1f x ax a x x a =-+++∈R .(1)当1a =时,求()f x 的极值;(2)若()12,0,x x ∀∈+∞,当12x x ≠时,()()12122f x f x x x ->--恒成立,求a 的取值范围.19.已知函数()log a axf x x =.(1)当e a =时,设()()e 1F x x f x -=,求在1x =处的切线方程;(2)当2a =时,求()f x 的单调区间;(3)若曲线=与直线21y a=有且仅有两个交点,求a 的取值范围.黑龙江省2024-2025学年高三学年上学期第二次月考数学试题考试时间:120分钟总分:150分命题人:高三数学备课组一、单项选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合要求)【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】A【7题答案】【答案】B【8题答案】【答案】D二、多项选择题(共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有错选得0分)【9题答案】【答案】ABC【10题答案】【答案】ABD【11题答案】【答案】ABC三、填空题(共3小题,每小题5分,共15分)【12题答案】【答案】-【13题答案】【答案】1011【14题答案】【答案】ππ,33⎛⎫-⎪⎝⎭四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤)【15题答案】【答案】(1)2π3C =(2)3【16题答案】【答案】(1)−2(2)ABC S =!【17题答案】【答案】(1)π4(2)(3,2【18题答案】【答案】(1)()f x 的极大值为1ln24--,()f x 的极小值为1-.(2)[0,8].【19题答案】【答案】(1)1y x =-(2)增区间为(,减区间为)∞+(3)()()1,e e,∞⋃+。

2021年江苏省徐州市萃星中学高三数学理月考试题含解析

2021年江苏省徐州市萃星中学高三数学理月考试题含解析

2021年江苏省徐州市萃星中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若,则A. B. C. D.参考答案:C由tanα > 0可得:kπ <α < π + (k?Z),故2kπ <2α <2 kπ +π (k?Z),正确的结论只有sin 2α > 0. 选C2. 已知函数f(x)=x﹣m+5,当1≤x≤9时,f(x)>1有恒成立,则实数m的取值范围为( )A.m<B.m<5 C.m<4 D.m≤5参考答案:C【考点】其他不等式的解法.【专题】不等式的解法及应用.【分析】令t=,则由1≤x≤9可得t∈[1,3],由题意可得f(x)=g(t)=t2﹣mt+5>1在[1,3]上恒成立,即g min(t)>1.再利用二次函数的性质,分类讨论求得实数m的取值范围.【解答】解:令t=,则由1≤x≤9可得t∈[1,3],由题意可得f(x)=g(t)=t2﹣mt+5=+5﹣>1在[1,3]上恒成立,故有g min(t)>1.①当<1时,函数g(t)在[1,3]上单调递增,函数g(t)的最小值为g(1)=6﹣m,由6﹣m>1,求得m<5,综合可得m<2.②当∈[1,3]时,函数g(t)在[1,]上单调递减,在( 3]上单调递增,函数g(t)的最小值为g()=5﹣>1,由此求得﹣4<t<4,综合可得2≤m<4.③当>3时,函数g(t)在[1,3]上单调递减,函数g(t)的最小值为g(3)=14﹣3m,由14﹣3m>1,求得m<,综合可得m无解.综上可得,m<4,故选:C.【点评】本题主要考查二次函数的性质,体现了转化、分类讨论的数学思想,属于基础题.3. 已知函数的部分图像如图所示,其中为图像上两点,将函数f(x)图像的横坐标缩短到原来的,再向右平移个单位长度后得到函数g(x)的图像,则函数g(x)的单调递增区间为()A. B.C. D.参考答案:C【分析】根据图像得到,在于图像的平移得到,将带入正弦函数的递减区间,即可得答案.【详解】由图像得,∴,∴,∵图像过点,∴,即,解得:,∴,∴,∴,∴函数的单调递增区间为.故选:C.【点睛】本题考查三角函数的图像和性质、平移变换、单调区间、诱导公式等知识的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.4. 三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=,则该三棱锥外接球的表面积为()A.5πB.C.20πD.4π参考答案:A考点:球的体积和表面积.专题:空间位置关系与距离;球.分析:根据题意,证出BC⊥平面SAB,可得BC⊥PB,得Rt△BPC的中线OB=PC,同理得到OA=PC,因此O是三棱锥P﹣ABC的外接球心.利用勾股定理结合题中数据算出PC=,得外接球半径R=,从而得到所求外接球的表面积解答:解:取PC的中点O,连结OA、OB∵PA⊥平面ABC,AC?平面ABC,∴PA⊥AC,可得Rt△APC中,中线OA=PC又∵PA⊥BC,AB⊥BC,PA、AB是平面PAB内的相交直线∴BC⊥平面PAB,可得BC⊥PB因此Rt△BPC中,中线OB=PC∴O是三棱锥P﹣ABC的外接球心,∵Rt△PBA中,AB=,PA=∴PB=,可得外接球半径R=PB=∴外接球的表面积S=4πR2=5π故选A.点评:本题在特殊三棱锥中求外接球的表面积,着重考查了线面垂直的判定与性质、勾股定理和球的表面积公式等知识,属于中档题.5. 执行下面的程序框图,如果输入的N=10,那么输出的S=A.B.C.D.参考答案:B6. 已知函数,且,则()(A)0 (B)4 (C)0或4 (D)1或3参考答案:7. 已知正项等比数列{a n}满足a7=a6+2a5,若a m,a n满足=8a1,则+的最小值为( )A.2 B.4 C.6 D.8参考答案:A考点:基本不等式.专题:不等式的解法及应用.分析:由等比数列的性质易得m+n=8,可得+=(+)(m+n)=(10++),由基本不等式求最值可得.解答:解:∵正项等比数列{a n}满足a7=a6+2a5,∴q2a5=qa5+2a5,即q2﹣q﹣2=0,解得公比q=2,或q=﹣1(舍去)又∵a m,a n满足=8a1,∴a m a n=64a12,∴q m+n﹣2a12=64a12,∴q m+n﹣2=64,∴m+n﹣2=6,即m+n=8,∴+=(+)(m+n)=(10++)≥(10+2)=2当且仅当=即m=2且n=6时取等号,故选:A.点评:本题考查基本不等式求最值,涉及等比数列的通项公式,属基础题.8. 抛物线的焦点为,在抛物线上,且,弦的中点在其准线上的射影为,则的最大值为()(A) (B ) (C ) (D)参考答案:A略9. (5分)设{a n}是公差不为零的等差数列,满足,则该数列的前10项和等于() A.﹣10 B.﹣5 C. 0 D. 5参考答案:C【考点】: 等差数列的前n 项和. 【专题】: 等差数列与等比数列.【分析】: 设出等差数列的首项和公差,把已知等式用首项和公差表示,得到a 1+a 10=0,则可求得数列的前10项和等于0.解:设等差数列{a n }的首项为a 1,公差为d (d≠0),由,得,整理得:2a 1+9d=0,即a 1+a 10=0,∴.故选:C .【点评】: 本题考查了等差数列的通项公式,考查了等差数列的前n 项和,是基础的计算题.10. 如图所示,三棱锥P ﹣ABC 中,PA⊥平面ABC ,AB⊥BC,AB=1,BC=PA=2,则该几何体外接球的表面积为( )A .4πB .9πC .12πD .36π参考答案:B【考点】球的体积和表面积;球内接多面体.【分析】根据题意,证出BC⊥平面PAB ,PC 是三棱锥P ﹣ABC 的外接球直径.利用勾股定理结合题中数据算出PB 得外接球半径,从而得到所求外接球的表面积. 【解答】解:PA⊥平面ABC ,AB⊥BC,∴BC⊥平面PAB ,BC⊥PB在Rt△PBA 中,可得PB=,在Rt△PCA 中,可得PC=取PB 的中点O ,则OA=OB=OC=OP= ∴PC 是三棱锥P ﹣ABC 的外接球直径; 几何体外接球的表面积4πR 2=9π. 故选:B .【点评】本题在特殊三棱锥中求外接球的表面积,着重考查了线面垂直的判定与性质、勾股定理和球的表面积公式等知识,属于中档题.二、 填空题:本大题共7小题,每小题4分,共28分11. (a+x )4的展开式中x 3的系数等于8,则实数a= .参考答案:2【考点】二项式定理的应用. 【专题】计算题.【分析】根据(a+x )4的展开式的通项公式为 T r+1= a4﹣rx r ,令r=3可得(a+x )4的展开式中x 3的系数等于×a=8,由此解得a 的值.【解答】解:(a+x )4的展开式的通项公式为 T r+1= a 4﹣r x r ,令r=3可得(a+x )4的展开式中x 3的系数等于 ×a=8,解得a=2,故答案为 2.【点评】本题主要考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,属于中档题.12. 已知等比数列中,,,若数列满足,则数列的前项和.参考答案:13.连掷两次骰子得到的点数分别为和,若记向量与向量的夹角为,则为锐角的概率是 .参考答案:试题分析:连掷两次骰子得到的点数分别为和,共有,其中满足向量与向量的夹角为锐角,即,即可能为共6个基本事件,所以为锐角的概率是;故填.考点:1.古典概型;2.平面向量的夹角.14. 若命题,则其否定是____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高三第二次月考数学(理)试题含答案
一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集<,集合,则等于
A .
B .
C .
D .
2.已知:若是的充分不必要条件,则实数的取值范围是
A .
B .
C .
D .
3.计算:( )
A .
B .
C .
D .
4.5.设,,,则
A .
B .
C .
D .
5.若函数的图象上任意点处切线的倾斜角为,则的最小值是( )
A .
B .
C .
D .
6.已知[x]表示不超过实数x 的最大整数,例如[1.3]=1,[-2.6]=-3,为取整函数,已知x 0是函
数f (x )=lnx- 的零点,则等于( )
A .1
B .2
C .3
D .4 7.若点在函数的图像上,点在函数的图像上,则的最小值为( )
A .
B .2
C .
D .8
8.定义在上的可导函数,当时,恒成立,若,,,则的大小关系是( )
A .
B .
C .
D .
9.函数的所有零点之和等于( )
A )4
B .8
C .12
D .16
10.设函数,的零点分别为,则( )
A .
B .
C .
D .
二、填空题(本大题共5小题,每小题5分,共25分。

把答案填在题中的横线上)
11.函数的定义域为 。

12.定义在R 上的奇函数()()()()3,01,2,x
f x f x f x x f x +=<≤=满足当_______
13.已知命题p,,且的取值范围是_______
14.已知不等式,对任意恒成立,则a的取值范围为.
15.四位同学在研究函数时,分别给出下面四个结论:
①函数的图象关于轴对称;
②函数的值域为(-1,1);
③若则一定有;
④若规定, ,则对任意恒成立.你认为上述四个结论中正确的有
三、解答题(本大题共6小题,共75分,解答写出必要的文字说明、演算过程及步骤)16.已知集合,.
(1)当时,求A的非空真子集的个数;
(2)若,求实数m的取值范围
17.已知函数(为常数).
(1)若常数0<,求的定义域;
(2)若在区间(2,4)上是减函数,求的取值范围.
18.已知定义在区间[-1,1]上的函数为奇函数。


(1)求实数b的值。

(2)判断函数(-1,1)上的单调性,并证明你的结论。

(3)在x[m,n]上的值域为[ m,n ](–1m < n1),求m+n的值。

19.已知函数().
(1)当时,求函数在上的最大值和最小值;
(2)函数既有极大值又有极小值,求实数的取值范围.
20.(本小题满分13分)
已知函数在处取得极值.
(1)求的表达式;
(2)设函数.若对于任意的,总存在唯一的,使得,求实数的取值范围.21.(14分)已知函数(,为自然对数的底数).
(1)讨论函数的单调性;
(2)若,函数在区间上为增函数,求整数的最大值.
xx年山东省滕州市第五中学高三第二次月考
数学(理)试题参考答案
1.D 2.A 3.B 4.B 5.C 6.B 7.D 8.A 9.C 10.B
11.12.-213.14.15.②③④
三、解答题
16.解:化简集合A=,集合. (3)
(1),即A中含有6个元素,
A的非空真子集数为个.6分
(2)(2m+1)-(m-1)=m+2①m= -2时,;…………7分
②当m<-2时,(2m+1)<(m-1),所以B=,因此,要,则只要,所以m的值不存在; (8)

③当m>-2 时, (2m+1)>(m-1),所以B=(m-1,2m+1),因此,要,则只要.…………10分
综上所述,m的取值范围是:m=-2或…………12分
17.解(1)由, 当时,解得或,………4分
故当时,的定义域为{或}……5分
(2)令,因为为减函数,故要使在(2,4)上是减函数,
在(2,4)上为增函数且为正值.……8分
故有.…故.………12分
18.(1)b=0,
(2)函数(-1,1)上是增函数………………3分
证明:∵∴
22
2222
2(1)2(2)1
()2
(1)(1)
x x x x
f x
x x
+--
'==
++
……………5分
,∴∴函数(-1,1)上是增函数…6分
(3)由(2)知函数[m,n]上是增函数∴函数的值域为[,]
∴即…………………………9分
由①得m = –1 或0或1由②得n = –1 或0或1……………10分
又∵–1 ≤ m < n ≤ 1∴m=–1,n=0;或m=–1,n=1;或m=0,n=1∴m+n=–1;或m+n=0;或m+n=1 (12)

19.(1)时, x
x x x x x x x x f )1)(12(132132)('2---=+--=-+-= 函数在区间仅有极大值点,故这个极大值点也是最大值点
故函数在最大值是,
又02ln 243
)2ln 45()2ln 2()21()2(<-=+--=-f f ,故,
故函数在上的最小值为
(2)
若既有极大值又有极小值,则首先必须有两个不同正跟,
即有两个不同正跟。

故应满足
20.(1).------------1分
由在处取得极值,故,即,--------3分
解得:, 经检验:此时在处取得极值,故.---5分
(2)由(1)知,故在上单调递增,在上单调递减,由,,故的值域为. -----------7分
依题意:,记,
①当时,,单调递减,依题意有得,
故此时.
②当时,,当时,;当时,,
依题意有:,得,这与矛盾.
③当时,,单调递增,依题意有,无解.-----12分
综上所述的取值范围是. -------------13分
21.略
24023 5DD7 巗37333 91D5 釕20620 508C 傌\29381 72C5 狅22852 5944 奄39204 9924 餤38757 9765 靥C8637502 927E 鉾40097 9CA1 鲡QR。

相关文档
最新文档